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Abstract

Optimization of complex structures often leads to high elagon costs. In-
deed, the structure has to be frequently reanalysed in ¢odepdate the opti-
mization criteriums. We propose an optimization methodtam effective modal
parameters. These parameters are close to the modal matsied for the modal
analysis of a structure. Thus, once the structure has besgsad, it becomes
very easy to calculate optimization criteria. First, welwKplain the modal anal-
ysis that we will use in this paper. A modal model will be usedcahalyse the
hollow parts of the structure. The modal analysis of the wtsttucture will be
performed using substructuring and “double modal syn#figsioposed by Jeze-
quel. Secondly, we will explainthe how to obtain effectivedal parameters and
their use for optimization. Finally, we will show the efficiey of these parameters
through the optimization of a complex structure, using twmes of optimization
methods.

keywords: Modal analysis; Optimization; Modal criteria

1 Introduction

Using matrices resulting from the modal analysis of a stmectn order to optimize
the dynamic behaviour of this structure has multiple acsges. Once the structure
has been analyzed, optimization criteria become very easgrhpute. Secondly, it is
possible to link the optimization of the structure and thedalanatrices resulting from
the modal analysis associated with the resonance phenoriiéna, it is possible to
identify the causes of the problems to solve. The criteriavillause in this paper have
been developed by P. Lemerle [1], using the Craig & Bamptothotefor structure
analysis. The doctoral dissertation of P. Lemerle is dé&giyan the present paper.
Similar optimization methods have already been used by 8a\@ in the case of
structural designs with damping constraint limitations.
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To optimize the structure, we will modify properties of thellow parts of the
structure, but other properties could be changed. The eleawgpropose is a com-
plex structure, including plates and stiffeners, that wkaytimize through two types
of methods. First, a global method, using a genetic algorit&econdly, a local op-
timization will be processed, using a method based on théigmamethod and using
Kithn & Tucker conditions.

2 Effective modal parameters

In order to compute the effective modal parameters, we wat #xplain the modal
analysis of the structure used in this study.

2.1 Modal analysisof astructure

The structure used in this study is a complex structure @diolyhollow parts and plates.
It is made of formed steel constituting its skeleton, as showfigure[1. Plates are
attached to this skeleton. The geometry of the structunenias to the geometry of a
car, in order to demonstrate that the methods we proposeecasda in an industrial
context.

[Figure 1 about here.]

Hollow parts of the structure — which could be stiffeners daample — are ana-
lyzed using a model we proposedin [3]. These elements dotesthe skeleton of the
structure. This modelization leads to modal matrices thatlie assembled like finite
elements matrices. The main characteristic of this methdldat it produces matrices
including only generalized degrees of freedom. There mayane nodal degrees of
freedom in order to assemble the hollow parts with otherctiines, but boundaries
between the elements constituting the hollow part only aisepyeneralized degrees
of freedom. It is possible to assemble these elements beddidise choice of modes
used for the modal analysis of the elements. We now summtré&method used in
[3]. Figured2 andl3 show the geometry of the hollow parts wesitker. The hollow
part shown in figurgl2 is split into several elements showngiaré[3.

[Figure 2 about here.]
[Figure 3 about here.]

When the modal analysis of one element is complete, two rdetakes of freedom
will remain, in order to couple the hollow part with anoth&usture. The behavior of
an element can be described with the equation of motion:

<_w2{MLL MLR}_F[KLL KLR]){U-L}_{fL} (1)
Mg, Mgr Krr Kkrr ur fr

where mass and stiffness matriddsandK are split into left and right degrees of
freedomL andR. Vectorsu andf are split the same way.



uy, andug, are then splitinto degrees of freedom that will be expreasedfunction
of generalized degrees of freedarf} andu%, and the others¥ andu¥, — marked
“retained” on figuré¢ B:

k k
we{af ) e (0] @

Let ¢ be the matrix of the modes of the element when one node ofghéside
is fixed, as shown in figuig 4.

[Figure 4 about here.]

®r is the modal matrix corresponding to right nodes of the eld@mat is a part
of matrix ¢ 5. According to the Craig & Bampton theorlyi[4], displacemenitthese
right nodes can be expressed as follows:

u}, = ®rqr + Yruf, (3)

whereW , is the matrix of the static modes, corresponding to the igidy modes
of the right side of the element.

Analogous matrices are defined for the left side of the eléemert ¢; be the
matrix of the modes of the element when one node of the leftisifixed. ®;, is the
modal matrix corresponding to left nodes of the elementplaements of these left
nodes can be expressed as follows:

uf =®,q + ¥Luf (4)

Thus, displacements can be expressed as a function of generalized degrees of
freedomqy, andqg:

uf I o o0 o u¥
u'% _ ‘I’L @L 0 0 qr (5)
uk 0o 0o I o uk
uf, 0 0 ¥p op ar

Notice that as left degrees of freedom do not depend on rigides, and right
degrees of freedom do not depend on left modes, assemblidglratements will be
possible.

In order to assemble two elements, let write the relatiotwden the nodal degrees
of freedom of the left and right side of two elements. Degrfeseedom of the right
side of the first element, calladf;; andu%,, must match with degrees of freedom of
the left side of the second element, cali€d, andu ,:

ko _ ik
{ Up; = Urg (6)
g _ 49
Up1 = Ups
Equatiori 6 can be written for element@andn + 1:
ko _ ok
uRn - uLn+1 (7)
uf, =u?
Rn Ln+1



Equationg b leads to the expression of degrees of freedomedeft part of the
second element as a function of degrees of freedom of thefastent:

{ u%Q = 1}]}%1 (8)
ac2 = ®L (Prar1 + (¥r — ¥r)uy)
which can be written for elementsandn + 1:
{ o g ©)
ac,,, = ®L (Prar, + (¥r— ¥L)uf, )

where®; is a pseudo-inverse matrix @ :

~ —1
&, = (ef®,) of (10)
Equation$ B allow the assembling 8felements, using transfer matric®s:
N
Kot = ) TiKT, (11)
n=1
N
Mo = ) TiMT, (12)
n=1

Plates are assembled with the skeleton of the structureghrthe nodal degrees
of freedom remaining from the modal analysis of the hollowtpaf the structure.
In this paper, only one plate will be used, located on the tbfhe structure. The
entire structure is then analyzed using the “double modath®sis” method proposed
by Jezequel]5,16]. This method uses “branch modes” to desstinie behaviour of the
boundaries between substructures. In this paper, will tisese “branch modes” to
discribe the behaviour of the skeleton of the structure.

Thus, mass and stiffness matrices of the structure can hérgpldegrees of free-
dom concerning plates and degrees of freedom concernifayhpérts of the structure.
Degrees of freedom concerning hollow parts include geizexdidegrees of freedom
resulting from the modal analysis of the elements consiiuthe skeleton, that will
be denotedy ., and generalized degrees of freedom resulting from theldonbdal

qH

synthesis, which will be denotegly;,. We denoteyy = q ¢ 5. Vectorqgp corre-
Hb

sponds to the generalized degrees of freedom of the platagdthe motion equation:

2| Myg Mpgp Kuyn Kgp an fu }

_ =19 = 13
(w|:MPH MPP]+|:KPH KPP:|){QP} {fP (13)
Generalized degrees of freedom used in the motion equaBianellinked to nodal

degrees of freedom through the following equations:

up = ®pqp + Ypunyy

uge = ®Prcanc + Yaumy (14)
umy = Py
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whereup are the nodal displacements of the plateg, are the nodal displace-
ments of the hollow parts corresponding to the generalizzpaks of freedom g,
and ug; are the nodal displacements on the boundaries, assocwtie thranch
modes.

Matrix ® p is the modal matrix of the fixed modes of the platdsy is the matrix
of the static modes of the plates, as in the Craig & Bamptoraotef4].

Matrices® . and¥ ;. are modal matrices resulting from the analysis of the hol-
low part described iri [3].

Matrix ® g, is the matrix of the “branch” modes of the structure [5, 6].

2.2 Obtaining effective modal parameters

Effective modal parameters used by P. Lemérle [1] are paemnéhat link degrees
of freedom that are submitted to a displacement — excitededsgf freedom — and
degrees of freedom whose displacements are to be minimized.

In order to obtain the effective modal parameters, we wi thee modal analysis
method proposed in sectibn P.1, but we will separate theegsgof freedom that will
be excited — these degrees of freedom will remain nodal ésgrEfreedom.

In this paper, the excitations will concern some of the degia freedom we de-
notedug,. These degrees of freedom will be calkeg.. Hence equation 15, coming
from equation I¥:

up = ®pqp + ¥pupy, + peupye
uge = Pucane + Yacumy + Pheupge
umy = Prpms

Thanks to the orthogonal properties of the modes used in tuahanalysis, equa-
tion[13 can be written as follows, considering the dampingrinahich we assume
to be diagonal. Indeed, we use the modal damping assumgism ¢alled Basile's
hypothesis in French terminology), hence the followingatn:

(15)

Mgeg Mgr. Mgy, Megp (U 0 0
_.2 | Muce Muene Muemy Mupcp tiw| O cHa O 0
Mg Mupyge mpye  Mmpwp 0 0 cgwm O
Mpr Mpye Mpyy, mpy 0 0 0 cpi
Keeg Kgue Kewmpe 0 Upe fE
Kice Kucne Kueny 0 are | _ ) fue (16)
Kme Kmvae koo 0 aHb £y
0 0 0 kpi qar fp

where matrice{;mek], [mpk], [kku], [kpk], [Cku], [Cpk] and[chk] are diago-

nal matrices.

The analysis of the role played by the structural dampingtsime purpose of the
paper, that is why we chose a very simple way to take it intoaot

To obtain the effective modal parametens; must be expressed as a function of
fp andug.. Let us express one of the last lines of equdiidn 16:



~ (M]IQDEU-HG + M} Qe + Mp gy + mpkq]fo)

) —k
+iweprdp +kprdp =fp  (17)

M4, Mb L, MK, are thek™ lines of matriceM pr, Mppe, Mppy,. £p can
be expressed in function 6 as follow:

fp— &5 (18)
Equatior IV becomes:

@3 tp + w? (Mppune + Mppy.ane + Mby,am)
—w?mpy, + iwcpy + kpg

(19)

Where@’; is thek™ column of® p. Equatiori 1P becomes:

up = Z ®hqpr + Ypug, + Up.up,
%

k g kT
-3 e r
: —w?mpy, + iwepy + Kpg

_ i _ )
N w?®p (leDE - leDHc‘I’He) Lo
u
B —w?mpy, + iwepy + kpk el e
W2<I’]1€3 (MIICDHb - MIJCDHC‘I’Hc) o
+ - + u
- —w?mpy, + iwcpr + kpy i

—w?dh Mk,
< c 20
! ; <_w2mPk +iwcpr + kpg H (20)

_ whereM’;Hb =Mk, @, andMb . = Mb,, @ .. Matrix @5, is a pseudo-
inverse matrix of® g...

Two effective modal parameters can be deduced from equaforFirst, the dy-
namic flexibility matrixG is given by:

Gw) = Z ®pe (21)
—w?mpy, + iwepy + kpy

It corresponds to the relation between a force applied ot @ind the displace-
ments it causes.

Secondly, ignoring the static terms corresponding to thendaries, the transmis-
sibility matrix T is given by:




. -
T(w) Z w?®p (MllgE - MI;DHC‘IIHE)
W) = -

- —w?mpy + iwepy, + kpg
It is possible to take the static terms into account, but veeraore interested in

the modal sumz (), wich allows to analyze the contribution of each mode of the

(22)

structure, hencekthe choice of the transmissibility maifizquatio 2P.

This equation is linked to the relation between the exdta#ind the displacements
it causes on the plate. Note that the excitation is a displao¢ excitation. They can
be rewritten using effective paramet&sandT as follows:

Gw) =3 ; e (23)
- (:j—k) + 2
(2)
Tw) = “ T, (24)
1 ( ) + 26,
where
Gy — ‘I’fpi’?’T (25)
wempyg
@b (M - M )
Ty = p— (26)

with the notationgp;, = 2¢,vkprmpy andwy, = ,/‘%ﬁ;. MatricesG, and T},
are called effective modal parameters.

3 Optimization based on effective modal parameters

3.1 Criteriaused for optimization

In this section, we will deduce criteria from the flexibildynd transmissibility matrices
proposed in sectidn 2.2. The surE () that appear in these matrices correspond to a

k
superposition of modes. Thus, optimization criteria cawhien as follow:

&~ kT
Co = max| 2222 (27)
k wempy
®f (Mb, ~ My Wi )
Cr = max (28)
k mpyp



where the nornix| is the maximal component of matrix. Considering these
criteria, it is possible to optimize the structure. Moregwbtaining the valué:,,, .
allows us to understand which mode is responsible for theeval the criteria.

3.2 Methods used for optimization

We will show examples using the criteria we propose throughcalevel strategy for
optimization. First, a genetic algorithm will be used. Saaly, a local optimization
will be processed in order to obtain more precise results.

3.2.1 Genetic optimization

Genetic optimization is often used in the case of multi-otiye optimization prob-
lems. The aim of this section is to generate a Pareto frontderao obtain various
optimized solutions for the optimization problem. Ovewseof multi-objective opti-
mization genetic algorithms can be found[in([7,_B, 9]. Theaienalgorithm that will
be used in this section is quite simple. kgtbe thep parameters to optimizeA; is a
first matrix of N sets of parameters:

1 1 1 1
R e
Oél 062 Oépfl O[p
Av=| (29)
Ofl a2 AR ap_l ap

The lines of matrixA; are theN sets of parameters chosen for the first iteration
of the algorithm. The values of the criteria we propose arapuated using these sets
of parameters. The mass of the structure can also be a tiitedan, for the structure
mustn’t become too heavy. A set of is then selected if no other set gives better
results on both criteria — and the mass. The other setg afe combined in order to
create another matriA, of N sets of parameters that will include the selected sets.
Figure[® sums up the algorithm used for this optimization.

[Figure 5 about here.]

Once the optimal sets af; have been found, the results can be plotted on a pareto
diagram, which will be done bellow. Various “optimal sotuts” are found, and the
local optimization can be made from one of these “optimaltohs”.

3.2.2 Local optimization

The genetic algorithm proposed in secfion 3.2.1 gives vaniesults, but the best value
for eachq; is not precisely determined. In order to obtain more aceurasults, we
propose a local method.

Three criteria are to be considered for the optimizatiafy; and Cr have been
defined in sectioh 212. The third criterion will be the masshef structure, denoted
Cup.



The optimization problem can then be written:

L Cg( ) <0
M 30
inimize Cy () assumlng{ Crle) < 0 (30)
wherea = [ay, g, . .., o). Cg andCr are directly linked withC; andCyr. The

method used in this paper requires that the criteria be aedy which is not possible
with C¢ andCt. Such criteria are defined as follow:

4
R Bk kT
Ca = logz <_kapk> — ¢4 (31)

i3 (M’C — M, U ) !
P PE PHc * He
— ¢ (32)

mpg

Cr ilogz (
k

wherec, andc; are the objectives of the criteria.
C¢ andCr have almost the same minima and extrem&’gsandCr. To prove
this, let us consider the functiofy as follows:

for oz —= Yar(@)P +az(@)? + -+ an(a)? (33)
wherea,(z) >0 Vg < nVz. Itis possible to write:

lim f,(x) = maxa1(x),az(z),...,an(z)] (34)

p—+oo

Indeed:

(/max [a1(x),az(x),. .., an(2)]" < fp(z) < Q/nmax [a1(2),a2(z),. .., an(x)]"

VpeN. (35)
Equatiori 3b leads to:
max [a1(z), az(z),...,an(x)] < fp(x) < ¥nmax|ai(x),az(x),...,a,(z)]
vp e N. (36)
As pl.gir—loo {/n=1,wecan deducsgriloo fp(x) = max[ay(z), az(z), ..., an(x)].

Thus, ifp is high enoughC; andCr have almost the same minima and extrema as
Ce andCr. In this section, we will us€' andC instead ofC; andCr, for these
criteria may be derivated, where@g andCr cannot.

The optimization method we use in this paper is based on thenk& Tucker
conditions, which can be written as follow:



F(M(a), Xa(@)), M(a)VCa(a)+ da(a)VCr(a) + VCh(a) =0
and{ i;gg; ig 37)

The problem we propose requires equafioh 37 to be writteolasvs:

Vi=1,2,3 M )%?;9 @) )%? @ _ (38)
= L, 4,9, - + . = -
Z rooe Tk (a) e Fat(@)

. . aC), . .
In this equation, we assu M (a) # 0. A relaxation parametey is then

-
introduced. Equation 38 becomes:

Q; = YOou; — — )\10[ Oai AQQ
g [(1 7)( ()%(Q)Jr ()%(Q)

3Cq o aCr o
(o) e ( ))]ai (39)

This equation leads to the following recurrence equation:

o gk [(1 —) (Al(a) ﬁ(a) + X2 () ﬁ(a) ok
8017', ai:af 8011‘, Oti:af
(40)

This method is similar to the gradient method, but the destieection here is:

dy, = —(1 = 7)Ri(a)of (41)
where:
o Au%w M)%%(a) )
i(a) =14+ A1 (a . + A (@ .
BBCTI;/I((X) a;=ak %Laf\lf(a) ai=ak

The convergence condition can then be written as for thegmachethod 2 : a« — {R;(a)a;}
must satisfy the following equations:
(43)

(R(v) = R(u),v —u) = & |lv - ul]®
(44)

Jk >0 Vu,v
< &lv—ufl

I >0 Yu,v HR(U) — R(u)

It is then possible to find a value far. The algorithm converges if the following

relation is satisfied:
(45)

2K

<y<l1
€2

1
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~ must be chosen close to 1 if we want to be sure that the algodgtnverges. The

smallery is, the faster the algorithm will converge, but it may notwenge at all ify
is too small...

For each step of the algorithm; («) is being computed. The method used to
obtain these\; («) is now explained. Let us tak&c;, such as:

{ Qg(ozl—|—Ao¢1,o¢2+Aa2,...,o¢p—|—Ao¢p):O (46)

Cr(ar + Aar, a0 + Aag, ..., ap + Acyp) =0

This equation allows us to expre&@g(al, ag, ..., ap) as follows:

Aég(al,ag, cey Q) = ég(al + Aag, a2 + Aag, ..., ap + Aay) — é@(al,ag, ceOp)
= _C’G(alva27"'7ap)
"L 0Cq

. Aas 47
= 0w ! “n

ReplacingA«; in equatio 4l can be written as follows:

~ P aéG Cq aCr
Cg(al,ag,...,ap):(l—v)z Do, 1+ XM aag;l +)\2% af (48)
i=1 ¢ do; Oa;
o , oC; 90,
In order to simplify the notations, we dendte = A\ (), A1 = A1 (a) and o 8_-(a)
(673 (67

The same equation can be written &, which allows us to write the following equa-
tion:

ot ot Q;
3 3 3
i=1 Oa; i=1 aal 630061:{ { /\1 } - - 7 i=1 aal
. =\ 2 - A D
LY 8C¢c p %CT) A2 Cr Z BCTa
T Oa; Qg k — - i
) D, 9Ca Vi ) o0y i -y = Oai
i=1 v Ba;y i=1 da;

(49)
This equation allows us to obtain,, \2) for each step of the optimization.

4 Results

The method proposed in this paper has been tested on a costpleiure including
hollow parts and plates. The parameters we choose to optianiz linked to the ge-
ometry of the hollow parts. Indeed, we will optimiZe and A\, as shown in figure
6.

11



[Figure 6 about here.]

The optimization methods we will use in the next sectiond uske D and A\ as
parameters. The hollow parts of the structure shown in filLaee split into 8 parts,
and each part is optimized with optimal valuegdfind\. Thus, 16 parameters are to
be optimized.

During the optimization, matricedI andK are updated in order to take into ac-
count the evolution of the geometry of the hollow parts of #ieicture. Actually,
modes concerning these hollow parts need to be re-computeath iteration. How-
ever, only one element for each set of parameters has to ctmmputed, thanks to the
use of our substructuring method to describe the hollowspafrthe structure. Para-
metric methods can also be used to solve numerical diffesulti

4.1 Structure used for optimization

The structure used for the optimization is given in figuretis made of hollow parts
and plates, that have been analyzed using the methods pjposection 2]1.

Because of the calculation costs, we chose a structure vidiebt too large, i.e.
2.5 meters long, as given in figurk 1.

4.2 Analysisof thecriteria

The analysis of criteri@c andCr shows which modes are responsible for the dis-
placements needing to be reduced. Fiduire 8 shows the veldgs, avhich are part of
criterionCg:

@k @kT
Ok — PP 50
G w]%mPk ( )
The same analysis can be madedr:
k q,’lg (leDE - Mlngc‘I’He)
ch = (51)

mpy,
FigurelT shows the values 6f:, which are part of criteriod'r.
[Figure 7 about here.]
[Figure 8 about here.]

Figured¥ andl8 show that criteri@; and Cr do not necessarily depend on the
same modes. In this example, we only analyze the criterigh®ffirst 50 modes of
the structure. Figurlg 7 shows that thi#" mode is mostly responsible for the value of
criterionC;, whereas figurgl8 shows that t6%, 7", 221" and23™ modes are respon-
sible for the value of criterio€'. Thus, it is necessary to take these two criteria into
account to optimize the structure.

12



4.3 Resultsof genetic optimization

In this section, we present the results obtained using thetgealgorithm given in fig-
ure[3. FigureBl9, 10,11 ahdl12 show the pareto diagrams oftbA s Units onz and

y axis are not important because it depends on the valugsaridc,. The excitation
points are located on the hollow parts, whereas the displants to be reduced are
located on the plate on the top of the structure.

[Figure 9 about here.]
[Figure 10 about here.]
[Figure 11 about here.]
[Figure 12 about here.]

These results show that the algorithm is able to producedf sptimal parameters.
These optimal parameters form a curve including points #natthe closest to the
origin of the graphs. The pareto diagram is shown in 3D, bathbse it is not easily
understood, we have also shown three 2D diagrams.

Figure[ I3 shows the evolution of the number of pareto poisits function of the
progress of the optimization. At the end of the algorithrhpaints of the sefA 5 are
“pareto points” —i.e. optimal points.

[Figure 13 about here.]

4.4 Resultsof local optimization

Alocal optimization is now processed, using the same siraend the same excitation
points. Figurd T4 shows the square speed of a point of the,pldtereas figure 15
shows the evolution of the criteria during the optimization

[Figure 14 about here.]
[Figure 15 about here.]

In figure[IB, the ratio between the criteria and their initialues is plotted. That
is why the first values are 1 in the three cases. Criteria dain@hge much because
the values chosen for the parametatsare close to the optimal values. This is a
condition for the algorithm to work well. Notice that the alghm is not always able
to converge because some conditions on the parameters éaweasét. The parameters
to be optimized must remain in an interval of acceptableeslu

In figure[14, the optimized value for the square speed is natnbetter than the
initial value because the parameters have not changed iaeolertheless, this value is
not bad and the mass of the structure has decreased, whitly ihesoptimal solution
is better than the initial one.

13



5 Conclusion

The optimization method we propose in this paper is baseditaria that allow us
to analyze the origin of the problems we want to solve — raaycioise in complex
structures. These criteria have been used with two kindptifnization algorithms
and the results prove that they are quite efficient and ablkepiesent th vibration level
of the structure.

Examples given in this paper are based on an excitationddoat a point of a
hollow part. It is possible to do the same analysis based othanexcitation. Criteria
will then be different, but the results should be quite godte algorithms proposed
here are quite easy to use with the structures we chose.
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Figure 1: Structure to be optimize
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Figure 2: Hollow part to study
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