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Abstract

Complex structures used in the automotive industry often include porous ma-
terials, in order to reduce the noise in acoustic cavities. The method proposed
in this paper aims at optimizing the characteristics of these porous materials using
modal criteria based on the modal analysis of the structure.The use of a generalize
modal synthesis method allow to describe the structure and the cavities with sets
of modes; the size of the resulting system is smaller, for only generalized degrees
of freedom are used for each part of the coupled fluid-structure system. First, a
modelization of the porous media is proposed, and the generalized modal analysis
method is explained. An optimization is then processed on the thickness of the
porous materials.

keyword: Modal analysis; Optimization; Porous media

1 Introduction

Acoustic problems in the automotive industry has long been studied, for the noise in
acoustic cavities is a very important criterion for the customer. In order to reduce this
noise, poroelastic materials are applied on the structure.In this paper, we optimize the
thickness of these porous materials using optimization criteria based on a generalized
modal analysis method.

The modal analysis method we use has been described in a previous paper [1] for
a structural problem. It has then been extended to the case ofa coupled fluid-structure
problem [2]. The principle of this modal synthesis method issummarized in the paper.
It is based on the modal description of each substructure andboundary using a “double”
or “triple” modal synthesis, which have first been proposed by Jézéquel [3, 4].

It is possible to define optimization criteria based on the modal description of a
coupled fluid-structure system. It has already been done in the case of a structural
problem [5] and has been extended to the case of a coupled fluid-structure system [6].
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Such criteria correspond to a systemic approach of vibroacoustic problems. The rela-
tion between the excitation and the pressure in the cavitiescan be expressed through
modal matrices coming from the generalized modal analysis of the structure. Several
terms appear in the expression of the pressure, which correspond to several “vibration
paths”. The expressions of these paths constitute the criteria we use for the optimiza-
tion.

Porous materials have long been studied. Biot [7, 8, 9, 10] has first proposed a
method to describe these materials. Later, Allard [11, 12] proposed a more precise
modelization, introducing for example frequency dependant terms in the expression
of the densities. Finite element models have also been proposed [13]. Our approach
aims at describing porous materials through boundary impedances; some papers have
already been written on the subject [14, 15], but the method we propose here uses these
impedances to construct coupling terms of finite element matrices.

2 Modal analysis of the structure

The complex structure we consider in this paper include plates and two acoustic cavi-
ties. It has the same geometry of the structure considered in[5]. The geometry of the
structure is shown in the figure 1:

• F1 is the first acoustic cavity, where the pressure level has to be minimized;

• F2 is the second acoustic cavity;

• P is the plate between the two cavities.

For figure 1 to be more understandable, the plates have not been drawn. The structure
will be excited by a displacement applied on its skeleton.

PlateP

F1

F2

uE

2, 5 m

Figure 1: Structure to optimize

The motion equation of the coupled fluid-structure system isthe classical equation,
written in (u,p) formulation, without damping:
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(1)

CF is a matrix coming from the fluid-structure coupling. In order to define the
criteria for the optimization of the structure, we need to express this matrix more pre-
cisely:

CF =

[

MA1E MA1B MA1P

MA2E MA2B MA2P

]

= −





KEA1
KEA2

KBA1
KBA2

KPA1
KPA2





T

(2)

Notice thatMXiYj
(i=1,2 and j=1,2) are not mass and stiffness terms. These terms

are related to the discretized acoustic equation. That is why equation 2 can be written
without units problems.

uB, uP andp are the degrees of freedom of the system:

• uE corresponds to the excited points of the structure;

• uB corresponds to the boundaries between the plates;

• uP corresponds to the plates;

• p1 are the degrees of freedom of the acoustical cavityF1;

• p2 are the degrees of freedom of the acoustical cavityF2.

The modal analysis method used to describe the system is based on the “double”
and “triple” modal synthesis proposed in previous papers [1, 2, 3, 4]. Modes are used
to describe the acoustic cavities, the boundaries and the plates. This method leads to
the modal equation:
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(3)

The modal damping matrix is assumed to be diagonal. The modalanalysis de-
scribed in equation 6 and 7 allowskAiAi

, kPP , kBB, mPP , mBB andmAiAi
(i = 1

or 2) to be diagonal matrices too. This equation will be used in section 4 to introduce
optimization criteria. The modal matrices used for obtaining the generalized degrees
of freedom are defined as follows:

uP = ΦPqP +ΨPBuB +ΨPEuE (4)

uB = ΦBqB +ΨBEuE (5)

p1 = ΦA1qA1 (6)

p2 = ΦA2qA2 (7)

MatricesΦP , ΦB, ΦA1 andΦA2 are the matrices of the modes of the structure:

• ΦP is the matrix corresponding to the mode of the plates when boundaries are
fixed;

• ΦB is the matrix corresponding to the mode of the hollow parts constituting the
skeleton of the structure, considering a static condensation of the plates on these
hollow parts;

• ΦA1 is the matrix corresponding to the mode of the acoustical cavity F1 (cavity
modes);

• ΦA2 is the matrix corresponding to the mode of the acoustical cavity F2 (cavity
modes);

• ΨPB, ΨPE andΨBE are static modes of the structure.

3 Analysis of the poroelastic materials

The coupling terms recalled in equation 2 comes from the classical acoustical coupling
equation:
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∂p

∂n
= ρfω

2un (8)

whereρf is the density of the fluid,p is the pressure on the fluide-structure bound-
ary, andun is the normal displacement. It is possible to introduce a boundary impedance
Z that allows to describe the behaviour of the boundary if we consider a poroelastic
material on this boundary. In equation 8,Z is considered to be infinite. Taking into
account the impedanceZ, the coupling equation becomes:

∂p

∂n
− iωρf

Z
p = ρfω

2un (9)

The aim of this section is to determinateZ in function of the characteristics of a
poroelastic material. The figure 2 shows the notations we use:

• u0 is the displacement of the boundary between the porous material and the wall
(a plate of the structure);

• ul is the displacement of the porous material at the boundary with the fluid cav-
ity;

• l is the thickness of the porous material.

z = 0

z = l

z

u0

ul porous material
plate

air

Figure 2: Notations on the purous material

At the boundary between an acoustic cavity and a porous material, we use the
coupling equation proposed by Atalla [13]:

(

1− h− h
Q

R

)

ul −
(

γul −
h2

ρ̃22ω2

∂p

∂z
(z = l)

)

=
1

ρ̃0ω2

∂p

∂z
(z = l) (10)

In order to take into account the thickness of the porous material and the structure
it is fixed on, we have to expressul in function of u0. To do this, we consider the
equation of the fluid part of the porous material [13], which is recalled here:
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∆p+
ρ̃22

R
ω2p− ρ̃22

h2
γω2divu = 0 (11)

h is the porosity of the porous material,b is a cœfficient depending on the char-
acteristics of the pores of the porous material andα∞ is the tortuosity of the porous
material.γ, ρ̃22 andρ̃12 are defined as follows:

ρ̃22 = ρ22 − i
b

ω
(12)

ρ22 = hρfα∞ (13)

γ = h

(

ρ̃12

ρ̃22
− Q

R

)

(14)

ρ̃12 = ρ12 − i
b

ω
(15)

ρ12 = −hρf (α∞ − 1) (16)

Q andR are cœfficients that depend on the characteristics of the porous material.
Their expression can be found in the book of Allard [11]. Theytake into account the
thermal effects in the pore, so they have a frequency dependent complex amplitude that
we recall:

Q = (1− h)Kf (17)

R = hKf (18)

Kf =
γP0

γ − (γ − 1)

(

1 +
8η

iΛ2B2ωρf

(

1 + iρfωB2
Λ2

16η

)1/2
)

−1
(19)

(20)

whereB andP0 depend on the temperature. For 18◦, we haveB =
√
0, 71 and

P0 = 1, 0132.105 (see [11]).
Several expressions do exist to evaluateb which depends on the frequency. We

choose to use an expression proposed in [11]:

b = σh2
G(ω)

ω
(21)

where:

G(ω) =

√

1 + 4iα2
∞
ηρfω

σ2Λ2h2
(22)

with the notations:

• Λ is a characteristic dimension of the porous material;

• σ is the flow resistivity (intrinsic property of the material);
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• η is the viscosity;

Considering only thez displacement, equation 11 can be written:

∂2p

∂z2
+ ω2

ρ̃22

R
p− ω2

ρ̃22

h2
γ
∂u

∂z
= 0 (23)

Considering that the thicknessl is small (for examplel < 2πc0
ω ), it is possible to

write:

∂u

∂z
=

ul − u0

l
(24)

∂2p

∂z2
=

∂p
∂z (z = l)− ∂p

∂z (z = 0)

l
(25)

If the boundary between the porous material and the structure is rigid, ∂p∂z (z = 0)
can be expressed as follows:

∂p

∂z
(z = 0) = ρ0ω

2u0 (26)

The equation 23 becomes then:

1

l

∂p

∂z
(z = l) + ω2

ρ̃22

R
p− ω2

ρ̃22

h2l
γ

[

ul −
(

1− h2ρ0

ρ̃22γ

)

u0

]

= 0 (27)

This equation allows to expressul in function ofu0:

ul =

(

1− h2ρ0

ρ̃22γ

)

u0 +
h2

ω2ρ̃22γ

∂p

∂z
+

h2l

Rγ
p (28)

The coupling equation becomes:

[

1

ρ0
−
(

1− h− h
Q

R

)

h2

ρ̃22γ

]

∂p

∂z
− ω2

(

1− h− h
Q

R
− γ

)

h2l

Rγ
p

= ω2

(

1− h− h
Q

R
− γ

)

h2l

Rγ

(

1− h2ρ0

ρ̃22γ

)

u0 (29)

which is close to the classical equation of coupling:

∂p

∂z
− jωρ0

Zp
p = ρ0ω

2ξ2u0 (30)

with the notations:
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Zp = j
Rγ

ωh2lξ1
(31)

ξ1 =
1− h− hQ

R − γ

1− ρ0

(

1− h− hQ
R

)

h2

ρ̃22γ

(32)

ξ2 =
h2l

Rγ

(

1− h− hQ
R − γ

)(

1− h2ρ0

ρ̃22γ

)

1− ρ0

(

1− h− hQ
R

)

h2

ρ̃22γ

(33)

The modelization retained for the porous materials is a simplified modelization. It
is possible to study the influence of the simplifications by comparing the impedance
Zp we propose with the classical acoustic impedance, given by the relation:

Z =
p(l)

iωu(l)
(34)

wherep(l) is the pressure andiωu(l) is the speed of the fluid atz = l (see figure 2).
The characteristics of the porous material used for the comparison betweenZp and the
impedance proposed by Allard [11] are recalled in table 1.

Tortuosity Density Porosity Poisson’s Lamé Modulus
α∞ of the skeleton h ratio N

1, 06 130 kgm-3 0, 94 0 220(1 + 0, 1i)

Λ σ η ρf

1, 1.10−4 m 40000 Nm−4s 1, 84.10−5 Pl 1,213 kgm−3

Table 1: Characteristics of the porous material used in the comparison

The results of the comparison are given in the figures 3(a), 3(b), 4(a), 4(b), 5(a) and
5(b), corresponding to thicknesses of 1 cm, 5 mm, and 2 mm. Theresults are good if
the thicknessl is small. Notice that the imaginary part of the impedance is always good,
even if the thickness is not small. This imaginary part corresponds to the damping due
to the porous material.

The equation 30 is a boundary condition between the fluid and the plates that gen-
erates coupling terms depending on the frequency, for the impedanceZp depends on
the frequency. This coupling term can be expressed in the base of the modes of the
structure defined in section 2, hence the equation:

(

−ω2M+ iωC(ω) +K
)

u = f (35)

whereC(ω) is a complex matrix, depending onω. This matrix corresponds to the
impedanceZp defined in equation 31.M, K, u andf correspond to the matrices and
vectors defined in equation 3. Using the poroelastic modelization we propose, equation
3 becomes:
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Figure 3: Boundary impedance for a porous material – thickness: 1 cm (— : Reference,
- - : Proposed modelZ)
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Figure 4: Boundary impedance for a porous material – thickness: 5 mm (— : Refer-
ence, - - : Proposed modelZ)
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(36)
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Figure 5: Boundary impedance for a porous material – thickness: 2 mm (— : Refer-
ence, - - : Proposed modelZ)

where theqi are generalized degrees of freedom, whereasuE are nodal degrees
of freedom. The modal analysis is proceeded as proposed in section 2 – ie. without
the porous material. The motion equation of the structure including porous materials is
then written by projection on the modes calculated without it. cA1(ω) andcA2(ω) are
assumed to be diagonal (Basile’s hypothesis).

4 Optimization criteria

The optimization criteria we propose in this paper are basedon the relationship between
the pressure in the cavities and an excitation in displacement on the structure. The
excited degrees of freedom are denoteduE . We are interested in the pressure level in
the second cavityF2. The last line of equation 36 allows to express the pressurep2 in
the second cavityF2. First, it is necessary to expressqA2:

qA2 =
ω2

(

M
k

A2EuE +M
k

A2BqB +M
k

A2PqP

)

−ω2mk
A2 + k

k

A2
+ iωckA2

(ω)
(37)

We denoteΦA2
the matrix of the modes of the second cavity.Φk

A2
is thekth column

of ΦA2
. The pressurep2 in F2 can then be written:

p2 = ΦA2
qA2 =

∑

k

Φk
A2

qA2 (38)

ReplacingqA2 in equation 38 with the expression given in equation 37, we obtain
the relationship:
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p2 =
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uE (39)

+
∑

k





ω2Φk
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M
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−ω2mk
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k
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qB (40)

+
∑
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M
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qP (41)

qBm andqP are now expressed in function of the nodal degrees of freedom, thanks
to the relations coming from the modal analysis of the systemand defined in equa-
tions 4, 5, 6 and 7:

qB = Φ̃B (uB −ΨBEuE) (42)

qP = Φ̃P (uP −ΨPBuB −ΨPEuE) (43)

whereΦ̃B andΦ̃P are defined as follows:

Φ̃B = ΦT
BM̃B (44)

Φ̃P = ΦT
P M̃P (45)

which can be written thanks to the eigenvectors property:

ΦT
BM̃BΦB = I (46)

ΦT
PM̃PΦP = I (47)

whereM̃B is the condensed mass matrix used to findΦB, andM̃P is the con-
densed mass matrix used to findΦP .

We can now define a criterioñCd linked to the direct path between the displacement
uE and the pressurep2:

C̃d =
∑

k

ω2Φk
A2

(

M
k

A2E −M
k

A2BΦ̃BΨBE −M
k

A2P Φ̃PΨPE

)

−ω2mk
A2 + k

k

A2
+ iωckA2

(ω)
(48)

In order to reduce the pressure level for the maxima, we consider criterionC̃d:

Cd = max
k
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(49)
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It is possible to define other criteria linked to other paths,as shown on figure 6, but
this is not the purpose of the paper. We will only deal with thecriterionCd to optimize
the thickness of the porous media of the structure, for it is the main criterion, directly
linked to the direct path between the pressure field and the excitation point (black arrow
on figure 6).

Excitation
point

Boundaries

Plates

Pressure

field

Figure 6: Direct path (in black) taken into account for optimization

5 Optimization of the structure

The optimization we use in this paper is based on two criteria. CriterionCd has been
defined in section 4. CriterionCm is linked to the mass of the poroelastic material,
which must not be too high. Four parts of porous materials areconsidered here:

• porous material 1: foam put on the plates around the second cavity F2;

• porous material 2: foam put on the plateP situated between the two cavities, on
the side situated in the second cavity;

• porous material 3: foam put on the plateP situated between the two cavities, on
the side situated in the first cavity;

• porous material 4: foam put on the plates around the first cavity F1;

The optimization algorithm considered here is a classical genetic algorithm that is
given on figure 7.

The results of the optimization are given on the Pareto diagram of the figure 8.
This diagram shows the optimal points: some of these points are better according to
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Figure 7: Genetic algorithm used for optimization

Cd, others are better according toCm. Figures 9, 10, 11 and 12 show the variation of
the thicknesses of the foams in function of the mass of the structure – various optimized
points are represented in these figures. We observe that the thicknesses of the foams
corresponding to the first cavity are first increased. Figure13 shows the pressure level
in the cavity for the different steps of the optimization. Notice that other paths should
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be taken into account to get better results. Nevertheless, multicriteria optimization is
not the purpose of the paper.
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Figure 8: Pareto diagram of the optimization

6 Conclusion

A modelization of porous materials has been proposed, in order to be able to study
the dynamic behaviour of a complex structure. A vibroacoustic criterion has been
proposed, which allows to optimize the thicknesses of the porous materials used in the
modeling of the structure. A genetic optimization has been processed, and we observe
that the thicknesses of the foams corresponding to the first cavity are first increased.

The method allows to optimize complex structures includingporoelastic compo-
nents:

• The modes of the structure are first computed;

• Porous media are then analyzed through a frequency dependent and complex
impedance;

• Generalized degrees of freedom of the structure are expressed in function of the
modes of the structure;

14



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−3

Mass of the foam (normalized)

T
h

ic
kn

es
s

o
ff

o
am

1
(m

)

Figure 9: Best thickness of foam 1 in function of the mass of the foam

• The optimization is processed.

Notice that the example given in the paper show how to use the method on a given
structure. Nevertheless, other structures may be considered, for the method can easily
be generalized to other situations.
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Figure 12: Best thickness of foam 4 in function of the mass of the foam
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Figure 13: Pressure level in the first cavity (170 Hz)
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