
HAL Id: hal-00625137
https://hal.science/hal-00625137v1

Submitted on 22 Sep 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A coupled BEM and energy flow method for mid-high
frequency internal acoustic

Sébastien Besset, Mohamed Ichchou, Louis Jezequel

To cite this version:
Sébastien Besset, Mohamed Ichchou, Louis Jezequel. A coupled BEM and energy flow method for
mid-high frequency internal acoustic. Journal of Computational Acoustics, 2010, 18 (1), pp.69-85.
�10.1142/S0218396X10004073�. �hal-00625137�

https://hal.science/hal-00625137v1
https://hal.archives-ouvertes.fr


A coupled BEM and energy flow method for
mid-high frequency internal acoustic

Sbastien BESSET, M.N. Ichchou and L. Jézéquel
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Abstract

This paper deals with the behaviour of acoustic cavities in the mid-high fre-
quency range. The method proposed here is based on an energy flow method
named Simplified Energy Method (MES). MES method is quite efficient in the
mid-high frequency range but the directivity of the boundary sources is not well
estimated. We propose a hybrid method which couples MES and the Boundary
Element Method (BEM). Thus, the BEM method is used to estimate the direct
field, considering a “correct” directivity. As a complete calculation is not adapted
to BEM in mid-high frequency range because of the calculation costs, we only
apply BEM on the domains including boundary sources. Other parts of the system
and the reverberated field are estimated by the mean of MES method. This hybrid
method leads to a consistent prediction of injected power densities. Numerical
comparisons prove the efficiency of the proposed reformulation.

keywords: Energy flow; BEM; Energy method; Injected power density; Energy
density; Intensity.

1 Introduction

Medium and high frequency range is a fundamental topic of research in the context
of viroacoustics. In fact, well established and deeply studied numerical methods like
finite element or boundary equation based formulations run into important limitations
as frequency increases. The most important limitation is the size of the meshing that
must be very fine and leads to high calculation costs. Modal methods base on finite
element formulations have been develop [1, 2], but the calculation costs remain high
and these methods are limited to medium frequency range.

Among possible alternatives, analysis methods which are energy variables based
are often studied. TheStatistical Energy Analysis(SEA) [3] is the recognized mother
and gives the mechanical energy of complex buildup structures. However SEA suffers
from its axiomatic formulation and still requires improvements. Beyond these studies,
a number of works attempts to enhance the Statistical EnergyAnalysis robustness and
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predictivity. Among those tentatives, lets report the earlier work of Nefske and Sung
[4] who proposed the use of an energy diffusion model to predict the space spread of
energy density within subsystems. Basically, this way of thinking can be viewed as
a local energyformalism whereas the SEA formalism is based on global energies of
finite subsystems. This model has been improved in [5, 6, 7, 8,9, 10]. Among other
contributors to this subject, let mention references [11, 12, 13, 14] where interesting
discussions are given. In [8, 9, 10] energy models started with the so-called general
energy method. The main goal of this method was to reformulate the classical displace-
ment models using four energy variables: the total energy aswell as the Lagrangian
energy density, the active and the reactive energy flow. Fromthe elimination of the
Lagrangian energy density and the reactive energy flow, thisgeneral energy formula-
tion leads to an interesting energy model well suited for medium and high frequency
dynamics. In fact, from a propagative approach, it has been shown that the Lagrangian
energy density and the reactive energy flow is mainly linked to wave interferences or
singularities. So that, taking into account only the incoherent contribution of waves to
the energy variables leads to the formulation of the local energy approach concerned
here. References [9, 10, 15, 16, 17] give in depth the formulations used in the context
of local energy approach applications. The MES has already been applied to various
domains: beams [8, 18], membranes and plates [19, 20, 11, 8, 15] and acoustical radia-
tion [21, 22, 18]. In this paper, the main concern is the improvement of MES prediction
for internal acoustics [23].

The main addressed issue in this work is the injected power density for use in
the MES formulation. The injected power density is usually described from the input
acoustic mobility. The later is easily expressed for unbounded media. A major concern
in the MES prediction quality is the input source directivity which needs to be fixed. So
the major question this paper tries to solve is the concise estimation of injected power
density. So far, the MES energy method needs an estimation ofthe entering power,
and its directivity, which cannot easily be estimated and isusually considered to be
lambertian. This is an assumption that is not always verifiedand the proposed hybrid
method aims at estimating correctly this directivity. Particularly, the computation of
the direct field is the key aspect. A coupled BEM and MES strategy is chosen. The
algebraic coupled formulation is expressed and implemented. Numerical experiments
was achieved comparing the coupled strategy with the conventional one. The interest
and the feasibility of the finding is proved. It must be noticed here that authors already
studied the coupling between deterministic and statistical subsystems. Among them,
Shorter and Langley [24] considered the coupling between several subsystems, each
subsystem being described with deterministic or statistical methods. This work has lead
to coupling methods that are currently used in softwares as VAOne. Nevertheless, the
method we propose does not deal with coupling substructures, but allows to describe a
single structure considering a mixed formulation.

First, the Simplified Energy Method is recalled. The hybrid formulation is then
presented. Principle of the method is given and a matrix formulation is proposed. At
last, numerical calculations are processed to show the efficiency of the method.
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2 Simplified Energy Method (MES)

2.1 Assumptions

In view of describing the energy transfer inside the medium,two continuous energy
fields are introduced. The first energy quantity is nothing else than the total energy
densityW (~s, t) defined as the sum of the potential energy density and the kinetic en-
ergy density. The second energy variable~I(~s, t) is the energy flow. These quantities are
local in opposition with energies per subsystem involved inSEA. The energy balance
equation from continuum mechanics obeying conservation principle, which govern the
energy density in various vibrating system can be describedby:

∂W

∂t
= −πdiss− ~∇ · ~I (1)

where~∇ is the gradient operator,πdiss is the power density dissipated. The damp-
ing model adopted here is the same as in SEA (power density being dissipated is pro-
portional to the energy density). Hence:

πdiss(~s) = ηωW (~s) (2)

whereη is the damping loss factor andω the circular frequency. The validity of
this relationship has been discussed in the literature [3] about SEA. Equation (1) is
the energy balance relation for all elastoacoustic media and it is regarded as a valid
method for steady or transient analysis. In order to derive the energy density equations,
a wave description of vibrational-acoustical behaviour isdefinitely adopted. In the
subsequent presentation planes and symmetrical propagating disturbances in a medium
are considered.

Each propagating waves involve partial energy quantities defined as the energy vari-
ables associated to those waves. In order to establish a relationship between the partial
energiesWi(~s) and~Ii(~s) and the total onesW (~s),~I(~s), an additional assumption is in-
troduced. In fact, a superposition principle is assumed andapplied here for all quadratic
variables:

£(~s) =
∑

i

£i(~s) (3)

£,£i being a quadratic variables, representing either a partialenergy or a global en-
ergy associated to a particular wave field. This assumption is often used in statistical
phenomenon in physics. We can find such an assumption in room acoustics, electro-
magnetism,. . . In the following developments an intrinsic energy law will be used. In
fact, this superposition principle is valid if a term due to the phase is neglected. Con-
sidering two waves denotedv1 andv2, we can write the following equation:

|u1 + u2|
2
= |u1|

2
+ |u2|

2
+ u∗

1u2 + u1u
∗
2

︸ ︷︷ ︸

neglected terms

(4)

These terms can be neglected because the quantities considered in MES are fre-
quency average quantities. Therefore, we can write:
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< u∗
1u2 >= 0 and < u1u

∗
2 >= 0 (5)

where< u.v >= 1

∆f

∫

∆f

u.v df , ∆f being the considered frequency range for

the frequency average. This will mean that MES does not take into account modal
information (linked to the phase of the waves).

The following equation [25, 26] is often introduced in orderto define the wave
velocityc. In fact:

~Ii(~s) = c ·W i(~s)~n (6)

This expression was shown to be a valid law for non-damped waves field.

2.2 Elementary fields: planes waves

In this section, a wave approach very similar to the one givenin [27], will be used.
Hence, expression (6) will be first introduced in the energy flow balance (1), leading
to:

c~∇ ·W (~s)~n+ ηωW (~s) = 0 (7)

Equations 6 and 7 lead then to the following relation:

c~∇W (~s)~n.~n+
ηω

c
~I(~s) = 0 (8)

Thus, it can be readily shown using planes waves characteristics that the total en-
ergy density and the active energy flow are linked by:

− c2~∇W (~s) = ηω~I(~s) (9)

∆W (~s)− η2ω2W (~s) = 0 (10)

where∆ = ~∇ · ~∇. This is the local energy equation for an elementary planes waves
field. This is an hyperbolic equation of telephone format which reduces to the sim-
ple wave equation when no dissipation mechanics is introduced. This equation needs
energy boundary conditions and coupling conditions to be defined.

2.3 Elementary fields: symmetrical waves

Let us consider now a symmetrical waves field. Namely, we willconsider cylindrical
waves in dimension 2, and spherical waves in dimension 3. Thenotations used in this

section are recalled on figure 1.
(

~Id,Wd

)

is the direct field whereas
(

~Ir,Wr

)

is the

reverberated field.~n is the unit normal vector at boundary. In this cases, combining (6)
and (1) leads to:

1

rn−1

∂

∂r

(

rn−1~I
)

+ ηωW~n = 0 (11)

using (11), one can readily show that:

− c2
1

rn−1

∂

∂r

(
rn−1W~n

)
= ηω~I (12)
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Φinp

Ω

∂Ω

~Ir

~Id

~I = ~Id + ~Ir
W = Wd +Wr

}

~n

Figure 1: Notations used in section 2.3

Putting this intrinsic law in the energy flow balance (1) leads to:

1

rn−1

∂

∂r

(
rn−1W

)
− η2ω2W = 0 (13)

This is the local energy equation for symmetrical waves.
Figure 2 shows two distinguish manner of energy reconstruction. In both tech-

niques, energy variables are defined as the supperposition of a direct field and a rever-
berant field. In both techniques, the direct field is calculated assuming a symmetrical
waves fields like described before. The difference comes from the reverberant field
treatment.

W = Wd +Wr (14)

and
~I = ~Id +~Ir (15)

Precisely, in figure 2(a), the reverberant field is assumed tobe a set of planes waves.
This approach is known as the hybrid energy flow method. Here we will designate
it by the mixed wave solution. This solution was proposed by Smith [28]. Further
developments and considerations are given in [29]. The second approach considers the
reverberant filed as the results of secondary sources located at boundaries as shown in
figure 2(b). So, only symmetrical waves fields is considered.This solution was first
proposed by Kuttruff [30, 31, 32, 33]. It is also known as the radiosity method. Furthers
contributions and details can be found in [34, 35] and [36]. It is this second approach
that we will use in this paper.

Here, both the direct and the reverberant field will be represented by symmetrical
waves. The elementary solutions in terms of energy density and active intensity will be
denotedG and ~H .

G(
−−→
PM) =

1

γ0 c

e−ηωr

rn−1

~H(
−−→
PM) =

1

γ0

e−ηωr

rn−1
~ur (16)
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Direct Field

Reverberant Field

(b)

Primary source

Direct Field

Reverberant Field

Secondary sources

Secondary sources

Secondary sources

(a)

Figure 2: Energy fields reconstruction: (a) mixed wave assumption and (b) fictitious
sources at boundaries.

where~ur =
−−→
PM

∥

∥

∥

−−→
PM

∥

∥

∥

andr =
∥
∥
∥
−−→
PM

∥
∥
∥. Hence, using a superposition principle the

energy solution is then expressed using the contribution ofthe primary source (direct
field) and the contribution of the fictitious sources. The fictitious sources are energy
unknown parameters representing the contribution of the reverberant filed. Precisely:

W (M) =

∫

Ω

ρ(P )G(
−−→
PM) dP +

∫

∂Ω

σ(P ) ~ur.~nG(
−−→
PM) dP (17)

The power flow can be described by a similar expression:

~I(M) =

∫

Ω

ρ(P ) ~H(
−−→
PM) dP +

∫

∂Ω

σ(P ) ~u−−→
PM

.~n ~H(
−−→
PM) dP (18)

whereρ(P ) corresponds to volumic sources andσ(P ) corresponds to surfacic
sources. Energy variables are given as a solution of a Fredholm equation, correspond-
ing to an energy balance at the boundary of the domain [30].

2.4 Discretized formulation

Let us consider an isolated system as shown in figure 3.
The boundaries of the cavity are discretized (Ne elements). Properties are given for

each elementi of the meshing:

• Φinj
i (ω) is the input power flow;
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Φinj

Ω

∂Ω

I rev

Idir

Figure 3: Considered system

• σi(ω) is the reverberated power flow;

• αi(ω) is the absorption coefficient.

The input power flowΦinj
i (ω) is injected in the cavity. In order to calculateI and

W in the cavity, the directivity of these input power flows mustbe known. For high
frequency, we assume the following directivity:

d(θ) =
cos θ

π
(19)

whereθ is defined in figure 4. There is no way to evaluate the “correct”directivity
through MES method, and the lambertian directivityd(θ) = cos θ

π
is not always a good

approximation. The hybrid method proposed in the paper should aim at considering
the correct directivity to calculate the direct field.

θ
~n

I

Figure 4: Notation for directivity

It is now possible to defineW dir(M) andIdir(M) in function ofΦinp. Considering
thatη << 1 in the fluid, equation 13 leads to the following equations:
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W dir(M) =

Ne∑

i=1

Φinp
i

c0

∫∫

Si

di(θ)

r2
dP (20)

~Idir(M) =

Ne∑

i=1

Φinp
i

∫∫

Si

di(θ)

r2
~urdP (21)

wherer = PM and~ur =
−−→
MP

∥

∥

∥

−−→
MP

∥

∥

∥

(see figure 1.Si corrsponds to the facet numberi.

The reverberated field can be expressed the same way:

W rev(M) =

Ne∑

i=1

σ
inp
i

c0

∫∫

Si

di(θ)

r2
dP (22)

~I rev(M) =

Ne∑

i=1

σ
inp
i

∫∫

S

di(θ)

r2
~urdP (23)

Considering equations 14 and 15, it is then possible to writeW and ~I. In the
following, we will considerI = ~I.~nI where~nI is a given vector, which corresponds to
measurements of intensity among vector~nI .

whereP is a point situated on an elementSi. di(θ) has been defined in equation 19.
Ne is the number of elements.

Considering one elementi, the power balance can be expressed as follows:

σi =
1− αi

Si






Ne∑

j=1

j 6=i

Φinp
j

∫∫

Si

∫∫

Sj

cos θidj(θj)

r2ij
dPidPj

+

Ne∑

j=1

j 6=i

σj

∫∫

Si

∫∫

Sj

cos θidj(θj)

r2ij
dPidPj




 (24)

This equation can be elaborated considering incoming and outcoming energy on
the considered facet.

2.5 Matrix equations

Equation 24 can be written fori = {1, 2, . . . , Ne} (Ne equations can be written). These
equations can be expressed using matrices as follows:

Mσ = B (25)

with the following notations:
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M = Id− (Id−A)T (26)

B = (Id−A)TΦinp (27)

T andA are defined as follows:

Tij =
1

Sj

∫∫

Si

∫∫

Sj

di(θi) cos θj
r2ij

dPidPj (28)

Aij = δijαi (29)

Notice thatT must verify two properties, due to the conservation of energy:

Ne∑

j=1

Tij = 1 ∀i (30)

Ne∑

i=1

Si

Sj

Tij = 1 ∀j (31)

Equation 25 allows to write the expression ofσ:

σ = M−1B = M−1 (Id−A)TΦinp (32)

Direct and reverberated fields expressed in equations 20, 21, 22 and 23 can now be
written as follows:

W = YWΦinp +YW
σ (33)

I = YIΦinp +YI
σ (34)

Considering equation 32,W andI can be expressed as follow:

W =







W 1

W 2

...
WNe







= SWΦinp (35)

I =







I1

I2

...
INe







= SIΦinp (36)

where:

SW = YW
[
Id+M−1 (Id−A)T

]
(37)

SI = YI
[
Id+M−1 (Id−A)T

]
(38)
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3 Hybrid Simplified Energy Method

3.1 Principle

The main issue of theSimplified Energy Methodis the unknown directivity of the
sourcesΦinp. In the previous section, it is assumed to bed(θ) = cos θ

π
(see equation 19).

The aim of the present section is to improveSimplified Energy Methodin order to take
into account the genuine directivity. Thus,Hybrid Simplified Energy Method(HMES)
is based on a BEM calculation for the direct field. The reverberated field is calculated
as forSimplified Energy Method, as shown in figure 5.

The hybrid method allows to combine the advantages of MES andBEM. Indeed,
calculating the entire problem through BEM would lead to very high calculation costs.
That is why BEM will only be applied around the boundary sources.

FEM calculation
⇒ ~v on the structure

BEM calculation
(free field)⇒ p, ~v

MES calculation
(σ ⇒ reverberated field)

W dir, Idir

W rev, I rev

W , I

~v

p, ~v ⇒ Φinp

Figure 5: HMES method

The vibrating structure is first studied using a finite element code. The pressure and
celerity fields on the structure is then computed in order to obtain the pressure field for
the acoustic domain using a BEM code. Figure 6 shows the various fields considered
in HMES. HMES is the computed using the fields denotedIdir(BEM) andI rev(MES)
(an equivalent figure can of course be plot forW fields):

I tot(HMES) = Idir(BEM) + I rev(MES) (39)

W tot(HMES) = W dir(BEM) +W rev(MES) (40)
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Φinj

Ω

∂Ω

I rev(MES) Idir(BEM)

Idir(MES)

Figure 6: Considered system

3.2 Direct field calculation

The input powerΦinp is due to a structure that is first studied using a FEM software.
This calculation provides the celerity field on the structure. A BEM software is then
used to obtain the pressure field on the structure, considering anechoic conditions.
Thus, pressure and celerity are both known on the structure and it is possible to calcu-
late the pressure field in the cavity, taking the directivityinto account.

Let (pI , ~vI) be the pressure and celerity fields on the structure. These fields can
be provided by any FEM software and a BEM calculation. A BEM calculation is then
performed to obtain the pressure fieldp(M) in the cavity:

cp(M) =

∫

S

(

pI(P )
∂g

∂~n
− g

(−→
MP

) ∂pI

∂~n

)

dP, P ∈ S (41)

Notice that∂pI

∂~n
= −ρω~vI .~n, whereρ is the density of the fluid.~n is the surface

unit normal vector ancc is defind as follows:

c =







1, M ∈ Ω
1

2
, M is on a smooth boundary ofΩ
S
4π

, M is on a nonsmooth boundary ofΩ
(42)

whereS is the solid angle.g is the free-space green function defined as follows:

g
(−→

MP
)

=
e
−ik

∥

∥

∥

−→
MP

∥

∥

∥

4π
∥
∥
∥
−→
MP

∥
∥
∥

(43)

The pressure field in the cavity allows to calculate the direct fieldsW dir andIdir:
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W dir(M) =
1

2ρc2
p(M)p∗(M) (44)

Idir(M) =
1

2
ℜ [p(M)v∗(M)] (45)

v = ~v.~np (andv∗) is obtained thanks top using equation∂p
∂~np

= −ρω~v.~np where

~np is a freely chosen unit vector. ThusI corresponds to the projection of~I among the
direction~np.

3.3 Reverberated field calculation

The reverberated field is being calculated using classical MES theory described in sec-
tion 2. The input powerΦinp is provided by the pressure and celerity fields on the
structure:

Φinp =
1

2
ℜ(piv

∗
i ) (46)

σ is then calculated, which allows to obtainW rev andI rev, as explained in equa-
tions 22 and 23.

3.4 Coupled matrix formulation

Using a matrix formulation, the pressure computed by BEM canbe written as follows:

pI = Hppstr +Gpvstr (47)

whereHp andGp are BEM matrices, andpstr andvstr are the pressure and celer-
ity fields on the structure (computed by a finite element code). An equivalent equation
can be written for the celerity field:

vI = Hvpstr +Gvvstr (48)

Thanks to equations 44 and 45, equations 47 and 48 lead to the following equations
concerning the direct field:

W dir
n =

1

2ρc2
(
p∗
str v∗

str

)
Λ1

(
pstr

vstr

)

(49)

Idir
n =

1

2
ℜ

[
(
p∗
str v∗

str

)
Λ2

(
pstr

vstr

)]

(50)

whereW dir
n is the nth value ofWdir andIdir

n is the nth value ofIdir. Λ1 andΛ2 are
defined as follows:
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Λ1 =

[
H∗

pHp H∗
pGp

G∗
pHp G∗

pGp

]

(51)

Λ2 =

[
H∗

pHv H∗
pGv

G∗
pHv G∗

pGv

]

(52)

Concerning the reverberated field,Wrev andIrev are obtained using equations 35
and 36:

W rev
n =

1

2
SW
n ℜ [(pv∗)str] (53)

I rev
n =

1

2
SI
nℜ [(pv∗)str] (54)

whereSW
n is the nth line of matrixSW

n andSI
n is the nth line of matrixSI

n. W tot

andI tot can then be written:

W tot
n =

(
p∗
str v∗

str

)
Λ̃1

(
pstr

vstr

)

(55)

I tot
n = ℜ

[
(
p∗
str v∗

str

)
Λ̃2

(
pstr

vstr

)]

(56)

whereΛ̃1 andΛ̃2 are defined as follows:

Λ̃1 =
1

2ρc2

[
H∗

pHp H∗
pGp

G∗
pHp G∗

pGp

]

+
1

4

[
0 diag

{
SW
n

}

diag
{
SW
n

}
0

]

(57)

Λ̃2 =
1

2

[
H∗

pHv H∗
pGv

G∗
pHv G∗

pGv

]

+
1

4

[
0 diag

{
SI
n

}

diag
{
SI
n

}
0

]

(58)

4 Results

The structure and the cavity used for the examples are shown on figure 7. Only one
panel is able to move (the “structure”). The others are considered to be infinitely rigid

(i.e.
−→

gradp = 0). The calculations have been made using MATLAB and OPENBEM [37].
Of course, the meshing of the structure has to be quite fine in order to provide good
FEM and BEM results. On the contrary, the MES calculation does not need fine
meshes.

W is calculated using classical MES (figure 8) and the method wepropose (fig-
ure 9). Concerning the BEM calculation, a frequency averagehas been done. The data
used for this calculation are recalled in table 2.

Notice that the dimensions of the box allow to justify the mid-high frequency range
situation. Indeed, the acoustic modes are situated at the following frequencies:
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Figure 7: Structure used for the calculations
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(59)

The modal density aroundf = 2000Hz can then be evaluated tod = 30 modes/Hz,
which is enough to consider high frequency domain.

Figure 10 show a BEM calculation taking into account the impedance on the bound-
aries. This calculation is considered to be “exact”. Considering these results, it appears
that HMES gives much better results that MES: taking into account the right directivity
of the source allows to provide more accurate results. MES remains quite efficient if
only theW average in the cavity is considered, but locally results arefar from “exact”
results (BEM results), especially around the source point.

Concerning the calculation costs, table 1 shows the differences between MES, BEM
and the hybrid method.

Method Number of elements Calculation cost Error (% vs BEM method)

MES around 100 a few minutes around 10% in front of the source
50-200 % far from the source

BEM more than 5000 2 days reference
Hybrid method around 500 around 15 minutes around 10% in front of the source

10-40 % far from the source

Table 1: Comparison between the methods – calculation costs

ρ c Dimensions Frequency α (absoption coefficient)
1, 25 kgm−3 340 ms−1 2× 2× 4 m3 1500 – 2500 Hz 0, 3

Table 2: Data used for calculations
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Figure 8:W computed by MES
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Figure 9:W computed by HMES

5 Conclusion

The method proposed in this paper allows to predict the acoustical behaviour of a
cavity. This energy method is more precise that existing methods like MES or SEA
because it is able to take into account the directivity of thesources by FEM/BEM cal-
culations without meshing the cavity. Moreover, it is possible to take the damping into
account, even if it is not low. Compared to a full BEM or FEM calculation, the method
we propose only requires finer meshing around the sources. The other parts of the cav-
ity do not need finer meshing. The advantages and disadvantages of the method are
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Figure 10:W computed by BEM

given in table 3.

Method Advantages Disadvantages

BEM
– More accurate calculations
– No 3D meshing

– Finer 2D meshing
– Full matrices
– Very big matrices in high frequency

FEM
– More accurate calculations
– Sparse matrices

– Finer 2D and 3D meshing
– Very big matrices in high frequency

MES
– Light calculations
– Height speed even in high frequency

– Directivity badly taken into account
– Not valid in low frequency

HMES
– Light calculations
– Height speed even in high frequency
– Directivity taken into account (direct field)

– Directivity badly taken into account (reverberated field)
– Not valid in low frequency

Table 3: Advantages / Disadvantages of HMES

The results show that the total field is improved, even in a simple case of a box
as presented in figure 7. Nevertheless, the calculations arelonger than for the MES
method because of the FEM and BEM calculations. Moreover, unlike MES method, the
BEM need quite fine meshes and several calculation because ofthe frequency average.
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