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Abstract

A nonlinear model of an aircraft braking system is presentedand used to investigate the effects of damp-
ing on the stability in Chevillot et al. (Arch Appl Mech 78(12):949–963, 2008). It has been shown that
the addition of damping into the equations of motion does notlead systematically to the stabilization of
the system. In the case of a mode-coupling instability, there is indeed an optimal ratio between the modal
damping coefficients of the two modes in coalescence, that maximize the stable area. But the stable area
is not a sufficient criterion. In dynamics, the amplitude of the vibrations and the transient behavior char-
acterized by the speed of increase of the oscillations are best indicators. In this paper, the same nonlinear
model of the aircraft braking system is used to compute time-history responses by integration of the full
set of the nonlinear dynamic equations. The aim of the study is to evaluate the effects of damping on the
nonlinear dynamics of the brake. It is shown that damping maybe very efficient to significantly reduce and
slow down the increase of the friction-induced vibrations.But, in the same way as for the stability area,
there exists a value of the damping ratio that optimizes the effects of damping.

Keywords: friction-induced vibration, damping, limit cycles, nonlinear dynamics

1 Introduction

The problem of unstable vibrations in mechanical systems with rotating and sliding parts has received the
attention of many investigations, and is still and active field of research in dynamics. Solving potential vibra-
tion problems requires the consideration of the stability analysis and the determination of the time-history
response. A stability analysis as presented inThe destabilization paradox applied to friction-induced vi-
brations in an aircraft braking system [1] allows determining the characteristics (frequency, real part, mode
shape and critical friction coefficient) of the instabilities that may appear during the braking by extraction
of the eigenvalues of the linearized system at the equilibrium point. In particular it allows knowing if for a
given set of parameters the system is stable or not. But if not, it gives no information on the amplitude of
the oscillations or on the nonlinear transient behavior. Toachieve this, the complete nonlinear response of
the system has to be computed.



In this paper, the model developed in [1] is used to investigate the effects on damping on the nonlinear
dynamical behavior of an aircraft braking system. The results of [1] indicate that the addition of damping
in the equations of motion alter the stable-unstable boundary. In some cases, a destabilizing effect was
shown: damping is not always beneficial. The paper also showsthat for this particular system there exists
an optimal structural damping ratio between the stable and unstable modes for which the stable region is
the largest.

The effects of damping on non-linear non-conservative systems and the highlight of a destabilizing
paradox was first studied by Ziegler [2]. The study was focused on a double pendulum under a follower
force. He showed that the critical load of the damped system was significantly smaller than that of the
undamped system. The fact that damping can be harmful to a system is not intuitive and runs counter
to the generally accepted idea of the effects of damping. Many investigators have subsequently looked
into this phenomenon. In particular, Bolotin [3] showed that the ratio between the damping coefficients
plays a key role in the destabilizing effect. Later on, Herrmann [8], Walker [9], O’Reillyet al. [6] and
recently Kirillov and Seyranian [7, 11] worked on the determination in explicit form of the stabilizing
damping configurations for a large class of non-conservative systems. In particular in [7] necessary and
sufficient conditions for the matrices of velocity-dependent forces to stabilize an unperturbed circulatory
system have been expressed. Applied to the Ziegler pendulum, it was found that the optimum damping
ratio that gives the larger critical load is far from unity. In wood cutting machines, Gallina and Trevisani
[10] demonstrated that similar damping coefficients cannotdestabilize the initially stable system. Using
a finite element model Fritz [13] came to the same conclusion for an automotive brake squeal model. An
asymmetry in the damping distribution tends indeed to make the system unstable for a lower value of a the
friction coefficient. However, Sinou and Jézéquel [12] for example studied the effects of damping with a
nonlinear two-degree-of-freedom model with friction and found that an optimal damping distribution not
always exists. The damping coefficients, their ratio, and the pulsation ratio have to be considered. Hervé
et al. [14] used a two-degree-of-freedom nonlinear model of clutch squeal to investigate the influence on
circulatory and gyroscopic actions. While for the purely circulatory system proportional damping is found
to be the optimum, taking into account the gyroscopic effects makes a lot more complex the effects of
damping. Moreover, most of these studies focused on the effects on the stability region. However, because
a stability analysis is based on the nature of the eigenvalues of the linearized equations of motion, it is
not obvious that the effects on the nonlinear system are the same. Aware of that, recent papers (Kounadis
[5], Bolotin et al. [4], Sinou and Jézéquel [12] for instance) included in their studies the analysis of the
steady-state amplitudes. It is motivated by finding that regions considered unstable by a stability analysis
turn out to be stable when a non-linear dynamic analysis is performed (Kounadis [5]).

In this paper, the model developed in [1] is briefly exposed. Then, the analysis of the stability of the
system is presented. While Chevillotet al. [1] deal with three low-frequency mode-coupling instabilities
calculated, this study focuses on the second instability, for which the evolution of the stability area versus
the friction coefficient and the damping ratio is reminded. Time-history simulations with variations in
the friction coefficient and damping configuration are performed to analyze their effects on the transient
behavior and the limit cycle amplitude of the instability. The main purpose of the present paper is to
find if the conclusions expressed in [1] about the stability regions are similar when a nonlinear dynamic
analysis is performed. The results show that damping is a keyfactor very efficient to reduce friction-
induced vibrations, but has to be used cautiously to avoid misuse. In particular, the destabilizing effect and
the optimum damping distribution highlighted in [1] for thestability analysis are extended to the nonlinear



dynamics of the system.

2 Overview

2.1 Model description

(a) Aircraft braking system (b) Parametric model of the brake

Figure 1: Aircraft braking system description

Based on experimental observations, an analytical model ofan aircraft braking system given in Fig.
1a has been developed and presented in [1] in order to reproduce whirl and squeal instabilities. The view
of the parametric model using 70 degrees of freedom in Fig. 1ballows seeing the correspondence between
the model and the system. The multi-stage brake is represented by a single rotor and stator with an effective
brake friction coefficient ofµeq = 2nµ wheren is the number of rotors, producing2n interfaces in contact
between the stators and rotors. It is assumed that the friction coefficient is uniform along the rubbing surface
and that the rotor and stator friction surfaces are always incontact. Friction is modeled by a Coulomb
approach: the tangential force is related to the normal force by the friction coefficient (for more details see
[1]). Experimental tests show that the behavior of the rotor/stator stack in compression is nonlinear. The
analytical model uses a third order polynomial to express the load-deflection relationship [1].

The global nonlinear forces and moments due to friction are then expressed (see [1]), and the hydraulic
pressure, tire-ground drag force and wheel bending load areintroduced. By considering the interconnec-
tions between each element of the braking system, the equations of motions take the form:

Mẍ + Cẋ + Kx = Fcontact + Fhydr + Fdrag + Fload (1)

whereẍ, ẋ andx are respectively the 70-dimensional vectors of acceleration, velocity and displacement.
Fhydr is the vector force due to brake hydraulic pressure,Fcontact contains the linear and nonlinear contact
force terms at the stator and rotor interface,Fdrag represents the tire-ground drag force, andFload the bending
load of the wheel.M , C andK are respectively the structural mass, global damping and stiffness matrices.



2.2 Stability analysis

In a preliminary study, the stability analysis of the brake is performed. It is obtained for a small perturbation
around the steady-state operating point by calculating theeigenvalues of the linearized system. The detailed
methodology can be found in [1]. Forλ a complex eigenvalue of the formλ = a+ ıb, the stability criterion
is: if a is negative or zero, the system is stable and no vibration occurs, and ifa is positive then the system
is unstable. The imaginary partb represents the angular pulsation (or the frequency by considering a factor
of 2π) of the vibration. The plot of the angular pulsations versusthe brake friction coefficient is given in
Fig. 2. The graph is normalized towards the pulsation of the first instabilityω0,1 and towards the maximum
friction coefficientµmax used in the study. The red plots define the appearances of instability.
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Figure 2: Angular pulsations versus friction coefficient

It appears that six of the fourteen firsts modes are involved in mode-coupling instabilities. The nature
of each instability is determined by plotting its analytical shape. The mode shapes of all the instabilities can
be found in [1]. The second instability will be the matter of the following study.

In [1] parametric studies are performed to evaluate the effects of damping or other parameters on
the stability of the brake. The effects of damping on the second instability are summed up in Fig. 3,
where the stability area is given when the damping ratioη1/η2 between the two modes producing the
instability varies. It turns out that there exists a value ofthe damping ratio for which the stability area is
the widest. This optimum ratio is near 1, that means the optimum ratio corresponds toη1 ≃ η2. In fact, in
[1] it is shown that the optimum damping ratio corresponds toa proportional damping configuration, given
by η1/η2 = ω0,2/ω0,1, whereω0,1 andω0,2 are the pulsations atµ = 0 of the two modes producing the
instability. But given thatω0,1 andω0,2 are very close, the relation can be in first approximation expressed
by η1 ≈ η2, ie for a damping ratio close to 1. For values of the damping ratiofar from the optimum value,
the stability may be clearly affected, even leading to a moreunstable system that the undamped system!
That illustrates the phenomenon of ”destabilization paradox” presented in introduction of the paper.
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3 Nonlinear dynamics

3.1 Introduction

Because damping appears to be a key factor, its effects on thedynamical behavior of the aircraft braking
system must be examined. Determining the stable and unstable regions is only one aspect of the problem
of friction-induced flutter instability. However, both themaximum amplitude of the instability and the time
to reach the limit cycle are more significant design factors than the stability region.

The nonlinear equations of motion (1) can be integrated numerically to obtain time-history responses.
For this study the case of the second instability (the secondwhirl) presented above is considered. For a
value ofµ/µmax between 0.045 and 0.115, this is the only instability that can occur (see Fig. 2), so it will
simplify the analysis of the effects of parameters on the nonlinear behavior. In Fig. 4a the time-history
response of the vertical deflection of the end of the axle is given. The simulation has been made with a
friction coefficientµ/µmax of 0.075 and with an arbitrarily chosen damping configuration. One observes
two different stages: first an initiation phase (I) where theoscillations increase around the static position
to attain the stabilized phase (II) where the oscillations keep a constant amplitude. These two phases are
well represented in Fig. 4b which shows the evolution in the coordinates system (displacement,velocity).
The phase (I) is characterized by increasing spirals, and the phase (II) is the stationary limit cycle. With the
application of a FFT transformation, it is verified that the signal contains only one vibration at a frequency
very close of that given by the stability analysis with linear approximation (in a case of a nonlinear reso-
nance, the frequency of the instability may be altered by nonlinear effects).

In order to understand the effects of structural damping on the oscillation amplitude and the time to
reach the limit cycle, the next study is divided into two parts. In the first one, the effects of the friction



coefficient and damping on the transient behavior are investigated. In the second one, the effects on the
limit cycle and maximum amplitude are examined.
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Figure 4: Vertical displacement of the axle (µ/µmax = 0.075)

3.2 Investigations on the transient behavior

In this section the transient behavior corresponding to theinitiation phase (I) is examined. The character-
ization of this phase is given by the response time: it represents the time to attain the limit cycle of the
vibration. Here a criterion of 98% of the amplitude of the limit cycle is considered. In Fig. 5 is plotted the
response time versus the brake friction coefficient. For a value ofµ/µmax under 0.045, the system is stable
and no vibration occurs. It can be seen that in this range ofµ the response time is a decreasing function
of the friction coefficient: the closer we are to the bifurcation point (where the two modes couple), the
more slowly the vibration appears. But this conclusion requires more investigations. To further our under-
standing, the inverse of the real part of the mode becoming instable is displayed on the same figure. It is
extracted from the eigenvalue analysis: ifλ = a+ ıb is the eigenvalue with a positive real part, then during
the beginning of the phase (I) the displacement can be written in linear approximation by an exponential
increase:

x = Aeλt = Aeateıbt (2)

where A is a constant. Thus, the amplitude of the oscillation-of angular pulsationb- is given byAeat, with a
time constant of1/a. Let’s note that the stability criterion appears here clearly: if a is positive the argument
of the exponential is positive resulting in an increasing oscillation, and if a is negative or zero the amplitude
of the oscillation is limited. In phase (II) the nonlinear effects induce the stabilization of the oscillation into
the limit cycle. The Fig. 5 shows that a linear relation between the 98% response time and the inverse of the
time constant of the exponential approximation can be established:t98% ≈

20

a
. So the results of the stability

analysis can be exploited in terms of time-history response, even if the numerical constant in the previous
relation seems to be different for each instability. The stability analysis is very quick to obtain for a model



of only 70 degrees of freedom. Then, in addition of the information obtained on the stability of the system,
it also gives an idea of the temporal behavior.

Figure 5: Evolution of the 98% response time with variationsof the friction coefficient

The second point is the evaluation of the effects of damping.Two approaches are undertaken. In the
first case, proportional damping is considered: that means that the same damping coefficientη is introduced
on the two coupling modes of the second whirl. In the second case, non-proportional damping is considered:
the values of the damping coefficientsη1 andη2 vary under the conditionη1 + η2 = constant. Below are
summarized the parameters of the two cases considered, bothuse a friction coefficientµ/µmax of 0.075.

case #1 η1 = η2, from 0.5% to 3%
case #2 η1 + η2 = 4%, with η1/η2 from 1/7 to 7

In the first case corresponding to proportional damping, theanalysis is quite simple. Fig. 6a shows
that the increase of proportional damping produces the slowdown of the vibration with a longer response
time. Thus, from a damping of 0.5% to 3%, the time the vibration takes to attain the limit cycle goes from
0.8 seconde to 4.1 secondes,ie a ratio of more than 5. In the second case, the presence of an optimum
is observed in Fig. 6b: a damping ratio close to 1 pushes back at best the vibration. That coincides with
the results of the stability analysis stated in [1]i.e. for this system proportional damping is the optimum
configuration. In addition these two studies show once more the good relation between the response time
and the real part of the unstable mode.

3.3 Investigations on the maximum amplitude of oscillations and limit cycle

This second section deals with the evaluation of the effectsof friction coefficient and damping on the limit
cycles and maximum amplitudes of oscillation in phase (II).

First, limit cycles are plotted for several friction coefficients. The chosen degrees of freedom are
the horizontal and vertical deflections of the end of the axle, and the horizontal and vertical displacements
of the middle of the brake rod. They are indeed elements in motion during the occurrence of the second



(a) Proportional damping (b) Non-proportional damping

Figure 6: Evolution of the 98% response time with variationsof damping

whirl. It may be observed that on average the increase of the friction coefficient leads to larger limit cycles.
So, as expected, when moving away from the bifurcation pointby increasingµ, the system becomes more
unstable, which is illustrated by an increase of the oscillation amplitude and a faster to appear vibration.

Then, the effects of proportional and non-proportional damping are investigated thanks to the same
two studies as those considered in the previous section. In Fig. 8 it is clear that the addition of damping
is synonymous with the decrease of the size of the limit cycle. To have a more visual representation, in
Fig. 10 is plotted the sum of the maximum amplitudes -of displacement or velocity- taken on the degrees of
freedom of the brake rod on the one hand, and on those of the axle on the other hand. The evolution with the
amount of damping shows a decrease of a factor of 11 between the configuration with 0.5% of damping and
the configuration with 3% of damping. 3% can be assumed to be a realistic value for mechanical systems
using damping elements, and an amount of 0.5% of damping can also be possible in the worst case. But
the damping coefficient can hardly reach zero because of the damping properties of the materials and the
always dissipative contacts between the elements of the structure. So the advantages of using damping in
order to reduce friction-induced vibrations appear here clearly.

In the second study the effects of non-proportional dampingare examined. Fig. 9 illustrates the
evolution of the limit cycle with the damping ratio, and Fig.11 the evolution of the maximum amplitudes
of the brake rod and the axle. It can be observed that an optimum is obtained as well for the displacements
as for the velocities. The best configuration (the one for which the amplitudes are minimal) is given by a
damping ratio near 1, that confirms the results obtained in the section on the transient behavior. Considering
a constant amount of damping, a change in the damping ratio can then result in oscillations almost two times
bigger, which is absolutely not negligible. However, by placing damping elements only in the part of the
system that vibrate the most, an asymmetry in the damping configuration can be obtained. This asymmetry
could then be harmful because the mechanism could generate more vibration than the original undamped
mechanism.
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Figure 7: Limit cycles - variations ofµ (· · ·µ/µmax = 0.05, —- µ/µmax = 0.075, – – µ/µmax = 0.1,
· ·+ · ·µ/µmax = 0.125, —+— µ/µmax = 0.15, −+−µ/µmax = 0.175)
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Figure 8: Limit cycles - variations of proportional damping(· ·+ · ·η = 0.005, —+— η = 0.01, −+−η =

0.015, · · · η = 0.02, — η = 0.025, – –η = 0.03)
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Figure 9: Limit cycles - variations of non-proportional damping (· ·+ · ·η1/η2 = 0.14, —+— η1/η2 = 0.33,
−+−η1/η2 = 0.6, · · · η1/η2 = 1, — η1/η2 = 1.67, – –η1/η2 = 3, − · − · η1/η2 = 7)
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Figure 10: Vertical displacement of the axle - proportionaldamping
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4 Summary and conclusions

A nonlinear model has been developed in [1] for the stabilityanalysis of mode-coupling instabilities induced
by friction of an aircraft braking system. In this paper, thesame model is used to evaluate the effects on
the time-history response of the brake friction coefficientand the amount and ratio of damping. The first
conclusion is that increasing the amount of damping leads toa vibration with a smaller amplitude and slower
to develop. That points out the fact that damping can be very efficient to reduce or eliminate friction-induced
vibrations. However, precautions have to be taken to avoid amisuse of damping. While in [1] it is shown
that for this mechanism proportional damping is the best configuration for the stability of the system, the
study presented leads to the same result about the dynamicalbehavior. At first sight it is not obvious for
a nonlinear system because stability is obtained with linear approximation. Even if it may not be easy to
design a system with an optimum damping distribution, in thelight of the conclusions of this study, adding
damping elements only in the part of the system that vibrate the most is an approach to avoid. In addition,
the study shows that there exists a simple relation between the speed of increase of the vibration and the
real part of the mode becoming unstable. Thus, the results ofa stability analysis can be used in terms of
temporal behavior, that is very interesting when time-history simulations are often time-consuming.
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