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Abstract

Complex structures used in the automotive industry oftetutie porous ma-
terials, in order to reduce the noise in acoustic cavitieke fethod proposed
in this paper aims at optimizing the characteristics of éhg®rous materials using
modal criteria based on the modal analysis of the struclithie.use of a generalize
modal synthesis method allow to describe the structure leadavities with sets
of modes; the size of the resulting system is smaller, foy geheralized degrees
of freedom are used for each part of the coupled fluid-stracsystem. First, a
modelization of the porous media is proposed, and the giretanodal analysis
method is explained. An optimization is then processed erthitkness of the
porous materials.

keyword: Modal analysis; Optimization; Porous media

1 Introduction

Acoustic problems in the automotive industry has long béedisd, for the noise in
acoustic cavities is a very important criterion for the oasér. In order to reduce this
noise, poroelastic materials are applied on the structorthis paper, we optimize the
thickness of these porous materials using optimizatidera based on a generalized
modal analysis method.

The modal analysis method we use has been described in apseyaper [1] for
a structural problem. It has then been extended to the caseamipled fluid-structure
problem[2]. The principle of this modal synthesis methoslimmmarized in the paper.
Itis based on the modal description of each substructuréanddary using a “double”
or “triple” modal synthesis, which have first been proposgdézéquel[3,4].

It is possible to define optimization criteria based on thedat@escription of a
coupled fluid-structure system. It has already been donkearcase of a structural
problem[5] and has been extended to the case of a coupleesthuicture systen [6].
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Such criteria correspond to a systemic approach of vibnesteoproblems. The rela-
tion between the excitation and the pressure in the cavitiesbe expressed through
modal matrices coming from the generalized modal analyfdiseostructure. Several
terms appear in the expression of the pressure, which pamelgo several “vibration
paths”. The expressions of these paths constitute theiante use for the optimiza-
tion.

Porous materials have long been studied. Biof[7,18, 9, 18]finst proposed a
method to describe these materials. Later, Allard [11, X¥@ppsed a more precise
modelization, introducing for example frequency dependamms in the expression
of the densities. Finite element models have also been penpd3]. Our approach
aims at describing porous materials through boundary impegks; some papers have
already been written on the subjéectl[14} 15], but the metheg@rmepose here uses these
impedances to construct coupling terms of finite elementioest

2 Modal analysisof the structure

The complex structure we consider in this paper includeepland two acoustic cavi-
ties. It has the same geometry of the structure considerf&].ifhe geometry of the
structure is shown in the figuke 1:

e F; is the first acoustic cavity, where the pressure level hag tminimized;
e F, is the second acoustic cavity;
e P is the plate between the two cavities.

For figurd1 to be more understandable, the plates have notdvaen. The structure
will be excited by a displacement applied on its skeleton.

PlateP lUE

N

2,5m

Figure 1: Structure to optimize

The motion equation of the coupled fluid-structure systethaslassical equation,
written in (u, p) formulation, without damping:
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Cr is a matrix coming from the fluid-structure coupling. In orde define the
criteria for the optimization of the structure, we need tpress this matrix more pre-
cisely:

K K ’
M M M EAl EA2
or= [ Ml My Mp ]| K K| @
2 ? : Kpa, Kpa,

Notice thatM x,y, (i=1,2 and j=1,2) are not mass and stiffness terms. Thesester
are related to the discretized acoustic equation. That jseguatiori 2 can be written
without units problems.

ug, up andp are the degrees of freedom of the system:

e ug corresponds to the excited points of the structure;

up corresponds to the boundaries between the plates;

up corresponds to the plates;

p: are the degrees of freedom of the acoustical cakity

p2 are the degrees of freedom of the acoustical cakity

The modal analysis method used to describe the system id bastne “double”
and “triple” modal synthesis proposed in previous paper@]B,4]. Modes are used
to describe the acoustic cavities, the boundaries and #iel This method leads to
the modal equation:
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The modal damping matrix is assumed to be diagonal. The metlysis de-
scribed in equation]6 arid 7 allovks,, 4,, kpp, kg, Mpp, Mpp andmy, 4, (i =1
or 2) to be diagonal matrices too. This equation will be useskictiod # to introduce
optimization criteria. The modal matrices used for obtajnihe generalized degrees
of freedom are defined as follows:

up =®pqp + ¥ppup + Yprugp (4)
up = ®pqp + ¥Yprugp (5)
p1 = Pa1qa: (6)
P2 = Pa2qa2 (1)

Matrices®p, @5, ® 4, and® 4, are the matrices of the modes of the structure:

e ®p is the matrix corresponding to the mode of the plates whemtaties are
fixed,;

e & is the matrix corresponding to the mode of the hollow partsstituting the
skeleton of the structure, considering a static condemsafithe plates on these
hollow parts;

e ® 4, is the matrix corresponding to the mode of the acousticatyedy (cavity
modes);

e ® 4, is the matrix corresponding to the mode of the acousticatyed (cavity
modes);

e Ui, W andW gy are static modes of the structure.

3 Analysisof the poroelastic materials

The coupling terms recalled in equatldn 2 comes from thesilakacoustical coupling
equation:



op _ 2
% = pPfw Un (8)

wherep; is the density of the fluidy is the pressure on the fluide-structure bound-
ary, andu,, is the normal displacement. Itis possible to introduce aldauy impedance
Z that allows to describe the behaviour of the boundary if wesater a poroelastic
material on this boundary. In equatibh 8,is considered to be infinite. Taking into
account the impedancg, the coupling equation becomes:

op iwpy 2
o 7 D= prwiu, 9

The aim of this section is to determinafein function of the characteristics of a
poroelastic material. The figulé 2 shows the notations we use

e uy is the displacement of the boundary between the porous ialeded the wall
(a plate of the structure);

e u, is the displacement of the porous material at the boundatyte fluid cav-
ity;

e [ is the thickness of the porous material.

Ug /

z=1 /

late
U ; . P
! air porous material

Figure 2: Notations on the purous material

At the boundary between an acoustic cavity and a porous raktere use the
coupling equation proposed by Atalla [13]:

Q h? Op 1 op,
(l—h—hR up — 'yul—ﬁmwgaz(z—l) _ﬁ0w262(z_l) (10)

In order to take into account the thickness of the porous riahend the structure
it is fixed on, we have to express in function of ug. To do this, we consider the
equation of the fluid part of the porous materiall[13], whishecalled here:




Ap + p—;;oﬂp — %WoﬂdiVu =0 (12)

h is the porosity of the porous materialjs a ccefficient depending on the char-
acteristics of the pores of the porous material and is the tortuosity of the porous
material.v, po2 andpyo are defined as follows:

. b
P22 = P22 — 11— (12)
w
p22 = hpyas (13)
P12 Q>
=h|=-= 14
v=n(22-2 (14)
. b
P12 = P12 —t— (15)
w
p12 = —hpy (@ — 1) (16)

@ and R are ceefficients that depend on the characteristics of theuganaterial.
Their expression can be found in the book of Allard|[11]. Theske into account the
thermal effects in the pore, so they have a frequency depéndmplex amplitude that
we recall:

Q=(1-h) Ky (7)
R=hK; (18)
Ky = Fo —~ (19)
877 . , A2 1/2
’y—(’}/—l) 1+m(1+1pﬂu3 ﬁ)
(20)

where B and P, depend on the temperature. For l&e haveB = /0,71 and
Py =1,0132.10° (see[[11)).

Several expressions do exist to evaluatehich depends on the frequency. We
choose to use an expression proposedin [11]:

b= on2&@ (21)
w

1+ 4ia2 npsw
G =\~ (22)

e A is a characteristic dimension of the porous material;

where:

with the notations:

e o is the flow resistivity (intrinsic property of the material)



e 7 is the viscosity;
Considering only the displacement, equati¢nll1 can be written:

9%p 2 P22 ap22 Ou

g2 T RPN, =0 (23)

Considering that the thicknegss small (for examplé < 2’;&), it is possible to
write:

ou  u;— ug

5= (24)
Pp _ =D - (=0
922 I (23)

If the boundary between the porous material and the streigswigid, % (z=0)
can be expressed as follows:

9p
0z
The equatioh 23 becomes then:

~ ~ 2
%%(z:l)—i—wz@p—wQ%W [uz—(l—]zpo)uo] =0 (27)

(2 = 0) = pow’ug (26)

R p227Y
This equation allows to expressin function ofuy:
h? [ ) h2l
ul=<1— ~p0>uo-i-72~ —p+—p (28)
P22y w2paoy 0z Ry

The coupling equation becomes:

[i—<1—h—h9> h—z]@—w2<1—h—h9— >h21

Po R ) paay]| 0z R R_Vp
2 Q h?l < h2p0>
=w‘(1—-h—-h=— — |1 -——u 29
< R 7) Ry py) (29)
which is close to the classical equation of coupling:
Op  jwpo o 30
2: 7, p = pow”&auo (30)

with the notations:
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Bt (1-n-nf) 2
The modelization retained for the porous materials is a Kiieg modelization. It
is possible to study the influence of the simplifications bynparing the impedance
Z, we propose with the classical acoustic impedance, givehéyeiation:

_p()
iwu(l)

wherep(l) is the pressure andu(l) is the speed of the fluid at= [ (see figuréR).
The characteristics of the porous material used for the epiggpn betweet,, and the
impedance proposed by Allard [11] are recalled in table 1.

(34)

Tortuosity Density Porosity | Poisson’s| Lamé Modulus
Qoo of the skeleton h ratio N
| 1,06 | 130kgm® | 0,94 [ 0 ] 220(1+0,14) ]
LA ] o | N | o]

[1,1.10“m [ 40000 NnT*s [ 1,84.10 ° PI | 1,213 kgnT? |

Table 1: Characteristics of the porous material used in dingparison

The results of the comparison are given in the fighres B(B),[3(a)[4(b); 5(&) and
[5(b), corresponding to thicknesses of 1 cm, 5 mm, and 2 mm.r@ts are good if
the thicknessis small. Notice that the imaginary part of the impedancéssgs good,
even if the thickness is not small. This imaginary part cgpmds to the damping due
to the porous material.

The equatiof 30 is a boundary condition between the fluid beglates that gen-
erates coupling terms depending on the frequency, for tipedanceZ, depends on
the frequency. This coupling term can be expressed in the dthe modes of the
structure defined in sectiéh 2, hence the equation:

(—WQM +iwCw)+K)u=f (35)

whereC(w) is a complex matrix, depending an This matrix corresponds to the
impedanceZ,, defined in equation 31M, K, u andf correspond to the matrices and

vectors defined in equatiéh 3. Using the poroelastic moalitin we propose, equation
becomes:
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where theq; are generalized degrees of freedom, whereasare nodal degrees
of freedom. The modal analysis is proceeded as proposediivsg — ie. without
the porous material. The motion equation of the structurkiding porous materials is
then written by projection on the modes calculated withtut i1 (w) andc 42 (w) are
assumed to be diagonal (Basile’s hypothesis).

4 Optimization criteria

The optimization criteria we propose in this paper are basdte relationship between
the pressure in the cavities and an excitation in displactme the structure. The
excited degrees of freedom are denoted We are interested in the pressure level in
the second cavity,. The last line of equatidn 86 allows to express the pregsuie
the second cavity,. First, it is necessary to expregss:

—k —k —k
w? (MAQEUE + My, pas + MA2PqP)

qaA2 = (37)

__ —k .
—w2mh, + ky, + zu)c’j12 (w)

We denoteb 4, the matrix of the modes of the second cav11>3f42 is thek™ column
of ® 4,. The pressure, in F» can then be written:

P2 =®4,q40 = »_ B qa (38)
k

Replacingg 42 in equatiori 3B with the expression given in equalfioh 37, waiob
the relationship:

10



w2dk Mk
P2 = e ugp (39)
w | —wimly, +ky, zwc’jx2 (w)
[ w2k Mk ]
+3 e a5 (40)
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28k NIF
w @AQMAQP

+

ar (41)

>

asm andqp are now expressed in function of the nodal degrees of freett@nks
to the relations coming from the modal analysis of the sysaewh defined in equa-
tions[4[5[6 andl7:

__ —k .
—w2m’22 +ky, + zwcfﬁb (w)_

ap = ®5 (up — ¥ppug) (42)
qp = ®p(up — ¥ppup — ¥prug) (43)

where® 5 and® p are defined as follows:

b = ®LMp (44)
op = ®LMp (45)

which can be written thanks to the eigenvectors property:

SLMpdp =1 (46)

SLMp®p =1 (47)

whereM ; is the condensed mass matrix used to fiag, and M p is the con-
densed mass matrix used to fitkg.

We can now define a criteriafi, linked to the direct path between the displacement
ug and the pressung;:

—k —k = —k =
Wl (MAzE —My,5®5¥5E — MA2P(I>P‘I’PE)

K —w2mhy, + ki, + iwehy (w)
In order to reduce the pressure level for the maxima, we denstiterionCy:
k ~=k —k ~ —k ~
wk@Az (MAzE - MAZB@B\PBE - MAzpq)p‘I’pE)
Cq= max (49)

Z'Cif‘2 (wk)
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It is possible to define other criteria linked to other pattssshown on figurlel 6, but
this is not the purpose of the paper. We will only deal withehigerionC,; to optimize
the thickness of the porous media of the structure, for iésrhain criterion, directly
linked to the direct path between the pressure field and ttitegdon point (black arrow

on figure 6).

Excitation :> Boundaries

point

Pressure
field

Figure 6: Direct path (in black) taken into account for opgation

5 Optimization of the structure

The optimization we use in this paper is based on two crite€iderionCy has been
defined in sectiofl4. Criterio@, is linked to the mass of the poroelastic material,
which must not be too high. Four parts of porous material€ansidered here:

e porous material 1: foam put on the plates around the secority ¢&;

e porous material 2: foam put on the pl&®esituated between the two cavities, on
the side situated in the second cavity;

e porous material 3: foam put on the pl&®esituated between the two cavities, on
the side situated in the first cavity;

e porous material 4: foam put on the plates around the firstycai;

The optimization algorithm considered here is a classieakgjc algorithm that is

given on figurélr.
The results of the optimization are given on the Pareto diagof the figuré 8.
This diagram shows the optimal points: some of these ponetdetter according to

12



of parameters

Determination of [V first set

n=1

Evaluation of the criteria

Selection of the best sets

n+«mn-+1

Sets not selected
are combined

The best sets
are not changed

of parameters

Determination of N new sets

Break criterium

hm-used for optimization

Cy, others are better according@,,. Figured ®[ 14, 11 arid 12 show the variation of
the thicknesses of the foams in function of the mass of thuetire — various optimized
points are represented in these figures. We observe thatitkme¢sses of the foams
corresponding to the first cavity are first increased. Fifidshows the pressure level
in the cavity for the different steps of the optimization.tie that other paths should

13



be taken into account to get better results. Nevertheleghicniteria optimization is
not the purpose of the paper.

0.9F .
0.8h i
07+ ]
0.6 ... .

o5F .. 1

0.3f N i

Mass of the foam — criteriony,,,

0.2f . 1

Ol 1 1 1 1 1 1 1 1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

CriterionCy

Figure 8: Pareto diagram of the optimization

6 Conclusion

A modelization of porous materials has been proposed, ieraabe able to study
the dynamic behaviour of a complex structure. A vibroadoustiterion has been
proposed, which allows to optimize the thicknesses of they®materials used in the
modeling of the structure. A genetic optimization has beme@ssed, and we observe
that the thicknesses of the foams corresponding to the &xstycare first increased.

The method allows to optimize complex structures includgdogoelastic compo-
nents:

e The modes of the structure are first computed;

e Porous media are then analyzed through a frequency depeadércomplex
impedance;

e Generalized degrees of freedom of the structure are exqar@ss$unction of the
modes of the structure;

14
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Figure 9: Best thickness of foam 1 in function of the mass effttam

e The optimization is processed.

Notice that the example given in the paper show how to use @ithad on a given
structure. Nevertheless, other structures may be comrsldéar the method can easily
be generalized to other situations.
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