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Abstract

In this paper, we are interested in the estimation and prediction of a
parametric model on a short dataset upon which it is expected to over-
fit and perform badly. To overcome the lack of data (relatively to the
dimension of the model) we propose the construction of a hierarchical
informative Bayesian prior based upon another longer dataset which is
assumed to share some similarities with the original, short dataset. We
apply the methodology to a basic model for the electricity load forecast-
ing on both simulated and real datasets, where it leads to a substantial
improvement of the quality of the predictions.

informative prior, hierarchical prior, mcmc algorithms, short
dataset, electricity load forecasting

1 Introduction

We are interested in the development of a methodology to improve the estima-
tion and the predictions of a parametric model over a short dataset. The limited
size of a dataset coupled with the high dimensionality of a model often leads
to a typical overfitting situation : the estimated values are relatively close to
the observations while the errors in prediction are an order of magnitude larger
or more. This lack of robustness can be somewhat alleviated by the use of a
Bayesian estimation relying on an informative prior distribution, but the very
fact that the data available is limited makes the posterior distribution all the
more sensitive to the choice of that prior.
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To design a sensible prior in such a situation, we consider the case where
another long dataset is available, upon which the model performs equally well
in both estimation and prediction. We assume the long and the short datasets
are somehow similar in a non-obvious way. That the similarity between the
parameters underlying the two datasets (we will assume they are indeed coming
from the model considered) cannot be easily guessed prevents us from trying
to model the datasets simultaneously because it would require a rather precise
knowledge of the link between the two. We propose a general way of building a
hierarchical (see Gelman and Hill, 2007, for a general review on the subject of
hierarchical models) informative prior for the short dataset from the long one
that goes as follows :

1. we first estimate the posterior distribution on the long dataset using a
non-informative prior, arguing that the design of an informative prior for
this dataset is not necessary, since the data available is enough to estimate
and predict the model in this case ;

2. we extract key informations from this estimation (e.g. moments) to design
a hierarchical prior for the short dataset which takes into account the prior
information that the datasets are somehow similar, via the introduction
of hyperparameters designed to model and estimate this similarity.

As an application we put our method to the test on an unrefined version of a
regression model used for the electricity load forecasting in France called even-
tail (see Bruhns et al., 2005). Due to the very periodic nature of its regressors,
the model typically requires 4 or 5 years of data to provide satisfactory predic-
tions. When the dataset used for the estimation is shorter (think 1 year or less
worth of data for the recently started study of a population), we find ourselves
in an overfit situation where the prediction errors are way larger than the es-
timation errors. Although electricity load curves may largely differ from one
population to another, they may also share some common features. The latter
case is expected to happen when the global population studied is an aggregation
of non-homogeneous subpopulations for which the estimations are made harder
due to the relative lack of data.

The paper is organised as follows. In Section 2 we focus on the general
methodology and describe the way we carried our experimentations, we also
present the general regression model used for our tests and applications. In Sec-
tion 3, we present the semi-conjugated priors (informative and non-informative)
used on each of the datasets. The ad hoc MCMC algorithms we developed to
estimate the mean and variance of the posterior distributions are push backed
into the appendix so as not to obfuscate the main point of the paper by technical
details. In Sections 4 and 5, we use these algorithms to illustrate and validate
our approach in simulated and real situations : we show the contribution of the
informative prior over the precision of both the estimated parameters and the
forecasts in the case of a basic electricity load forecasting model.
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2 Methodology

2.1 General principle

Let us define here some notations that we shall keep throughout this paper.
Hereafter, we denote B a short dataset over which we would like to estimate
the model and we denote A a long dataset known or thought to share some
common features with B. We will denote θ the parameters of the model, yA the
observations from A and L(y|θ) the likelihood of the model.

We propose a method designed to help improve parameter estimations and
model predictions over B with the help of A. Let πA be the prior distribution
used on A and πA(·|yA) the associated posterior distribution. Note that the
choice of πA is not crucial as long as it remains non-informative enough since
the model can be correctly estimated from the data alone on A. We assume that
πB, the prior distribution to be used on B, is to be chosen within the parametric
family

F = {πλ; λ ∈ Λ}.

Since selecting πB ∈ F is equivalent to picking λB ∈ Λ, and since we want
πB to retain some key-features of πA(·|yA), we want to pick λB using some of
the information contained inside the posterior distribution obtained on A. We
assume that there exists an operator T : F → Λ, such that

T [πλ] = λ,

and choose λB proportional to T [πA(·|yA)], in the sense that

λB = KT [πA(·|yA)],

where K : Λ→ Λ itself is an unknown linear operator that we assume diagonal
for ease of use.

The operator K can be interpreted as a similarity operator between A and
B, and its diagonal components as similarity coefficients measuring how close
the two datasets really are when looked at through T . The diagonal components
of K are hyperparameters of the prior we designed, and we give them a vague
hierarchical prior distribution centred around q, the prior on q being vague and
centred around 1.

The hyperparameter q may also be regarded as a more global similarity
coefficient, since it represents the mean of all the similarity coefficients. The
prior mean of q is forced to 1 to reflect the prior knowledge that the datasets
are somehow similar. The variance of the prior distribution of q could in theory
be reduced, going from a vague prior to a more informative structure, depending
on the confidence we have over the similarity between the datasets. We chose
not to however, so as to keep the procedure we describe from requiring any
delicate subjective adjustments.

We present now two frequent situations where the above procedure can be
written in a simpler way.
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Example 1 (Method of Moments). We assume that the elements of F can be
identified via their m first moments : the operator T can then be reduced to a
function F of the m first moments operators, i.e. λ = T [πλ] = F (E(θ), . . . ,E(θm)).
The expression of λB then becomes

λB = KF (E(θ|yA), . . . ,E(θm|yA)).

Note that, if the prior requires the specification of at least the two first moments,
even though the priors from the upper layers of the model are vague, the cor-
relation matrix estimated on the dataset A remains untouched and is directly
plugged into in the hierarchical prior if we consider centred moments for orders
greater than 1.

Example 2 (Conjugacy). We consider the case where F is the family of priors
conjugated for the model. If the prior πA belongs to F then the associated
distribution πA(·|yA) does too and there corresponds a parameter λA(yA) to it.
The expression of λB thus reduces to

λB = KλA(yA).

2.2 Description of the model

Modelling and forecasting the electricity load (or demand) on a day-to-day basis
has long been a key activity for any company involved in the electricity indus-
try. It is first and foremost needed to supply a fixed voltage at all ends of an
electricity grid : to be able to do so, the amount of electricity produced has to
match the demand very closely at any given time and experts usually make use
of short-term forecasts with this aim in view as mentioned in Cottet and Smith
(2003).

Electricity load usually has a large predictable component due to its very
strong daily, weekly and yearly periodic behaviour. It has also been noted in
many regions that the weather usually affects the load too, the most important
meteorological factor typically being the temperature (see Al-Zayer and Al-
Ibrahim, 1996, for an example).

The eventail model (see Bruhns et al., 2005) is a non-linear regression
model used to describe and forecast the electricity load in France. For each
instant of the day (each instant lasts 30 minutes, starting from 00:00am), the
model that we consider in this paper is made of three components, which we
explain briefly in the next paragraphs, and is usually formulated as follows : for
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t = 1, . . . , N ,

yt = x
(1)
t x

(2)
t + x

(3)
t + εt (1)

x
(1)
t =

d11∑
j=1

[
zcos
j cos

(
2jπ

365.25
t

)
+ zsin

j sin

(
2jπ

365.25
t

)]
+

d12∑
j=1

ωj1Ωj (t),

x
(2)
t =

d2∑
j=1

ψj1Ψj (t),

x
(3)
t = g(Tt − u)1[Tt,+∞[(u),

where yt is the load of day t and where ε1, . . . , εN are assumed independent and
identically distributed with common distribution N (0, σ2).

The x(1) component is meant to account for the average seasonal behaviour
of the electricity load, with a truncated Fourier series (whose coefficients are
zcos
j ∈ R and zsin

j ∈ R) and gaps (parameters ωj ∈ R) which represent the
average levels of electricity load over predetermined periods given by a partition
(Ωj)j∈{1,...,d12} of the calendar. This partition usually specifies holidays, or the
period of time when daylight saving time is in effect i.e. major breaks in the
electricity consumption behaviour. The left part of Figure 1 shows a typical
behaviour over two different periods of time (summer vs. winter).
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Figure 1: Left : French Electricity load from 13/06/2005 to 29/06/2005 (in
grey) and from 05/12/2005 to 11/12/2005 (in black). The load is expressed in
MW. Notice the daily patterns of the electricity load are not the same during
summer and winter. Right : French Electricity load at 10:00 over 5 years against
temperatures. The load seems to increase linearly with the temperature below
a certain threshold.

The x(2) component allows for day-to-day adjustments of the seasonal be-
haviour x(1) through shapes (parameters ψj) that depends on the so-called days’
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types which are given by a second partition (Ψj)j∈{1,...,d2} of the calendar. This
partition usually separates weekdays from weekends, and bank holidays. The
differences between two different daytypes are visible on the left part of Figure 1
too. For obvious identifiability reasons, the vector ψ is restricted to the positive
quadrant of the ‖ · ‖1-unit sphere in Rd2 , that we denote

Sd2+ (0, 1) =
{
ψ ∈ (R+)d2 ; ‖ψ‖1 = 1

}
.

The x(3) component represents the non-linear heating effect that links the
electricity load to the temperature (see Seber and Wild, 2003, for a general
presentation of non-linear models), with the help of 2 parameters. The heating
threshold u ∈ [u, u] corresponds to the temperature above which the heating
effect is considered null and is usually estimated to be roughly around 15◦C.
The heating effect is supposed to be linear for temperatures below the threshold
and null for temperatures above. The restriction on the support of the threshold
u simply expresses the fact that the threshold is sought within the range of the
observed temperatures, i.e. u ∈ [u, u] with

min
t=1,...,N

Tt < u < u < max
t=1,...,N

Tt.

The heating gradient g ∈ R∗ represents the intensity of the heating effect, i.e.
the slope (assumed to be non-zero) of the linear part that can be observed on
the right part of Figure 1.

The previous model can be re-written in the following condensed and more
generic way : for t = 1, . . . , N,

yt = (At•α)(Bt•β + Ct) + γ(Tt − u)1[Tt,+∞[(u) + εt (2)

where ε1, . . . , εN are independent and identically distributed with common dis-
tribution N (0, σ2) and where the notation Mi• is used to denote the i-row of a
matrix M . The matrices A of size N × dA, B of size N × dβ , C of size N × 1,
and T of size N × 1 are known exogenous variables while the parameters of the
model to be estimated are

(α, β, γ, u, σ2) ∈ Rdα ×Bdβ+ (0, 1)×R∗ × [u, u]× R∗+,

where B
dβ
+ (0, 1) = {β ∈ (R+)dβ ; ‖β‖1 ≤ 1} is the positive quadrant of the

‖ · ‖1-unit ball of dimension dβ .

Remark 3. Considering this last expression, the model is quite general since
the bulk of it could be thought of as the product of two linear regressions, with the
added twist of a non-linearity introduced via the threshold parameter u (change-
point of the model). Even though the priors and algorithms constructed in the
coming sections do depend on the model introduced here, they can be modify in
a straightforward manner, should the reader want to tweak the model a bit (e.g.
deleting a part or adding a similar one).
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3 Specifications of the priors for the model

3.1 Informative situation

We now present the hierarchical prior we build from A to improve our predic-
tions on B for the model at hand. To be able to build it, we assume that we
have already collected µA and ΣA the posterior mean and posterior variance of
η from a non-informative approach applied to the long dataset A. Hereafter we
denote MA = diag(µA). The hierarchical prior that we propose introduces new
parameters to model the similarity between the two datasets. For the sake of
clarity, we drop the B notation : when not explicitly specified, the dataset, data
and observations as well as the prior and posterior distributions we refer to in
this subsection will be those corresponding to B. We first describe the hierarchi-
cal prior we use and then prove that it leads to a proper posterior distribution
(see Proposition 4).

Instead of using the obvious and far too rigid prior

η ∼ N (µA,ΣA)

we introduce hyperparameters (k, l) ∈ Rd × R and (q, r) ∈ R× R∗+ such that

η|k, l ∼ N (MAk, l−1ΣA)

k|q, r ∼ N (q(1, . . . , 1)′, r−1Id)

to allow for more robustness. The coordinates of the vector k can be interpreted
as similarity coefficients between parameters of A and B and the strictly positive
scalar l can be seen as a way to alternatively weaken or strengthen the covariance
matrix as needed. Hyperparameters q and r are more general indicators of how
close A and B are, q corresponding to the mean of the coordinates of k and r
being their inverse-variance. l, q, r and σ2 of course require a prior distribution
too. For σ2 we use a non-informative prior (we chose π(σ2) = σ−2) because
we do not want to make any kind of assumptions about the noise around both
datasets. This prior is non-informative in the sense that it matches Jeffreys’
prior distribution on σ2 for a Gaussian linear regression. For the three other
parameters, based on semi-conjugacy considerations, we use :

l ∼ G(al, bl), q ∼ N (1, σ2
q ), r ∼ G(ar, br), (3)

where al, bl, ar, br and σ2
q are fixed positive real numbers such that the prior

distribution on l, q and r are vague. These prior distributions are chosen because
of their conjugacy properties (as will be seen in the MCMC algorithm). The
vagueness requirement that we impose on these priors is motivated by the fact
that we want to keep as general a framework as possible without having to tweak
each and every prior coefficient for different applications.

The hierarchical prior that we use is built as follows :

π(θ, k, l, q, r) ∝ π(η|k, l)π(k|q, r)π(l)π(q)π(r)π(σ2) (4)
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with

π(σ2) ∝ σ−2

π(η|k, l) ∝ l d2 exp

(
−1

2
(θ −MAk)′l(ΣA)−1(θ −MAk)

)
π(k|q, r) ∝ |r| d2 exp

(
−1

2
r

d∑
i=1

(ki − q)2

)
π(l) ∝ lal−1 exp (−bll)1R∗

+
(l)

π(q) ∝ |σ−2
q |

1
2 exp

(
−1

2
σ−2
q (q − 1)2

)
π(r) ∝ rar−1 exp (−brr)1R∗

+
(r).

The posterior measure is hence given by

π(θ, k, l, q, r|y,D) ∝ f(y|θ,D)π(θ, k, l, q, r) (5)

∝ σ−N−2 exp

(
−1

2
σ−2‖y − µ(η|D)‖22

)
1[0, 1]×[u, u]×R∗

+
(‖β‖1, u, σ2)

× |r| d2 exp

(
−1

2
r

d∑
i=1

(ki − q)2

)
lal−1 exp (−bll)1R∗

+
(l)

× |σ−2
q |

1
2 exp

(
−1

2
σ−2
q (q − 1)2

)
rar−1 exp (−brr)1R∗

+
(r).

Proposition 4. For (β, u) ∈ Bdβ+ (0, 1)×[u, u] denote A∗(β, u) the matrix whose
rows are

(A∗)t•(β, u) =
[
(Bt•β + Ct)At•, (Tt − u)1[Tt,+∞[(u)

]
, t = 1, . . . , N,

and suppose A′∗(b, u)A∗(b, u) has full rank for every (β, u) ∈ Bdβ+ (0, 1)× [u, u].
Assume furthermore that N > dα + 1 and that (y1, . . . , yN ) are observations
coming from the model (2) and the posterior measure (5) is then a well-defined
(proper) probability distribution.

Proof. First notice that
∫
π(θ, k, l, q, r|y,D) dσ2 is proportional to

‖y − µ(η|D)‖−N2 1[0, 1](‖β‖1)1[u, u](u)π(η|k, l)π(k|q, r)π(l)π(q)π(r),

for almost every y and that the function θ 7→ ‖y − µ(η|D)‖−N2 is bounded,
for almost every y. The posterior integrability is hence trivial as long as
π(η|k, l)π(k|q, r)π(l)π(q)π(r) itself is a proper distribution which is the case
here.

3.2 Non-informative situation

We propose here a non-informative prior to use with the long dataset A. Note
that since the dataset A is long enough, the choice of the prior distribution
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used in this situation does not matter much as long as it remains vague enough.
For the sake of clarity again, we drop the A notation : when not explicitly
specified, the dataset, data and observations as well as the prior and posterior
distributions we refer to in this subsection will be those corresponding to A.
We show that the use of a non-informative prior distribution leads to a proper
posterior distribution (see Proposition 5).

We use the following non-informative prior

π(θ) ∝ σ−2.

This prior is non-informative in the sense that it matches Jeffreys’ prior distri-
bution on σ2 for a Gaussian linear regression and matches Laplace’s flat prior
on the other parameters. It leads to the following posterior distribution

π(θ|y,D) ∝ L(y|θ,D)π(θ) (6)

∝ σ−N−2 exp

(
−1

2
σ−2‖y − µ(η|D)‖22

)
1[0, 1]×[u, u]×R∗

+
(‖β‖1, u, σ2).

Proposition 5. For (β, u) ∈ Bdβ+ (0, 1)×[u, u] denote A∗(β, u) the matrix whose
rows are

(A∗)t•(β, u) =
[
(Bt•β + Ct)At•, (Tt − u)1[Tt,+∞[(u)

]
, t = 1, . . . , N,

and suppose A′∗(b, u)A∗(b, u) has full rank for every (β, u) ∈ Bdβ+ (0, 1)× [u, u].
Assume furthermore that N > dα + 1 and that (y1, . . . , yN ) are observations
coming from the model (2), the posterior measure (6) is then a well-defined
(proper) probability distribution.

Proof. Notice first that∫
π(η, σ2|y,D) dσ2 ∝ ‖y − µ(η|D)‖−N2 1[0, 1](‖b‖1)1[u, u](u) for almost every y,

and observe then that

‖y − µ(η|D)‖22 =

N∑
t=1

[
yt − (Bt•β + Ct)At•α− (Tt − u)1[Tt,+∞[(u)γ

]2
.

Let (β0, u0) ∈ Bdβ+ (0, 1)× [u, u] and denote α∗ = (α, γ). We write

‖y − µ((α, β0, γ, u0)|D)‖22 =

N∑
t=1

[
yt − (Bt•β0 + Ct)At•α− (Tt − u0)1[Tt,+∞[(u0)γ

]2
= ‖y −A∗(β0, u0)α∗‖22,

and thus obtain the following equivalence, as (β, u)→ (β0, u0) and ‖α∗‖2 → +∞

‖y − µ(η|D)‖−N2 ∼ ‖y −A∗(β0, u0)α∗‖−N2 . (7)
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The triangular inequality applied to the right hand side of (7) gives

‖y −A∗(β0, u0)α∗‖−N2 ≤
∣∣‖y‖2 − ‖A∗(β0, u0)α∗‖2

∣∣−N . (8)

Since A′∗(β0, u0)A∗(β0, u0) has full rank, by straightforward algebra we get

λ‖α∗‖22 ≤ ‖A∗(β0, u0)α∗‖22,

where λ is the smallest eigenvalue (A∗(β0, u0))′A∗(β0, u0) and is strictly positive.
We can hence find an equivalent of the right hand side of (8) as ‖α∗‖2 → +∞,
which is ∣∣‖y‖2 − ‖A∗(β0, u0)α∗‖2

∣∣−N ∼ λ−N/2‖α∗‖−N2 . (9)

Combining (7), (8) and (9) together, we see that the integrability of the left
hand side of (7) as (β, u) → (β0, u0) and ‖α∗‖2 → +∞ is directly implied by
that of ‖α∗‖−N2 . The latter is of course immediate for N > dα + 1 as can be
seen via a quick cartesian to hyperspherical re-parametrisation.

The previous paragraph thus ensures the integrability of ‖y − µ(η|D)‖−N2

over sets of the form

{(β, u) ∈ V ((β0, u0)), ‖α∗‖2 ∈]M(β0, u0), +∞[}, ∀(β0, u0) ∈ Bdβ+ (0, 1)× [u, u]

where the subset V ((b0, u0)) is an open neighbourhood of (β0, u0) and M(β0, u0)

is a real number depending on (β0, u0). By compacity of B
dβ
+ (0, 1) × [u, u]

there exists a finite union of such V ((βi, ui)) that covers B
dβ
+ (0, 1) × [u, u].

Denoting M the maximum of M(βi, ui) over the corresponding finite subset of
(βi, ui), we finally obtain the integrability of ‖y − µ(η|D)‖−N2 over {(β, u) ∈
B
dβ
+ (0, 1), ‖α∗‖ ∈]M, +∞[}.

The integrability of ‖y−µ(η|D)‖−N2 over {(β, u) ∈ Bdβ+ (0, 1), ‖α∗‖ ∈ [0, M ]}
is trivial, recalling that η 7→ ‖y − µ(η|D)‖2 is continuous and does not vanish
over this compact for almost every y, meaning its inverse shares these same
properties.

Remark 6. The condition “A′∗A∗ has full rank” mentioned above is typically
verified in our applications for the regressors used in the eventail model. To
see this, call “vector of heating degrees” the vector whose coordinates are (Tt −
u)1[Tt,+∞[(u), then not verifying the aforementionned condition is equivalent to
saying that “there exists an index i and a threshold u such that the family of
vectors formed by the regressors A and the vector of heating degrees is linearly
dependant over the subset Ψi of the calendar”.

4 Numerical evaluations of the performance on
simulated data

For any estimation (posterior mean and variance) on a dataset (be it A or B),
the MCMC algorithms would typically run for 500,000 iterations after a small
burn-in period.
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4.1 Comparing the hierarchical and the non-informative
approaches

Predictive distribution. The Bayesian framework allows us to compute so-called
predictive distributions, i.e. the distributions of future observations given past
observations. Given a prior distribution π(θ) and the corresponding posterior
distribution π(θ|y,D) related to the past observations y = (y1, . . . , yN ) and data
D = [D1, . . . ,DN ], the predictive distribution for the future observation yN+k,
given data DN+k is defined as

g(yN+k|DN+k, y,D) :=

∫
f(yN+k|θ,DN+k)π(θ|y,D) dθ,

and the optimal prediction for the L2 risk is then :

ŷN+k := Eπ[yN+k|DN+k, y,D] (10)

=

∫
yN+kg(yN+k|DN+k, y,D) dyN+k. (11)

The comparison criterion. To assess the quality of the estimation of the
model with our hierarchical prior with regard to the estimation of the model
with the non-informative prior, we compare both results based on the quality
of the predictions. Let yN+1 be the next upcoming observation, corresponding
to data DN+1 and observe now that the prediction error can be written as

yN+1 − ŷN+1 = [yN+1 − µ(η0|DN+1)] + [µ(η0|DN+1)− ŷN+1],

which expresses the prediction error as a sum of a noise yN+1 − µ(η0|DN+1)
(whose theoretical distribution is N (0, σ2)) and a bias which can be seen as an
estimation error over the prediction µ(η0|DN+1) − ŷN+1. We focus solely on
the second part, since the first part (the noise) is unavoidable in real situation.
Given that we want to validate our model on simulated data, the quantity
µ(η0|DN+1) − ŷN+1 is indeed accessible here whereas it would not be in real
situation.

We thus choose to consider the quadratic distance between the real and the
predicted model over a year as our quality criterion for a model, i.e. :√√√√ 1

365

365∑
i=1

[µ(η0|DN+i)− ŷN+i]2. (12)

4.2 Construction of simulated datasets

Both datasets A and B were simulated according to the model (1) given on page
5 with d11 = 4 (4 frequencies used for the truncated Fourier series). The calen-
dars and the partitions used for A and B were designed to include 7 daytypes
(d2 = 7, one daytype for each day of the week), but did not include any special
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days such as bankholidays. They also included 2 offsets (d12 = 2) to simulate
the daylight saving time effect. In the end we thus had dα = 4× 2 + 2 = 10 and
dβ = 6 i.e. d = 19 using the expression of the model given in (2).

Dataset A. We simulated 4 years of daily data for A with parameters :

σA = 2,

seasonal : αA = (27, 7,−3, 1, 5,−1, 4, 0.5, 490, 495),

shape : βA = (0.13, 0.15, 0.16, 0.16, 0.16, 0.13),

heating : γA = −3,

uA = 14.

These values were chosen to approximately mimic the typical electricity load of
France up to a scaling factor. The temperatures we used for the estimation over
A are those measured from September 1996 to August 2000 at 10:00AM.

Dataset B. We simulated 1 year of daily data for B with parameters :

σB = 2,

seasonal : αBi = kαα
A
i , ∀i = 1, . . . , dα

shape : βB1 = kββ
A
1 , βBj = βAj , ∀j = 2, . . . , dβ

heating : γB = kγγ
A,

uB = kuu
A.

where the coordinates of the true hyperparameters k were allowed to vary around
1. The temperatures we used for the estimation over B are those measured from
September 2000 to August 2001 at 10:00AM.

We also simulated an extra year of daily data B for prediction, with the same
parameters but using the so-called normal temperatures, meaning that for each
day of this extra year the temperature is the mean of all the past temperatures
at the same time of the year. We made such a choice to try and suppress any
dependency between our simulated results and the chosen temperature for this
fictive year of prediction, since we did not want to bias our results because of a
rigorous winter or an excessively hot summer.

4.3 Results

We chose to use vague priors (i.e. proper distributions with large variances)
for the uppermost layers of our hierarchical prior, and thus decided to use the
values :

σq = 102, ar = br = 10−6, al = bl = 10−3.

A study of the Bayesian hierarchical model’s sensitivity to these values showed
that changing these hyperparameters to achieve prior variances of greater mag-
nitudes hardly influenced the posterior results (means and variances) at all.
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This is why we decided to stick to these values for the remainder of our experi-
mentations.

Estimation. We benchmarked the Bayesian model with its hierarchical prior
against its original non-informative prior counterpart for different choices of true
hyperparameters k over 300 replications (data being simulated anew for each
replication), i.e. we simulated many different datasets B looking more or less
similar to A and applied our method on them. Figure 2 shows the posterior
error of η (posterior mean minus the true value) of η, based on 300 replications
that correspond to the case where kα = kβ = kγ = ku = 1 i.e ηA = ηB for both
the informative (leftmost) and non-informative (rightmost) method. Marginal
confidence interval for the posterior means are much smaller when using the
hierarchical prior (most of them hitting the true value). The marginal posterior
standard deviations (not shown here) are also reduced when the informative
hierarchical prior is used instead of the non-informative prior.
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Figure 2: The posterior error (posterior mean minus true value) of α (sea-
sonal parameters), β (shape parameters), and γ and u (heating parameters),
based on 300 replications. Leftmost replications correspond to the hierarchi-
cal method while the rightmost replications correspond to the non-informative
method. Here kα = kβ = kγ = ku = 1.

When the situation is far from being as ideal as the one mentioned above,
the hierarchical approach still shows improvement over the non-informative ap-
proach but to a lesser extent. Figure 3 shows that the estimations of some of
the parameters of the model are improved with the addition of the prior infor-
mation (α and u) while some are not (β and γ) in the case where kβ = ku = 1
and kα = kγ = 0.5. Situations such as kα = kγ = ku = 1 and kβ = 0.5 or
kα = kγ = kβ = 1 and ku = 0.5 were studied too and yielded very similar re-
sults i.e. lesser improvements on the estimations of some parameters only. Note
that when some coordinates of k are valued to 0.5 while some are valued to 1,
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Figure 3: Same caption as in Figure 2 except kβ = ku = 1 and kα = kγ = 0.5.

the “similarity” between A and B is very weak. The strength or weakness of
the similarity between A and B cannot be diagnosed directly from the posterior
mean of k itself but we will see that the estimations of the hyperparameters q
and r may provide a partial answer to this question.

We also estimated the hyperparameters (see Section 3.1 for the specifications
of k, l, r) when the hierarchical prior was used. Let us first study the hyper-
parameter k. Its coordinates seem correctly estimated for the ideal situation
where kα = kβ = kγ = ku = 1 as illustrated in the top row of Figure 4 which
shows the posterior error of k. When kβ = ku = 1 and kα = kγ = 0.5, the
estimations obtained are of lesser quality as demonstrated in the bottom row of
Figure 4 : most of the seasonal similarity coefficients appear to be biased (while
the posterior standard deviation on each coordinate, not shown here, are greater
than in the ideal situation). These estimations may thus be used to quantify
the closeness of the two datasets.

The estimation of the hyperparameter l itself does not seem to provide a lot
of information about the data : during our simulations, its mean value exhibited
a lot of variability around the same value over the 300 replications for each of
the five simulated scenarios and no reasonable conclusion could be drawn from
it.

On the other hand, the estimation of the hyperparameter q does reveal a bit
of information about the two datasets A and B. It is the mean of the coordi-
nates of k on the real axis, as can be seen in the definition of the hierarchical
prior in (4) on page 7. However its use remains somewhat limited in the sense
that the parameters β of the two datasets are most often very close (meaning
the coordinates of k that correspond to them is likely close to 1) while other
parameters may vary greatly. Hence even though q provides information about
the similarity between A and B, it cannot be interpreted alone and has to be
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Figure 4: The posterior error (posterior mean minus true value) of kα (seasonal
parameters), based on 300 replications. Top row is for the case were kα = kβ =
kγ = ku = 1 and bottom row is for the case where kβ = ku = 1 and kα =
kγ = 0.5. Leftmost replications correspond to the hierarchical method while
the rightmost replications correspond to the non-informative method. Posterior
errors of kβ (shape parameters), and kγ and ku (heating parameters) are not
shown here because no significant deviation from 0 was found on either of these
coordinates when the informative prior was used in either case (the empirical
variances on these coordinates were bigger in the non-ideal case though, in a
similar fashion to what we observe here for kα).

considered jointly with r. The left part of Figure 5 shows the evolution of the
posterior mean of q as kα = ku ranges over [0.5, 1].

The estimation of the hyperparameter r (inverse-variance of the prior distri-
bution on k, see (4) again) does in fact reveal some information about the two
datasets too. It is a measure of dispersion of k around q, in the sense that the
(higher it is, the closer to q the coordinates of k should be. Just like q is the
mean of the coordinates of k, r is in fact their inverse-variance. The right part
of Figure 5 shows a clear decline of r when kα = ku moves away from the ideal
value 1 i.e. when the similarity between the datasets A and B decrease from
strong to weak.

As we previously stated, the similarity between the two datasets has to be
assessed simultaneously with q and r and not q only : the mean q could be close
to 1, possibly hinting at a perfect similarity between the two datasets, while the
variance 1/r could be great which would then indicate huge differences between
the two estimated sets of parameters for the two datasets.

Prediction. We compared the hierarchical and the non-informative models
using our comparison criterion defined in (12) and computing the ratio betwen
the two models for different values of kα and kγ , kβ and ku being both set
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Figure 5: In grey : posterior mean of q (left) and r (right, on a log scale) for
the hierarchical prior (abscissas have been jittered a bit to prevent overlapping,
and different shades of grey are used to indicate the level of the estimated
density). 300 replications for each value of kα = kγ tested. In black : the circles
correspond to the averages, while the squares correspond to the 5% and 95%
empirical quantiles. Here kβ = ku = 1.
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Figure 6: In grey : ratio between error predictions for the hierarchical and
the non-informative approach (abscissas have been jittered a bit to prevent
overlapping, and different shades of grey are used to indicate the level of the
estimated density). 300 replications for each value of kα = kγ (left, where
kβ = ku = 1) and ku (right, where kα = kβ = kγ = 1) tested. In black : circles
correspond to the averages, while squares and diamonds correspond to the 80%
and 90% empirical quantiles of these ratios.
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to 1. The left part of Figure 6 shows the results we obtained for kα and kγ
simultaneously set to the values 1, 0.95, 0.90, 0.80 and 0.50. Note that since the
results appeared to be approximately symmetric with regard to 1 (i.e. for values
1, 1.05, 1.10, 1.20 and 1.50), we only include one side of the graph in the present
article.

On average, the Bayesian hierarchical model is a clear improvement over
the Bayesian non-informative one, its performances being maximised when the
parameters ηA and ηB are identical (which is the ideal situation). The per-
formances in prediction are obviously somewhat weakened when the difference
between the parameters ηA and ηB grows greater, but the use of the hierarchical
model still leads to an average improvement of 15% over the non-informative
model, as can be seen on Figure 6. The results obtained when kβ or ku are
varying while the other coordinates of k are fixed to 1 were very similar (see for
example the right part of Figure 6).

5 Application

The dataset we used for A corresponds to a specific population in France fre-
quently referred to as “non-metered” because their electricity consumption is
not directly observed but instead derived as the difference between the overall
electricity consumption and the consumption of the “metered” population. We
tested our method on two different populations B : B1 which is a subpopulation
of A and B2 which roughly covers the same people that A does. The sizes (in
days) of the datasets are given in the Table 1 below.

To use the model on the datasets, we kept only one load value per day (the
results shown hereafter were obtained for the load at 10:00AM). One could,
without difficulty, add a cooling effect (symmetric to the heating effect) to the
model. We did not consider such an addition here, since the cooling effect
remains far less important than the heating effect in France, at the present
moment.

A B1 B2

833 207 151

Table 1: Sizes of the real datasets (in days).

We kept the last 30 days of each B out of the estimation datasets and assessed
the model quality over the predictions for those 30 days. It might seem an
arbitrary choice and it is indeed, but the important lack of data prevented
us from keeping 365 days as we previously did during the simulations. The
procedure is similar in spirit to that developped for the simulations, but the
results obtained in this section might be dependant on the temperature of these
days, or their position in the calendar, while we did our best to avoid such a
thing in the simulations. Restricting the prediction period to such a tiny time
window might thus weaken somewhat the robustness of our method, but we
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nonetheless decided to show the performances we obtained on the real data in
this paper.

5.1 Results on the long dataset A
Using the non-informative prior over dataset A we are able to retrieve estimated
predictive densities for future observations or alternatively we can estimate the
quantiles of each of these densities to define credibility regions around the pre-
dictive mean. Most of the true observations lay well within the boundaries of
the 95% credibility intervals of the predictions as can be seen on Figure 7.
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Figure 7: Estimated credibility regions for predictive densities for a few future
days of the dataset A. Future observed values are linked together with a black-
line. The quantiles are drawn and linked in increasing shades of grey from 45%
to 5% and from 55% to 95%.

5.2 Results on the short datasets B
The estimation and prediction errors we obtained for the non-informative and
the hierarchical methods on the two datasets B considered here are given in
Table 2 below. While slightly degrading the quality of the fit on the estimation
part compared to the non-informative approach, the hierarchical method vastly
improves the quality of the predictions, reaching over 50% reduction for the root
mean square error (RMSE) measure of accuracy.

The hierarchical prior allows us to retrieve information about the similarity
between datasets A and B via the estimation of the posterior densities of the
hyperparameters. The estimations of the posterior marginal distributions of k
are presented on Figure 8 for both B1 and B2 and show how these datasets
differ.
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B1 non-informative hierarchical comparison
RMSE est. 775.93 786.97 +1.42%

RMSE pred. 1863.25 894.00 −52.01%
MAPE est. 4.00 3.93 −0.07

MAPE pred. 19.37 9.30 −10.07

B2 non-informative hierarchical comparison
RMSE est. 1127.60 1202.32 +6.62%

RMSE pred. 2286.42 1339.14 −41.83%
MAPE est. 2.82 2.98 +0.15

MAPE pred. 8.65 3.48 −5.17

Table 2: Results for the dataset B1 (top) and B2 (bottom). RMSE is the “root
mean square error” and MAPE is the “mean absolute percentage error”. Both
of these common measures of accuracy were computed on the estimation (est.)
and prediction (pred.) parts of the two datasets.

While the coordinates of k related to β seems to lie around 1, the rest of
these coordinates do not concentrate around 1 for the dataset B1 as can be seen
on the figures provided : the gaps ωj of the model eventail defined in (1) are
clearly centred around 0.5 while the rest of the coefficients linger somewhere
around 0.7 or 0.8. Unlike B1, it seems B2 shares a lot of common features
with A : each marginal posterior density of k is peaked around 1 for B2 which
indicates strong similarities. It is possible to derive credibility intervals on the
mean values for each coordinate of k and these intervals are found to be smaller
on B2 than they are on B1, as attested by the sharpness of the densities which
are much more peaked on the former dataset than they are on the latter.

The same conclusion can be drawn from the Table 3 in which we listed the
estimated posterior means of l, q and r for B1 and B2 : the estimated value of q
(mean of all the coordinates of k) is closer to 1 on the second dataset than on
the first and the estimated value of r (inverse-variance of all the coordinates of
k) is greater too. These two hyperparameters can thus be used to quickly assess
the strength of the similarity between the two datasets A and B while only a
close study of the posterior marginal densities of k can reveal which coordinates
are similar and which are not.

In fact the upper row of Figure 8 suggests that the specification of the
hierarchical prior as a mixture of normal distributions N (qi, ri) could possibly
help in getting even better results on dataset B1, to help distinguish at least
two groups for the coordinates of k using their means : the coordinates that are
close to 1, and those that are not.
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Figure 8: Estimated posterior marginal distributions of k for the hierarchical
method and for both datasets B1 (upper row) and B2 (lower row). Coefficients
corresponding to α, β and (γ, u) are shown on separate graphs.

l 19.17 128.60
q 0.73 1.02
r 24.48 795.16

Table 3: Estimated posterior mean of the hyperparameters l, q and r for both of
the studied datasets. These estimations may serve as a summary of the studies
: the similarity between A and B2 is found to be stronger than the one between
A and B1 as the posterior mean of q (mean of the similarity coefficients ki) and
r (inverse-variance of the similarity coefficients ki) indicate together.
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6 Appendix

The two MCMC algorithms presented below were developed because direct sim-
ulations from the posterior distribution were not possible. The justifications are
given after the algorithms themselves. Notice that the full conditional distribu-
tions of all the parameters but the threshold u appear to be common distribu-
tions in both cases, due to the presence of multiple semi-conjugacy situations.
We used a Metropolis-within-Gibbs algorithm (see Marin and Robert, 2007,
page 96, for a quick description) based on Gibbs sampling steps for every pa-
rameter but u for which we use a Metropolis-Hasting step based on a gaussian
random walk proposal.

6.1 Technical Lemmas

Definition 7 (Gaussian conjugacy operator). We define the (commutative and
associative) operator ∗ as(

µ1

Σ1

)
∗
(
µ2

Σ2

)
=

(
[Σ−1

1 + Σ−1
2 ]−1(Σ−1

1 µ1 + Σ−1
2 µ2)

[Σ−1
1 + Σ−1

2 ]−1

)
for any vectors µ1 and µ2 in Rd, for any symmetric positive definite matrices
Σ1 and Σ2 of size d× d.

Lemma 8 (Conjugacy). Let X1 and X2 be two random truncated Gaussian
vectors in Rd

X1 ∼ N (µ1,Σ1, S1)

X2 ∼ N (µ2,Σ2, S2)

and denote f1 and f2 their respective densities, then f1f2 is integrable. Let
furthermore Y be a random variable with density g(y) ∝ f1(y)f2(y), then Y has
truncated Gaussian distribution

Y ∼ N (µ,Σ, S1 ∩ S2)

where (
µ
Σ

)
=

(
µ1

Σ1

)
∗
(
µ2

Σ2

)
and this result easily extends to any finite number of random truncated (or not)
Gaussian vectors.

Lemma 9 (Conditional distribution). Let X be a random Gaussian vector in
Rd

X =

[
X1

X2

]
∼ N

([
µ1

µ2

]
,

[
R S
S′ T

]−1
)

and X1 and X2 the projections of X over its d1 first and d2 last coordinates
(d = d1 + d2). The conditional distribution of X1 with regard to X2 is then
Gaussian

X1|X2 ∼ N (µ1 −R−1S(X2 − µ2), R−1)
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Lemma 10. Let X and Y be two random vectors respectively in Rd and Rn
such as the conditional distribution of Y with regard to X is Gaussian

Y |X ∼ N
(
Z +MX,σ2In

)
with M matrix of size n× d that has full rank d < n, and let Z be a fixed vector
in Rn. The conditional distribution of X with regard to Y is then Gaussian too

X|Y ∼ N
(
[M ′M ]−1M ′(Y − Z), σ2M ′M

)
.

Proof. Denoting W = Y − Z, straightforward algebra leads immediately to

(W −MX)′σ2In(W −MX) =
[
(M ′M)−1M ′W −X

]′
σ2M ′M

[
(M ′M)−1M ′W −X

]
−
[
(M ′M)−1M ′W

]′
σ2M ′M

[
(M ′M)−1M ′W

]
+W ′σ2InW

where the two last terms on the right hand side of the equation do not depend
on X.

6.2 MCMC algorithm for the estimation of the posterior
distribution, using the informative prior

In the lines below we give the different steps of the MCMC algorithm we used
to (approximately) simulate (θ1, . . . , θM ) according to the posterior distribu-
tion π(θ|y,D) corresponding to the informative prior we presented earlier. The
algorithm goes as follow :

Step 1. Initialise θ1 such that π(θ1|y,D) 6= 0

Step 2. For t = 1, . . . ,M − 1, repeat

(i). Simulate σ2
t+1 cond. to (αt, βt, γt, ut, kt, lt, qt, rt, y,D)

σ2
t+1 ∼ IG

(
N

2
,

1

2
‖y − µ(η|D)‖22

)

(ii). Simulate rt+1 cond. to (αt, βt, γt, ut, σ
2
t+1, kt, lt, qt, y,D)

rt+1 ∼ G

(
ar +

d

2
, br +

1

2

d∑
i=1

(ki − q)2

)

(iii). Simulate qt+1 cond. to (αt, βt, γt, ut, σ
2
t+1, kt, lt, rt+1, y,D)

qt+1 ∼ N

(
[σ−2
q + rd]−1(σ−2

q + r

d∑
i=1

ki), [σ
−2
q + rd]−1

)
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(iv). Simulate lt+1 cond. to (αt, βt, γt, ut, σ
2
t+1, kt, qt+1, rt+1, y,D)

lt+1 ∼ G
(
al +

d

2
, bl +

1

2
(ηt −MAkt)′(ΣA)−1(ηt −MAkt)

)
(v). Simulate kt+1 cond. to (αt, βt, γt, ut, σ

2
t+1, lt+1, qt+1, rt+1, y,D)

kt+1 ∼ N
(
µkt+1,Σ

k
t+1

)
(vi). Simulate γt+1 cond. to (αt, βt, ut, σ

2
t+1, kt+1, lt+1, qt+1, rt+1, y,D)

γt+1 ∼ N
(
µgt+1,Σ

g
t+1

)
(vii). Simulate βt+1 cond. to (αt, γt+1, ut, σ

2
t+1, kt+1, lt+1, qt+1, rt+1, y,D)

βt+1 ∼ N
(
µbt+1,Σ

b
t+1, B

dβ
+ (0, 1)

)
(viii). Simulate αt+1 cond. to (βt+1, γt+1, ut, σ

2
t+1, kt+1, lt+1, qt+1, rt+1, y,D)

αt+1 ∼ N
(
µat+1,Σ

a
t+1

)
(ix). Simulate δt ∼ N (0,ΣMH), υt ∼ U [0, 1] and define ũt = ut + δt

• define ut+1 = ũt if

υt <
π(ũt|αt+1, βt+1, γt+1, σ

2
t+1, kt+1, lt+1, qt+1, rt+1, y,D)

π(ut|αt+1, βt+1, γt+1, σ2
t+1, kt+1, lt+1, qt+1, rt+1, y,D)

• or ut+1 = ut otherwise

where the covariance matrix ΣMH used in the Metropolis-Hastings step is first
estimated over a burn-in phase, and then fixed to its rescaled estimated value
for the real run as in the non-informative approach.

The justifications for each full conditional distribution used in the Gibbs sam-
pling steps, including the explicit expressions of µαt+1,Σ

α
t+1, µ

β
t+1,Σ

β
t+1, µ

γ
t+1,Σ

γ
t+1, µ

k
t+1

and Σkt+1, are now given. To derive these full conditional distributions, we will
make use of the technical Lemmas 8, 9 and 10 presented earlier.

Full conditional distribution of α. The full conditional distribution of α can
directly be deduced from both the prior and the likelihood contributions to it.
Denote θ∗ = (θ, k, l, q, r), and write the full conditional distribution of α as

π(α|θ∗\α, y,D) ∝ gL(α)gp(α)

where gL(α) is the contribution of the likelihood (seen as a function of α to the
full conditional distribution) and gp(α) is the contribution of the prior (seen
as a function of α). We prove that gL and gp both correspond to Gaussian
distributions before using Lemma 8 to combine them into yet another Gaussian
distribution.
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1. Let us first consider the prior contribution gp. Recall first that α only
appears in the following component of the prior

π(θ|k, l) ∝ l d2 exp

(
−1

2
(θ −MAk)′l(ΣA)−1(θ −MAk)

)
,

which directly implies that

gp(α) ∝ exp

(
−1

2
(θ −MAk)′l(ΣA)−1(θ −MAk)

)
.

Denote µ = MAk, Σ = l−1ΣA and denote µα and µη\α the vectors result-
ing from the extractions of the coordinates corresponding to α and η\α
from µ. Finally denote R(α,α) the matrix resulting from the extraction of
the rows and columns both corresponding to α of Σ−1 and denote S(α,η\α)

the one resulting from the extraction of the rows corresponding to α and
columns corresponding to η\α of Σ−1. Using Lemma 8 (and reordering
indices if necessary) it is straightforward that gp(α) is proportional to the
density of a Gaussian distribution

N (µα −R−1
(α,α)S(α,η\α)(η\α− µη\α), R−1

(α,α))

2. Let us now consider the likelihood contribution. Using exactly the same
notations that we used for the full conditional distribution of α for the
algorithm associated to the non-informative approach we immediately find
that gL(α) is proportional to the density of a Gaussian distribution

N ([M ′αMα]−1M ′α(y − Zα), σ2M ′αMα)

just as in (13).

3. With the help of Lemma 8 and using the two results above, we can now
deduce the posterior conditional distribution of α and obtain the Gaussian
distribution

α|θ∗\α, y,D ∼ N (µα,Σα)

where(
µα

Σα

)
=

(
µα −R−1

(α,α)S(α,η\α)(η\α− µη\α)

R−1
(α,α)

)
∗
(

[M ′αMα]−1M ′α(y − Zα)
σ2M ′αMα

)
.

Full conditional distribution of β. Using similar arguments, we obtain the
full conditional distribution of β. Namely, keeping the notation introduced to
derive (14), and combining the prior and the likelihood contributions together
with Lemma 8 we obtain the truncated Gaussian distribution

β|θ∗\β, y,D ∼ N
(
µβ ,Σβ , B

dβ
+ (0, 1)

)
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where(
µβ

Σβ

)
=

(
µβ −R−1

(β,β)S(β,η\β)(η\β − µη\β)

R−1
(β,β)

)
∗
(

[M ′βMβ ]−1M ′β(y − Zβ)

σ2M ′βMβ

)
.

Full conditional distribution of γ. Using once again similar arguments, we
obtain the full conditional distribution of γ. Namely, keeping the notation intro-
duced to derive (15), and combining the prior and the likelihood contributions
together with Lemma 8 we obtain the Gaussian distribution

γ|θ∗\γ, y,D ∼ N (µγ ,Σγ)

where(
µγ

Σγ

)
=

(
µγ −R−1

(γ,γ)S(γ,η\γ)(η\γ − µη\γ)

R−1
(γ,γ)

)
∗
(

[M ′γMγ ]−1M ′γ(y − Zγ)
σ2M ′γMγ

)
.

Full conditional distribution of k. Using the definition of the hierarchical
prior and Lemma 8 we immediately get

k|θ∗\k, y,D ∼ N
(
µk,Σk

)
where (

µk

Σk

)
=

(
q (1, . . . , 1)

′

r−1Id

)
∗
(

(MA)−1η
l−1{(MA)−1ΣA(MA)−1}

)
.

Full conditional distribution of l, q, r and σ2). No calculations are required,
as we respectively identify a gamma distribution, a Gaussian distribution, a
gamma distribution, and an inverse-gamma distribution from (5).

6.3 MCMC algorithm for the estimation of the posterior
distribution, using the non-informative prior

In the lines below, we give the different steps of the MCMC algorithm we used
to (approximately) simulate (θ1, . . . , θM ) according to the posterior distribution
π(θ|y,D) corresponding to the non-informative prior we presented earlier. The
algorithm goes as follows :

Step 1. Initialise θ1 such that π(θ1|y,D) 6= 0

Step 2. For t = 1, . . . ,M − 1, repeat

(i). Simulate σ2
t+1 cond. to (αt, βt, γt, ut, y,D) i.e.

σ2
t+1 ∼ IG

(
N

2
,

1

2
‖y − µ(η|D)‖22

)
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(ii). Simulate γt+1 cond. to (αt, βt, ut, σ
2
t+1, y,D) i.e.

γt+1 ∼ N
(
µγt+1,Σ

γ
t+1

)
(iii). Simulate bt+1 cond. to (αt, γt+1, ut, σ

2
t+1, y,D) i.e.

βt+1 ∼ N
(
µβt+1,Σ

β
t+1, B

dβ
+ (0, 1)

)
(iv). Simulate at+1 cond. to (βt+1, γt+1, ut, σ

2
t+1, y,D) i.e.

αt+1 ∼ N
(
µαt+1,Σ

α
t+1

)
(v). Simulate δt ∼ N (0,ΣMH), simulate υt ∼ U [0, 1] and define ũt =

ut + δt

• define ut+1 = ũt if

υt <
π(ũt|αt+1, βt+1, γt+1, σ

2
t+1, y,D)

π(ut|αt+1, βt+1, γt+1, σ2
t+1, y,D)

• or ut+1 = ut otherwise

where the covariance matrix ΣMH used in this last Metropolis-Hastings
step is first estimated over a burn-in phase (the iterations coming
from this phase are discarded), and then fixed to its estimated value

“asymptotically optimally rescaled” for the final run by a factor
(

2.38
d

)2
(as recommended for Gaussian proposals in section 2 of Roberts and
Rosenthal, 2001).

The justifications for each full conditional distribution used in the Gibbs sam-
pling steps, including the explicit expressions of µαt+1,Σ

α
t+1, µ

β
t+1,Σ

β
t+1, µ

γ
t+1, and Σγt+1,

are now given. Lemma 10 is again a key element to these justifications.
Full conditional distribution of α. The full conditional distribution of α can

directly be deduced from both the prior and the likelihood contributions to
it. Denote n the size of the vector α, and θ\α the vector θ from which the
coordinates corresponding to α have been removed.

Let us first observe that, since the prior distribution we are using on α is
flat, the full conditional distribution of α is in fact proportional to the likelihood
function (seen as a function of α). Now considering the likelihood contribution,
we write

π(α|η\α, y,D) ∝ exp

(
−1

2
σ−2‖y − µ(η|D)‖22

)
Let now Lα be the diagonal matrix whose diagonal coefficients are given by

(Lα)tt = Bt•β + Ct, t = 1, . . . , N,
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let Zα be the vector whose coordinates are given by

(Zα)t = γ(Tt − u)1[Tt,+∞[(u), t = 1, . . . , N,

and denote Mα the matrix Mα = LαA. We can now rewrite µ and get

π(α|θ\α, y,D) ∝ exp

(
−1

2
σ−2‖y − (Zα +Mαα)‖22

)
.

Using Lemma 10, it is then straightforward to see that the full conditional
distribution of α is Gaussian

α|θ\α, y,D ∼ N (µα,Σα) (13)

where (
µα

Σα

)
=

(
[M ′αMα]−1M ′α(y − Zα)

σ2M ′αMα

)
.

Full conditional distribution of β. Using similar arguments, we obtain the full
conditional distribution of β. Namely, denoting Zβ the vector whose coordinates
are given by

(Zβ)t = (Aα)tCt + γ(Tt − u)1[Tt,+∞[(u),

and calling Mβ = LβB where Lβ is the diagonal matrix whose diagonal is Aα,
we obtain the truncated Gaussian distribution

β|θ\β, y,D ∼ N (µβ ,Σβ , B
dβ
+ (0, 1)) (14)

where (
µβ

Σβ

)
=

(
[M ′βMβ ]−1M ′β(y − Zβ)

σ2M ′βMβ

)
.

Full conditional distribution of γ. Using once again similar arguments, we
obtain the full conditional distribution of γ. Namely, denoting Zγ the vector
whose coordinates are given by

(Zγ)t = (Aα)t((Bβ)t + Ct),

and calling Mγ the vector whose coordinates are (Tt − u)1[Tt,+∞[(u) we obtain
the Gaussian distribution

γ|θ\γ, y,D ∼ N (µγ ,Σγ) (15)

where (
µγ

Σγ

)
=

(
[M ′γMγ ]−1M ′γ(y − Zγ)

σ2M ′γMγ

)
.

Full conditional distribution of σ2. No calculations are required, as we im-
mediately identify an inverse-gamma distribution from (6).
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