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Abstract

This paper deals with modal criteria allowing optimization of struc-
tures through structural acoustic control (ASAC) based on the indepen-
dent modal strategy control (IMSC). The aim of the paper is to propose
efficient criteria allowing to process optimization of structures by deter-
mining the most important modes to control considering only the location
of the excitation on the structure. A generalized modal synthesis is used
to study the coupled fluid-structure system. Modal criteria are proposed
in order to determine the best choice for the controlled modes used in
IMSC method. The way the ASAC will be applied is not discussed in the
paper. Numerical simulations are computed to show the efficiency of the
method, considering a simple vibroacoustic structure.

keywords: Modal synthesis; Active control; Vibroacoustic coupling

1 Introduction

In order to study vibroacoustic problems without considering too large ma-
trices, many numerical simulation strategies can be found in the literature.
Among these techniques, energy methods like SEA or MES are efficient for high
frequency range [1, 2, 3]. In low and medium frequency domains, modal meth-
ods can also be used [4]. These modal methods have many advantages. Once
modal matrices of the problem have been computed, modal criteria linked to
vibroacoustic coupling can easily be defined. The criteria proposed in this paper
are derived from those developed by P. Lemerle [5], using Craig & Bampton’s
method to describe the dynamic behaviour of a structure. They have already
been used to optimize coupled fluid-structure systems in [6, 7].

The modal synthesis technique described here to compute the criteria is
based on the “double modal synthesis” proposed by Jézéquel [8, 9] and extended
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to the case of fluid-structure systems [4]. This method resorts to a coupling
formulation which has been previously investigated [10]. An example of modal
analysis of a coupled system can be found in [11].

Modal analysis of the structure will lead to modal mass and stiffness matri-
ces, which are then used to obtain effective modal parameters, which in turn
lead to criteria allowing the structure to be optimized. The method proposed
in this paper may be used for any vibroacoustic system. In fact, the ultimate
goal of this approach is to define modal criteria which allow to find the modes
that most contribute to the noise level in the cavity. The obtained criteria are
related to the coupling terms between the systems different substructures, and
are expressed as functions of the terms contained in the modal matrices. Our
method is described for the case of a specific system, but can readily be adapted
to any vibroacoustic system.

2 Analysis of the vibroacoustic system

The structure considered here is a simple structure including plates and an
acoustic cavity. This structure is shown on figure 1. The aim of the paper is to
optimize the sound level in the cavity by controlling a few modes. The example
we give in this section aims at optimizing the pressure level of a few points of
the cavity. The method we propose leads to optimization criteria that do not
depend on external excitations.

External force

Figure 1: Studied structure
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Geometry Material Acoustic fluid

see figure 1 E = 2.1011Pa air
(unit: m) ν = 0.3 ρ = 1.25

thickness=0.01 m

2.1 The vibroacoustic problem

Figure 1 shows the geometry of the vibroacoustic system under consideration.
The approach used in this paper to study the vibroacoustic behaviour is a (u, p)
formulation. Suxh kind of formulation can be found in [12]. The fluid (air) is
considered to be inviscid and leads to a classical linear acoustic problem. The
matrix formulation of the problem can be written as follows:

Mξ̈ +Cξ̇ +Kξ = Aww(t) (1)

Aww(t) is the external excitation, located on a plate of the structure. C is
the damping matrix. The aim of the paper is not to deal with the influence of
the damping, that is why we consider a very simple viscous modelisation for the
structural part of the system. Matrices M and K and vector ξ are defined as
follows:

M =





Mbb Mbs

Msb Mss
0

CF Mp



 K =





Kbb Kbs

Ksb Kss
−CT

F

0 Kpp



 ξ =







ub

us

p







(2)
where ub are the degrees of freedom related to the boundaries, us are the

degrees of freedom related to the surfaces, and p are the degrees of freedom
related to the pressure in the acoustic cavity. Matrices M and K defined in
equation 2 are mass and stiffness matrices classically used in coupled fluid-
structure problems. Degrees of freedom concerning the structure are split into
internal degrees of freedom denoted us and boundary degrees of freedom denoted
ub. This kind of splitting is quite classical in component mode synthesis methods
that we will use in the paper.

Equation 1 is a classical interior non-symmetric vibroacoustic equation. The
degrees of freedom are displacements for the structural part, and pressure for
the acoustic part. The vibroacoustic coupling appears in matrix CF defined as
follows:

CF =
[

Mpb Mps

]

= −

[

Kbp

Ksp

]T

(3)

2.2 Control forces

The aim of the paper is to define the best criteria for the control law. Thus, a
term e(t) is added in equation 1.
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Mξ̈(t) +Cξ̇(t) +Kξ(t) = Aww(t) +Aee(t) (4)

The control force Aee(t) can be provided through many ways (piezoelectric
patches for example). Nevertheless, the purpose of the paper is not to propose
a method to apply the control forces.

2.3 Modal synthesis of the system

The coupled system is studied thanks to component mode synthesis methods
that can be found in [13, 4]. Although classical component mode synthesis
methods are often reliable in the low frequency range, it has been shown in
these papers that the component mode synthesis considered here is efficient and
allows to deal with medium frequency range. This modal synthesis method aims
at modelling the system through cavity modes, plate modes and branch modes.
Branch modes are used to describe singularities of the system such as boundaries
or stiffeners. As for classical component mode synthesis methods, all the modes
are not taken into account and resulting matrices are quite smaller than initial
matrices. Thus, generalized degrees of freedom are obtained as follows:







p = Φpqp

us = Φsqs +Ψsub

ub = Φbqb

=⇒ ξ = φη (5)

where η =







qb

qs

qp







is much smaller than ξ. Φs and Φp are the matrices

of the modes corresponding respectively to the plates and the pressure in the
acoustic cavity. Ψs is the matrix of the static boundary modes. Φb is the matrix
of the “branch modes” of the structure as defined in [4].

In fact, three modal synthesis are successively processed. First, considering
acoustic modes Φp, a transfer matrix T1 is defined as follows:

T1 =





Id 0 0
0 Id 0
0 0 Φp



 (6)

where Id is the identity matrix. Thus, mass and stiffness matrices can be
expressed as follows:

M1 = TT
1
MT1 and K1 = TT

1
KT1 (7)

Matrices M1 and K1 can be split as follows:

M1 =





M1bb M1bs 0
M1sb M1ss 0
M1pb M1ps M1pp



 and K1 =





K1bb K1bs K1bp

M1sb M1ss K1sp

0 0 K1pp



 (8)
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A second modal synthesis is then processed considering transfer matrix T2:

T2 =





Id 0 0
Ψs Φs 0
0 0 Id



 (9)

where Ψs = K1ss
−1K1sb (Craig & Bampton theory) and Φs are the modes

of the structure given by the following equation:

(

K1ss −
[

ω2
]

M1ss

)

Φs = 0 (10)

The last modal synthesis aims at expressing ub in function of branch modes
Φb as explained in [13, 4].

Thanks to relations 5, we can write the modal equation of motion as follows:

Mη̈ +Cη̇ +Kη = Aww(t) +Aee(t) (11)

where:

K = φTKφ =









































(

ωb
1

)2

. . .
(

ωb
nb

)2

(ωs
1)

2

. . .
(

ωs
ns

)2

−C
T

F

(ωp
1
)
2

. . .
(

ωp
np

)2









































(12)

M = φTMφ =





Inb

Ins

CF Inp



 (13)

Aw = φTAw (14)

Ae = φ
T
Ae (15)

Matrix C = φTCφ is considered to be diagonal thanks to Basile’s hypothe-

sis. Equation 11 can be rewritten using vector X =

{

η

η̇

}

:

Ẋ = DX +Ew(t) + Fe(t) (16)

where D, E and F are defined as follows:

D =

[

0 M

−K −C

]

, E =

[

0

Ae

]

and F =

[

0

Aw

]

(17)
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3 Vibroacoustic criteria

The aim of the method proposed in this paper is to use vibroacoustic criteria
to determine which modes should be controlled. Thus, let define these criteria
from equation 11. As there is no noise source inside the cavity, the ne line of
equation 11 leads to:

− ω2M
n

pbqb − ω2M
n

psqs +
(

(

ωn
p

)2
− ω2 + iωcn

)

qn
p = 0 (18)

The assumption “there is no noise source in the cavity” is not only made for
the sake of brevity and clarity. The problem we consider in this paper deals with
the noise in acoustic cavities and should be applied to aircrafts or automotive
industry. Thus, the only excitation sources we consider are external excitations
on the boundaries of the structure.

The noise level is linked to the pressure in the acoustic cavity. The pressure
can be expressed as follows:

p =

Np
∑

n=1

Φn
pq

n
p (19)

where Np is the number of acoustic modes computed in the modal synthesis.
Substituting equation 18 in equation 19, we obtain the following relation linking
the pressure in the cavity with the generalized degrees of freedom qb and qs:

p =

Np
∑

n=1

ω2Φn
p

(

M
n

pbqb +M
n

psqs

)

(

ωn
p

)2
− ω2 + iωcn

(20)

The aim is to express the pressure p in function of degrees of freedom ub

and us in order to define vibroacoustic paths as defined in [7]. These various
“vibration paths” are linked to the different ways of propagation of the vibration
that cause the noise into the cavity. qb and qs can then be expressed thanks to
relation 5:

{

qb = Φ̃bub

qs = Φ̃s (us −Ψsub)
(21)

where Φ̃b and Φ̃s are pseudo-inverse of matrices Φb and Φs. Thus, two
criteria can be defined, corresponding to the relation between the pressure and
the degrees of freedom related to the surfaces and the boundaries:

Cb =

Np
∑

n=1

∥

∥

∥

∥

∥

∥

ωn
pΦ

n
p

(

M
n

pbΦ̃b −M
n

psΦ̃sΨs

)

cn

∥

∥

∥

∥

∥

∥

(22)

Cs =

Np
∑

n=1

∥

∥

∥

∥

∥

ωn
pΦ

n
pM

n

psΦ̃s

cn

∥

∥

∥

∥

∥

(23)
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In the following, we will only consider criterion Cs for the control forces that
will be applied on the structure. This criterion is linking the pressure p and
the degrees of freedom of the structure us. Thus, this criterion is not directly
linked to the applied excitation forces appearing in equation 4. This should be
a problem since the control we consider in the paper is applied through forces.
Nevertheless, the control force f = Aee(t) can be linked to the displacement of
the structure us through the following equation:

f = H(ω)us ⇒ us = H̃(ω)f (24)

where H(ω) corresponds to the dynamic response of the structure. Thus,
the link between f and us should be expressed through criterion C̃s:

C̃s =

Np
∑

n=1

∥

∥

∥

∥

∥

ωn
pΦ

n
pM

n

psΦ̃sH̃(ω)

cn

∥

∥

∥

∥

∥

= ‖H̃(ω)‖Cs (25)

In the following, we consider that considering criterion Cs is enough to define
the right control law.

Criterion Cs can be split into Ns criteria denoted Cj
s corresponding to the

Ns modes of the structure:

Cj
s =

Np
∑

n=1

∥

∥

∥

∥

∥

ωn
pΦ

n
pM

n

psΦ̃
j
s

cn

∥

∥

∥

∥

∥

1 ≤ j ≤ Ns (26)

where Φ̃j
s is the je column of matrix Φ̃s. Considering these Ns criteria, it

is possible to evaluate the most important modes of the structure for the noise
level. Figure 2 shows the values of the criteria for Ns = 40.
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Figure 2: Values of criteria Cj
s
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4 Active control of the structure

4.1 Method used for the control

The aim of the paper is to use the modal criteria defined in section 3 to control
the modes of the structure. The active control method we consider here can be
found in [14, 15, 16].

We recall that the proposed method allows to define criteria that do not
depend on the excitation. Thus, we don’t expect better results than other
control methods for the results would depend of the considered excitation, but
we expect noise levels to be reduced in order to validate the criteria.

In order to be able to control each mode separately, it is useful to define a
matrix Le so that:

AeLe = I =⇒ e(t) = Ler(t) (27)

Equation 16 can then be rewritten as follows:

Ẋ = DX +Ew(t) +

[

0

I

]

r(t) (28)

where I is the identity matrix. The dimension of vector r(t) corresponds
to the number of control forces. The control excitation is then expressed in
function of the generalized degrees of freedom η and η̇:

r(t) = −Gη −Hη̇ (29)

G and H are diagonal matrices that have to be found so that matrix

[

0

I

]

can be expressed as follows:

[

0

I

]

r(t) =

[

0 0

−G −H

]{

η

η̇

}

(30)

In order to find values for matrices G and H, we will consider m criteria
Jm to control the structure, corresponding to the m modes to attenuate. These
modes have been found using the vibroacoustic criteria defined in section 3.
Criteria Jm can be expressed as follows:

Jm = lim
t→∞

E







1

t

∫ t

0





ηm
η̇m
rm





T 



ω2
m 0 0
0 I 0
0 0 Rm









ηm
η̇m
rm



 dt






(31)

where Rm is a value that is arbitrarily chosen (the efficiency of the control
will depend on this value). This relation leads to the following expression of
rm(t), that can be found in [16]:
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rm(t) = ωm

[

ωm −
(

ω2

m +R−1

m

)
1

2

]

ηm(t)

+

(

cmωm −
[

c2mω2

m +
(

2ωm

[

−ωm +
(

ω2

m +R−1

m

)
1

2

])

+R−1

m

]
1

2

)

η̇m(t) (32)

Which allows to find values for matrices G and H.

4.2 Results

Considering figure 2, we chose to attenuate four modes of the structure. The
results of the control are given on figures 3 and 4. The structure considered was
presented in figure 1. A force have been applied on this structure (see figure 1),
and we computed the frequency response (see figure 3) and the temporal re-
sponse (see figure 4) to obtain the pressure in the cavity. The calculations have
been made considering the average pressure in a small volume in the cavity.
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with control

Figure 3: Square pressure in the acoustic cavity – FRF

Figure 4 shows the noise level, that is linked to |p|2, is quite attenuated with
the active control, even if only four modes are controlled. Moreover, another
calculation has been made, considering 20 modes to be attenuated (see figures 5
and 6). This seems to be too much for the control to be efficient. The frequency
response function (see figure 5) shows that the control is effective around 170
Hz, but this is not the case in lower frequency range, for example around 65 Hz.
Moreover, figure 6 shows the result with control is worth than without control.
This effect can be explained by the fact that the control law has to deal with
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Figure 4: Square pressure in the acoustic cavity – 4 modes controlled

modes that do not affect the behaviour of the structure and that should not be
controlled.
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Figure 5: Square pressure in the acoustic cavity – FRF – 20 modes controlled
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Figure 6: Square pressure in the acoustic cavity – 20 modes controlled

It is also possible to see the influence of the control of each of the 4 controlled
modes. Figures 7 and 8 show the frequency response functions of the system
for each case. Figures 9 and 10 show the efficiency of the control. Controlling
these modes allows the pressure level in the cavity to decrease: criterion Cs is
efficient to detect the modes to control.

It is interesting to observe that although the value of the criteria shown in
figure 2 for the 15th mode is much higher than for the 25th mode. However, it
seems contradictory withe the results shown in figures 9 and 10. In fact, figure 7
shows that controlling the 15th mode leads to higher pressure levels around 65
Hz, which explains that the control is less efficient that for the 25th mode.

5 Conclusion

Vibroacoustic criteria have been defined and used in the case of active control
of a structure. We show that these criteria allow to find the most important
modes in fluid-structure coupling. Thus, treating only the four main modes, it
is possible to significantly reduce the noise level in a cavity.

Moreover, we show that considering all the modes does not produce better
results. Finding the most important modes is thus very important. The control
should be processed thanks to piezoelectric patches for example, which could be
made in future works.

At last, the results presented in the paper are related to a single example. It
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Figure 7: Square pressure in the acoustic cavity – FRF – 15th mode controlled
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Figure 8: Square pressure in the acoustic cavity – FRF – 25th mode controlled

would be quite interesting to study in what extent these results are influenced
by the type and the location of the excitation.
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Figure 9: Square pressure in the acoustic cavity – 15th mode controlled
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