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Abstract

Optimization of complex structures often leads to high calculation costs. In-
deed, the structure has to be frequently reanalysed in orderto update the opti-
mization criteriums. We propose an optimization method based on effective modal
parameters. These parameters are close to the modal matrices used for the modal
analysis of a structure. Thus, once the structure has been analysed, it becomes
very easy to calculate optimization criteria. First, we will explain the modal anal-
ysis that we will use in this paper. A modal model will be used to analyse the
hollow parts of the structure. The modal analysis of the whole structure will be
performed using substructuring and “double modal synthesis” proposed by Jeze-
quel. Secondly, we will explainthe how to obtain effective modal parameters and
their use for optimization. Finally, we will show the efficiency of these parameters
through the optimization of a complex structure, using two types of optimization
methods.

keywords: Modal analysis; Optimization; Modal criteria

1 Introduction

Using matrices resulting from the modal analysis of a structure in order to optimize
the dynamic behaviour of this structure has multiple advantages. Once the structure
has been analyzed, optimization criteria become very easy to compute. Secondly, it is
possible to link the optimization of the structure and the modal matrices resulting from
the modal analysis associated with the resonance phenomena. Thus, it is possible to
identify the causes of the problems to solve. The criteria wewill use in this paper have
been developed by P. Lemerle [1], using the Craig & Bampton method for structure
analysis. The doctoral dissertation of P. Lemerle is derivated in the present paper.
Similar optimization methods have already been used by Suweca [2] in the case of
structural designs with damping constraint limitations.
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To optimize the structure, we will modify properties of the hollow parts of the
structure, but other properties could be changed. The example we propose is a com-
plex structure, including plates and stiffeners, that we will optimize through two types
of methods. First, a global method, using a genetic algorithm. Secondly, a local op-
timization will be processed, using a method based on the gradient method and using
Kühn & Tucker conditions.

2 Effective modal parameters

In order to compute the effective modal parameters, we will first explain the modal
analysis of the structure used in this study.

2.1 Modal analysis of a structure

The structure used in this study is a complex structure including hollow parts and plates.
It is made of formed steel constituting its skeleton, as shown in figure 1. Plates are
attached to this skeleton. The geometry of the structure is similar to the geometry of a
car, in order to demonstrate that the methods we propose can be used in an industrial
context.

[Figure 1 about here.]

Hollow parts of the structure – which could be stiffeners forexample – are ana-
lyzed using a model we proposed in [3]. These elements constitute the skeleton of the
structure. This modelization leads to modal matrices that can be assembled like finite
elements matrices. The main characteristic of this method is that it produces matrices
including only generalized degrees of freedom. There may remain nodal degrees of
freedom in order to assemble the hollow parts with other structures, but boundaries
between the elements constituting the hollow part only comprise generalized degrees
of freedom. It is possible to assemble these elements because of the choice of modes
used for the modal analysis of the elements. We now summarizethe method used in
[3]. Figures 2 and 3 show the geometry of the hollow parts we consider. The hollow
part shown in figure 2 is split into several elements shown in figure 3.

[Figure 2 about here.]

[Figure 3 about here.]

When the modal analysis of one element is complete, two nodaldegrees of freedom
will remain, in order to couple the hollow part with another structure. The behavior of
an element can be described with the equation of motion:

(

−ω2

[

MLL MLR

MRL MRR

]

+

[

KLL KLR

KRL KRR

]){

uL

uR

}

=

{

fL
fR

}

(1)

where mass and stiffness matricesM andK are split into left and right degrees of
freedomL andR. Vectorsu andf are split the same way.
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uL anduR are then split into degrees of freedom that will be expressedas a function
of generalized degrees of freedomug

L andug
R, and the othersuk

L anduk
R – marked

“retained” on figure 3:

uL =

{

uk
L

u
g
L

}

, uR =

{

uk
R

u
g
R

}

(2)

Let φR be the matrix of the modes of the element when one node of the right side
is fixed, as shown in figure 4.

[Figure 4 about here.]

ΦR is the modal matrix corresponding to right nodes of the element – it is a part
of matrixφR. According to the Craig & Bampton theory [4], displacementsof these
right nodes can be expressed as follows:

u
g
R = ΦRqR +ΨRu

k
R (3)

whereΨR is the matrix of the static modes, corresponding to the rigidbody modes
of the right side of the element.

Analogous matrices are defined for the left side of the element. Let φL be the
matrix of the modes of the element when one node of the left side is fixed.ΦL is the
modal matrix corresponding to left nodes of the element. Displacements of these left
nodes can be expressed as follows:

u
g
L = ΦLqL +ΨLu

k
L (4)

Thus, displacementsu can be expressed as a function of generalized degrees of
freedomqL andqR:















uk
L

u
g
L

uk
R

u
g
R















=









I 0 0 0

ΨL ΦL 0 0

0 0 I 0

0 0 ΨR ΦR























uk
L

qL

uk
R

qR















(5)

Notice that as left degrees of freedom do not depend on right modes, and right
degrees of freedom do not depend on left modes, assembling modal elements will be
possible.

In order to assemble two elements, let write the relations between the nodal degrees
of freedom of the left and right side of two elements. Degreesof freedom of the right
side of the first element, calleduk

R1 andug
R1

, must match with degrees of freedom of
the left side of the second element, calleduk

L2 andug
L2

:
{

uk
R1 = uk

L2

u
g
R1

= u
g
L2

(6)

Equation 6 can be written for elementsn andn+ 1:

{

uk
Rn

= uk
Ln+1

u
g
Rn

= u
g
Ln+1

(7)
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Equations 6 leads to the expression of degrees of freedom of the left part of the
second element as a function of degrees of freedom of the firstelement:

{

uk
L2 = uk

R1

qL2 = Φ̃L

(

ΦRqR1 + (ΨR −ΨL)u
k
R1

) (8)

which can be written for elementsn andn+ 1:

{

uk
Ln+1

= uk
Rn

qLn+1
= Φ̃L

(

ΦRqRn
+ (ΨR −ΨL)u

k
Rn

) (9)

whereΦ̃L is a pseudo-inverse matrix ofΦL:

Φ̃L =
(

ΦT
LΦL

)

−1

ΦT
L (10)

Equations 8 allow the assembling ofN elements, using transfer matricesTn:

Ktot =

N
∑

n=1

TT
nKTn (11)

Mtot =
N
∑

n=1

TT
nMTn (12)

Plates are assembled with the skeleton of the structure through the nodal degrees
of freedom remaining from the modal analysis of the hollow parts of the structure.
In this paper, only one plate will be used, located on the top of the structure. The
entire structure is then analyzed using the “double modal synthesis” method proposed
by Jezequel [5, 6]. This method uses “branch modes” to describe the behaviour of the
boundaries between substructures. In this paper, will usedthese “branch modes” to
discribe the behaviour of the skeleton of the structure.

Thus, mass and stiffness matrices of the structure can be split into degrees of free-
dom concerning plates and degrees of freedom concerning hollow parts of the structure.
Degrees of freedom concerning hollow parts include generalized degrees of freedom
resulting from the modal analysis of the elements constituting the skeleton, that will
be denotedqHc, and generalized degrees of freedom resulting from the double modal

synthesis, which will be denotedqHb. We denoteqH =

{

qHc

qHb

}

. VectorqP corre-

sponds to the generalized degrees of freedom of the plates. Hence the motion equation:

(

−ω2

[

MHH MHP

MPH MPP

]

+

[

KHH KHP

KPH KPP

]){

qH

qP

}

=

{

fH
fP

}

(13)

Generalized degrees of freedom used in the motion equation 13 are linked to nodal
degrees of freedom through the following equations:







uP = ΦPqP +ΨPuHb

uHc = ΦHcqHc +ΨHcuHb

uHb = ΦHbqHb

(14)
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whereuP are the nodal displacements of the plates,uHc are the nodal displace-
ments of the hollow parts corresponding to the generalized degrees of freedomqHc,
and uHb are the nodal displacements on the boundaries, associated to the branch
modes.

Matrix ΦP is the modal matrix of the fixed modes of the plates.ΨP is the matrix
of the static modes of the plates, as in the Craig & Bampton method [4].

MatricesΦHc andΨHc are modal matrices resulting from the analysis of the hol-
low part described in [3].

Matrix ΦHb is the matrix of the “branch” modes of the structure [5, 6].

2.2 Obtaining effective modal parameters

Effective modal parameters used by P. Lemerle [1] are parameters that link degrees
of freedom that are submitted to a displacement – excited degrees of freedom – and
degrees of freedom whose displacements are to be minimized.

In order to obtain the effective modal parameters, we will use the modal analysis
method proposed in section 2.1, but we will separate the degrees of freedom that will
be excited – these degrees of freedom will remain nodal degrees of freedom.

In this paper, the excitations will concern some of the degrees of freedom we de-
noteduHb. These degrees of freedom will be calleduHe. Hence equation 15, coming
from equation 14:







uP = ΦPqP +ΨPuHb +ΨPeuHe

uHc = ΦHcqHc +ΨHcuHb +ΨHeuHe

uHb = ΦHbqHb

(15)

Thanks to the orthogonal properties of the modes used in the modal analysis, equa-
tion 13 can be written as follows, considering the damping matrix which we assume
to be diagonal. Indeed, we use the modal damping assumption (also called Basile’s
hypothesis in French terminology), hence the following equation:









−ω2









MEE MEHc MEHb MEP

MHcE MHcHc MHcHb MHcP

MHbE MHbHc mHbk MHbP

MPE MPHc MPHb mPk









+ iω









0 0 0 0

0 cHck 0 0

0 0 cHbk 0

0 0 0 cPk









+









KEE KEHc KEHb 0

KHcE KHcHc KHcHb 0

KHbE KHbHc kHbk 0

0 0 0 kPk































uHe

qHc

qHb

qP















=















fE
fHc

fHb

fP















(16)

where matrices[mHbk], [mPk], [kHbk], [kPk], [cHbk], [cPk] and[cHck] are diago-
nal matrices.

The analysis of the role played by the structural damping is not the purpose of the
paper, that is why we chose a very simple way to take it into account.

To obtain the effective modal parameters,uP must be expressed as a function of
fP anduHe. Let us express one of the last lines of equation 16:
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− ω2
(

Mk
PEuHe +Mk

PHcqHc +Mk
PHbqHb +mPkq

k
P

)

+ iωcPkq
k
P + kPkq

k
P = f

k

P (17)

Mk
PE , Mk

PHc, M
k
PHb are thekth lines of matricesMPE , MPHc, MPHb. fP can

be expressed in function offP as follow:

fP = ΦT
P fP (18)

Equation 17 becomes:

qk
P =

ΦkT
P fP + ω2

(

Mk
PEuHe +Mk

PHcqHc +Mk
PHbqHb

)

−ω2mPk + iωcPk + kPk

(19)

whereΦk
P is thekth column ofΦP . Equation 19 becomes:

uP =
∑

k

Φk
PqPk +ΨPuHb +ΨPeuHe

=
∑

k

(

Φk
PΦ

kT
P

−ω2mPk + iωcPk + kPk

)

fP

+





∑

k





ω2Φk
P

(

Mk
PE − M̃k

PHcΨHe

)

−ω2mPk + iωcPk + kPk



+ΨPe



uHe

+





∑

k





ω2Φk
P

(

M̃k
PHb − M̃k

PHcΨHc

)

−ω2mPk + iωcPk + kPk



+ΨP



uHb

+
∑

k

(

−ω2Φk
PM̃

k
PHc

−ω2mPk + iωcPk + kPk

)

uHc (20)

whereMk
PHb = M̃k

PHbΦHb andMk
PHc = M̃k

PHcΦHc. Matrix Φ̃Hc is a pseudo-
inverse matrix ofΦHc.

Two effective modal parameters can be deduced from equation20. First, the dy-
namic flexibility matrixG is given by:

G(ω) =
∑

k

(

Φk
PΦ

kT
P

−ω2mPk + iωcPk + kPk

)

(21)

It corresponds to the relation between a force applied on a plate and the displace-
ments it causes.

Secondly, ignoring the static terms corresponding to the boundaries, the transmis-
sibility matrixT is given by:
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T(ω) =
∑

k





ω2Φk
P

(

Mk
PE − M̃k

PHcΨHe

)

−ω2mPk + iωcPk + kPk



 (22)

It is possible to take the static terms into account, but we are more interested in
the modal sum

∑

k

(), wich allows to analyze the contribution of each mode of the

structure, hence the choice of the transmissibility matrixof equation 22.
This equation is linked to the relation between the excitation and the displacements

it causes on the plate. Note that the excitation is a displacement excitation. They can
be rewritten using effective parametersG̃ andT̃ as follows:

G(ω) =
∑

k

1

1−
(

ω
ωk

)2

+ 2iξk
ω
ωk

G̃k (23)

T(ω) =
∑

k

(

ω
ωk

)2

1−
(

ω
ωk

)2

+ 2iξk
ω
ωk

T̃k (24)

where

G̃k =
Φk

PΦ
kT
P

ω2
kmPk

(25)

T̃k =
Φk

P

(

Mk
PE − M̃k

PHcΨHe

)

mPk

(26)

with the notationscPk = 2ξk
√
kPkmPk andωk =

√

kPk

mPk
. MatricesG̃k andT̃k

are called effective modal parameters.

3 Optimization based on effective modal parameters

3.1 Criteria used for optimization

In this section, we will deduce criteria from the flexibilityand transmissibility matrices
proposed in section 2.2. The sums

∑

k

() that appear in these matrices correspond to a

superposition of modes. Thus, optimization criteria can bewritten as follow:

CG = max
k

∣

∣

∣

∣

∣

Φk
PΦ

kT
P

ω2
kmPk

∣

∣

∣

∣

∣

(27)

CT = max
k

∣

∣

∣

∣

∣

∣

Φk
P

(

Mk
PE − M̃k

PHcΨHe

)

mPk

∣

∣

∣

∣

∣

∣

(28)
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where the norm|x| is the maximal component of matrixx. Considering these
criteria, it is possible to optimize the structure. Moreover, obtaining the valuekmax

allows us to understand which mode is responsible for the value of the criteria.

3.2 Methods used for optimization

We will show examples using the criteria we propose through atwo level strategy for
optimization. First, a genetic algorithm will be used. Secondly, a local optimization
will be processed in order to obtain more precise results.

3.2.1 Genetic optimization

Genetic optimization is often used in the case of multi-objective optimization prob-
lems. The aim of this section is to generate a Pareto front in order to obtain various
optimized solutions for the optimization problem. Overviews of multi-objective opti-
mization genetic algorithms can be found in [7, 8, 9]. The genetic algorithm that will
be used in this section is quite simple. Letαi be thep parameters to optimize.A1 is a
first matrix ofN sets of parameters:

A1 =















α1
1 α1

2 · · · α1
p−1 α1

p

α2
1 α2

2 · · · α2
p−1 α2

p

...
...

. . .
...

...
αN−1
1 αN−1

2 · · · αN−1
p−1 αN−1

p

αN
1 αN

2 · · · αN
p−1 αN

p















(29)

The lines of matrixA1 are theN sets of parameters chosen for the first iteration
of the algorithm. The values of the criteria we propose are computed using these sets
of parameters. The mass of the structure can also be a third criterion, for the structure
mustn’t become too heavy. A set ofαi is then selected if no other set gives better
results on both criteria – and the mass. The other sets ofαi are combined in order to
create another matrixA2 of N sets of parameters that will include the selected sets.
Figure 5 sums up the algorithm used for this optimization.

[Figure 5 about here.]

Once the optimal sets ofαi have been found, the results can be plotted on a pareto
diagram, which will be done bellow. Various “optimal solutions” are found, and the
local optimization can be made from one of these “optimal solutions”.

3.2.2 Local optimization

The genetic algorithm proposed in section 3.2.1 gives various results, but the best value
for eachαi is not precisely determined. In order to obtain more accurate results, we
propose a local method.

Three criteria are to be considered for the optimization.CG andCT have been
defined in section 2.2. The third criterion will be the mass ofthe structure, denoted
CM .
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The optimization problem can then be written:

MinimizeCM (α) assuming

{

C̃G(α) ≤ 0

C̃T (α) ≤ 0
(30)

whereα = [α1, α2, . . . , αp]. C̃G andC̃T are directly linked withCG andCT . The
method used in this paper requires that the criteria be derivated, which is not possible
with CG andCT . Such criteria are defined as follow:

C̃G =
1

4
log
∑

k

(

Φk
PΦ

kT
P

−ω2
kmPk

)4

− cg (31)

C̃T =
1

4
log
∑

k





Φk
P

(

Mk
PE − M̃k

PHcΨHe

)

mPk





4

− ct (32)

wherecg andct are the objectives of the criteria.
C̃G andC̃T have almost the same minima and extrema asCG andCT . To prove

this, let us consider the functionfp as follows:

fp : x −→ p
√

a1(x)p + a2(x)p + · · ·+ an(x)p (33)

whereaq(x) > 0 ∀q ≤ n ∀x. It is possible to write:

lim
p→+∞

fp(x) = max [a1(x), a2(x), . . . , an(x)] (34)

Indeed:

p

√

max [a1(x), a2(x), . . . , an(x)]
p
< fp(x) <

p

√

nmax [a1(x), a2(x), . . . , an(x)]
p

∀p ∈ N. (35)

Equation 35 leads to:

max [a1(x), a2(x), . . . , an(x)] < fp(x) <
p
√
nmax [a1(x), a2(x), . . . , an(x)]

∀p ∈ N. (36)

As lim
p→+∞

p
√
n = 1, we can deducelim

p→+∞

fp(x) = max [a1(x), a2(x), . . . , an(x)].

Thus, if p is high enough,̃CG andC̃T have almost the same minima and extrema as
CG andCT . In this section, we will usẽCG andC̃T instead ofCG andCT , for these
criteria may be derivated, whereasCG andCT cannot.

The optimization method we use in this paper is based on the K¨uhn & Tucker
conditions, which can be written as follow:

9



∃ (λ1(α), λ2(α)) , λ1(α)∇C̃G(α) + λ2(α)∇C̃T (α) +∇CM (α) = 0

and

{

λ1(α) ≥ 0
λ2(α) ≥ 0

(37)

The problem we propose requires equation 37 to be written as follows:

∀i = 1, 2, 3, . . . , p λ1(α)
∂C̃G

∂αi
(α)

∂CM

∂αi
(α)

+ λ2(α)
∂C̃T

∂αi
(α)

∂CM

∂αi
(α)

= −1 (38)

In this equation, we assume
∂CM

∂αi

(α) 6= 0. A relaxation parameterγ is then

introduced. Equation 38 becomes:

αi = γαi −
[

(1− γ)

(

λ1(α)

∂C̃G

∂αi
(α)

∂CM

∂αi
(α)

+ λ2(α)

∂C̃T

∂αi
(α)

∂CM

∂αi
(α)

)]

αi (39)

This equation leads to the following recurrence equation:

αk+1

i = γαk
i −



(1− γ)



λ1(α)
∂C̃G

∂αi
(α)

∂CM

∂αi
(α)

∣

∣

∣

∣

∣

αi=αk
i

+ λ2(α)
∂C̃T

∂αi
(α)

∂CM

∂αi
(α)

∣

∣

∣

∣

∣

αi=αk
i







αk
i

(40)
This method is similar to the gradient method, but the descent direction here is:

dk = −(1− γ)Ri(α)αk
i (41)

where:

Ri(α) = 1 + λ1(α)
∂C̃G

∂αi
(α)

∂CM

∂αi
(α)

∣

∣

∣

∣

∣

αi=αk
i

+ λ2(α)
∂C̃T

∂αi
(α)

∂CM

∂αi
(α)

∣

∣

∣

∣

∣

αi=αk
i

(42)

The convergencecondition can then be written as for the gradient method.R̃ : α −→ {Ri(α)αi}
must satisfy the following equations:

∃κ > 0 ∀u, v 〈R̃(v) − R̃(u), v − u〉 ≥ κ ||v − u||2 (43)

∃ξ > 0 ∀u, v
∣

∣

∣

∣

∣

∣R̃(v)− R̃(u)
∣

∣

∣

∣

∣

∣ ≤ ξ ||v − u|| (44)

It is then possible to find a value forγ. The algorithm converges if the following
relation is satisfied:

1− 2κ

ξ2
< γ < 1 (45)
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γ must be chosen close to 1 if we want to be sure that the algorithm converges. The
smallerγ is, the faster the algorithm will converge, but it may not converge at all ifγ
is too small. . .

For each step of the algorithm,λi(α) is being computed. The method used to
obtain theseλi(α) is now explained. Let us take∆αi, such as:

{

C̃G(α1 +∆α1, α2 +∆α2, . . . , αp +∆αp) = 0

C̃T (α1 +∆α1, α2 +∆α2, . . . , αp +∆αp) = 0
(46)

This equation allows us to express∆C̃G(α1, α2, . . . , αp) as follows:

∆C̃G(α1, α2, . . . , αp) = C̃G(α1 +∆α1, α2 +∆α2, . . . , αp +∆αp)− C̃G(α1, α2, . . . , αp)

= −C̃G(α1, α2, . . . , αp)

=

p
∑

i=1

∂C̃G

∂αi

∆αi (47)

Replacing∆αi in equation 47,̃CG can be written as follows:

C̃G(α1, α2, . . . , αp) = (1− γ)

p
∑

i=1

∂C̃G

∂αi

[

1 + λ1

∂C̃G

∂αi

∂CM

∂αi

+ λ2

∂C̃T

∂αi

∂CM

∂αi

]

αk
i (48)

In order to simplify the notations, we denoteλ1 = λ1(α),λ1 = λ1(α) and
∂C̃j

∂αi

=
∂C̃j

∂αi

(α)

∣

∣

∣

∣

∣

αi=αk
i

.

The same equation can be written forC̃T , which allows us to write the following equa-
tion:

















p
∑

i=1

(

∂C̃G

∂αi

)2

∂CM

∂αi

αk
i

p
∑

i=1

∂C̃G

∂αi

∂C̃T

∂αi

∂CM

∂αi

αk
i

p
∑

i=1

∂C̃T

∂αi

∂C̃G

∂αi

∂CM

∂αi

αk
i

p
∑

i=1

(

∂C̃T

∂αi

)2

∂CM

∂αi

αk
i

















{

λ1

λ2

}

=























C̃G

1− γ
−

p
∑

i=1

∂C̃G

∂αi

αi

C̃T

1− γ
−

p
∑

i=1

∂C̃T

∂αi

αi























(49)
This equation allows us to obtain(λ1, λ2) for each step of the optimization.

4 Results

The method proposed in this paper has been tested on a complexstructure including
hollow parts and plates. The parameters we choose to optimize are linked to the ge-
ometry of the hollow parts. Indeed, we will optimizeD andλ, as shown in figure
6.

11



[Figure 6 about here.]

The optimization methods we will use in the next sections will useD andλ as
parameters. The hollow parts of the structure shown in figure1 are split into 8 parts,
and each part is optimized with optimal values ofD andλ. Thus, 16 parameters are to
be optimized.

During the optimization, matricesM andK are updated in order to take into ac-
count the evolution of the geometry of the hollow parts of thestructure. Actually,
modes concerning these hollow parts need to be re-computed for each iteration. How-
ever, only one element for each set of parameters has to be re-computed, thanks to the
use of our substructuring method to describe the hollow parts of the structure. Para-
metric methods can also be used to solve numerical difficulties.

4.1 Structure used for optimization

The structure used for the optimization is given in figure 1. It is made of hollow parts
and plates, that have been analyzed using the methods proposed in section 2.1.

Because of the calculation costs, we chose a structure whichis not too large, i.e.
2.5 meters long, as given in figure 1.

4.2 Analysis of the criteria

The analysis of criteriaCG andCT shows which modes are responsible for the dis-
placements needing to be reduced. Figure 8 shows the values of Ck

G, which are part of
criterionCG:

Ck
G =

∣

∣

∣

∣

∣

Φk
PΦ

kT
P

ω2
kmPk

∣

∣

∣

∣

∣

(50)

The same analysis can be made forCk
T :

Ck
T =

∣

∣

∣

∣

∣

∣

Φk
P

(

Mk
PE − M̃k

PHcΨHe

)

mPk

∣

∣

∣

∣

∣

∣

(51)

Figure 7 shows the values ofCk
T , which are part of criterionCT .

[Figure 7 about here.]

[Figure 8 about here.]

Figures 7 and 8 show that criteriaCG andCT do not necessarily depend on the
same modes. In this example, we only analyze the criteria forthe first 50 modes of
the structure. Figure 7 shows that the45th mode is mostly responsible for the value of
criterionCG, whereas figure 8 shows that the6th, 7th, 22th and23th modes are respon-
sible for the value of criterionCT . Thus, it is necessary to take these two criteria into
account to optimize the structure.
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4.3 Results of genetic optimization

In this section, we present the results obtained using the genetic algorithm given in fig-
ure 5. Figures 9, 10, 11 and 12 show the pareto diagrams of the setsAi. Units onx and
y axis are not important because it depends on the values ofcg andct. The excitation
points are located on the hollow parts, whereas the displacements to be reduced are
located on the plate on the top of the structure.

[Figure 9 about here.]

[Figure 10 about here.]

[Figure 11 about here.]

[Figure 12 about here.]

These results show that the algorithm is able to produce a setof optimal parameters.
These optimal parameters form a curve including points thatare the closest to the
origin of the graphs. The pareto diagram is shown in 3D, but because it is not easily
understood, we have also shown three 2D diagrams.

Figure 13 shows the evolution of the number of pareto points as a function of the
progress of the optimization. At the end of the algorithm, all points of the setAN are
“pareto points” – i.e. optimal points.

[Figure 13 about here.]

4.4 Results of local optimization

A local optimization is now processed, using the same structure and the same excitation
points. Figure 14 shows the square speed of a point of the plate, whereas figure 15
shows the evolution of the criteria during the optimization.

[Figure 14 about here.]

[Figure 15 about here.]

In figure 15, the ratio between the criteria and their initialvalues is plotted. That
is why the first values are 1 in the three cases. Criteria do notchange much because
the values chosen for the parametersαi are close to the optimal values. This is a
condition for the algorithm to work well. Notice that the algorithm is not always able
to converge because some conditions on the parameters have been set. The parameters
to be optimized must remain in an interval of acceptable values.

In figure 14, the optimized value for the square speed is not much better than the
initial value because the parameters have not changed much.Nevertheless, this value is
not bad and the mass of the structure has decreased, which is why the optimal solution
is better than the initial one.
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5 Conclusion

The optimization method we propose in this paper is based on criteria that allow us
to analyze the origin of the problems we want to solve – reducing noise in complex
structures. These criteria have been used with two kinds of optimization algorithms
and the results prove that they are quite efficient and able torepresent th vibration level
of the structure.

Examples given in this paper are based on an excitation located on a point of a
hollow part. It is possible to do the same analysis based on another excitation. Criteria
will then be different, but the results should be quite good.The algorithms proposed
here are quite easy to use with the structures we chose.
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