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Abstract

This paper deals with the behaviour of acoustic cavitiehérid-high fre-
quency range. The method proposed here is based on an emnasgynéthod
named Simplified Energy Method (MES). MES method is quitecigffit in the
mid-high frequency range but the directivity of the bourydsources is not well
estimated. We propose a hybrid method which couples MES lamdoundary
Element Method (BEM). Thus, the BEM method is used to estnthé direct
field, considering a “correct” directivity. As a completda@aation is not adapted
to BEM in mid-high frequency range because of the calcufatiosts, we only
apply BEM on the domains including boundary sources. Othasmpf the system
and the reverberated field are estimated by the mean of MESoheThis hybrid
method leads to a consistent prediction of injected powesities. Numerical
comparisons prove the efficiency of the proposed reforrimuiat

keywords: Energy flow; BEM; Energy method; Injected powengity; Energy
density; Intensity.

1 Introduction

Medium and high frequency range is a fundamental topic afaesh in the context
of viroacoustics. In fact, well established and deeply igtdichumerical methods like
finite element or boundary equation based formulationsmtmimportant limitations
as frequency increases. The most important limitationéssibe of the meshing that
must be very fine and leads to high calculation costs. Modahaus base on finite
element formulations have been develop |1, 2], but the taticun costs remain high
and these methods are limited to medium frequency range.

Among possible alternatives, analysis methods which aeeggrvariables based
are often studied. Th8tatistical Energy AnalysiSEA) [3] is the recognized mother
and gives the mechanical energy of complex buildup strestudowever SEA suffers
from its axiomatic formulation and still requires improvents. Beyond these studies,
a number of works attempts to enhance the Statistical Enfeanglysis robustness and
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predictivity. Among those tentatives, lets report the ieasvork of Nefske and Sung
[4] who proposed the use of an energy diffusion model to ptetie space spread of
energy density within subsystems. Basically, this way afking can be viewed as
alocal energyformalism whereas the SEA formalism is based on global éeeaf
finite subsystems. This model has been improvedlinl[5] 6, [@,/80]. Among other
contributors to this subject, let mention references [2,[113,/14] where interesting
discussions are given. 1nl[8] [9,]10] energy models start¢hl thie so-called general
energy method. The main goal of this method was to reforrathe classical displace-
ment models using four energy variables: the total energyedlsas the Lagrangian
energy density, the active and the reactive energy flow. Rf@relimination of the
Lagrangian energy density and the reactive energy flowghieral energy formula-
tion leads to an interesting energy model well suited for iomedand high frequency
dynamics. In fact, from a propagative approach, it has bbewss that the Lagrangian
energy density and the reactive energy flow is mainly linled/ave interferences or
singularities. So that, taking into account only the inaené contribution of waves to
the energy variables leads to the formulation of the locakrgy approach concerned
here. References|[9, 10,115,/ 16] 17] give in depth the fortimna used in the context
of local energy approach applications. The MES has already lapplied to various
domains: beam$[8, 18], membranes and plates [19, 20| [15] 8ndl acoustical radia-
tion [21,122[18]. In this paper, the main concern is the improent of MES prediction
for internal acoustics [23].

The main addressed issue in this work is the injected powesitjefor use in
the MES formulation. The injected power density is usuabgatibed from the input
acoustic mobility. The later is easily expressed for unlsmdmedia. A major concern
in the MES prediction quality is the input source directiwithich needs to be fixed. So
the major question this paper tries to solve is the concigmaton of injected power
density. So far, the MES energy method needs an estimatitileoéntering power,
and its directivity, which cannot easily be estimated andssally considered to be
lambertian. This is an assumption that is not always verdied the proposed hybrid
method aims at estimating correctly this directivity. Radarly, the computation of
the direct field is the key aspect. A coupled BEM and MES sgsate chosen. The
algebraic coupled formulation is expressed and implengeritemerical experiments
was achieved comparing the coupled strategy with the caioreal one. The interest
and the feasibility of the finding is proved. It must be natitere that authors already
studied the coupling between deterministic and statissichsystems. Among them,
Shorter and Langley [24] considered the coupling betwegaraésubsystems, each
subsystem being described with deterministic or statistieethods. This work has lead
to coupling methods that are currently used in softwares’@3né. Nevertheless, the
method we propose does not deal with coupling substructomesllows to describe a
single structure considering a mixed formulation.

First, the Simplified Energy Method is recalled. The hybdnfiulation is then
presented. Principle of the method is given and a matrix fdation is proposed. At
last, numerical calculations are processed to show theegftig of the method.



2 Simplified Energy Method (MES)

2.1 Assumptions

In view of describing the energy transfer inside the meditwo, continuous energy
fields are introduced. The first energy quantity is nothirge éhan the total energy
density W (s, t) defined as the sum of the potential energy density and thdikiere-
ergy density. The second energy variaﬂ@ t) is the energy flow. These quantities are
local in opposition with energies per subsystem involve8HA. The energy balance
equation from continuum mechanics obeying conservatiotipie, which govern the
energy density in various vibrating system can be desctiyed

ow A
W = —Tdiss — V . I (1)

whereV is the gradient operator,;ss iS the power density dissipated. The damp-
ing model adopted here is the same as in Sp@wer density being dissipated is pro-
portional to the energy densjtyHence:

Tdiss(S) = nwW (8) ()

wheren is the damping loss factor andthe circular frequency. The validity of
this relationship has been discussed in the literafure §8uaSEA. Equation{1) is
the energy balance relation for all elastoacoustic medéhitais regarded as a valid
method for steady or transient analysis. In order to dehieeshergy density equations,
a wave description of vibrational-acoustical behavioudédinitely adopted. In the
subsequent presentation planes and symmetrical propgghidturbances in a medium
are considered.

Each propagating waves involve partial energy quantitdindd as the energy vari-
ables associated to those waves. In order to establishteonslip between the partial
energiedV; (5) andI;(8) and the total onel/ (s), I(S), an additional assumption is in-
troduced. In fact, a superposition principle is assumedgptied here for all quadratic

variables:
£68) = £i(3) 3)

£, £; being a quadratic variables, representing either a pamtiefgy or a global en-
ergy associated to a particular wave field. This assumpsi@iten used in statistical
phenomenon in physics. We can find such an assumption in reomstcs, electro-
magnetism,... In the following developments an intrinsiemgy law will be used. In
fact, this superposition principle is valid if a term due be fphase is neglected. Con-
sidering two waves denoted andwvs, we can write the following equation:

|U1 +UQ|2 = |U1|2+|UQ|2+U>{’UJ2+U1U; (4)
N————’
neglected terms

These terms can be neglected because the quantities aekideMES are fre-
quency average quantities. Therefore, we can write:



<ujug >=0 and <wju; >=0 (5)

where< uw.v >= Aif/ uw.v df, Af being the considered frequency range for
Af

the frequency average. This will mean that MES does not takeadccount modal
information (linked to the phase of the waves).
The following equation[[25, 26] is often introduced in orderdefine the wave
velocity c. In fact:
I'8) = ¢ Wi(S)d (6)

This expression was shown to be a valid law for non-dampeesvtigld.

2.2 Elementary fields: planes waves

In this section, a wave approach very similar to the one gimgR7], will be used.
Hence, expressiof](6) will be first introduced in the energwy fbalance[{1), leading
to:

eV -W(S)A +nwW(E) =0 @)
Equationg b andl 7 lead then to the following relation:
VW E)EA + L I(E) =0 8)
(&

Thus, it can be readily shown using planes waves charatitsrthat the total en-
ergy density and the active energy flow are linked by:

— AVW(8) = nwl(8) 9)
AW (8) — n*w*W (8) =0 (10)

whereA = V - V. This is the local energy equation for an elementary plaresw
field. This is an hyperbolic equation of telephone formatakhieduces to the sim-
ple wave equation when no dissipation mechanics is intredudhis equation needs
energy boundary conditions and coupling conditions to Himele.

2.3 Elementary fields: symmetrical waves

Let us consider now a symmetrical waves field. Namely, we eafisider cylindrical
waves in dimension 2, and spherical waves in dimension 3.nbkegions used in this
section are recalled on figuré (fd, Wd) is the direct field Whereaéfr, W, ) is the

reverberated fieldz is the unit normal vector at boundary. In this cases, combifi)

and 1) leads to:
1 0

rn=1 Qgr

using [11), one can readily show that:

(7’"71[_)) FwWiHE =0 (11)

— c2L2 (rn_lWﬁ) = nwf (12)

rn=19p



Figure 1: Notations used in section2.3

Putting this intrinsic law in the energy flow balanEé (1) leaot
1 0
107
This is the local energy equation for symmetrical waves.
Figure[2 shows two distinguish manner of energy reconstmctin both tech-
niques, energy variables are defined as the supperposfteoditect field and a rever-
berant field. In both techniques, the direct field is cal@daissuming a symmetrical

waves fields like described before. The difference comem fitee reverberant field
treatment.

(r"_IW) —n2WPW =0 (13)

W=W,+W, (14)

and

I=1,+1, (15)
Precisely, in figur&l2(a), the reverberant field is assumdikta set of planes waves.
This approach is known as the hybrid energy flow method. Hexemill designate
it by the mixed wave solution. This solution was proposed hyit® [28]. Further
developments and considerations are given in [29]. Thergkapproach considers the
reverberant filed as the results of secondary sources theateoundaries as shown in
figure[2(b). So, only symmetrical waves fields is considefEuis solution was first
proposed by Kuttruff[30, 31, 32, 83]. Itis also known as theiosity method. Furthers
contributions and details can be found[inl[384} 35] &nd [36is this second approach
that we will use in this paper.

Here, both the direct and the reverberant field will be regmeed by symmetrical
waves. The elementary solutions in terms of energy densiaative intensity will be
denoted andH.

1 e mr S —— 1 eTmer

G(PM)y=— ¢ _ APMy=—""_a, (16)
Yoe L Yo 7l
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Figure 2: Energy fields reconstruction: (a) mixed wave aggion and (b) fictitious
sources at boundaries.

wherew, = ?‘Aj andr = HPMH Hence, using a superposition principle the

energy solution is then expressed using the contributiche@primary source (direct
field) and the contribution of the fictitious sources. Theitfmtis sources are energy
unknown parameters representing the contribution of therberant filed. Precisely:

W (M) = / p(P)G(PM)dP + / o(P) @, G(PM) dP (17)
Q o0

The power flow can be described by a similar expression:

o) = / o(P) [ (PM)dP + / o(P) ity i H(PM) AP (18)

Q o0

where p(P) corresponds to volumic sources aadP) corresponds to surfacic
sources. Energy variables are given as a solution of a Fhedéguation, correspond-
ing to an energy balance at the boundary of the domain [30].

2.4 Discretized formulation

Let us consider an isolated system as shown in figure 3.
The boundaries of the cavity are discretiz&d €lements). Properties are given for
each elementof the meshing:

. <I>;“j (w) is the input power flow;



Figure 3: Considered system

e 0;(w) is the reverberated power flow;

e «;(w) is the absorption coefficient.

The input power flovv1>iinj (w) is injected in the cavity. In order to calculateand
W in the cavity, the directivity of these input power flows mbstknown. For high
frequency, we assume the following directivity:

d(e):COSH (19)

™

whered is defined in figur€l4. There is no way to evaluate the “corrdir€ctivity
through MES method, and the lambertian directivitg) = % is not always a good
approximation. The hybrid method proposed in the paperlghain at considering
the correct directivity to calculate the direct field.

Iy

ﬁﬁ

Figure 4: Notation for directivity

It is now possible to defin® 4" (1) and 79 (A7) in function of ®"°. Considering
thatn << 1 in the fluid, equatiof 13 leads to the following equations:



Ne |np

(20)

Wdir (M) —

o
Ne

wherer = PM andu, = j‘é—’g (see figur€lLS; corrsponds to the facet numher

The reverberated field can be expressed the same way:

Ne _inp

Wrev g (22)
=1 o
N.
() =" o (23)
=1
Considering equatiorfls 14 afd] 15, it is then possible to wWiitand I. In the

following, we will considerl = ity wherefi; is a given vector, which corresponds to

measurements of intensity among veaier
whereP is a point situated on an elemefit d;(6) has been defined in equatfon 19.

N, is the number of elements.
Considering one elementthe power balance can be expressed as follows:

Z(I)mp// // COb@d deP
ZJ
J;ﬁz
N
- cos 8;d;(6;)
+§f” //s / /SJ. g dhdEy)(24)
J#i

This equation can be elaborated considering incoming attbming energy on
the considered facet.

2.5 Matrix equations

Equatiori2# can be written for= {1, 2,
equations can be expressed using matrices as follows:

, N.} (V. equations can be written). These

Mo = B (25)

with the following notations:



M=1Id-(Id—A)T (26)
B = (Id—A)T®" (27)

T andA are defined as follows:

ry= L[ [ MO, o8
SJ Si S Tij

Aij = 61']'(11‘ (29)

Notice thatT must verify two properties, due to the conservation of eprerg

Ne

anzl Vi (30)
j=1

N,

~ S .

Zyﬂjzl vj (31)
i=1 "7

Equatior Zb allows to write the expressioncaf

oc=M'B=M"!(Id-A)T®" (32)

Direct and reverberated fields expressed in equafidis 2@224nd 2B can now be
written as follows:

W=Y"®" 1YW (33)
I=Y®"+Ylo (34)

Considering equatidn 833V andI can be expressed as follow:

Wl
w2 .
W = _ = sWa'P (35)
W
Il
I? _
I= , = sl (36)
IV
where:
SV =YV [Id+M ™' (Id— A)T] (37)
S'=Y'[Id+M ' (Id— A)T] (38)



3 Hybrid Simplified Energy Method
3.1 Principle

The main issue of th&implified Energy Method the unknown directivity of the
sourcesb™. In the previous section, it is assumed ta#o@) = % (see equation19).
The aim of the present section is to imprd&ienplified Energy Methoith order to take
into account the genuine directivity. Thudybrid Simplified Energy MethofHMES)
is based on a BEM calculation for the direct field. The reveatssl field is calculated
as forSimplified Energy Methqdis shown in figurgl5s.

The hybrid method allows to combine the advantages of MESBi. Indeed,
calculating the entire problem through BEM would lead toMggh calculation costs.
That is why BEM will only be applied around the boundary sestc

FEM calculation
= ¢ on the structure

BEM calculation pydir i
1 > (free field)= p, v '
p, T = NP - W1
\ 4
MES calculation
(o = reverberated field ey, prev

Figure 5: HMES method

The vibrating structure is first studied using a finite elehoade. The pressure and
celerity fields on the structure is then computed in ordeibtaio the pressure field for
the acoustic domain using a BEM code. Figre 6 shows thewsifields considered
in HMES. HMES is the computed using the fields denat&{BEM) and I"®Y(MES)
(an equivalent figure can of course be plot¥arfields):

I°(HMES) = I9"(BEM) + I"*Y(MES) (39)
WUHMES) = W9 (BEM) + W'®(MES) (40)

10
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' -
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Figure 6: Considered system

3.2 Direct field calculation

The input powe®™" is due to a structure that is first studied using a FEM software
This calculation provides the celerity field on the struetuA BEM software is then
used to obtain the pressure field on the structure, conegl@mechoic conditions.
Thus, pressure and celerity are both known on the struchdét & possible to calcu-
late the pressure field in the cavity, taking the directiiity account.

Let (ps, ;) be the pressure and celerity fields on the structure. Thess fian
be provided by any FEM software and a BEM calculation. A BENtgkation is then
performed to obtain the pressure figld\/) in the cavity:

_ dg dp1
ep(M) = /S (pI(P) -y (W) = ) P, PeS§ (41)

Notice that% = —pwiy.1, wherep is the density of the fluidz is the surface
unit normal vector ane is defind as follows:

, MeQ

,  Mis onasmooth boundary 6f (42)

%, M is on a nonsmooth boundary Of

1
1
2
whereS is the solid angleg is the free-space green function defined as follows:

"]
) (57) -

(43)
o [

The pressure field in the cavity allows to calculate the difietds 179" and 79"

11



1

dir M) = M)v* (M 44
WEH(M) 2pcgp( )p* (M) (44)
- 1
19(M) = SR p(M)v*(M)] (45)
v = 7.7, (andv*) is obtained thanks tp using equationa% = —pwi.f, where

i, is a freely chosen unit vector. Thiisorresponds to the projection ﬁfamong the
directioni,.

3.3 Reverberated field calculation

The reverberated field is being calculated using classi&®btheory described in sec-
tion[2. The input powed™ is provided by the pressure and celerity fields on the
structure:

B = “R(p) (46)

o is then calculated, which allows to obtdi#i™' and 'V, as explained in equa-
tions[22 and 23.

3.4 Coupled matrix formulation

Using a matrix formulation, the pressure computed by BEMlmawritten as follows:

pr = prstr + Gpvstr (47)

whereH, andG,, are BEM matrices, and,;, andv,, are the pressure and celer-
ity fields on the structure (computed by a finite element coAa)equivalent equation
can be written for the celerity field:

vr = H'Upstr + vastr (48)

Thanks to equatioris ¥4 ahd 45, equatlods 47Tahd 48 lead tolkbvihg equations
concerning the direct field:

. 1 o

W,?” = 2pc? ( Par Vi )Al ( 55; ) *
o o

]g'r = 53% ( p:tr V:" )A2< ss; >:| (50)

whereWd" is the " value of WA and 19" is the i value ofI1%". A; andA, are
defined as follows:

12



H:H, | H:G

n - || 6

! G H, | G:G,

A, = [HH [ GG,
G:H, | GG,

(52)

Concerning the reverberated fielV™" andI™' are obtained using equatidng 35
and36:

Wi = ISR [(pv), ] (53)
12 = JSIR[(pv').,] (54)

whereSY is the f" line of matrix S andS! is the " line of matrixS.. W
and/™ can then be written:

WO = (pt, Vi A ( et > (55)
I:?t =R [( Pl Vi )AQ < SSZT )} (56)

whereA; andA, are defined as follows:

. 1 [HH, |HG, ] 1 0 | diag{s¥}
_ p~——P p P - n
ho=5e [ G'H, |G.G, } T { diag(ST | 0 ®7)
- 1[HH, |HG, ] 1 0 | diag{s!}
Ay =3 [ GSHU | GSGU } 1 { dag{SI} | o (58)
4 Results

The structure and the cavity used for the examples are shawigare[7. Only one
panel is able to move (the “structure”). The others are dmarsd to be infinitely rigid

(i.e. g?adp = 0). The calculations have been made usingraB and QPENBEM [37].
Of course, the meshing of the structure has to be quite finedardo provide good
FEM and BEM results. On the contrary, the MES calculationsdoet need fine
meshes.

W is calculated using classical MES (figure 8) and the methogrmepose (fig-
ure[9). Concerning the BEM calculation, a frequency avehagebeen done. The data
used for this calculation are recalled in talble 2.

Notice that the dimensions of the box allow to justify the rhidh frequency range
situation. Indeed, the acoustic modes are situated at Hoavfng frequencies:

13



" Applied point force

vibrating panel

Figure 7: Structure used for the calculations

caE R E) e

The modal density arounfl= 2000 H = can then be evaluateddo= 30 modes/Hz,
which is enough to consider high frequency domain.

Figurd 10 show a BEM calculation taking into account the idgrece on the bound-
aries. This calculation is considered to be “exact”. Coasity these results, it appears
that HMES gives much better results that MES: taking intamaotthe right directivity
of the source allows to provide more accurate results. MEBE&es quite efficient if
only theWW average in the cavity is considered, but locally result§ar&om “exact”
results (BEM results), especially around the source point.

Concerning the calculation costs, tablle 1 shows the diffeas between MES, BEM
and the hybrid method.

| Method [ Number of elements Calculation cost | Error (% vs BEM method) |
MES around 100 a few minutes | around 10% in front of the source
50-200 % far from the source
BEM more than 5000 2 days reference
Hybrid method around 500 around 15 minutes around 10% in front of the source
10-40 % far from the source

Table 1: Comparison between the methods — calculation costs

P c Dimensions Frequency | « (absoption coefficient
1,25kgm=3 | 340ms™! | 2 x 2 x4m? | 1500 —2500 Hz 0,3

Table 2: Data used for calculations

14
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Figure 8:W computed by MES

Figure 9:W computed by HMES

5 Conclusion

The method proposed in this paper allows to predict the dioaldehaviour of a
cavity. This energy method is more precise that existinghods like MES or SEA
because it is able to take into account the directivity ofsberces by FEM/BEM cal-
culations without meshing the cavity. Moreover, it is pbesio take the damping into
account, even if it is not low. Compared to a full BEM or FEMaahtion, the method
we propose only requires finer meshing around the sourcesofhier parts of the cav-
ity do not need finer meshing. The advantages and disadwmtdghe method are

15
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Figure 10:W computed by BEM

given in table 8.
[ Method ] Advantages [ Disadvantages
— More accurate calculations — Finer 2D_meshing
BEM — No 3D meshing — Full matrices
— Very big matrices in high frequency
EEM — More accurate calculations — Finer 2D and 3D meshing
— Sparse matrices — Very big matrices in high frequency
MES — Light calculations — Directivity badly taken into account
— Height speed even in high frequency — Not valid in low frequency
— Light calculations . . ]
HMES — Height speed even in high frequency : Bgtesgmyl nbﬁ)(\j,\llyfizkig r']';to account (reverberated field)
— Directivity taken into account (direct field) q Y

Table 3: Advantages / Disadvantages of HMES
The results show that the total field is improved, even in gokincase of a box
as presented in figuié 7. Nevertheless, the calculationbager than for the MES
method because of the FEM and BEM calculations. MoreovéikeINES method, the
BEM need quite fine meshes and several calculation becatise frfEquency average.
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