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Abstract

A nonlinear model of an aircraft braking system is presemted used to investigate the effects of damp-
ing on the stability in Chevillot et al. (Arch Appl Mech 78()t249-963, 2008). It has been shown that
the addition of damping into the equations of motion doeslead systematically to the stabilization of
the system. In the case of a mode-coupling instability,gheindeed an optimal ratio between the modal
damping coefficients of the two modes in coalescence, thaimize the stable area. But the stable area
is not a sufficient criterion. In dynamics, the amplitude o vibrations and the transient behavior char-
acterized by the speed of increase of the oscillations astibdicators. In this paper, the same nonlinear
model of the aircraft braking system is used to compute tsésry responses by integration of the full
set of the nonlinear dynamic equations. The aim of the stadg evaluate the effects of damping on the
nonlinear dynamics of the brake. It is shown that damping b®ayery efficient to significantly reduce and
slow down the increase of the friction-induced vibratiolsit, in the same way as for the stability area,
there exists a value of the damping ratio that optimizes fleets of damping.

Keywords: friction-induced vibration, damping, limit dgs, nonlinear dynamics

1 Introduction

The problem of unstable vibrations in mechanical systentls witating and sliding parts has received the
attention of many investigations, and is still and activielfed research in dynamics. Solving potential vibra-
tion problems requires the consideration of the stabilitglgsis and the determination of the time-history
response. A stability analysis as presented@ha destabilization paradox applied to friction-induced vi-
brationsin an aircraft braking system[1] allows determining the characteristics (frequency) gart, mode
shape and critical friction coefficient) of the instabésithat may appear during the braking by extraction
of the eigenvalues of the linearized system at the equiiibipoint. In particular it allows knowing if for a
given set of parameters the system is stable or not. But jfihgives no information on the amplitude of
the oscillations or on the nonlinear transient behavioradbieve this, the complete nonlinear response of
the system has to be computed.



In this paper, the model developed in [1] is used to investigee effects on damping on the nonlinear
dynamical behavior of an aircraft braking system. The rssofl [1] indicate that the addition of damping
in the equations of motion alter the stable-unstable boynda some cases, a destabilizing effect was
shown: damping is not always beneficial. The paper also shimatdor this particular system there exists
an optimal structural damping ratio between the stable arstiable modes for which the stable region is
the largest.

The effects of damping on non-linear non-conservativeesystand the highlight of a destabilizing
paradox was first studied by Ziegler [2]. The study was foduse a double pendulum under a follower
force. He showed that the critical load of the damped systea® significantly smaller than that of the
undamped system. The fact that damping can be harmful totamsyis not intuitive and runs counter
to the generally accepted idea of the effects of damping. yMavestigators have subsequently looked
into this phenomenon. In particular, Bolotin [3] showedstttiee ratio between the damping coefficients
plays a key role in the destabilizing effect. Later on, Heanm [8], Walker [9], O'Reillyet al. [6] and
recently Kirillov and Seyranian [7, 11] worked on the deteration in explicit form of the stabilizing
damping configurations for a large class of non-consereaixstems. In particular in [7] necessary and
sufficient conditions for the matrices of velocity-depentd®rces to stabilize an unperturbed circulatory
system have been expressed. Applied to the Ziegler penduluwmas found that the optimum damping
ratio that gives the larger critical load is far from unityx Wood cutting machines, Gallina and Trevisani
[10] demonstrated that similar damping coefficients cartestabilize the initially stable system. Using
a finite element model Fritz [13] came to the same conclussom@mh automotive brake squeal model. An
asymmetry in the damping distribution tends indeed to mhkesystem unstable for a lower value of a the
friction coefficient. However, Sinou and Jézéquel [12] émample studied the effects of damping with a
nonlinear two-degree-of-freedom model with friction amaifid that an optimal damping distribution not
always exists. The damping coefficients, their ratio, aredghlsation ratio have to be considered. Hervé
et al. [14] used a two-degree-of-freedom nonlinear model of ¢ligqueal to investigate the influence on
circulatory and gyroscopic actions. While for the purelgcaiatory system proportional damping is found
to be the optimum, taking into account the gyroscopic effentkes a lot more complex the effects of
damping. Moreover, most of these studies focused on theteftm the stability region. However, because
a stability analysis is based on the nature of the eigensadfiehe linearized equations of motion, it is
not obvious that the effects on the nonlinear system aredires Aware of that, recent papers (Kounadis
[5], Bolotin et al. [4], Sinou and Jézéquel [12] for instance) included inirtkeudies the analysis of the
steady-state amplitudes. It is motivated by finding thaioreg) considered unstable by a stability analysis
turn out to be stable when a non-linear dynamic analysisr®peed (Kounadis [5]).

In this paper, the model developed in [1] is briefly exposelder, the analysis of the stability of the
system is presented. While Chevillgtal. [1] deal with three low-frequency mode-coupling instais
calculated, this study focuses on the second instabititywhich the evolution of the stability area versus
the friction coefficient and the damping ratio is remindedma@-history simulations with variations in
the friction coefficient and damping configuration are perfed to analyze their effects on the transient
behavior and the limit cycle amplitude of the instabilityhd main purpose of the present paper is to
find if the conclusions expressed in [1] about the stabikgions are similar when a nonlinear dynamic
analysis is performed. The results show that damping is af&etpr very efficient to reduce friction-
induced vibrations, but has to be used cautiously to avogiisd. In particular, the destabilizing effect and
the optimum damping distribution highlighted in [1] for te&ability analysis are extended to the nonlinear



dynamics of the system.

2 Overview

2.1 Model description
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Figure 1: Aircraft braking system description

Based on experimental observations, an analytical modahafircraft braking system given in Fig.
la has been developed and presented in [1] in order to repeodhbirl and squeal instabilities. The view
of the parametric model using 70 degrees of freedom in Figallblws seeing the correspondence between
the model and the system. The multi-stage brake is represgéyta single rotor and stator with an effective
brake friction coefficient of.., = 2np wheren is the number of rotors, producirity interfaces in contact
between the stators and rotors. Itis assumed that theofnicbefficient is uniform along the rubbing surface
and that the rotor and stator friction surfaces are alwaysomtact. Friction is modeled by a Coulomb
approach: the tangential force is related to the normakftmcthe friction coefficient (for more details see
[1]). Experimental tests show that the behavior of the vstator stack in compression is nonlinear. The
analytical model uses a third order polynomial to expresdahad-deflection relationship [1].

The global nonlinear forces and moments due to frictionlaea expressed (see [1]), and the hydraulic
pressure, tire-ground drag force and wheel bending loadntn@duced. By considering the interconnec-
tions between each element of the braking system, the emgatf motions take the form:

M X + Cx + Kx = Fcontact + thdr + Fdrag + Fload (1)

whereX, x andx are respectively the 70-dimensional vectors of accelamatvelocity and displacement.
Fryar i the vector force due to brake hydraulic press#ig,:..: contains the linear and nonlinear contact
force terms at the stator and rotor interfa€g,,, represents the tire-ground drag force, &g, the bending
load of the wheelM, C andK are respectively the structural mass, global damping afidests matrices.



2.2 Stability analysis

In a preliminary study, the stability analysis of the brak@erformed. Itis obtained for a small perturbation
around the steady-state operating point by calculatingigpenvalues of the linearized system. The detailed
methodology can be found in [1]. Fara complex eigenvalue of the fortn= « + b, the stability criterion

is: if a is negative or zero, the system is stable and no vibrationrs¢cand ifa is positive then the system
is unstable. The imaginary pdrtepresents the angular pulsation (or the frequency by densig a factor

of 27) of the vibration. The plot of the angular pulsations vergwsbrake friction coefficient is given in
Fig. 2. The graph is normalized towards the pulsation of tis¢ ifnstabilityw, ; and towards the maximum
friction coefficientyu,,., used in the study. The red plots define the appearances abiliist
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Figure 2: Angular pulsations versus friction coefficient

It appears that six of the fourteen firsts modes are involagdode-coupling instabilities. The nature
of each instability is determined by plotting its analytishape. The mode shapes of all the instabilities can
be found in [1]. The second instability will be the matter loé tfollowing study.

In [1] parametric studies are performed to evaluate thectffef damping or other parameters on
the stability of the brake. The effects of damping on the sdcmstability are summed up in Fig. 3,
where the stability area is given when the damping ration, between the two modes producing the
instability varies. It turns out that there exists a valugh® damping ratio for which the stability area is
the widest. This optimum ratio is near 1, that means the aptimatio corresponds tg, ~ 7. In fact, in
[1] it is shown that the optimum damping ratio corresponda fwoportional damping configuration, given
by n1/m2 = woa/wo1, Wherewy; andw» are the pulsations at = 0 of the two modes producing the
instability. But given thaty,; andw » are very close, the relation can be in first approximatiorresged
by 1 = 1, iefor a damping ratio close to 1. For values of the damping rfatidrom the optimum value,
the stability may be clearly affected, even leading to a morstable system that the undamped system!
That illustrates the phenomenon of "destabilization paxdgresented in introduction of the paper.
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Figure 3: Stability (stable and unstable zones) versiis,... andr; /1, for the second whirl instability

3 Nonlinear dynamics

3.1 Introduction

Because damping appears to be a key factor, its effects odytiemical behavior of the aircraft braking

system must be examined. Determining the stable and uestadibns is only one aspect of the problem
of friction-induced flutter instability. However, both tieaximum amplitude of the instability and the time
to reach the limit cycle are more significant design factbesitthe stability region.

The nonlinear equations of motion (1) can be integrated miazaléy to obtain time-history responses.
For this study the case of the second instability (the seeamd) presented above is considered. For a
value of i/ imq. between 0.045 and 0.115, this is the only instability that @ecur (see Fig. 2), so it will
simplify the analysis of the effects of parameters on thelinear behavior. In Fig. 4a the time-history
response of the vertical deflection of the end of the axlevemi The simulation has been made with a
friction coefficienty./ ... 0f 0.075 and with an arbitrarily chosen damping configurati®ne observes
two different stages: first an initiation phase (I) where diseillations increase around the static position
to attain the stabilized phase (lI) where the oscillatioesfgka constant amplitude. These two phases are
well represented in Fig. 4b which shows the evolution in tberdinates system (displacement,velocity).
The phase (l) is characterized by increasing spirals, amghiase (11) is the stationary limit cycle. With the
application of a FFT transformation, it is verified that thgnsl contains only one vibration at a frequency
very close of that given by the stability analysis with lin@@proximation (in a case of a nonlinear reso-
nance, the frequency of the instability may be altered bylinear effects).

In order to understand the effects of structural dampinghenascillation amplitude and the time to
reach the limit cycle, the next study is divided into two partn the first one, the effects of the friction



coefficient and damping on the transient behavior are ilya®d. In the second one, the effects on the
limit cycle and maximum amplitude are examined.
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Figure 4: Vertical displacement of the axje/(t,,,. = 0.075)

3.2 Investigations on the transient behavior

In this section the transient behavior corresponding tanhmtion phase (1) is examined. The character-
ization of this phase is given by the response time: it repressthe time to attain the limit cycle of the

vibration. Here a criterion of 98% of the amplitude of theilicycle is considered. In Fig. 5 is plotted the

response time versus the brake friction coefficient. Forlaevaf 1/ i, under 0.045, the system is stable
and no vibration occurs. It can be seen that in this range thle response time is a decreasing function
of the friction coefficient: the closer we are to the bifuroatpoint (where the two modes couple), the
more slowly the vibration appears. But this conclusion mneggumore investigations. To further our under-

standing, the inverse of the real part of the mode becomisiglnte is displayed on the same figure. It is
extracted from the eigenvalue analysisAi& a + b is the eigenvalue with a positive real part, then during
the beginning of the phase (l) the displacement can be writtdinear approximation by an exponential

increase:

X — Ae)\t — Aeatezbt (2)

where A is a constant. Thus, the amplitude of the oscillatidangular pulsation- is given byAe, with a
time constant of /a. Let’s note that the stability criterion appears here dieaf « is positive the argument

of the exponential is positive resulting in an increasingltsion, and if a is negative or zero the amplitude
of the oscillation is limited. In phase (1) the nonlineafesits induce the stabilization of the oscillation into
the limit cycle. The Fig. 5 shows that a linear relation beswéhe 98% response time and the inverse of the
time constant of the exponential approximation can be &sheul: sy, ~ 2. So the results of the stability
analysis can be exploited in terms of time-history resppasgen if the numerical constant in the previous
relation seems to be different for each instability. Thé#ity analysis is very quick to obtain for a model



of only 70 degrees of freedom. Then, in addition of the infation obtained on the stability of the system,
it also gives an idea of the temporal behavior.
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Figure 5: Evolution of the 98% response time with variatiohthe friction coefficient

The second point is the evaluation of the effects of damplmgh approaches are undertaken. In the
first case, proportional damping is considered: that mdsaigtie same damping coefficiepis introduced
on the two coupling modes of the second whirl. In the secosd,azon-proportional damping is considered:
the values of the damping coefficientsandr, vary under the condition; + 1, = constant. Below are
summarized the parameters of the two cases consideredusethfriction coefficient /i, of 0.075.

case #1 m = 149, from 0.5% to 3%
case #2| n; + ny = 4%, with r; /n, from 1/7 to 7

In the first case corresponding to proportional damping athelysis is quite simple. Fig. 6a shows
that the increase of proportional damping produces theddawm of the vibration with a longer response
time. Thus, from a damping of 0.5% to 3%, the time the vibratakes to attain the limit cycle goes from
0.8 seconde to 4.1 secondésa ratio of more than 5. In the second case, the presence oftanuop
is observed in Fig. 6b: a damping ratio close to 1 pushes bialbkst the vibration. That coincides with
the results of the stability analysis stated in {H for this system proportional damping is the optimum
configuration. In addition these two studies show once nmugegbod relation between the response time
and the real part of the unstable mode.

3.3 Investigations on the maximum amplitude of oscillatios and limit cycle

This second section deals with the evaluation of the effeichsction coefficient and damping on the limit
cycles and maximum amplitudes of oscillation in phase (I1).

First, limit cycles are plotted for several friction coeféots. The chosen degrees of freedom are
the horizontal and vertical deflections of the end of the il the horizontal and vertical displacements
of the middle of the brake rod. They are indeed elements inanaturing the occurrence of the second
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whirl. 1t may be observed that on average the increase ofitt@h coefficient leads to larger limit cycles.
So, as expected, when moving away from the bifurcation gmyribcreasing:, the system becomes more
unstable, which is illustrated by an increase of the odmileamplitude and a faster to appear vibration.

Then, the effects of proportional and non-proportional gdarg are investigated thanks to the same
two studies as those considered in the previous sectioniglngit is clear that the addition of damping
is synonymous with the decrease of the size of the limit cy@le have a more visual representation, in
Fig. 10 is plotted the sum of the maximum amplitudes -of dispent or velocity- taken on the degrees of
freedom of the brake rod on the one hand, and on those of te@axhe other hand. The evolution with the
amount of damping shows a decrease of a factor of 11 betwearottfiguration with 0.5% of damping and
the configuration with 3% of damping. 3% can be assumed to kealsstic value for mechanical systems
using damping elements, and an amount of 0.5% of dampinglsarba possible in the worst case. But
the damping coefficient can hardly reach zero because ofghgihg properties of the materials and the
always dissipative contacts between the elements of thetste. So the advantages of using damping in
order to reduce friction-induced vibrations appear heeaudy.

In the second study the effects of non-proportional dampiregexamined. Fig. 9 illustrates the
evolution of the limit cycle with the damping ratio, and Fijl the evolution of the maximum amplitudes
of the brake rod and the axle. It can be observed that an optirewbtained as well for the displacements
as for the velocities. The best configuration (the one forchlihe amplitudes are minimal) is given by a
damping ratio near 1, that confirms the results obtainedarsétction on the transient behavior. Considering
a constant amount of damping, a change in the damping ratithea result in oscillations almost two times
bigger, which is absolutely not negligible. However, byqitey damping elements only in the part of the
system that vibrate the most, an asymmetry in the dampinfygroation can be obtained. This asymmetry
could then be harmful because the mechanism could genemtevibration than the original undamped
mechanism.
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4 Summary and conclusions

A nonlinear model has been developed in [1] for the stakdlitglysis of mode-coupling instabilities induced
by friction of an aircraft braking system. In this paper, 8@me model is used to evaluate the effects on
the time-history response of the brake friction coefficiantl the amount and ratio of damping. The first
conclusionis that increasing the amount of damping leadwtbration with a smaller amplitude and slower
to develop. That points out the fact that damping can be iéoyent to reduce or eliminate friction-induced
vibrations. However, precautions have to be taken to averdsaise of damping. While in [1] it is shown
that for this mechanism proportional damping is the bestigamation for the stability of the system, the
study presented leads to the same result about the dynapeisalior. At first sight it is not obvious for
a nonlinear system because stability is obtained with fia@@roximation. Even if it may not be easy to
design a system with an optimum damping distribution, inligiet of the conclusions of this study, adding
damping elements only in the part of the system that vibfaertost is an approach to avoid. In addition,
the study shows that there exists a simple relation betwesespieed of increase of the vibration and the
real part of the mode becoming unstable. Thus, the resulisstébility analysis can be used in terms of
temporal behavior, that is very interesting when timedngsimulations are often time-consuming.
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