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Abstract

This paper proposes modal criteria to represent variousersmurces within a
complex structure, such as an automobile. By optimizingmaptex system using
criteria linked to modal mass and stiffness matrices, difiemodes of noise prop-
agation can be investigated separately. Several critegidhais suggested, each
related to a vibrational propagation path. Since the sys$estudied using modal
analysis, criteria can be found based on modes associatiedheistructure’s hol-
low parts, plates, and cavities. These different critereamalyzed based on the
assumption of a complex vibroacoustic system. It is showhtil analyzing such
criteria, one can determine which part of the structure s¢ede optimized. The
optimization of such a system could constitute a reseangic ia its own right,
and is beyond the scope of the present paper.

keywords: Modal analysis; Optimization; Vibroacoustiupbng

1 Introduction

The use of a modal approach to describe a structure in ordgstimize its dynamic
behaviour has multiple advantages. Once modal matrices l@@n computed, opti-
mization criteria can readily be defined. The dynamic amalitm phenomena and
dynamic coupling between substructures can then be desaniing just a small num-
ber of degrees of freedom. Furthermore, it is possible totle criteria to the modal
parameters used in the systemic procedure. The criteroped in this paper are de-
rived from those developed by P. Lemefié [1], using Craig &ip¢on’s method to
describe the dynamic behaviour of a structure.

The modal analysis technique described here is based omlthible modal syn-
thesis” proposed by Jézéquel [2, 3]. Complex structufeendnclude hollow parts
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and stiffeners, which must be analyzed very accurately taiolsatisfactory results.

In this paper, the term “hollow parts” denotes the formeelséad stiffeners making

up the skeleton of a structure. In complex structures suckuaamobiles, stiffeners

and formed steel parts which make up the skeleton of thetsteiare those most re-
sponsible for the behaviour of the structure as a whole. HByan these elements, a
method will be used, which was proposedih[[4, 5]. We will sttlte acoustic parts of

the coupled system using acoustic modes based on a “tripdalnsgnthesis method”.

This method resorts to a coupling formulation which has h@emiously investigated

[6.[7]. An example of modal analysis of a coupled system caioibied in [8].

Modal analysis of the structure will lead to modal mass aiifthess matrices,
which are then used to obtain effective modal parameterghwh turn lead to criteria
allowing the structure to be optimized. These criteria dépend on the pressure values
at points located in the acoustic parts of the system — iresicier for example — as a
function of an excitation point located on a hollow part o ttructure — e.g. a spar
near the car engine. The criteria proposed here allow vardrational propagation
paths to be considered. It is thus possible to investigatarately the different noise
sources within the structure.

The method proposed in this paper may be used for any vibuséicesystem. In
fact, the ultimate goal of this approach is to define modaédd which allow the vi-
broacoustic system to be optimized. These are related toatigling terms between
the systems different substructures, and are expressethetiohs of the terms con-
tained in the modal matrices. Thus, the number of criterigedds on the number of
substructures within the vibroacoustic system. Our meiboéscribed for the case of
a specific system, but can readily be adapted to other vibusdic systems.

The structure considered in this paper is a complex one, deatpof acoustic
cavities, hollow parts and plates. The geometry of thiscstme is similar to that of a
car. Two cavities will be considered. Thus, the method pseddere can be used to
study the different paths through which vibrations propgagad generate noise within
the car. Paths can exist through the hollow parts of the tstrecthrough the plates
which bound the cavity, and through plates which partitioa two cavities. Such a
structure has already been usedacuoin [5].

2 Analysis of the vibroacoustic system

The structure considered here is a complex structure ilmutbllow parts and plates.
It is built using formed steels which make up its skeletorska®wn in figuré1l. Plates
are fixed to this skeleton, and form two cavities inside tlmecstre, as shown. The
structure’s geometry is similar to that of a car, in order how that the proposed
methods can be applied in an industrial context.

[Figure 1 about here.]

2.1 The vibroacoustic problem

Figure[d shows the geometry of the vibroacoustic system ucalesideration. The
approach used in this paper to study the vibroacoustic hedag a(u, p) formulation:
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where (), is the structural part{2; is the acoustic part, and is the boundary
between the structural and acoustic pa¥isis that part of the structure which is sub-
mitted to boundary condition®\ is an operator that allows these boundary conditions
to be applied. The notations used in the equations desgribi& system are given
below:

e 0;; is the stress tensor of the structure;

e w is the angular frequency of the system;

ps IS the density of the structure;

f represents the forces applied to the structure;

u is the displacement of the structure;

p is the pressure field of the acoustic part.

The dissipation model (modal damping) will be introducestiyh the modal syn-
thesis of the system in sectibn P.3. The next section adesebe discretization of
the equations when several structural parts (plates amoMhphrts) and two acoustic
cavities are assumed. This model represents a car whicteis tixfour points corre-
sponding to the wheels; therefore, no rigid body modes a@hird in the case studied
here. Moreover, no internal acoustic source is assumed podsent.

2.2 Finite element analysis of the system

The behaviour of the vibroacoustic system studied in thjsepaan be approximated
by the finite element model according to the following edprilim motion equation:
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The behaviour of the plates, the hollow parts and the cavgiencluded within this
equation. Degrees of freedom denoteg correspond to the hollow parts; degrees of
freedom denotedi p, correspond to the plates — with the exclusion of plates dshot
P in figure[1 —; degrees of freedom denotegd, correspond to the plate denotBdn
figure[d. Finally, degrees of freedom denoted — respectivelyp ., — correspond to
the pressure in the first cavity denotéd in figure[d — respectively the second cavity
denotedF; in figure[l.

Thus, equatiofil7 is a classical interior non-symetric \éloaustic equation. The
degrees of freedom are displacements for the structuralgrat pressure for the acous-
tic part.

The vibroacoustic coupling appears in matiigedefined as follows:

T

K K
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Cr = = Krrn Krr (8)
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2.3 Modal analysis of the system

The acoustic part of the system is analyzed with a modal sgigimethod using cavity
modes. Hollow parts of the structure are analyzed using aetredcbady proposed in
[4]. These elements comprise the skeleton of the structinés modeling leads to

modal matrices which can be assembled in the same way asdiaiteents matrices.
The main feature of this approach is that it produces matsdgch have only general-
ized degrees of freedom. Nodal degrees of freedom may reimasnder to assemble
the hollow parts to other structures, but boundaries betvilee substructures of the
hollow part have only generalized degrees of freedom. Abbeaf these substructures
is made possible by the way in which the modes, used for theahwthlysis of the

substructures, are chosen. Plates are assembled to ttieistisiskeleton according to
the nodal degrees of freedom remaining from the modal aisadyshe hollow parts in

the structure. The complete structure is then analyzedditepto the “double modal

synthesis” method proposed by Jézéquel[2, 3]. This nektlses “branch modes” to
describe the behaviour of the boundaries between suhstesct In this paper, these



“branch modes” will be used to describe the behaviour of thecture’s skeleton. The
use of generalized degrees of freedom allows the size ofrttegm to be reduced.

The degrees of freedom of a hollow part are comprised of géimed degrees
of freedom resulting from the modal analysis of the substmes which make up
the skeleton, denoteqy., generalized degrees of freedom resulting from the dou-
ble modal synthesis, which are denofggd,, and excitation points, which are nodal

ug

degrees of freedom, denotag. We denoteyy = diec

qHb
Generalized degrees of freedom are linked to nodal degféeoom through the

following equations:

uge = Ppcame + Yucumy + Pheugp
umy = Py

up, = ®piqp1 + ¥piumy + Ypicugp )
up, = Ppoqps + Ypoupgy + Ypoeug

Pr, = Priqr1

Pr, = Pr2qr

Matrices® -y and® i, are the modal matrices of the acoustic modes of the system.

Matrices® p; and® po are the modal matrices of the plates’ fixed modése,
andW p,, are the matrices of the plates’ static modes, as in the cabe ofiethod used
by Craig & Bampton|[[9].

Matrices® ;. and¥ . are modal matrices resulting from the analysis of the hol-
low part described i [4] and[5]. Although this approachtte study of hollow parts
has already been described in former papers, the readefivdlia summary in the
following.

Matrix @ 57, is the matrix of the “branch” modes of the structurg]2, 3].

Excitation points, denotedy in the following, remain nodal degrees of freedom.
Modal synthesis of the structure is not applied to thesetpoin

The modal synthesis method used to study the hollow parnt$ies “section modes”:
The hollow part as a whole is split into several elementsgsubtures), as shown in
figured2 an@13. An element of a hollow part is studied with eespo the modes of
the “left” and “right” sections. Elements are then assembl&his approach is used
because it would be too costly, in terms of computing powesttidy the structure’s
hollow parts using a conventional modal synthesis method.

[Figure 2 about here.]
[Figure 3 about here.]

The equation of motion thus becomes:
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where matrices in lowercase characters are diagonal reatriét this step of the
modal synthesis, modal damping is introduced. Althoughvbives a small degree
of approximation, the damping matrix is assumed to be diagoihis property is
called Basile’s hypothesis is the french terminology. Tds no impact on the results
provided dissipation does not need to be analysed.

3 Optimization criteria used in the paper

As explained in the introduction, although the methodoldggcribed here can be
adapted to any generalised vibroacoustic system, a spexkdimple has been chosen
to illustrate our methodology for deriving the optimizaticriteria (see figurigl1).

3.1 Analysis of the motion equation

The aim of this section is to express the pressusgin the second cavity as a function

of the structural displacements. This expression wilhalloe various vibrational paths

to be discriminated from one another. The problem must haiedfuusing a systemic

approach. Certain criteria related to the different vilorzdl paths will thus be defined.
Using the last line of equatidn110, the following express#oabtained:
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The quantities with a “tilde” are left pseudo-inverse nags. It is possible to
define several pseudo-inverse matrices. In the case oflairgystems, pseudo-inverse
matrices allow solutions to be fourid[10]. In this paper, et are not square and the
solution obtained is a least squares approximation. Th&orefor this is that modal
synthesis does not involve fewer modes than the number Gligdiydegrees of freedom
of the system.

EquatiorfIB provides an approximation to the pressure figldwithin the second
cavity as a function of structural displacements. A supsitipm of the substructural
modes clearly appears in the SUE ().

k

3.2 Modal parameters

Equation 1B allows modal parameters to be defined, which eamsbd to optimize
the coupled system. These modal parameters correspondhméhe different vi-



brational paths: a direct path, a path through the hollovispatrthe structure, a path
through the plates bounding the cavity, and a path througliplite located between
the two cavities.

3.2.1 Direct path

The direct path is directly obtained through equaftioh 18ottesponds to an excitation
point on a plate located next to cavify. It is recalled that the excitations considered
here are displacement excitations.

The modal parameter corresponding to this direct path isteeit 5 (w):

2
Grw) =Y (&) —— G} a4)
C1- () +2iaz

where:

—k —k ~ —k ~
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with the notationg’., = 2¢x/k%,mk, andw;, = 4/ :1222

3.2.2 Path through the hollow parts

The path through the hollow parts is given by componeip of equation 1B.
q%, is now expressed according to the third line of equdfidn 10:

—k — —k
- w? (MHbchHc + mipdfy, + Mypiapr + MHbP2qP2)

. —k —k —k
+ iwehdf, + Kindin + Kiprar + Kpppodre = £, (16)

The modal parameter corresponding to the path through thehparts is denoted
Gy (w). Using equations16 aldll 1, it is possible to write:
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3.2.3 Path through the plates

The path through the plates is given by component of equatioi 1B.
up; is then written as a function af g according to the fourth line of equatibnl10:
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The modal parameter corresponding to the path through éttegak denote€: p; (w).
Using equations 20 amd1l1, it is possible to write:
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3.2.4 Path through the first cavity

The path through the first cavity is related to the plate faigrthe boundary between

the two cavities.
The modal parameter corresponding to this path can be witteording to the
fifth and sixth lines of equatidn10:
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The modal parameter corresponding to the path through éttegak denote@ ps (w).
Using equations 27, 28 ahdl11, it is possible to write:
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3.3 Modal criteria

k
kal
mpy

The modal parameters defined in the previous sections leaitéoia that are defined
as follows:

w 2
(=)
1 (w—) + 2,

2
W
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1- () + 2

Wik
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Within the framework of an optimization problem, it is pddsito use these cri-
teria, for example, in order to optimize a structure’s getsypneHowever, the criteria
we propose do not allow derivation with respect to any onéhefgarameters of the
structure (geometry of the hollow parts, thickness of thetqd. ..), although many
optimization methods require derivating these criteriar that reason other criteria,
related to the original ones, are defined in the next section.

3.4 Derivable criteria

As mentioned below, criteri@’, (wheren can beF, H1, H2, P11, P12, P13, P14,
P21, P22 or P23) cannot be derived with respect to any parameter, althohigh t

11



would be useful in most optimization problems. To remedsy fioblem, we introduce
criteriaC,,, defined as follows:

4

N 1 -
G, = Zlogzk: ‘)\(w,k) Gk (39)

where) (w) is a coefficient depending an This is the case, for example, 6%,

M) = — )

It can be shown that these criteria are very similar to thedines, and have almost
the same minima and maxima. To prove this, let us considdotlmsving function f,:

fri oz — Yar(@)P + az(x)P + - + an(x)? (40)

wherea,(z) >0 Vg < nVz. Itis possible to write:

lim fy(x) = maxa1(z),a2(x),...,an(x)] (41)

p—+oo

Specifically, since,(z) >0 Vg < nVa:

(/(Inax [a1(x), az(x), ..., an(2)]))’ < fo(z) < {/n (max [a1 (), az(z), . .., an(x)])?

YpeN. (42)
Equatiori4R leads to:
max[a1(2), az(2) . ., an(@)] < fyl(x) < Ymmaxar(2), az(w), .., an(2)

VpeN. (43)
Sincepggloo {/n = 1, itcan be deduced tthiIPOO fp(x) = max[a1(x),az(x),...,an(z)].

Mathematically, this can be written as:

Ve>03n>0 tqe >n=|fp(x) — max|ai(x),az(x),...,an(z)]| <€ (44)

Thus, ifp is large enough, criteri@,, have nearly the same extrema@s

4 Optimizing a structure using the modal criteria

4.1 Analysis of the criteria

In this section, the criteria developed in the previousisastare analyzed. In order to
simplify the analysis, only one excitation point placed olmoiow part bounding the
first cavity 7 is considered.

12



Values of criteriaC,, may change with the excitation frequency because of coeffi-
cient) (w). For example, figurdd @] Bl [6,[4, 9 dnd 10 show the values of samagne-
ters as a function of the excitation frequentyit can be seen that the strength of each
criterion depends on the excitation frequency. For exanidkeinteresting to note that
criterion C' P22 increases more strongly than the others with frequehcyherefore,
the vibrational path through plaf@ becomes very significant at higher frequencies.

Notice that criteriaC’ P13 and C H2 show peaks which correspond to the global
modes of the structure, because the modal matrices of thetste’s hollow parts are
involved in these criteria.

[Figure 4 about here.]
[Figure 5 about here.]
[Figure 6 about here.]
[Figure 7 about here.]
[Figure 8 about here.]
[Figure 9 about here.]

[Figure 10 about here.]

4.2 Results for the modal parameters

In this section, the modal paramet€is;,, G%,,, Gh,,, Gh,y, Ghos, GE 1, Gh
andG%,, are analyzed. This will allow each of the modes responsibléhie values of
criteriaC,, to be defined. The modal parameters must be weighted withrévéopisly
defined coefficientsa (w), in order to take the excitation frequency into account. Two
cases of excitation are presented, at 50 Hz and 300 Hz.

4.2.1 Path through the first cavity

Considering the vibrational path through the first cavitg #me plateP, three modal
parameters need to be analyzed. Figlré$ 111, 12and 13 shoalthes of modal pa-
rameterGE, , Gk, andGh%,, as a function of the mode numbierfor an excitation
frequency of 50 Hz. FigurésTi4,115 dnd 16 show the same pagesifet an excitation
frequency of 300 Hz.

[Figure 11 about here.]
[Figure 12 about here.]
[Figure 13 about here.]
[Figure 14 about here.]

[Figure 15 about here.]
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[Figure 16 about here.]

Figure[12 shows that only one mode of the plRtes responsible for the transmis-
sion of vibrations between the first and second cavities. cFierion associated with
this figure isC'p22, and is related to the influence of pressure within the firgitg@n
plate. Given that the action of an acoustic fluid on a structure tsveoy significant
when compared with that of a structure on a fluid, the paramvataes given in figure
[I2 are very small. For an influence to be exerted on the patlugiirthe first cavity,
which is the object of this section, one could, for exampastrict the influence of the
mode shown in figure12.

4.2.2 Path through the hollow parts

For the vibrational path through the hollow parts, two moplalameters have to be
analyzed. Figurds17 ahd]18 show the values of modal paresxgfg, andG*,, as a
function of the mode numbér for an excitation frequency of 50 Hz. Figuilles 17 and
[I8 show the same parameters for an excitation frequency®HZ0

[Figure 17 about here.]
[Figure 18 about here.]
[Figure 19 about here.]
[Figure 20 about here.]

It can be seen in figur€sIl7 dnd 18 that many of the modes argstrbe values of
these parameters increase with increasing excitationémey. However, the values for
criterionC'yo are much smaller than the values for criter@g; . It is then possible to
choose to optimize the structure usifigr;, which seems to have a stronger influence
on the transmission of vibrations. Although the influencecigferion CH2 appears
to be smaller, its use in the optimization of the structufeves the vibrational path
through the plates to be studied, as described in the faligwsection.

4.2.3 Path through the hollow parts and the plates

For the vibrational path through the hollow parts and thégslahree modal parameters
should be analyzed. Figuies 21 &ndl 22 show the values of madaheter&%, | and
Gk, as a function of mode numbérfor an excitation frequency of 50 Hz. It should
be noted thaG%,, = G%,, as plotted in figur€18. Figur€sl23 and 24 show the
values of modal paramete@?,,, andG%,, as a function of the mode numbieffor

an excitation frequency of 300 Hz.

[Figure 21 about here.]
[Figure 22 about here.]

[Figure 23 about here.]
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[Figure 24 about here.]

As shown if figure§ 21 and 22 many modes are strong. Just agiprévious
section, it is then possible to optimize the structure usirtgrionCpi4 = C’}ﬂ, S0
as to minimize the transmission of vibrations through twifedént paths. It is also
possible to minimize criteriof’p;1, which is larger tharp1 .

5 Results and validation on a simple example

Since many criteria can be found, it is very difficult to shoswhefficient the method
is. This is the reason for which it was decided to validatedbeved criteria with a
simple example.

The system shown in figuke 5 is considered, in which a casibounded by rigid
walls and a single plate.

[Figure 25 about here.]
For such a system, there are only two criteria, which can pesssed as follows:

g _
_ f 2 1k k
Cp = ik (w*Mb g + Mys®,w,) (45)
Cp = 7@; ME B (46)
P —w2mf+k:f (_ Fs S)

where® is the matrix of the acoustic modeB, is the matrix of the modes of the
plate, and¥ , is the matrix of the static modes:

uy = ®rqy (47)
us = i)sqs + \IlsuE (48)

In order to validate our methodology for the determinatibawtable criteria, it is
proposed to compute the latter for two values of plate théskn Since plate thickness
does not change criteridrip, which is directly related to the excitation poing;, only
one criterion remains. It is then possible to study the vameof this criterion and the
pressure level within the cavity.

Figured2B[27 and 28 show how the criteria change as a fumofithe pressure
level within the cavity for two different thickness valueghe pressure level has been
normalized with respect to its value for the initial thiclese

[Figure 26 about here.]
[Figure 27 about here.]
[Figure 28 about here.]

These figures show that criteriafi> decreases as a function of pressure level.
Criterion C'p remains constant because the plate thickness is not tat@adoount
in this criterion. This simple example shows that the cidt@roposed in the previous
sections can be very useful.
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6 Conclusion

In the present paper several criteria, corresponding ferdifit vibrational propagation
paths, and based on modal analysis of a coupled system, bavepboposed. These
illustrate the relative influence of each mode on noise pyapan, and show which part
of the system has the strongest influence on the generatimisd inside the structure.

Initially, a complex system was considered in order to ptevan overview of the
various criteria which may exist. A simple example was th&noduced in order to
validate the efficiency of the method. Although the criteviere found by assuming a
specific structure, it is possible to apply the same methaahyovibroacoustic system.

The goal of this paper was to derive criteria which can allaxibaoacoustic system
to be optimized. The optimization of such a system lies bdyba scope of the present
paper.
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Figure 2: The hollow part to analyze
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Figure 3: An element of the hollow part
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Figure 16: Values of paramet%hé’fm‘ as a function of: — 300 Hz

34



x 10*

Value of the parameter
= N
ol (&)} N al

©
2]
T
|

0 10 20 30 40 50
Mode numbefk (modes of the second cavity)
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Figure 20: Values of paramet#hé’fn‘ as a function of — 300 Hz
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Figure 21: Values of paralmet#k(}’;11 as a function of; — 50 Hz

39



©
\l

o
o))

o
~

Value of the parameter
o o
w Ul

o
(V)

0.1

| | "~ -
10 20 30 40 50
Mode numbelk (modes of the plates)

Figure 22: Values of paramet#hé’;lg‘ as a function of; — 50 Hz

40



= = =
N N o
T T T
L L L

Value of the parameter
[
o

0 10 20 30 40 50
Mode numbelk (modes of the second cavity)
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Figure 25: System used for validation
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Figure 26: Values of the criterig, = 200H z
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Figure 27: Values of the criterig, = 300H z
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