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Abstract

This paper proposes modal criteria to represent various noise sources within a
complex structure, such as an automobile. By optimizing a complex system using
criteria linked to modal mass and stiffness matrices, different modes of noise prop-
agation can be investigated separately. Several criteria are thus suggested, each
related to a vibrational propagation path. Since the systemis studied using modal
analysis, criteria can be found based on modes associated with the structure’s hol-
low parts, plates, and cavities. These different criteria are analyzed based on the
assumption of a complex vibroacoustic system. It is shown that by analyzing such
criteria, one can determine which part of the structure needs to be optimized. The
optimization of such a system could constitute a research topic in its own right,
and is beyond the scope of the present paper.

keywords: Modal analysis; Optimization; Vibroacoustic coupling

1 Introduction

The use of a modal approach to describe a structure in order tooptimize its dynamic
behaviour has multiple advantages. Once modal matrices have been computed, opti-
mization criteria can readily be defined. The dynamic amplfication phenomena and
dynamic coupling between substructures can then be described using just a small num-
ber of degrees of freedom. Furthermore, it is possible to link the criteria to the modal
parameters used in the systemic procedure. The criteria proposed in this paper are de-
rived from those developed by P. Lemerle [1], using Craig & Bampton’s method to
describe the dynamic behaviour of a structure.

The modal analysis technique described here is based on the “double modal syn-
thesis” proposed by Jézéquel [2, 3]. Complex structures often include hollow parts
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and stiffeners, which must be analyzed very accurately to obtain satisfactory results.
In this paper, the term “hollow parts” denotes the formed steel and stiffeners making
up the skeleton of a structure. In complex structures such asautomobiles, stiffeners
and formed steel parts which make up the skeleton of the structure are those most re-
sponsible for the behaviour of the structure as a whole. To analyze these elements, a
method will be used, which was proposed in [4, 5]. We will study the acoustic parts of
the coupled system using acoustic modes based on a “triple modal synthesis method”.
This method resorts to a coupling formulation which has beenpreviously investigated
[6, 7]. An example of modal analysis of a coupled system can befound in [8].

Modal analysis of the structure will lead to modal mass and stiffness matrices,
which are then used to obtain effective modal parameters, which in turn lead to criteria
allowing the structure to be optimized. These criteria willdepend on the pressure values
at points located in the acoustic parts of the system – insidea car for example – as a
function of an excitation point located on a hollow part of the structure – e.g. a spar
near the car engine. The criteria proposed here allow various vibrational propagation
paths to be considered. It is thus possible to investigate separately the different noise
sources within the structure.

The method proposed in this paper may be used for any vibroacoustic system. In
fact, the ultimate goal of this approach is to define modal criteria which allow the vi-
broacoustic system to be optimized. These are related to thecoupling terms between
the systems different substructures, and are expressed as functions of the terms con-
tained in the modal matrices. Thus, the number of criteria depends on the number of
substructures within the vibroacoustic system. Our methodis described for the case of
a specific system, but can readily be adapted to other vibroacoustic systems.

The structure considered in this paper is a complex one, comprised of acoustic
cavities, hollow parts and plates. The geometry of this structure is similar to that of a
car. Two cavities will be considered. Thus, the method proposed here can be used to
study the different paths through which vibrations propagate and generate noise within
the car. Paths can exist through the hollow parts of the structure, through the plates
which bound the cavity, and through plates which partition the two cavities. Such a
structure has already been usedin vacuoin [5].

2 Analysis of the vibroacoustic system

The structure considered here is a complex structure including hollow parts and plates.
It is built using formed steels which make up its skeleton, asshown in figure 1. Plates
are fixed to this skeleton, and form two cavities inside the structure, as shown. The
structure’s geometry is similar to that of a car, in order to show that the proposed
methods can be applied in an industrial context.

[Figure 1 about here.]

2.1 The vibroacoustic problem

Figure 1 shows the geometry of the vibroacoustic system under consideration. The
approach used in this paper to study the vibroacoustic behaviour is a(u, p) formulation:
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σij,j(u) + ω2ρsui = 0 overΩs (1)

∆p+
ω2

c2
p = 0 overΩf (2)

σij(u)n
s
j = fi over∂Ωs\Σ (3)

σij(u)n
s
j = −pns

i = pn
f
i overΣ (4)

∂p

∂nf
= ω2ρfu.n

f overΣ (5)

Au = 0 overΣl (6)

whereΩs is the structural part,Ωf is the acoustic part, andΣ is the boundary
between the structural and acoustic parts.Σl is that part of the structure which is sub-
mitted to boundary conditions.A is an operator that allows these boundary conditions
to be applied. The notations used in the equations describing the system are given
below:

• σij is the stress tensor of the structure;

• ω is the angular frequency of the system;

• ρs is the density of the structure;

• f represents the forces applied to the structure;

• u is the displacement of the structure;

• p is the pressure field of the acoustic part.

The dissipation model (modal damping) will be introduced through the modal syn-
thesis of the system in section 2.3. The next section addresses the discretization of
the equations when several structural parts (plates and hollow parts) and two acoustic
cavities are assumed. This model represents a car which is fixed to four points corre-
sponding to the wheels; therefore, no rigid body modes are involved in the case studied
here. Moreover, no internal acoustic source is assumed to bepresent.

2.2 Finite element analysis of the system

The behaviour of the vibroacoustic system studied in this paper can be approximated
by the finite element model according to the following equilibrium motion equation:
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The behaviour of the plates, the hollow parts and the cavities is included within this
equation. Degrees of freedom denoteduH correspond to the hollow parts; degrees of
freedom denoteduP1

correspond to the plates – with the exclusion of plates denoted
P in figure 1 –; degrees of freedom denoteduP2

correspond to the plate denotedP in
figure 1. Finally, degrees of freedom denotedpF1

– respectivelypF2
– correspond to

the pressure in the first cavity denotedF1 in figure 1 – respectively the second cavity
denotedF2 in figure 1.

Thus, equation 7 is a classical interior non-symetric vibroacoustic equation. The
degrees of freedom are displacements for the structural part, and pressure for the acous-
tic part.

The vibroacoustic coupling appears in matriceCF defined as follows:

CF =

[

MF1H MF1P1
MF1P2

MF2H MF2P1
MF2P2

]

= −





KP2F1
KP2F2

KF1F1
KF1F2

KF2F1
KF2F2





T

(8)

2.3 Modal analysis of the system

The acoustic part of the system is analyzed with a modal synthesis method using cavity
modes. Hollow parts of the structure are analyzed using a model already proposed in
[4]. These elements comprise the skeleton of the structure.This modeling leads to
modal matrices which can be assembled in the same way as finiteelements matrices.
The main feature of this approach is that it produces matrices which have only general-
ized degrees of freedom. Nodal degrees of freedom may remain, in order to assemble
the hollow parts to other structures, but boundaries between the substructures of the
hollow part have only generalized degrees of freedom. Assembly of these substructures
is made possible by the way in which the modes, used for the modal analysis of the
substructures, are chosen. Plates are assembled to the structure’s skeleton according to
the nodal degrees of freedom remaining from the modal analysis of the hollow parts in
the structure. The complete structure is then analyzed according to the “double modal
synthesis” method proposed by Jézéquel [2, 3]. This method uses “branch modes” to
describe the behaviour of the boundaries between substructures. In this paper, these
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“branch modes” will be used to describe the behaviour of the structure’s skeleton. The
use of generalized degrees of freedom allows the size of the problem to be reduced.

The degrees of freedom of a hollow part are comprised of generalized degrees
of freedom resulting from the modal analysis of the substructures which make up
the skeleton, denotedqHc, generalized degrees of freedom resulting from the dou-
ble modal synthesis, which are denotedqHb, and excitation points, which are nodal

degrees of freedom, denoteduE . We denoteqH =







uE

qHc

qHb







.

Generalized degrees of freedom are linked to nodal degrees of freedom through the
following equations:


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
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
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


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









uHc = ΦHcqHc +ΨHcuHb +ΨHeuE

uHb = ΦHbqHb

uP1
= ΦP1qP1 +ΨP1uHb +ΨP1euE

uP2
= ΦP2qP2 +ΨP2uHb +ΨP2euE

pF1
= ΦF1qF1

pF2
= ΦF2qF2

(9)

MatricesΦF1 andΦF2 are the modal matrices of the acoustic modes of the system.
MatricesΦP1 andΦP2 are the modal matrices of the plates’ fixed modes.ΨP1

andΨP2 are the matrices of the plates’ static modes, as in the case ofthe method used
by Craig & Bampton [9].

MatricesΦHc andΨHc are modal matrices resulting from the analysis of the hol-
low part described in [4] and [5]. Although this approach to the study of hollow parts
has already been described in former papers, the reader willfind a summary in the
following.

Matrix ΦHb is the matrix of the “branch” modes of the structure [2, 3].
Excitation points, denoteduE in the following, remain nodal degrees of freedom.

Modal synthesis of the structure is not applied to these points.
The modal synthesis method used to study the hollow parts involves “section modes”:

The hollow part as a whole is split into several elements (substructures), as shown in
figures 2 and 3. An element of a hollow part is studied with respect to the modes of
the “left” and “right” sections. Elements are then assembled. This approach is used
because it would be too costly, in terms of computing power, to study the structure’s
hollow parts using a conventional modal synthesis method.

[Figure 2 about here.]

[Figure 3 about here.]

The equation of motion thus becomes:
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(10)

where matrices in lowercase characters are diagonal matrices. At this step of the
modal synthesis, modal damping is introduced. Although it involves a small degree
of approximation, the damping matrix is assumed to be diagonal. This property is
called Basile’s hypothesis is the french terminology. Thishas no impact on the results
provided dissipation does not need to be analysed.

3 Optimization criteria used in the paper

As explained in the introduction, although the methodologydescribed here can be
adapted to any generalised vibroacoustic system, a specificexample has been chosen
to illustrate our methodology for deriving the optimization criteria (see figure 1).

3.1 Analysis of the motion equation

The aim of this section is to express the pressurepF2
in the second cavity as a function

of the structural displacements. This expression will allow the various vibrational paths
to be discriminated from one another. The problem must be studied using a systemic
approach. Certain criteria related to the different vibrational paths will thus be defined.

Using the last line of equation 10, the following expressionis obtained:
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Let Φk
F2 be thekth column ofΦF2. Equations 9 and 12 yield:
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The quantities with a “tilde” are left pseudo-inverse matrices. It is possible to
define several pseudo-inverse matrices. In the case of singular systems, pseudo-inverse
matrices allow solutions to be found [10]. In this paper, matrices are not square and the
solution obtained is a least squares approximation. The reason for this is that modal
synthesis does not involve fewer modes than the number of physical degrees of freedom
of the system.

Equation 13 provides an approximation to the pressure fieldpF2
within the second

cavity as a function of structural displacements. A superposition of the substructural
modes clearly appears in the sums

∑

k

( ).

3.2 Modal parameters

Equation 13 allows modal parameters to be defined, which can be used to optimize
the coupled system. These modal parameters correspond to each of the different vi-
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brational paths: a direct path, a path through the hollow parts of the structure, a path
through the plates bounding the cavity, and a path through the plate located between
the two cavities.

3.2.1 Direct path

The direct path is directly obtained through equation 13. Itcorresponds to an excitation
point on a plate located next to cavityF2. It is recalled that the excitations considered
here are displacement excitations.

The modal parameter corresponding to this direct path is denotedGE (ω):

GE (ω) =
∑

k

(
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ω
ωk
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with the notationsckF2 = 2ξk

√

kk
F2

mk
F2

andωk =

√

kk
F2

mk
F2

.

3.2.2 Path through the hollow parts

The path through the hollow parts is given by componentuHb of equation 13.
qk
Hb is now expressed according to the third line of equation 10:
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The modal parameter corresponding to the path through the hollow parts is denoted
GH (ω). Using equations 16 and 11, it is possible to write:
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with the notationsckF2 = 2ξ1k

√
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.

3.2.3 Path through the plates

The path through the plates is given by componentuP1 of equation 13.
uP1 is then written as a function ofuE according to the fourth line of equation 10:
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H2 (see equation 19) (26)
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with the notationsckF2 = 2ξ1k
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3.2.4 Path through the first cavity

The path through the first cavity is related to the plate forming the boundary between
the two cavities.

The modal parameter corresponding to this path can be written according to the
fifth and sixth lines of equation 10:

− ω2

(

M
k

P2EuE +M
k

P2HbqHb +mk
P2q

k
P2

)

+ iωckP2q
k
P2 + kk

P2q
k
P2 +K

k

P2F1qF1 +K
k

P2F2qF2 = fP2 (27)

− ω2

(

M
k

F1EuE +M
k

F1HbqHb +M
k

F1P1qP1 +M
k

F1P2q
k
P2 +mk

F1qF1

)

+ iωckF1q
k
F1 + kk

F1q
k
F1 = 0 (28)

The modal parameter corresponding to the path through the plates is denotedGP2 (ω).
Using equations 27, 28 and 11, it is possible to write:

GP2 (ω) =







∑

k

(

ω
ω1k

)2

1−
(

ω
ω1k

)2

+ 2iξ1k
ω

ω1k

G̃k
P21







×







∑

k

1

1−
(

ω
ω2k

)2

+ 2iξ2k
ω

ω2k

G̃k
P22







×







∑

k

(

ω
ω3k

)2

1−
(

ω
ω3k

)2

+ 2iξ3k
ω

ω3k

G̃k
P23






(29)

where:

G̃k
P21 =

Φk
F2M

k

F2P2Φ̃P2

mk
F2

(30)

G̃k
P22 =

Φk
P2K

k

P2F1Φ̃F1

ω2
2km

k
P2

(31)

G̃k
P23 =

Φk
F1

(

M
k

F1E −M
k

F1P1Φ̃P1ΨP1e −M
k

F1P2Φ̃P2ΨP2e

)

mk
F1

(32)
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with the notationsckF2 = 2ξ1k

√

kk
F2

mk
F2

andω1k =

√

kk
F2

mk
F2

, ckP2 = 2ξ2k

√

kk
P2

mk
P2

andω2k =

√

kk
P2

mk
P2

, ckF1 = 2ξ3k

√

kk
F1

mk
F1

andω3k =

√

kk
F1

mk
F1

.

3.3 Modal criteria

The modal parameters defined in the previous sections lead tocriteria that are defined
as follows:

CE = max
k

∣

∣

∣

∣

∣

∣

∣

(

ω
ωk

)2

1−
(

ω
ωk

)2

+ 2iξk
ω
ωk

G̃k
E

∣

∣

∣

∣

∣

∣

∣

(33)

Cn = max
k

∣

∣

∣

∣

∣

∣

∣

(

ω
ω1k

)2

1−
(

ω
ω1k

)2

+ 2iξ1k
ω

ω1k

G̃k
n

∣

∣

∣

∣

∣

∣

∣

wheren can beH1, P11 orP21(34)

Cn = max
k

∣

∣

∣

∣

∣

∣

∣

(

ω
ω2k

)2

1−
(

ω
ω2k

)2

+ 2iξ2k
ω

ω2k

G̃k
n

∣

∣

∣

∣

∣

∣

∣

wheren can beH2, P12, orP13(35)

CP14 = max
k

∣

∣

∣

∣

∣

∣

∣

(

ω
ω3k

)2

1−
(

ω
ω3k

)2

+ 2iξ3k
ω

ω3k

G̃k
P14

∣

∣

∣

∣

∣

∣

∣

(36)

CP22 = max
k

∣

∣

∣

∣

∣

∣

∣

1

1−
(

ω
ω2k

)2

+ 2iξ2k
ω

ω2k

G̃k
P22

∣

∣

∣

∣

∣

∣

∣

(37)

CP23 = max
k

∣

∣

∣

∣

∣

∣

∣

(

ω
ω3k

)2

1−
(

ω
ω3k

)2

+ 2iξ3k
ω

ω3k

G̃k
P23

∣

∣

∣

∣

∣

∣

∣

(38)

Within the framework of an optimization problem, it is possible to use these cri-
teria, for example, in order to optimize a structure’s geometry. However, the criteria
we propose do not allow derivation with respect to any one of the parameters of the
structure (geometry of the hollow parts, thickness of the plates. . . ), although many
optimization methods require derivating these criteria. For that reason other criteria,
related to the original ones, are defined in the next section.

3.4 Derivable criteria

As mentioned below, criteriaCn (wheren can beE, H1, H2, P11, P12, P13, P14,
P21, P22 or P23) cannot be derived with respect to any parameter, although this
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would be useful in most optimization problems. To remedy this problem, we introduce
criteriaC̃n, defined as follows:

C̃n =
1

4
log

∑

k

∣

∣

∣λ (ω, k) G̃k
n

∣

∣

∣

4

(39)

whereλ (ω) is a coefficient depending onω. This is the case, for example, ofG̃k
E ,

λ (ω) =

(

ω
ωk

)

2

1−

(

ω
ωk

)

2

+2iξk
ω
ωk

.

It can be shown that these criteria are very similar to the first ones, and have almost
the same minima and maxima. To prove this, let us consider thefollowing functionfp:

fp : x −→ p
√

a1(x)p + a2(x)p + · · ·+ an(x)p (40)

whereaq(x) > 0 ∀q ≤ n ∀x. It is possible to write:

lim
p→+∞

fp(x) = max [a1(x), a2(x), . . . , an(x)] (41)

Specifically, sinceaq(x) > 0 ∀q ≤ n ∀x:

p

√

(max [a1(x), a2(x), . . . , an(x)])
p
< fp(x) <

p

√

n (max [a1(x), a2(x), . . . , an(x)])
p

∀p ∈ N. (42)

Equation 42 leads to:

max [a1(x), a2(x), . . . , an(x)] < fp(x) <
p
√
nmax [a1(x), a2(x), . . . , an(x)]

∀p ∈ N. (43)

Since lim
p→+∞

p
√
n = 1, it can be deduced thatlim

p→+∞

fp(x) = max [a1(x), a2(x), . . . , an(x)].

Mathematically, this can be written as:

∀ǫ > 0 ∃η > 0 tq x > η ⇒ |fp(x)−max [a1(x), a2(x), . . . , an(x)] | < ǫ (44)

Thus, ifp is large enough, criteriãCn have nearly the same extrema asCn.

4 Optimizing a structure using the modal criteria

4.1 Analysis of the criteria

In this section, the criteria developed in the previous sections are analyzed. In order to
simplify the analysis, only one excitation point placed on ahollow part bounding the
first cavityF1 is considered.

12



Values of criteriaCn may change with the excitation frequency because of coeffi-
cientλ (ω). For example, figures 4, 5, 6, 7, 9 and 10 show the values of someparame-
ters as a function of the excitation frequencyf . It can be seen that the strength of each
criterion depends on the excitation frequency. For example, it is interesting to note that
criterionCP22 increases more strongly than the others with frequencyf . Therefore,
the vibrational path through plateP becomes very significant at higher frequencies.

Notice that criteriaCP13 andCH2 show peaks which correspond to the global
modes of the structure, because the modal matrices of the structure’s hollow parts are
involved in these criteria.

[Figure 4 about here.]

[Figure 5 about here.]

[Figure 6 about here.]

[Figure 7 about here.]

[Figure 8 about here.]

[Figure 9 about here.]

[Figure 10 about here.]

4.2 Results for the modal parameters

In this section, the modal parametersG̃k
H1, G̃k

H2, G̃k
P21, G̃k

P22, G̃k
P23, G̃k

P11, G̃k
P13

andG̃k
P14 are analyzed. This will allow each of the modes responsible for the values of

criteriaCn to be defined. The modal parameters must be weighted with the previously
defined coefficientsλ (ω), in order to take the excitation frequency into account. Two
cases of excitation are presented, at 50 Hz and 300 Hz.

4.2.1 Path through the first cavity

Considering the vibrational path through the first cavity and the plateP , three modal
parameters need to be analyzed. Figures 11, 12 and 13 show thevalues of modal pa-
rameters̃Gk

P21, G̃k
P22 andG̃k

P23 as a function of the mode numberk, for an excitation
frequency of 50 Hz. Figures 14, 15 and 16 show the same parameters for an excitation
frequency of 300 Hz.

[Figure 11 about here.]

[Figure 12 about here.]

[Figure 13 about here.]

[Figure 14 about here.]

[Figure 15 about here.]
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[Figure 16 about here.]

Figure 12 shows that only one mode of the plateP is responsible for the transmis-
sion of vibrations between the first and second cavities. Thecriterion associated with
this figure isCP22, and is related to the influence of pressure within the first cavity on
plateP . Given that the action of an acoustic fluid on a structure is not very significant
when compared with that of a structure on a fluid, the parameter values given in figure
12 are very small. For an influence to be exerted on the path through the first cavity,
which is the object of this section, one could, for example, restrict the influence of the
mode shown in figure 12.

4.2.2 Path through the hollow parts

For the vibrational path through the hollow parts, two modalparameters have to be
analyzed. Figures 17 and 18 show the values of modal parametersG̃k

H1 andG̃k
H2 as a

function of the mode numberk for an excitation frequency of 50 Hz. Figures 17 and
18 show the same parameters for an excitation frequency of 300 Hz.

[Figure 17 about here.]

[Figure 18 about here.]

[Figure 19 about here.]

[Figure 20 about here.]

It can be seen in figures 17 and 18 that many of the modes are strong. The values of
these parameters increase with increasing excitation frequency. However, the values for
criterionCH2 are much smaller than the values for criterionCH1. It is then possible to
choose to optimize the structure usingCH1, which seems to have a stronger influence
on the transmission of vibrations. Although the influence ofcriterion CH2 appears
to be smaller, its use in the optimization of the structure allows the vibrational path
through the plates to be studied, as described in the following section.

4.2.3 Path through the hollow parts and the plates

For the vibrational path through the hollow parts and the plates, three modal parameters
should be analyzed. Figures 21 and 22 show the values of modalparameters̃Gk

P11 and
G̃k

P13 as a function of mode numberk for an excitation frequency of 50 Hz. It should
be noted that̃Gk

P14 = G̃k
H2, as plotted in figure 18. Figures 23 and 24 show the

values of modal parameters̃Gk
P11 andG̃k

P13 as a function of the mode numberk for
an excitation frequency of 300 Hz.

[Figure 21 about here.]

[Figure 22 about here.]

[Figure 23 about here.]
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[Figure 24 about here.]

As shown if figures 21 and 22 many modes are strong. Just as in the previous
section, it is then possible to optimize the structure usingcriterionCP14 = Ck

H2, so
as to minimize the transmission of vibrations through two different paths. It is also
possible to minimize criterionCP11, which is larger thanCP13.

5 Results and validation on a simple example

Since many criteria can be found, it is very difficult to show how efficient the method
is. This is the reason for which it was decided to validate thederived criteria with a
simple example.

The system shown in figure 25 is considered, in which a cavity is bounded by rigid
walls and a single plate.

[Figure 25 about here.]

For such a system, there are only two criteria, which can be expressed as follows:

CD =
Φk

f

−ω2mf + kf

(

ω2Mk
FE +Mk

FSΦ̃sΨs

)

(45)

CP =
Φk

f

−ω2mf + kf

(

−Mk
FSΦ̃s

)

(46)

whereΦf is the matrix of the acoustic modes,Φs is the matrix of the modes of the
plate, andΨs is the matrix of the static modes:

uf = Φfqf (47)

us = Φsqs +ΨsuE (48)

In order to validate our methodology for the determination of suitable criteria, it is
proposed to compute the latter for two values of plate thickness. Since plate thickness
does not change criterionCD, which is directly related to the excitation pointuE , only
one criterion remains. It is then possible to study the variation of this criterion and the
pressure level within the cavity.

Figures 26, 27 and 28 show how the criteria change as a function of the pressure
level within the cavity for two different thickness values.The pressure level has been
normalized with respect to its value for the initial thickness.

[Figure 26 about here.]

[Figure 27 about here.]

[Figure 28 about here.]

These figures show that criterionCP decreases as a function of pressure level.
CriterionCD remains constant because the plate thickness is not taken into account
in this criterion. This simple example shows that the criteria proposed in the previous
sections can be very useful.
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6 Conclusion

In the present paper several criteria, corresponding to different vibrational propagation
paths, and based on modal analysis of a coupled system, have been proposed. These
illustrate the relative influence of each mode on noise propagation, and show which part
of the system has the strongest influence on the generation ofnoise inside the structure.

Initially, a complex system was considered in order to provide an overview of the
various criteria which may exist. A simple example was then introduced in order to
validate the efficiency of the method. Although the criteriawere found by assuming a
specific structure, it is possible to apply the same method toany vibroacoustic system.

The goal of this paper was to derive criteria which can allow avibroacoustic system
to be optimized. The optimization of such a system lies beyond the scope of the present
paper.
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[5] S. Besset, L. Jézéquel, Optimization of structural dynamic behaviour based on
effective modal parameters, International journal for numerical methods in engi-
neering Accepted on August 27, 2006.

[6] R. Ohayon, Reduced models for fluid-structure interaction problems, Interna-
tional Journal for Numerical Methods in Engineering 60 (2003) 139–152.

[7] R. Ohayon, Reduced symetric models for modal analysis ofinternal structural-
acoustic and hydroelastic-sloshing systems, Computer Methods in Applied Me-
chanics and Engineering 190 (2001) 3009–3019.

[8] G. E. Sandberg, P.-A. Hansson, M. Gustavsson, Domain decomposition in acous-
tic and structure-acoustic analysis, Computer Methods in Applied Mechanics and
Engineering 190 (2001) 2979–2988.

[9] R. R. Craig, M. C. C. Bampton, Coupling of substructures for dynamic analysis,
AIAA Journal 6 (1968) 1313–1321.

16
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Figure 4: Values of parameterCH1 as a function off
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Figure 5: Values of parameterCH2 as a function off
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Figure 6: Values of parameterCP21 as a function off
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Figure 7: Values of parameterCP22 as a function off
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Figure 8: Values of parameterCP23 as a function off
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Figure 9: Values of parameterCP11 as a function off
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Figure 10: Values of parameterCP13 as a function off
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Figure 22: Values of parameter
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Figure 23: Values of parameter
∣

∣

∣
λG̃k

P11

∣

∣

∣
as a function ofk – 300 Hz

41



0 10 20 30 40 50
0

0.5

1

1.5

2

2.5

Mode numberk (modes of the plates)

V
al

u
e

o
ft

h
e

p
ar

am
et

er

Figure 24: Values of parameter
∣

∣

∣
λG̃k

P13

∣

∣

∣
as a function ofk – 300 Hz

42



uE

Figure 25: System used for validation
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Figure 26: Values of the criteria,f = 200Hz
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Figure 27: Values of the criteria,f = 300Hz
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Figure 28: Values of the criteria,f = 400Hz
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