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Abstract

The complex eigenvalue analysis is a widely used technique to investigate the stability of a dynamical system with
frictional contact. In the case of brake systems, it is the most frequently employed method to study the propensity
of the brake to generate squeal noise. When finite elements models are considered, iterative solvers are needed to
calculate the complex modes and eigenvalues with good precision. In practice, reduced real bases are often used
in order to reduce the computational times. However, great attention should be focused on the errors introduced by
the reduction, which is rarely done. In this paper, the performances of some reduced bases are investigated in the
case of a simple disc/pads system. Bases composed of real coupled modes and bases provided by Component Mode
Synthesis (CMS) techniques are tested. An enrichment of these bases is proposed in order to improve the precision
of the results. In particular, new rubbing attachments modes are proposed to adapt free-interface CMS techniques to
frictional contact. When real coupled modes are used, it is suggested to complete the basis by the static response to
a first-order approximation of the friction forces. Applied to the disc/pads model, the different enrichment options
allow a reduction of the errors on frequencies, divergence rates and mode shapes by a factor comprised between 10
and 100 without significantly increasing the computational times.
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n, t, b normal, tangential and radial directions at a particular contact point
Pn, Pt projection matrices on the relative displacements between disc and pads along the normal and tangential directions defined at the contact nodes
rn, rt normal and tangential reaction forces at the contact nodes
Tc basis for the kernel of the normal contact constraints Pn

Tr some reduced basis or other
M, K mass and stiffness matrix of the uncoupled system
M̃c, K̃c mass and stiffness matrices of the Coupled system with friction
Mµ, Kµ mass and stiffness matrices taking into account the effects of the friction forces
Cb radial dissipation effect damping matrix
Kc stiffness matrix of the frictionless coupled system
µ friction coefficient
ωi, Ri, ξi imaginary part (frequency), real part and divergence rate associated with mode i
ω̂i, ξ̂i circular frequency and divergence rate of mode i of reference solution
Φ, Ψ matrix of normal modes, matrix of static modes
nm, nc number of retained normal Modes, number of Contact nodes
Superscripts
*, T conjugate and transpose of a matrix or a vector
ˆ related to reference solution
D, P related to Disc and Pins
Subscripts
f , s related to free boundary normal modes and sliding boundary normal modes
an, cn related to Normal Attachment modes and Normal Constrained modes
at, aµ related to Tangential Attachment modes and rubbing Attachment modes
R related to the normal modes of the frictionless coupled structure
cat related to the Tangential Attachment modes of the Coupled structure

1. Introduction

The noise generated by vehicles brakes is one of the most difficult problems with brake systems. Research for
predicting and removing brake noise has been regularly performed for many years, especially for the automotive
industry [1, 2, 3, 4, 5]. Among the different encountered brake noises, the squeal noise is characterized by very
annoying spectra with one or several pure frequencies in the medium or high frequency range (1–15 kHz). Despite
great progress in the modeling of brake squeal, many of the noise abatement approaches are still individual and
empirical. It is therefore an important issue to be able to predict this noise.

Friction between two structures in contact can generate many kinds of vibrations and noise [6]. Some of them
are forced vibrations, for instance due to the macroscopic roughness of the surfaces in contact. Others are parametric
vibrations due to the moving loads. However, a common view is that squealing is, above all, the result of self-
sustained vibrations of the brake system [7]. There are mainly two types of instability that can lead to self-sustained
vibrations. Both are due to the non-conservative nature of the friction forces. The first highlighted cause of instability
is the possible decrease of the friction coefficient with the sliding speed [8, 9]. However, most brake squeal models
are based on a second instability mechanism which is often called ‘mode coupling’ [10, 11, 12, 13, 14]. Geometric
instabilities or kinematically constrained instabilities are the other employed names for this mechanism. This may
occur with a constant friction coefficient, as defined by Coulomb’s law, which couples normal and tangential forces at
the interface.

In order to determine the stability of a dynamical system, a classical method consists in solving the eigenvalue
problem corresponding to the system linearized around the equilibrium [10]. This simple technique provides complex
modes and complex eigenvalues. Eigenvalues with positive real parts are characteristics of unstable equilibrium points
which diverge from steady sliding and lead to self-sustained vibrations. Many studies are limited to this approach and
do not explicitly calculate the self-sustained vibrations. Indeed, a pure non-linear transient or stationary analysis is
necessary to compute the limit cycles the problem tends to [15].

When finite element models are considered, computing the stability requires to solve a non-symmetrical eigenvalue
problem with a great number of degrees of freedom. Such a problem can be solved by using widespread iterative
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Figure 1: Local cartesian coordinate system at one particular point of the interface

algorithms based on Arnoldi process [16] or less known techniques such as the residue iterative method [17]. In any
case, the use of iterative methods is highly expensive. To overcome this computational problem, a common technique
is to expand the dynamic equations on reduced real bases. Practically, bases composed of frictionless (real) coupled
modes or merely free components modes are often used. However, the question of errors provided by the reduction is
rarely investigated.

In this context, Component Mode Synthesis (CMS) [18, 19, 20, 21, 22] appears to be a logical issue for the dynam-
ical study of a brake mechanism composed of many substructures. It offers the advantage of computing component
modes separately, thus requiring less computational efforts than directly calculating the global modes. A key point in
CMS techniques is that the reduced bases not only contain components’ normal modes but also some static boundary
modes, such as attachments modes in free-interface methods or constrained modes in fixed-interface ones [22]. These
modes allow statically complete bases to be built which greatly improve the results.

In this paper, the performances of reduced bases are investigated in the case of a simple disc/pads system. Bases
composed of real coupled modes and bases provided by CMS techniques are tested. An enrichment of these bases is
proposed in order to improve the precision of the results. The idea behind this enrichment is to build bases statically
complete even when friction forces are taken into account. In particular, new rubbing attachments modes are proposed
to adapt free-interface CMS techniques to frictional contact. In addition, when real coupled modes are used, it is
suggested to complete the basis by the static response to a first-order approximation of the friction forces.

In section 2, the formulation of the problem is described, based on the previous work initially proposed by Moirot
[23] and used for instance by Lorang [14]. Reduction principle and errors criteria which are employed to evaluate the
reduction approximation are given in section 3. Section 4 introduces the disc brake model. Components modes and
real coupled modes are analyzed and a preliminary stability study is performed. Classical CMS bases are first applied
on the frictionless problem in section 5. Finally, in section 6, enrichments are introduced for the problem with friction
and performances of classical and enriched bases are compared and discussed.

2. Formulation of the problem

In this section, the discretized equations governing the stability of the steady sliding of a disc/pads system are
derived. The main assumptions are the linear elasticity in the volumes of the structures combined with unilateral
contact and Coulomb friction at the interface. At each point of the interface, a local cartesian coordinate system
(n, t, b) is defined where n is the direction normal to the disc, t is the direction of the steady sliding and b is the radial
direction defined as b = n ∧ t (c.f. figure 1).

2.1. Continuous non-linear form

The rotation speed of the disc is supposed to be constant and sufficiently low so that the gyroscopic terms and the
volume forces induced by rotation may be neglected. By using an eulerian description, the displacements field u and
the stresses tensor σ in the volumes D and P of the disc and the pads verify:

σ = A : ∇u, ∇ · σ = ρü ∀x ∈ D, P (1)

where A is Hook’s tensor.
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On the surface S c potentially in contact, the disc and the pads are coupled with conditions of unilateral contact
with Coulomb friction, which may be expressed by:

Rn ≤ 0, g ≤ 0, gRn = 0 ∀x ∈ S c∣∣∣Rt

∣∣∣ ≤ −µRn,
∣∣∣w∣∣∣ , 0 ⇒ Rt = µRn

w∣∣∣w∣∣∣ ∀x ∈ S c
(2)

In these equations, g = g0 + un denotes the normal gap between the disc and the pads where g0 is the initial gap and
un is the relative normal dynamic displacement. In addition, w = w0t + u̇t denotes the sliding velocity between the
disc and the pads where w0 is the stationary sliding velocity due to the disc rotation and u̇t is the relative tangential
dynamic velocity. Finally, Rn and Rt represent the normal and tangential contact forces between the disc and the pads.
The friction coefficient µ is supposed to be constant.

2.2. Continuous linear form

If the rotation speed is not equal to zero, the previous equations may have a quasi-static solution, or steady sliding,
for which u̇ = 0 (the existence and the uniqueness of this equilibrium is not discussed here). If initial conditions
differ from the steady sliding, two cases may be distinguished: the stable — non-squealing — case if the solution
converges to the equilibrium, and the unstable — squealing — case if the solution grows, leading to self-sustained
vibrations. The analysis of the stability is generally achieved by a linearization method. Considering small regular
sliding perturbations that do not break the contact, the contact forces may be linearized. On the contact surface S 0 in
the quasi-static solution, the perturbation verifies the following equations:

un = 0 ∀x ∈ S 0

Rt = µRnt − cbu̇bb ∀x ∈ S 0
(3)

In these equations, u̇b = u̇t.b denotes the relative tangential velocity between the disc and the pads in the direction b
and cb = Rn0/w0 where Rn0 is the quasi-static normal contact force. In the expression of the linearized friction force,
the first term (along t) is classical and comes from the linearization of the module of the friction force. The second
term (along b) is less well-known and is due to the linearization of its direction ; it only appears in three dimensional
models and acts as a viscous contact damping (it is also referred to as radial dissipation effect by some authors [24]).

2.3. Discrete linear form

By using a finite element method with conforming linear meshes at the interface, the previous linear equations (1)
and (3) may be written in a discrete form as follows :

Mü + Cbu̇ +Ku = PT
n rn + PT

t rt

Pnu = 0
rt = µrn

(4)

where M and K denote the mass and stiffness matrices of the uncoupled system, Cb is the damping matrix associated
to the viscous contact damping cb and u represents the corresponding displacements vector. In addition, rn and rt

denote the normal and tangential reaction forces at the contact nodes along the directions n and t whereas Pn and
Pt are the projection matrices on the relative displacements between the disc and the pads along the same directions.
After some algebraic manipulations, all the linear contact constraints may be eliminated and system (4) may be written
in a more compact form :

u = Tcuc

M̃cüc + C̃cu̇c + K̃cuc = 0
(5)
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where

M̃c, = TT
c M̃Tc

K̃c = TT
c K̃Tc

C̃c = TT
c CbTc

(6)

and

M̃ =M +Mµ

K̃ = K +Kµ
(7)

In the above expressions, Tc is a basis for the kernel of the normal contact constraints Pn, Mµ and Kµ are non-
symmetrical matrices taking into account the effects of the friction forces and given by:

Mµ =
µ

2
PT

t PnM

Kµ =
µ

2
PT

t PnK
(8)

2.4. Complex eigenvalue analysis

The stability of the steady sliding may then be deduced from a complex eigenvalue analysis of the system:(
λ2M̃c + λC̃c + K̃c

)
φc = 0 (9)

providing a set of complex modes φi = Tcφci and complex eigenvalues λi = Ri + iωi in the frequency range of
interest. The perturbation may be approximated by a truncated superposition of these modes, oscillating at their natural
pulsation ωi but with divergent or vanishing envelopes controlled by Ri and initial complex amplitudes ai = |ai| exp(ϕi)
provided by the initial conditions :

u ' Re

∑
i

aiφi exp(λit)


'
∑

i

|ai| exp (Rit) (Re (φi) cos (ωit + ϕi) − Im (φi) sin (ωit + ϕi))
(10)

If all the modes are stable (i.e. ∀i Ri < 0) the perturbation vanishes. On the other hand, if a complex mode is unstable
(i.e. ∃i Ri > 0), the perturbation grows, leading to self-sustained vibrations. This case may happen with friction forces
because of the presence of the non-symmetric matrices Mµ and Kµ. For each mode, a divergence rate may also be
defined, physically equivalent to a negative damping ratio :

ξi =
Ri

ωi
(11)

Ri (unit s-1) corresponds to the geometric divergence of the envelope of mode i, whereas divergence rate ξi (unit rad-1)
corresponds to that geometric divergence in phase unit.

3. Reduction of the problem

3.1. Principle

Solving a large non-symmetric eigenvalue problem like system (9) is very expensive from a computational point of
view. Iterative algorithms are available but computation times are often prohibitive to conducting parameter studies.
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Consequently, Ritz reduction methods are often used to solve the problem. This consists in searching for the best
approximated solution in a reduced subspace characterized by a basis Tr, by solving the reduced eigenvalue problem:(

λ2M̃r + λC̃r + K̃r

)
φr = 0 (12)

where

M̃r = TT
r M̃Tr

K̃r = TT
r K̃Tr

C̃r = TT
r CbTr

(13)

providing a set of approximated complex modes {φ̂i} = Trφri and approximated complex eigenvalues λ̂i = R̂i + iω̂i in
the frequency range of interest. Obviously, to be compatible, vectors in the reduced subspace must at least verify the
normal contact constraints, i.e. PnTr = 0.

A widely used method is to choose the real coupled modes (without friction) of the structure as a reduced basis.
Indeed, these modes are calculated by solving a real symmetric eigenvalue problem, for which very efficient iterative
algorithms are available. Another used method is to build a reduced basis from component modes, according to the
so-called Component Mode Synthesis. These bases may give good results in some cases. However, as shown in the
last section of the paper, a better approximation is obtained by using bases which take into account particular static
responses to friction forces.

3.2. Quality of the approximation

First, the criteria employed to evaluate the quality of the approximation due to the reduction are presented below.

3.2.1. Error on the residues
A first criterion is defined by considering the force residue of the non-reduced eigenvalue equation for a couple of

approximated mode φ̂i and approximated eigenvalue λ̂i:

RF
i = TT

c

(
λ̂2

i M̃ + λ̂iCb + K̃
)
φ̂i (14)

where the matrix Tc is needed here to eliminate the normal reaction forces at the interface. The method proposed by
Bobillot is then used [17]: in order to obtain an energy indicator, the force residue is first converted into a displacement
residue by using the stiffness matrix of the frictionless coupled system Kc = TT

c KTc:

RU
i = K−1

c RF
i (15)

Finally, the residue error is defined as the ratio between the deformation energy of the residue and the deformation
energy of the considered mode :

εres
i =

∣∣∣∣RU
i
∗T RF

i

∣∣∣∣
φ̂i
∗T Kφ̂i

(16)

3.2.2. Error on the mode shapes
Another criterion is defined by comparing the approximated complex modes with the exact complex modes. For

a given exact mode φi, the first step is to identify the corresponding approximated complex mode. This is achieved by
reordering the approximated base such that:

MAC-M
(
φi, φ̂i

)
= max

j

(
MAC-M

(
φi, φ̂ j

))
(17)
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Figure 2: The disc/pads finite element model

where MAC-M is the complex mass-weighted Modal Assurance Criterion defined by:

MAC-M
(
φi, φ̂ j

)
=

∣∣∣φ∗Ti Mφ̂ j

∣∣∣2∣∣∣φ∗Ti Mφi

∣∣∣ ∣∣∣∣φ̂ j
∗T Mφ̂ j

∣∣∣∣ (18)

This criterion was already defined for real modes as the NOC [25]. Thanks to this reordering, φ̂i is the closest
approximated mode to φi by considering the classical complex norm and scalar product associated with the frictionless
mass matrix. The error on the mode shapes is then defined as:

εmac
i = 1 −MAC-M

(
φi, φ̂i

)
(19)

No criterion is defined on the extra diagonal terms of the MAC-M since complex modes are not supposed to be
orthogonal with each other. Indeed, no hermitian scalar product may be associated with the complex eigenvalue
problem because of the non-symmetry induced by the friction forces.

3.2.3. Error on the frequencies and divergence rates
The matching of the approximated and exact bases now allows the calculation of some errors on frequencies:

ε
frq
i =

|ωi − ω̂i|

ωi
(20)

and also on divergence rates:
εdiv

i = |ξi − ξ̂i| (21)

where ξi is the exact divergence rate and ξ̂i the approximated divergence rate. This last criterion is defined as an
absolute error because the divergence rates are relative indicators themselves. Practically, in order to make any
conclusions on stability, this error has to be compared with the precision of a damping ratio measurement.

4. The disc/pads system

In this section, the model used to evaluate the performance of some reduced bases is described. This simple model
(cf. figure 2) is derived from a more complex one which was developed to find instabilities in a TGV (French high-
speed train) braking system [14, 26, 27, 28]. The main characteristic of this system is the geometry of the pads and
in particular the friction material which is distributed into a set of small cylindrical pins. Compared with the original
model, several simplifications have been performed in order to reduce its size. Firstly, the flexibility of the pads’
supporting structures (backplate and support) is neglected: a fixed boundary condition is assumed for the external
face of the cylindrical pins. Secondly, only 6 pins applied on either sides of the disc are taken into account (vs 18 for
the original model). Lastly, a rougher mesh is used since the frequency range of interest is restrained here to 0− 5000
Hz which leads to a total number of degrees of freedom n = 30942 and a number of contact nodes nc = 228. This
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Figure 3: Free disc modes : (a) A0-5; (b) A1-3; (c) R0-3; and, (d) C0-1

simplified model is sufficient to bring out instabilities quite similar to those obtained with the original model and
representative of some of the squealing noises generated on the trains.

4.1. Component modes

In a first step, the modes of each component are determined separately in order to go further into their own
dynamics. For the disc with free boundary conditions on the contact surface, three mode types are distinguished:

• the axial modes Am-n for which axial deformations are dominant (out-of-plane, flexion);

• the radial modes Rm-n for which radial deformations are dominant (in-plane);

• the circumferential modes Cm-n for which circumferential deformations are dominant (in-plane).

In addition, each mode is characterized by a number of nodal circles m and a number of nodal diameters n. Because
of the axi-symmetry of the disc, all modes with one nodal diameter or more are double, which means that there are
two modes at the same frequency with the same shape but shifted by an angle equal to π/(2n). Some examples of the
different encountered modes are represented on figure 3.

Pins modes are computed for ‘sliding’ boundary conditions on the contact surface that are fixed in the normal
direction and free in the tangential one. With these conditions, the dynamic behavior of the pins is rather close to the
one which takes place in coupled conditions since the disc is much more rigid than the pins. Only three modes per pin
are found below 5 kHz: a double flexural mode F1 and a torsional mode T1 (cf. figure 4).

4.2. Real coupled modes

The second step is the determination of the real coupled modes (without friction i.e. Mµ = Kµ = Cb = 0) for which
the disc and the pins are coupled only through normal degrees of freedom on the contact surface. They are computed
here by using a classical IRA/Sorensen iterative algorithm [29]. In the frequency range above 1500 Hz, these coupled
modes are easy to describe. One may distinguish the modes controlled by the disc from the modes controlled by the

8



(a) (b)

Figure 4: ‘Sliding’ pin modes: (a) F1; and, (b) T1

Comp. modes Real coupled modes Complex modes Cb = 0 Complex modes Cb , 0
Type Freq. [Hz] Frequency [Hz] Freq. [Hz] Div. [%] Freq. [Hz] Div. [%]
A0-1 (−/+) 251 295/312 295/312 – 296/313 –
A0-0 352
A0-2 (−/+) 569 489/697 489/700 – 489/700 –
C0-0 644 644 645 – 644 –
R0-1 (−/+) 649 643/647 644/648 – 644/648 –/−0.093
? 1057 1061 – 1061 –
A0-3 (−/+) 1267 1374/1567 1379/1576 – 1379/1576 –
A1-0 1404 1449 1450 – 1450 –
R0-2 (−/+) 1822 1823/1825 1823/1826 – 1823/1826 –
A1-1 (−/+) 2082 2087/2150 2087/2153 – 2087/2153 –
A0-4 (−/+) 2220 2284/2305 2297 ±0.64 2297 +0.65/−0.67
A0-5 (−/+) 3345 3380/3392 3376 ±0.98 3376/3377 −1.02/+0.95
A1-2 (−/+) 3365 3350/3371 3352/3386 – 3352/3387 –/−0.078

F1 (×24) 3353 3551 to 3562


3516 to 3564

3542
3550

−

±0.89
±0.10


3521

3525 to 3528
3535
3537

3552 to 3563

−0.12
−

−0.51
+0.88

−1.76 to − 1.07
R0-0 3704 3704 3704 – 3704 –
T1 (×12) 3934 3934 3934 – 3933 −2.34 to −1.41
R0-3 (−/+) 3990 3989/3991 3989 – 3989/3990 –
C0-1 (−/+) 4500 4499/4500 4499/4500 – 4499/4500 –
A0-6 (−/+) 4659 4641/4653 4641/4652 – 4641/4652 –
A1-3 (−/+) 4794 4800/4815 4799/4814 – 4800/4815 –

Table 1: Characteristics of the 66 first components modes, real coupled modes and complex modes for µ = 0.4 and
Cb = 0 or Cb , 0 (– : nil or negligible)
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(a) (b)

(c) (d)

Figure 5: Real coupled modes: (a) A04−, (b) A04+ and (c) and (d) two F1-type

pins. The first ones are close to the modes of the free disc presented above but with pins deformations following
the disc motion, whereas the other ones are very similar to the sliding pin modes F1 and T1 but with a little disc
contribution (cf. figure 5). In the low-frequency range, the higher stiffness brought by the pins tends to modify more
strongly the free disc modes and some of them are harder to describe. However, a designation based on components
modes is kept for most of the coupled modes in all the frequency range (cf. table 1).

It is important to notice that, as the coupling breaks the symmetry of the components, disc double modes are split
and pins multiples modes are dispersed. In particular, the difference between the frequencies of two disc modes of the
same type (called − and +) may be explained by the difference of global stiffness brought by the pins according to the
position of the disc nodal diameters. This is very pronounced for the axial disc modes and flexural pins modes. On
the other hand, coupling has very little effect or no effect at all on some component modes with small normal contact
amplitude such as the in-plane disc modes (circumferential and radial) and torsional pins modes.

4.3. Complex modes
The stability of the system is studied here for 90 values of the friction coefficient µ, varying from 0 to 0.45, by

using the residue iterative method [17]. Two cases are considered by taking the damping matrix Cb into account or
not ; note that no structural damping is taken into account in this paper. This matrix is the only one which depends
on the equilibrium and thus is sensitive to the braking conditions. In this study, it is determined for a rotation speed
equal to 4 rad/s and a static global load of 1000 N on each side of the disc. Neglecting it amounts to considering a
high speed/low effort configuration. In both cases, the obtained complex modes are close to the real coupled modes
in terms of frequencies and shapes except that some modes become unstable whereas others are damped.

Stability for µ = 0.4
When matrix Cb is neglected, the system has four unstable modes, two disc modes and two pins modes (cf.

table 1). The main characteristic of the unstable modes is that they are not stationary: they rather look like rotating
waves. Moreover, they work in pair with a similar stable mode, rotating the opposite way with a divergence rate of
the same magnitude but the opposite sign. Adding damping matrix Cb, while there is no structural damping, has a
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Figure 6: Stability charts for µ = 0.4 and: (a) Cb = 0; or (b) Cb , 0

stabilizing effect. It breaks the symmetry of the stability chart (cf. figure 6) by reducing the divergence rates. As a
consequence, the second slightly unstable pins mode becomes stable and many pins modes turn to highly negative
divergence rates. It has been demonstrated that increasing damping does not always have a stabilizing effect [10]. The
system is stabilized by a “lowering effect” when the two modes involved in the coalescence are equally damped. On
the contrary, both “lowering” and “smoothing” effects take place when the two modes are not equally damped ; in the
case of a prevailing “smoothing effect” the system may be unintuitively destabilized by added damping. However the
influence of damping upon stability is beyond the scope of this paper.

Bifurcation
Observing the evolution of the unstable modes with varying friction coefficient is useful to clarify the origin of

instabilities. When neglecting Cb, the coalescence of the disc modes is easy to observe (cf. figure 7): the frequencies
of the two similar disc modes, distinct at µ = 0, become equal with increasing friction coefficient. There are then two
modes at the same frequency, one being stable and the other unstable. The same coalescence phenomenon occurs for
pins modes but the higher modal density makes it a bit more difficult to see (cf. figure 8). With increasing friction
coefficient, an initially unstable pin mode restabilizes for µ = 1.8. When adding Cb, rather similar results can be
observed (cf. figure 7 and figure 9). Computing these graphs is extremely expensive: a complex eigenvalue problem
has to be iteratively solved for each friction coefficient step. A reduced basis could therefore be useful to reduce the
computation times.

5. Reduced bases for the frictionless problem

Before using reduced bases for the stability study, component mode synthesis methods (CMS) are tested on the
problem without friction. The objective is to evaluate the performance of some bases constructed from the component
modes for the calculation of the real coupled modes. This is a classical problem but it is presented here as a preliminary
study and also as an introduction to the formalism used further in the stability study of section 6.

5.1. Description of the bases

5.1.1. Reduction of the components
For the reduction of the components, two classical CMS bases are used. The first one is a combination of dynamic

free-interface normal modes and static boundary attachments modes [19, 20, 21] whereas the second one uses fixed-
interface dynamic normal modes plus static boundary constrained modes (original Craig-Bampton method [18]). In
both cases, static boundary modes are added to dynamic normal modes in order to make the bases statically complete
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Figure 7: Coalescence of complex disc modes: (a)–(c) A04−/A04+; and, (b)–(d) A05−/A05+; black dots: Cb = 0;
gray dots: Cb , 0
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Figure 8: Coalescence of complex pins modes F1, Cb = 0: (a) frequency; (b) divergence rate

12



0 0.1 0.2 0.3 0.4 0.5
3545

3550

3555

3560

Friction coefficient [−]

F
re

qu
en

cy
 [H

z]

0 0.1 0.2 0.3 0.4 0.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Friction coefficient [−]

D
iv

er
ge

nc
e 

ra
te

 [H
z]

(a)

0 0.1 0.2 0.3 0.4 0.5
3545

3550

3555

3560

Friction coefficient [−]

F
re

qu
en

cy
 [H

z]

0 0.1 0.2 0.3 0.4 0.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Friction coefficient [−]

D
iv

er
ge

nc
e 

ra
te

 [H
z]

(b)

Figure 9: Coalescence of complex pins modes F1, Cb , 0: (a) frequency; (b) divergence rate

for the coupled system. In our problem, two components are considered (the disc and the whole set of pins) and the
interface is restrained to normal degrees of freedom of the contact surface. In addition, since the disc and the pins
have no rigid body modes, the definitions of the static boundary modes do not present any particular problem. If one
then defines:

• the matrix ΦD
f (resp. ΦP

f ) of the nD
m (resp. nP

m) first normal modes of the disc (resp. pins) with free boundary
conditions on contact nodes,

• the matrix ΦD
s (resp. ΦP

s ) of the nD
m (resp. nP

m) first normal modes of the disc (resp. pins) with sliding boundary
conditions on contact nodes i.e. fixed in the normal direction and free in the tangential one,

• the matrix ΨD
an (resp. ΨP

an) of the nc normal attachments modes of the disc (resp. pins) i.e. the static responses
of the disc (resp. pins) to imposed unit normal forces on contact nodes,

• the matrix ΨD
cn (resp. ΨP

cn) of the nc normal constrained modes of the disc (resp. pins) i.e. the static responses
of the disc (resp. pins) to imposed unit normal displacements on contact nodes,

the disc (resp. pins) free-interface complete base may be expressed asΦD
f Ψ

D
an (resp. ΦP

fΨ
P
an) and the disc (resp. pins)

fixed-interface complete base may be written ΦD
s Ψ

D
cn (resp. ΦP

sΨ
P
cn). In our notations, all the modes are defined for

the same set of degrees of freedom corresponding to the global displacement vector u.

5.1.2. Connection of the components
Considering the two kinds of component bases presented above, four bases may be defined for the whole structure

according to the choice made for each component. In this study, only three of them are tested (see also table 2):

• the ”free” one combines free-interface bases for both the disc and the pins ; in this particular case, a global
set of static boundary attachments modes (ΨD

an − Ψ
P
an) is used rather than one for each component ; this is a

frequently used free-interface CMS technique : it amounts to adding constraints on the generalized coordinates
(representing static boundary forces) associated to the attachments modes [21, 22];

• the ”fixed” one combines fixed-interface bases for both the disc and the pins;
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Method Reduced basis Tr0 size of Tr0 size of Tr

free ΦD
f Φ

P
f (ΨD

an −Ψ
P
an) nD

m + nP
m + nc nD

m + nP
m

fixed ΦD
s Φ

P
sΨ

D
cnΨ

P
cn nD

m + nP
m + 2nc nD

m + nP
m + nc

mixed ΦD
f Φ

P
sΨ

D
anΨ

P
cn nD

m + nP
m + 2nc nD

m + nP
m + nc

Table 2: CMS bases for the frictionless problem

Max. nD
m nP

m
Frequency all methods free method fixed and mixed method

6 kHz 30 36 36
7.5 kHz 60 72 36
10 kHz 80 120 60

Table 3: Number of components normal modes taken into account in CMS

• the ”mixed” one combines a free-interface basis for the disc and a fixed-interface basis for the pins.

Actually, in the mixed basis, the component normal modes presented in section 4 are used. It is thus expected to
exhibit good results since the real coupled modes are close to these component modes. On the contrary, a mixed basis
with a fixed-interface basis for the disc and a free-interface basis for the pins would be of poor interest since, in this
case, component modes would be very far from the real coupled modes.

Before using the basis to solve the eigenvalue problem, the connection of the components is achieved by forcing
the base to satisfy the normal contact constraints PnTr = 0. For an initial unconstrained reduced base Tr0, this is done
by taking a final constrained reduced base Tr such that:

Tr = Tr0Tcr (22)

where Tcr is a basis for the kernel of PnTr0. It generally leads to the elimination of nc vectors in the basis which results
in the bases sizes given in table 2.

5.2. Results

In order to obtain good results with CMS, it is well known that component normal modes need to be computed in
an extended frequency range compared with the one of interest. The three methods have thus been tested for three sets
of normal modes corresponding to a maximum frequency equal to 1.2, 1.5 and 2 times the limit frequency of the study
i.e. 6, 7.5 and 10 kHz. The numbers of disc and pins modes corresponding to these frequencies are given in table 3.
The errors due to the reduction are given on figures 10, 11 and 12. The error criteria on residues εres

i , frequencies εfrq
i

and mode shapes εmac
i defined previously are used (which corresponds respectively to the res, frq and mac labels on

the x axis of each figure). For the errors on frequencies and shapes, the reference modes are the real coupled modes
presented in section 4 and computed by using a classical IRA/Sorensen algorithm. Only the maximum errors for each
kind of mode (disc modes, F1 pin modes and T1 pin modes) are given.

For all tested bases, errors on torsional T1 pin modes are extremely small (out of scale on the figures) except for
criterion εmac

i . Actually, these modes have the same frequency and are not coupled with the disc: these are purely
multiple modes. As a consequence, all linear combinations of them are solutions of the eigenvalue problem and a
criterion based on individual shapes comparison is not pertinent in this particular case. For the other kinds of modes,
results are coherent: errors corresponding to the three criteria move together in the same direction with the same order
of magnitude. However, errors εmac

i tend to reduce with more difficulty than the others.
The free basis gives rather good results, even in the 6 kHz case, especially for the disc modes. This is not surprising

since this is the disc which controls the dynamics of the whole system. When component modes up to 7.5 kHz or
10 kHz are kept, the errors are even divided by 100 for both the disc and pins modes and the free method reaches
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Figure 10: Performance of the free CMS basis for the frictionless problem for: (a) disc modes; (b) F1 pin modes; and,
(c) T1 pin modes
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Figure 11: Performance of the fixed CMS basis for the frictionless problem for: (a) disc modes; (b) F1 pin modes;
and, (c) T1 pin modes
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Figure 12: Performance of the mixed CMS basis for the frictionless problem for: (a) disc modes; (b) F1 pin modes;
and, (c) T1 pin modes
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Figure 13: Global comparison of the performance of the CMS bases for the frictionless problem

its optimum. Conversely, the fixed basis is not adapted for a good description of the disc modes but gives acceptable
results for the pins modes. However, keeping more components modes does not improve the performances of the
basis in a significant way. As expected, the mixed basis gives very small errors for both the disc and the pins with a
reduced number of component modes. However, as for the fixed method, the errors are not significantly reduced when
the number of component modes increases. A global comparison of the three bases is given on figure 13. For this
comparison, the maximum error on both the disc and F1 pins modes is taken into account and components modes up
to 10 kHz are kept. It is now clear that, despite the initial good performances of the mixed basis, the free one gives the
best results when it has converged: the dynamics of the coupled system is better described when a sufficient number
of free pins modes are taken into account.

6. Reduced bases for the stability study

In this section, the use of reduced bases for the stability analysis is investigated. The friction is taken into account
in the eigenvalue problem leading to complex eigenvalues and complex modes. Two kinds of bases are tested and
compared together:

• bases built from the components modes (CMS),

• bases built from the real coupled modes.

6.1. Enrichment of CMS bases

The CMS bases defined in the previous section and adapted to the frictionless problem may be used for the stability
study. However, since friction is added, some forces apply on the tangential contact degrees of freedom in the coupled
system. Therefore, it may be interesting to add some static responses to these forces in the bases through the use of
tangential attachment modes. To that end, we define the matrixΨD

at (resp. ΨP
at) of the nc tangential attachments modes

of the disc (resp. pins) ; it corresponds to the static responses of the disc (resp. pins) to imposed unit tangential forces
on contact nodes in the direction t. Thus, the enriched CMS bases given in table 4 may be constructed. An even more
adapted approach is to include in the basis the static responses to normal and friction forces applied together on the
components. This is done by defining some new rubbing attachment modes for the disc and the pins as:

ΨD
aµ = Ψ

D
an + µΨ

D
at

ΨP
aµ = Ψ

P
an + µΨ

P
at

(23)
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Method Reduced basis Tr0 size of Tr0 size of Tr

Free + t.a.m. ΦD
f Φ

P
f (ΨD

an −Ψ
P
an)(ΨD

at −Ψ
P
at) nD

m + nP
m + 2nc nD

m + nP
m + nc

Free with r.a.m. ΦD
f Φ

P
f (ΨD

aµ −Ψ
P
aµ) nD

m + nP
m + nc nD

m + nP
m

Fixed + t.a.m. ΦD
s Φ

P
sΨ

D
cnΨ

P
cn(ΨD

at −Ψ
P
at) nD

m + nP
m + 3nc nD

m + nP
m + 2nc

Mixed + t.a.m. ΦD
f Φ

P
sΨ

D
anΨ

P
cn(ΨD

at −Ψ
P
at) nD

m + nP
m + 3nc nD

m + nP
m + 2nc

Table 4: Enriched CMS bases for the stability study (t.a.m.: tangential attachment modes, r.a.m.: rubbing attachment
modes)

Method Reduced basis Tr size of Tr

Real ΦR nR

Real + t.a.m. ΦR(ΨD
cat −Ψ

P
cat) nR + nc

Real + 1st-ord. ΦRΨRµ 2nR

Table 5: Bases constructed from the real coupled modes for the stability study (t.a.m.: tangential attachment modes,
1st-ord.: 1st-order approximation of the response to frictional forces)

However, this enrichment technique may only apply when normal attachments modes are already present in the initial
basis, which is the case for the free and the mixed CMS bases. In this paper, it has only been tested for the enrichment
of the free CMS basis as it is summarized in table 4.

6.2. Enrichment of the real coupled modes

As previously mentioned, a widely used method is to choose the real coupled modes of the structure as a reduced
basis. It is pertinent since efficient iterative algorithms are available for the resolution of the symmetric real problem.
Thus, we define the matrix ΦR of the first nR normal modes of the frictionless coupled structure. Although this basis
may give rather good results, it would be interesting to complete it by adding some static response to the friction
forces, similar to the enrichment of the CMS bases. This is done by using the matrix ΨD

cat (resp. ΨP
cat) of the nc

tangential attachments modes of the coupled structure (with contact constraints but no friction). It corresponds to the
static responses of the coupled structure to imposed unit tangential forces on disc (resp. pins) contact nodes in the
direction t. With this technique, the basis is statically complete since the responses to every possible friction forces
are included.

Another possibility is to carry out a first-order approximation of the friction forces and the corresponding static
response. Although real coupled modes are obtained without friction, it is possible to calculate the static part of the
friction forces which would be induced by the displacement field due to these modes:

F (ΦR) = KµΦR (24)

With the use of the stiffness matrix Kc of the frictionless coupled system, the corresponding static response is obtained:

ΨRµ (ΦR) = TcK−1
c TT

c KµΦR (25)

Matrix ΨRµ may then be used to complete the real coupled modes. This enrichment method finds its origin in
the work of Plouin [30] where it has been proposed in a similar form for viscoelastic problems. The two resulting
enriched bases and their size are summarized in table 5.
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Figure 14: Performance of the free CMS bases for the stability study for: (a) disc modes; (b) unstable pins modes;
and, (c) other pins modes
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Figure 15: Performance of the fixed CMS bases for the stability study for: (a) disc modes; (b) unstable pins modes;
and, (c) other pins modes

6.3. Results for µ = 0.4
The errors due to the reduction are given on figures 14, 15 and 16 for the CMS bases and on figure 17 for the bases

built from real coupled modes. The error criteria on residues εres
i , frequencies εfrq

i , divergence rates εdiv
i , and shapes

εmac
i previously defined are used (which corresponds respectively to the res, frq , div and mac labels on the x axis of

each figure). For the errors on frequencies, divergence rates and shapes, the reference modes are the complex modes
presented in section 4 and computed by using a residue iterative algorithm. In the CMS bases, the maximal number of
component modes is taken into account (see table 3 at 10 kHz). In the bases constructed from the real coupled modes,
a number of normal modes nR = 66 is generally used which corresponds to a truncation frequency of 6 kHz. A test
with a more extended real base with nR = 130 modes, i.e. a truncation frequency of 10 kHz, is also performed for
comparison.

As for the frictionless case, the maximum errors for each kind of mode are given but unstable and stable pins
modes are distinguished instead of F1 and T1 pin modes. Indeed, the problem of pertinence of the shape criterion
εmac

i for multiple modes is also encountered here for some sets of stable F1 pin modes which are very close to each
other. They are grouped together with the T1 pins modes which are still not affected by the contact, even with friction
(cf. table 1). Except this particular problem for some quasi-multiple stable pins modes, the different errors criteria
give rather coherent results. However, errors on mode shapes tend to decrease with even more difficulty than in the
frictionless case and errors on divergence rates seem to be very sensitive in some cases.

The results obtained when using the CMS or real classical bases are acceptable, but it is clear that adding new
static modes adapted to friction improves their performances. This is particularly true for the bases built from free
components modes or real coupled modes (cf. figure 14 and 17) which share a very good initial description of
the dynamics of the frictionless system. With the newly introduced static modes, all errors are reduced by a factor
comprised between 10 and 100 both for the disc modes and the unstable pins modes. On the other hand, the extension
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Figure 16: Performance of the mixed CMS bases for the stability study for: (a) disc modes; (b) unstable pins modes;
and, (c) other pins modes
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Figure 17: Performance of the bases constructed from the real coupled modes for the stability study for: (a) disc
modes; (b) unstable pins modes; and, (c) other pins modes
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Figure 18: Global comparison of the performances of the enriched bases for the stability study

to 10 kHz of the basis composed of real coupled modes has no significant effect on the errors. The proposed enrichment
is thus more adapted than a simple increasing of the number of modes taken into account.

As expected, the fixed CMS basis, which was not efficient for the frictionless problem, still exhibits poor perfor-
mances for the stability study even if enriched (cf. figure 15). The mixed basis gives intermediate results (cf. figure
16). Without tangential attachments modes, it provides surprisingly low errors for the divergence rates of disc modes.
As a consequence, when it is enriched, the errors are reduced except for these divergence rates. However, when con-
sidering the maximal error for both disc and pins modes, the enriched basis is at least as effective as the initial one
whatever the criterion.

A global comparison of the enriched bases is given on figure 18. For this comparison, the maximum error on both
the disc and unstable pins modes is taken into account. It appears that the performances of the bases built from free
components modes and real coupled modes are similar. From a practical point of view, these are the only bases which
provide a maximal error on divergence rates lower than 0.1% (10−3 in absolute value on figure 18) which seems to be
necessary to correctly determine the stability of a lightly damped structure. In table 6, the size nr of these four bases,
as well as the total computational time tr (including the building of the base) needed to calculate the complex modes
are given. Relative indicators are also calculated:

• the size gain of the basis Gn =
n
nr

where n = 30942 is the number of degrees of freedom of the whole structure,

• the computational time gain of the basis Gt =
t
tr

where t = 3242 s is the time needed to solve the complex
eigenvalue problem without reduction.

For these four bases, the order of magnitude of the size gain is 100 whereas the cpu time gains are all greater than
20, which are both considerable values. The use of real coupled modes combined with a 1st-order approximation of
the response to frictional forces is a very interesting option, providing the highest gains both in size and cpu time. If,
for some external constraints like experimental updating or damping modeling, components modes are preferred, the
use of rubbing attachments modes seems to be a good technique to complete the free-interface components normal
modes. Indeed, in this case, the size of the basis depends only on the number of components normal modes and not
on the number of contact nodes (cf. table 4). Conversely, the two methods using attachments modes provide bases
with higher sizes. However, their time gains are rather similar and for systems where the number of contact nodes is
small compared with the number of modes in the frequency range of interest, the use of tangential attachment modes
may be a better option to complete either the components modes or the real coupled modes.
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Method nr Gn tr [s] Gt

free + t.a.m. 428 72 142 23
free with r.a.m. 200 155 108 30

real + t.a.m. 294 105 124 26
real + 1st-ord. 132 234 113 29

Table 6: Size and computational time gains of the four retained bases

7. Conclusion

The complex eigenvalue analysis is a widely used technique to investigate the stability of a dynamical system with
frictional contact. In the case of brake systems, it is the most frequently employed method to study the propensity of
the brake to generate squeal noise. When iterative solvers are used, the complex modes and eigenvalues are calculated
with good precision. In practice, reduced real bases are often used in order to save computational times. In this case,
great attention should be focused on the choice of the basis. Indeed, it has been shown that classical CMS techniques
or bases composed of real coupled modes may lead to significant errors in terms of frequency, divergence rates and
shapes. In particular, errors on divergence rates greater than 0.1% lead to an erroneous prediction of the stability of a
lightly damped system which may have important practical consequences.

In this work, some enriched bases are proposed in order to improve the precision on the calculated complex modes
and eigenvalues. When bases built from component modes are used, it is suggested to add tangential attachment
modes to classical CMS bases or to use the new rubbing attachment modes defined in the paper. In the case of the
disc/pads system studied here, such enrichments on free-interface CMS bases allow a significant decrease of the errors
on frequencies, divergences rates and shapes by a factor comprised between 10 and 100. If real coupled modes are
preferred, the use of tangential attachments modes is also an option but another technique is proposed. It consists in
including in the basis the static response to a first-order approximation of the friction forces around the real coupled
modes. Applied to the present disc/pads model, the two enrichment options provide errors about 10 times smaller than
the initial basis. This is an interesting gain since errors on divergence rates are reduced to about 0.01%. Finally, it must
be noted that the computational time gains obtained with these enriched reduced bases remain very high compared
with iterative solvers. The corresponding cost/precision ratio is thus optimized.
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