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Abstract

Aeronautical structures are commonly assembled with tgtimts in which friction phenomena, in
combination with slapping in the joint, provide damping &e tlynamic behaviour. Some models,
mostly non linear, have consequently been developed andatmonic balance method (HBM) is
adapted to compute non linear response functions in thedrecy domain. The basic idea is to de-
velop the response as Fourier series and to solve equaindnsg Fourier coefficients. One specific
HBM feature is that response accuracy improves as the nuofibarmonics increases, at the expense
of larger computational time. Thus this paper presents ginad adaptive HBM which adjusts the
number of retained harmonics for a given precision and fchdeequency value. The new proposed
algorithm is based on the observation of the relative viamabf an approximate strain energy for
two consecutive numbers of harmonics. The developed icnitéakes the advantage of being cal-
culated from Fourier coefficients avoiding time integrat@nd is also expressed in a condensation
case.However, the convergence of the strain energy has to be $noootested harmonics and this
constitutes a limitation of the metho@ondensation and continuation methods are used to adeelera
calculation. An application case is selected to illusttateefficiency of the method and is composed
of an asymmetrical two cantilever beam system linked by &eldgbint represented by a nonlinear
LuGre model. The practice of adaptive HBM shows that, foneegivalue of the criterion, the num-
ber of harmonics increases on resonances indicating timdimear effects are predominant. For each
frequency value, convergence of approximate strain ensrggserved. Emergence of third and fifth
harmonics is noticed near resonances both on vibratornporsgs and on approximate strain energy.
Parametric studies are carried out by varying the excitditoce amplitude and the threshold value
of the adaptive algorithm. Maximal amplitudes of vibratiand frequency response functions are
plotted for three different points of the structure. Norelam effects become more predominant for
higher force amplitudes and consequently the number ahedeharmonics is increased.



1 Introduction

The dynamics of mechanical structures is strongly infludrioe the presence of riveted or bolted
joints in the structure. Indeed structural joints geneeatergy dissipation through the complex rela-
tive motion between two contacting surfaces, commonlyrreteas frictional slip. Additionally for
higher level of excitation, slapping may be encounteretttibnal slip may be analyzed by consider-
ing an interface behaviour divided in two cases: micro-glifere part of the interface is slipping; and
macro-slip where all the interface slips. Then the fricibanergy dissipation observed in the slip
zone is responsible for the vibration damping attributepbiots [1]. Gaul et al. [2] showed that this
damping may be larger than material damping and Beards [8}ioreed that up t®0% of the total
system damping might be provided by the joints. Thorougleres about damping in joints may be
found in the works of Ungar [4], Gaul et al. [2] and more redgtitrahim et al. [5].

A better prediction of this damping effect is now an impottabjective for many aeronautical
companies and various complex industrial structures pa@ting bolted joints have been investi-
gated [6-9]. Crocombe et al. [7] established a relationbeigveen energy dissipated in a joint and
the transverse excitation force using a 3D FE model of a dgttmt and then used this relationship
in conjunction with the simulation of a FE model of a sateltib estimate the energy dissipated in the
joints. In the work of Caignot [9], a micro scale model of lealtjoints quantifies in a first step the
joint dissipation and an equivalent modal damping is deduice second step to perform dynamic
analysis of the whole studied structure.

These approaches perform a complex contact analysis gamnopsight into the distribution and
amount of friction on the interfaces but neglect non lindéeats in the global dynamic behaviour
of the assembled bolted structure. They need detailed moafetn impractical for dynamic analyses
of large structures. Hence constitutive models which usermaber of degrees of freedom adapted to
structural dynamics may be a suitable and computationéilgient alternative. These models can
be divided into lumped models and thin layer element thedf8]. In lumped models, the effect of
joint is considered to be concentrated at a single point Begoint model has no dimension. Several
models have been proposed: the Valanis model [11], thecetdigt model [2], the LuGre model [2],
the lwan model [1], the Bouc-Wen model [12], models with Jeslelements [12] and models inte-
grating a cubic stiffness [13]. The second category, basethio layer elements, is represented as
an element with physical dimensions and specific forceldcgment relation. Ahmadian et al. [10]
developed a generic joint element based on a thin layer eleapproach and Song et al. [14] devel-
oped an adjusted Iwan beam element incorporating an Iwarhi@dimulate the dynamics of beam
structures.

Most of these models are non linear and require specific ndsthm compute non linear frequency
response functions. In order to compute responses to faxeithtion, one of the first methods is
time integration. Oldfield et al. [12] applied time integeett on a bolted structure to simulate hystere-
sis loops using a Jenkins element model and a Bouc-Wen mOdeér applications on a two beam
system were encountered in the works of Gaul et al. [11] aniieMet al. [15]. Time integration
may be inefficient on lightly damped structures becausertmesient response may take hundreds of
forcing periods at the expense of calculation time and dm@ge size. Other alternatives like pertur-
bation methods and the Krylov and Bogoliubov method remanited to a few degrees of freedom.



Heller et al. [16] applied the Krylov-Bogoliubov method onan linear system in order to determine
equivalent modal parameters and not to compute periodioreses.

In the frequency domain, the harmonic balance method (HBMple to compute periodic responses
of non linear systems. The basics are to develop the unknegponse as a truncated Fourier series
and to solve equations linking Fourier coefficients. Firsiomanical applications can be encountered
in the works of Pierre et al. [17] on a single degree of freediyynfriction damped system and Ferri
et al. [18] on a beam incorporating dry friction. Then a fertllevelopment of the HBM, named Al-
ternating Frequency Time Domain Method [19], numericallglaates the Fourier transform of local
nonlinearities of the model and does not require to anaiticescribe non linear terms. More re-
cently, other approaches have been proposed, notably th&i@med Harmonic Balance Method [20]
which computes solutions for periodic autonomous systdfos.dynamic analyses of bolted joints,
Gaul et al. [2] used harmonic balance method for the caliulaif an equivalent stiffness and vis-
cous damping in an elasto-slip model. Ren et al. [21] prop@sgeneral technique for identifying
the dynamic properties of nonlinear joints using dynamst t&ata and used multi-harmonic balance
method to identify parameters for a friction joint. Thes@tdevelopments compute hysteresis loops
and not periodic responses. The work of Ahmadian et al. [Edptbped a non linear generic ele-
ment formulation for bolted joints and used a cubic non lir&#fness to represent softening non
linear effects. Then frequency response curves of the syate calculated with the HBM allowing
to include these curves in a minimization procedure in otdedentify parameters of the joint. Only
prime harmonics were considered due to experimental ceregidns.

One specific HBM feature is that response accuracy impravédssanumber of harmonics in the trun-
cated Fourier series increases, at the expense of larggnaational time. Therefore only harmonics
which lead to a significant contribution on dynamic respamsest be taken into account for a given
precision, and their number can strongly vary on a frequem&yval.

This key point has been highlighted for bolted joint dynasibg Ouyang et al. [22] who studied an ex-
perimental two beam bolted system excited at resonancen@gasing importance of friction in the
joints (through an increase of the excitation amplitudedasured hysteresis loops became distorted
and superharmonics appeared in the frequency spectra oé$penses, showing the importance of
considering higher order terms in the Fourier developmétit@response. Only odd harmonics were
present suggesting the possibility to use a cubic stiffirege bolted joint model [10,13] and to only
consider odd harmonics in the harmonic balance method| psaetice for dry friction system [17].

Even though, up to now, no theoretical tool can determineclvhiarmonics are predominant for a
non linear system. The present study pursues this invéistighy developing a criterion allowing
to limit the number of retained harmonics. An approximataistenergy with Fourier coefficients
is calculated and its saturation is monitored. This newedon, based on Fourier coefficients, does
not require time integration and may be easily estimatedrdier to illustrate the efficiency of the
method on a non linear mechanical system, an asymmetricatantilever beam system linked by
a bolted joint is modelled as application case. The joint eh@das inspired by the Adjusted Iwan
Beam Element (AIBE) developed by Song [14]. However, a Lu@aslel was preferred to an lwan
model present in the work of Song for implementation simplicMoreover, formulation of HBM
has consequently been adapted to integrate LuGre modehahteariables. Analysis of frequency
response functions and detailed monitoring of criteriooletton help to assess the validity of this ap-



proach. In order to accelerate calculation, a condensptimeedure on non linear degrees of freedom
is performed by reformulating the HBM equations. Furthermariterion has been expressed in this
case and compared with case without condensation.

This paper is divided into three main sections. The first cgedslwith the HBM formulation, details
condensation and criterion expression. Secondly, theestgystem is presented and HBM adaptation
to LuGre model is detailed. Finally, result analyses higilithe effect of the harmonic selection
process on frequency response functions and on the numbetaoied harmonics, and a parametric
study on the influence of the excitation force is discussed.

2 HBM Formulation

2.1 General Formulation

We consider a discrete mechanical system withll degrees of freedoms (dofs) described with its
nddl x nddl mass matriXM, stiffness matrixkK and damping matrixD. An external periodic force
F1(Q,t) is applied to the system with an angular frequeficySystem non linearities are considered
as a non linear forc&y (X, X, ,t) which depends on degrees of freedom displacemgntseloc-
ities X, angular frequency) and timet. The global forceF' (X, X, Q, t) applied on the system may
be divided in two parts, the linear external foreg((2, ¢) and the non linear forcé& (X, X.Q ).
The governing equation of motion may be written as:

MX +DX + KX = F(X, X, 0,t) = F,(Q,1) + Fyo (X, X, Q1) 1)

First, we assume a periodic responsé& ), which allows to develop the solution as a Fourier series.
This development is theoretically infinite so a truncationhe following form is needed:

X(t) = Bo+ i <Ak sin(%Qt) + By, cos(%Qt))

X(t) = [I sin(gt)I cos(gt)l sin(ﬁQt)I cos(ﬁQt)I ] [By Ay By ... Ay By, ..]"
v v

14 14

X(t) = T(t)Z @)

wherel is thenddl x nddl identity matrix,Z = [By Ay By ... Ay By, ...]" isthe(2m+1)nddl x 1
vector containing Fourier coefficients, is the number of harmonics retained for the truncatiors
an integer used to represent possible subharmonicsl'and= [I sin(2¢)I cos(24)I ... sin(£Q¢)I
cos(EQ)I .. ]is thenddl x (2m + 1)nddl matrix containing trlgonometrlc functions.

The same work is then accomplished for the global fdrce

F(X, X, Q, t) = O() + Z (Sk Sin(%Qt) + Ok COS(%Qt))

k=1
FIX, X, Qt) = TW)[Cy S Cy ... S Cp .. ]"
F(X, X, Q,t) = T()b (3)



In order to compute velocities and accelerations, we defineqauential derivative operator:

V = diag(Opadndats V1, . V) with Vi = %Q [ o) 1 (@)
Thus we may write:
X(t) = T{t)\VZ
X(t) = T@)\VZ (5)
By replacing Eqgn. (2) and Eqn. (5) into Eqgn. (1), one obtains:
MT(t)V*Z + DT(t)VZ + KT(t)Z = T(t)b (6)

Considering that for addl x nddl matrix W and a(2m + 1)nddl x 1 vectorY’:
WT ()Y = T(tH)NwY 7)

x (2m + 1)nddl
Equation (6) becomes:

T(t)NMV?Z + T(t)NpVZ + T(t)NgZ = T(t)b
T(t) (NMV?+ NpV + Nk ) Z = T(t)b (8)
Time dependency may be suppressed and a frequency algeftaition linking Fourier coefficient

may be obtained using a Galerkin method which is a projeabiothe equation on trigonometric
functions. Indeed these trigonometric functions defineadas@roduct:

L d 9
<fg>=7 [ fOg ©)
Thus we may write:
21 0
1 /T 1 I
T/o TT(OT(1)dt = 5 I =L om 1 Dnda (10)
0 x(2m + 1)nddl

Applying this scalar product on Eqgn. (8) leads to:
L "y 2 LTy
—/ TT (NuV? + NpV + Ng) Zdt = —/ TT b dt
T Jo T Jo
L(NyV?+NpV+Nk)Z = Lb (11)
L is a diagonal matrix so Egn. (11) may be simplified int@a + 1) * nddl equation system:

AZ =b with A = NyV? 4+ NpV + Nk (12)
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A may be expressed in a simpler manner:

A = (13)

This system is equivalent of finding zeros of a functign RZm+1)xnddl _, [R(2em+1)xnddl.
H(Z)=A()Z —b(Z,Q) (14)

We note thab is dependent o and(2 becausé corresponds to the Fourier coefficientsofX, X.Q, t).
In the case where no analytical expression may be writtendeets and Z, an evaluation of the ap-
proximate temporal term& (¢) andX (¢) is carried out from an initial valug = 7[ByA, B, . .. A, B,,]:

Z ELX(t)=Bo+ Y (A sin(th) + By cos(th)) (15)

k=1

It also allows to evaluate temporarily the non linear tefy, (X, X, Q, ¢) and then to deduce Fourier
coefficients by & F'T" procedure:

Fai(X, X, 0,0) 2L by (2,Q) =T[CNE sNL oNE . GNE oNE) (16)

2.2 Condensation

An additional step can reduce the number of equations tcesdltvconsists in expressing Fourier
coefficients of dofs on which no nonlinearity is applied [edllinear dofs) functions of Fourier coef-
ficients of remaining dofs (called non linear dofs) and of if@ucoefficients of linear and non linear
forces:

First, dofs are reorganized ingolinear dofs and; non linear dofs using a boolean transition matrix

P:
X X
X=P Pl1=1P, P P 17
[ X ] | P, P, [ X ] (17)
whereP,, is anddl x p matrix containing the first p columns &, P, contains the last q columns Bf

Using the same decomposition for Fourier coefficietts= [By, A1y Bip - . . Amp Bmp)” (idem for
Z,), the following result is obtained:

Z=[Np, Np, | [ gp ] (18)

q



Note thatNp, andNp, are respectively2m + 1)nddl x (2m + 1)p and(2m + 1)nddl x (2m + 1)q
matrices Np andP are both boolean matrices too alitNpNp = I.

Furthermore, the same property is observed for the vécorthat Eqn. (12) becomes:

"Np, ANp, "Np ANp, | [ 2,7 _ [0, (19)
"Np,ANp, "Np ANp, || Z, | — | b,

Fpp Fy
F, F

qp qq

7, may be eliminated, and then the system is equivalent of fgnzimos of a functiod,, : IR +1)x7 —
R(?*erl)Xq:

Hy(Z,) = (qu - quF;pleq) Zq — (bq - quF;plbp) (20)
If the decomposition is chosen so that no force (linear orlmeear) is applied on the linear dofs,

thenb, = 0 and:
H

1
F,,.

pp

q(Zq) = Aq(Q)Zq - bq(th Q) (21)
with Aq(Q) =F, — F,F

Finally Fourier coefficients of linear dofsZ, may be obtained using the relation:

Zp = F;pl (bp - quZq) (22)

2.3 Prediction and Correction

For a given frequenc§2, the problem is equivalent to solving a functicﬁﬁ(f, Q) : Rfx R— IR
with H = H, # = Z andk = nddl or with i = H,, & = Z, andk = ¢ in the condensation case.
When a simulation has to be done on a frequency h&nd,|, continuation methods have to be
applied to follow the solutions and plot the curégz, ) = 0. These methods are based on one
or more previous pointyz,, €2,), (Z,-1,,—1), .. .| of the response curve from which a prediction
(;iﬂl, Qﬂl) of the next point(z,,. 1, 2,.1) is made. Obviously, the closer to the next solution the
prediction is, the smaller the number of iterations will Be.order to be able to compute solutions
when turning points are present, a curvilinear abscisgsaused. Then, a correction procedure is
applied on the prediction, in order to reach after some fitena the next pointz,, .1, 2,.1). In this
study no branch points are considered. Then the main prediend correction methods are pre-
sented. The notatiop= " [Z Q] € R will be used in the following.

Prediction methodsThree prediction methods are presented and illustrat&ibinl (a) fory € IR>.
A given incrementAs of the curvilinear abscissa is used to calculate the priedict
Secant Method: the prediction is on the line defined by thegweoious points),,, ¥, _1:

Yn — Yn—1
y?z—i—l = Yn + As (23)
[Yn = Yn-l



Tangent Method: the&rediction is on the tangent to the cairtiee previous poiny,. The direction
is given by a unit vectort” tangent to the jacobian matrik, H (y,,) at the pointy,, so:

v =y, + AsT (24)

with J, A (y,) T = 0 anddet Jyf%’”) > 0.

Lagrange Polynomial Method: the prediction is on a polyredmi of degreel which reaches the
d + 1 previous points$(y,., s, ), - - -, (Yn—da, Sn—a)]. An analytical description of this polynomial may
be easily written by using Lagrange polynomials:

n n

S —§;
Peo)= Y | I =2 (25)
i=n—d j:n—d g J
J#i

The prediction is then calculated by evaluatiidor the abscissa,, + As:
49, = P(s, + As) (26)

Correction methods We consider a predictiogfflz1 € IR**! of the next solution so the system is
not square because the functifinoffers onlyk equations. One componentgfoften the parameter
2) has to be fixed or one more equation is added to the systencoftextion methods are presented
in Fig. 1(b). Correction o and(? are notedAz andAS2.

Newton Method: one componefit, ,; is fixed to the prediction valu@ﬂl. Then the system is a
square system which can be solved by using a Newton-Rapheoadure. For thé/” iteration, the
corrected point is:

, ~ () ~ - -
Yl = [ s tfx ] with Af = =3 H(#}1, Qg1 HED, Qi) (27)

Moore-Penrose Method: the vector defined by two consecptiretsy\”/ ) andy!’], is orthog-

onal to the kernel of the jacobian matrbgﬁ[(yff}rl) of H to the pointyff}rl. The Moore-Penrose

matrix inverse defined a&v + = TW(W7TW)~! for matrix W is used. The following expression is
obtained:

i AT . AT SN G
ih= i | ag | o | 34 | = a6 6L @9)

Adaptive step If a stepAs used to make a prediction is too large, the number of itematigill be
too time-consuming or the solution may not be found. Furtltee, a too large step may lead to
difficulties in the vicinity of turning points. So an adapistep is often appropriate and different
methods are available. A widespread tool is to consider theigus number of iterations and to
reduce the step when solver takes more iterations than amapthosen value. A larger step is
chosen when the number of iterations is lower than a minimalestoo. Many numerical criteria
may be developed to limit the step variation.
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Figure 1: Prediction and Correction Methods.

2.4 Proposed Criterion

For a given excitation frequency of the system, no theaaktaol exists to determine which harmon-
ics are really predominant. Furthermore the number of resggsharmonics can strongly vary for
the studied frequency interval. Some numerical tools haenlaeveloped, in particular the work of
Laxalde [23] who developed a method based on the degree ohappation of the non linearity. This
criterion does not take into account the global system bhehand may not be adapted when linear
forces are predominant in comparison to non linear forcesnséquently the criterion presented in
this section focuses on approximate system strain enerdyarits evolution for different numbers
of harmonics in the response.

Approximate strain energy First, for a response developed in a Fourier series, theesystrain

energyU may be expressed as:
U= %TX(t)KX(t) = %TZTT(t)T(t)NKZ (29)

We may suppress the time dependency by calculating the nza& on one period:
<U>= %TZLNKZ (30)

Approximate strain energy for a condensatiowhen a reduction og non linear dofs is used, the
strain energy expression must be adapted in order to be dechpualy from Fourier coefficient&),
of the ¢ non linear dofs and to avoid the time consuming step whiclsists in calculating linear
Fourier coefficientsZ,,.

First some properties must be noted.

For a condensation procedure, the boolean transition xnBtrs used. System matricdd (respec-
tively D andK) may be rearranged to correspond to the dofs divi{s}Qan]T by using the following

9



[ Initialization and Prediction : m =0, < U >=0, (9?521,9521) ]

[ HBM Calculation ]

Solution for m harmonics : (Zn11, Qnt1)m

|
[ Evaluation of < U,, >= Ta?nHK:Z’nH ]

}

[ Evaluation of criterion € =

}

Test : € < €threshold

yes

no

<Up>=<Up_1>
<Up>

[ Solution : (i:n+1,Qn+1) = (in+17Qn+1)m—l ]

Z K
with £ = or and K = or .
Zq qq — TquK;lepq

Figure 2: Algorithm for criteriore.

xh

conversioM = “PMP (respectivelyD andK). Similarly toF in Eqn. (19),M may be divided in
four blocks: )
My, = TPkMPl with (k, l) S {p, q} (31)

Furthermore, for a x s matrix W and as x ¢t matrix V, NwNy = Nwv and”Nw = Nrw.

Then, if the matrixdiag(Oxxx, V1, - . ., V., ) with identity matrix adl ., is namedVy, the following
formula may be obtained:

Finally, the matrixL, is a(2m + 1)k x (2m + 1)k matrix with identity matrix ad ., andk € {p, ¢}.
For the computation of criterion in the reduction case, E8§0) becomes:

1
<U> = -TZLNkZ

2
_lm, "Np, Zp
<U> = 5[ 2," 2] [TNPQ LNk [Np, Np,| 7
o 1 Trr T Lp 0 NPPKPP NPPKPq Zp
< U > - §|: Zp ZQ:| [ O Lq ‘| [ NPqKPp NPqKPq Zq
1
<U> = E(TZPLPNKPPZP+TZprNI~<qu
+TZquNf<q,,Zp + TZquNf(qq Zq) (33)

10



Then, a more explicit form of matrik' (Eqn. (19)) must be established:
Fi. = "Np, ANp, (34)
Introducing the expression of matrik of Eqn. (12) leads to:
Fr = "Np, (NuV?+NpV + Nk ) Np,
Fu = Ny Vi+Np Vi+Ng, (35)

with (k,1) € {p,q}. For simplicity, linear and non linear Fourier coefficierst® supposed to be
linked in a static case{ = 0) so thatV, = 0,;.
By using this assumption in Eqn. (22, may be expressed as:

Z, =Nz (b, —Ng, 7,) (36)

If the decomposition is chosen so that no force (linear or limgaar) is applied on the linear dofs,
thenb, = 0 and:

Z, = —N;(ipN i, %4 (37)
By replacing Eqn. (37) into Eqgn. (33):
1
<U> = E(TZqTNquTNK;[} LPNKppNKsz} Nqu Zq

+TZqTNI~<mTNK;pl L,Ng Z,
+TZquNKqPNKP_p1NKM Z,
+TZquNqu Zq)

1
<U> = §TZquNqu_TquK;p1quZq (38)

This equation is very similar to Eqn. (30) obtained for the neduced case. Matri,,—" K, K, 1K,
acts as reduced stiffness matrix on theon linear dofs.

Criterion € - The criterione developed in this section is computed for a given frequeny the
first resolution is performed for one harmonic. Then thetrededifference between two consecutive
values of strain energy is evaluated. The first value is abthform harmonics and the second for
m + 1 harmonics. The increase is stopped whdmecomes less than a threshold chosen by user.
Algorithm is detailed in Fig. 2.

As matrices. andL, are diagonal constant block matrices and as algorithmssfarone harmonic,
studying strain energy saturation is equivalent to stuglgiaturation of an approximate quantity:

<U> = TZNkgZ without condensation

<U> = TZqNqu_TquK;pIquZq with condensation (39)

Finally, when the convergence rate of the strain energystout to be non smooth, the method may
stop before saturation. For example, for dry friction syséeonly odd harmonics appear. However, as
shown later, this drawback may be avoided removing all eambnics in the calculation. For other
cases, for example when th# and5"* harmonics responds, this drawback constitutes a limitaifo
the method.

11



3 Application Case

3.1 Two Beam System and Joint Model

A two cantilever beam system linked by a bolted joint is cdased for simulations in order to illus-
trate the selection process of harmonics and is shown irBf&y. Beams are made of aluminium 7075
Al and the section is rectangulas.{cm x 2.5¢m). The two beams have different length3s.(fcm
and84.7¢m) in order to avoid a symmetric behaviour.

Beams are modelled with Abaqus software with two dimengi824 beam elements which use a
Timoshenko formulationl0 (respectivel\25) elements are used for tBé.7cm (respectively84.7¢m)
beam. Due to axial forces, geometric non linearities mayappm this clamped-clamped beam sys-
tem for high level of excitation and may be simultaneoushisent with joint non linearity. However
this model is focused on localized non linearities and stuay been limited to joint non linearities.
For further details on geometric non linearities, the reada refer to Sze et al. [24] who applied
HBM on a non linear beam.

Bolted joint is represented with &a5¢m long element described by a mass elementary matrix of a
B21 beam element and a non linear stiffness matrix congidesean external force. These external
forces are the two momenid; and M, and the two force§; and7;. A Rayleigh damping is calcu-
lated by using mass and stiffness matrices of a monolithacrbgo that damping has a valuelof %

for frequencies of).24k H z and1.14k H z. These two frequencies correspond to the second and fifth
modes. The value df.1% is representative of real structures and remains suffigiéow to keep a
significative non linearity impact. Indeed, a material damypgncrease leads to reduce vibration am-
plitudes and consequently higher order harmonics amm@gugh adaptive harmonic balance method
will retain a smaller number of harmonics.

A dof7 : BOLTED: 7 dof59
Y _ JOINT
: lr = ol lr MODEL lr}b’n T f T

7] Fa R N

; [ ( [ CE:///j///)////////////////l///////\_._>

10.4em ; +16.9cm 20.3cm
(a) 34.7cm L =347 cm 84.7cm
LuGre
h/2
M1, Ry ka1 Ms, Ro

|

(b) L2 L2

)]

Fy,Th
h/2

[ LuGre]

Figure 3: Application Case (a) Two beam system and (b) bgdtiedl model.

Non linear stiffness model of bolted joint presented in Bi@p) is largely inspired by a previous work
of Song [14] and uses a model called Adjusted LuGre Beam Eie(A&.BE) by analogy with Song'’s
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work. Frictional slip and slapping constitutes the two maam linear phenomena involved in the joint
interface [10]. However, for the sake of simplicity, slapgwhich can lead to higher order harmonics
has not been considered in this study. Frictional slip i®lemnsidered with a non linear model
integrating a LuGre model leading to odd harmoniés discussed in section 2.4, even harmonics
have to be removed in the HBM calculation so that smooth agevee rate of strain energy is
observed on only odd harmonic$he basic idea is to replace stiffnesses of a linear beameglem
by a parallel combination of a LuGre model and a residudinggsk, ; ,i € 1,2 characteristic of a
bolted joint [11]. The element has two rotational déf$ and k2 and two translational dof§'1 and
T2. h andL are respectively section height and element length.

Spring elongationg\; and A, have to be considered to express relation between non lfoese
Fnr. arpe and element dofs:

I h
Ay = Z(Ry+ Ro) + (T1+T2) and Ay = Z(Ry — Ra) (40)

Consequently each LuGre forgg.c..; ., € 1,2 depends on); elongation but also on internal
variable value; and its derivative;. It may be written as:
Jrucre,i(Ai, Ay G, Cz) = 00 + Jliéi + ag (41)

G o= Ai- oo e (42)

Yy

(%)
_ Q
Qo + e

The combination of one LuGre model and one spring providesreefwhich takes the following
form:

fi(A, A, Gi Cz) = [ruGrei(Ai, A, Giy Cz) + koA (43)
Stiffness decrease during microslip regimes may be reptedeby using a coefficient; € [0;1]
which links the residual stiffnesk, ;, the LuGre model stiffness parametey; and the equivalent
linear element stiffnesk;. The relative equations ate; = (1 — v;)k; etk,; = vik;.
ForcesF}, I, and resulting momentd/;, M, may be expressed as:

F1 . fl(A}aA17C17CI> . )
M1 | LA(AL AL G, G) +'%f2(A.2,A2,C27C2) (44)
F2 ._fl(A.bAlaClaCl) . )
M2 %fl(AbAlaClaCl) - %fQ(A%A?aC%C?)
Thus from Eqn. (40) forcesy ar.zr Mmay be written as a function of ALBE dofs:
T T , F1
Ry Ry G1 G1 M1
F = 45
NL,ALBE( T2 ) T2 ) [ CQ ‘| 9 [ CQ ) F92 ( )
Ry Ry M?2
The two equivalent linear element stiffneségare obtained by the following relations:
El ET
kp = 12— = 1,43.10°N/mm et ky = 4—— = 8,92.10°N/mm (46)

L3 Lh?
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Other parameters are deduced by analogy with Shiryayevk [26], namelyy; = v, = 0.1078,ci91 =
Qp2 — 819N, 011 — 012 — (X1 — (X12 = (V91 — (V99 — 0. Finallyam = 1,27106N/mm, 0p2 —
7,96.10°N/mm, k.1 = 1,55.10°N/mm, k.2 = 9.62.10*N/mm.

Then the system is excited with a harmonic excitattgrof 42N with a pulsatiorf). Load is applied
on the longest beam on translational daf By using formulation introduced in Egn. (1), one may
write the governing equation of motion to which two equasidrave to be added. These additional
equations describe LuGre model internal varialgieg, evolution:

MX + DX + KX = F (Q,1) — FNL,ALBE([ > ] ; [ ‘o ] ) [ <1 ] 2, t) (47)
X C2 C2
=4~ o Ai| G for i€ {1,2} (48)

(3

(&)
ap; + e V'

3.2 Adaptation of HBM Formulation to LuGre Model

In the studied case, two equations are added to the equdtmatmn and integrate non linear terms.
Thus an adaptation of HBM formulation becomes necessaryloT&o, the two internal variabl€s
and(, are developed as a Fourier series in the same way.aBy inserting the truncaturg (t) =
T(t)Z., into Eqn. (48), the same Galerkin method is applied on thdtiag equation and one obtains:

0 = éi— Ai_ 70 X zAzCz
Qp; + Oéh'67<v_0i)
0 = T(t)VZCi - T(t)bCi(Z> ZCia Q)
= N11X1VZQ. - bgi(Z, ZQ., Q) with i € {1,2} (49)

whereb, (Z, Z,,, ?) are Fourier coefficients of the non linear term.

Consequently the problem is equivalent to finding zeros ofirection H H(Z, Z:) depending on
Fourier coefficients ofX and( = [(; (»]. These coefficients are nametland Z, = [Z., Z,].
H H is a function fromR(Qerl)X(ndlerQ) to R(Q*m+1)><(nddl+2).

(50)

HH(Z’ZC):{ H(Z,Z:) = A)Z-bZ, Z,9Q) }

C(Z,Z;) = Nu,,VZ—b(Z,Z;,Q)

In case of condensation, we may define similarly a functib,(Z,, Z;) from REm+1)x(a+2) o
R(Q*erl) x (¢g+2) :

HH,(Zy, 2) = { (51)

Hq(ZmZC> - Aq(Q)Zq - bq(an ZCaQ) }
O(qu ZC) - NIQXQVZC - bq,C(Zm ZOQ)

Finally, calculation of approximate strain energyl/ > stay the same as Eqn.(33) and Eqn. (38)
because only Fourier coefficients of physical dofs are usegiantify strain energy.
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3.3 Results

In the following, shown results have been calculated on thguency band0 — 2.3] kHz with a
curvilinear abscissa and an adaptive step to better descedgonance peaks. The Moore-Penrose
method is used for correction at each iteration and prexha8 made with Lagrange polynomials of
degree2.

3.3.1 Non linear effects on dynamic responses

The maximal amplitude of vibration obtained for the linease and for the two different non linear
cases [ harmonic case and adaptive case) are presented in Fig,c}(fmbthe three dofs of the sys-
tem. Thel harmonic case refers here to the classical HBM with one haitrend does not refer to
an adaptive algorithm. The first d@fis located on the left beam, the second is a translational @of
corresponding to thé&1 dof of the ALBE model, and the third one is the df on the right beam.
Figure. 3(a) details the dof position on the system. Thestiwkl value for the relative variation of
the approximate strain energy has been fixed%oand excitation force has an amplitude4@N.
The linear case shows seven modes on the studied frequendy Isé@rst non linearity effects are
significant on the one harmonic response and result in twaqena: a reduction of resonance peak
amplitudes which reflects the damping from the joint and a ahedftening which reflects the joint
stiffness decrease. Thus some modes have important fregabifts and even significant distortions,
notably the second, fifth and sixth modes. Frequency shifisvébration amplitude reductions have
the same order of magnitude for all the considered dofs. eddfices are observed between the
harmonic curve and the adaptive algorithm near resonarspecelly near the fifth and sixth modes
where the shape of peaks differs. Far from resonance ped&gtige algorithm give the same results
as thel harmonic calculation.

Figures 4(d,e,f) present a zoom on thék H z resonance peak. Three non linear cases correspond-
ing to a calculation withl, 3 and11 harmonics are compared with the adaptive HBM curve. Near
the resonance, the adaptive HBM remains close to the respeitis 11 harmonics. However, Fig-
ure 5, which plots the number of harmonics over the wholedesgy band, shows that the number
of harmonics reaches onfyharmonics at most, revealing satisfying convergence ofitethod. The
number of used harmonics may vary franio 11 for resonance peaks but onlyharmonic is nec-
essary elsewhere. It shows that non linear phenomena are pnonounced on resonances. The
maximum number of harmonics has been fixed to 15 in this case.

Contribution of each harmonid {,3"¢ and5* harmonic) is shown in Fig. 6(a,b,c) by plotting the
Fourier coefficient modulus of the*,3" and 5"* harmonics of the vibration responsgA; By||
for harmonick and for one dof into Eqn. (2)) near thelk H = resonance peak. Analyses are still
performed on the three dofs 19, and59. For the all three dofs, the* harmonic contribution re-
mains larger than tha"¢ and 5" harmonic contributions. However, analysis of the rati¢&/ 1%
(Fig 6(d,e,f)) andb'™ /1t (Fig 6(g,h,i)) shows that importance of third anf fifth hamizs increases
near resonances and may represent upté for the third harmonic and up t®% for the fifth har-
monic. This observation may be linked with the work of Ouyat@l. [22] who found emergence
of third and fifth superharmonics which represented abapeetively2% and0.7% of the first har-
monic. It may also be noted that third and fifth harmonics @ss bredominant for dafthan for dofs
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19 and59.

A similar analysis on the approximate strain energy may loészhout by considering the contribution
of the orderk as being the ternéTZkKZk. Z, refers here to the contribution of the ordeto the
Fourier coefficient vectoZ of the vibration response. Results are plotted in Fig 7(atid?37¢/1%
and5' /1t are shown in Fig 7(b,c). The same tendency that for maximaliaide of vibration with

a peak near resonance frequencies is observed. Moreotreg have the same order of magnitude
with a maximum value o12.5% for the third harmonic and dt% for the fifth harmonic, revealing
that approximate strain energy behaves like a global indicz each dof behaviour.

3.3.2 Approximate Strain Energy Saturation

Approximate strain energy. U > is presented over all the frequency band for three casespB ).
The first case shows the shape<of/ > for a linear case and a peak is observed for each resonance
frequency. The other two cases correspond to non lineauledions with one harmonic and with
an adaptive number of harmonics. Non linear effects deeredmsation amplitude of the system so
that peaks on approximate strain energy are attenuated.bgered on the maximal amplitude of
vibration curves, peaks are shifted to the left. Moreovédferences between linear and non linear
cases are predominant near resonance frequencies andvadagorithm curve differs from one
harmonic curve showing an increase in the required numbeaohonics. A zoom near thelkH =z
peak is made on Fig. 8(b) in order to show convergence of tpeoapnate strain energy quantity.
Results are presented fby3 and11 harmonics and for the adaptive case. Saturation is obsaved
adaptive case stays closeltbharmonic curve even if no more th@rharmonics are usedrinally, it

has to be noted that strain energy saturation is directtgdesn odd harmonics due to the presence of
dry friction in the model and considered harmonics have astarous decrease of their amplitude. It
constitutes a limitation of the method which cannot deahwibn consecutive predominant harmonics
(for example system with, 3 and11 predominant harmonics).

3.3.3 Influence of force excitation

First simulations were carried out with an excitation amyale of42N. Influence of excitation force
amplitude on non linear effects is now investigated by vagyamplitude with the value&V, 12N,
24N, 42N, 66 N. The maximal amplitude of vibration is presented for theeéhconsidered dofs in
Fig 9. Zooms for the dof9 are done for the first three peaks in Fig 9(a), for the fifth peakig 9(b)
and for the seventh peak in Fig 9(c). Responses are compwtesity the adaptive algorithm. First,
we note that an increase in excitation amplitude resultsuiger vibration amplitudes, and this for
all the three dofs. Then, the main notable non linear effean increase in modal softening for
larger excitation amplitude, as shown by left shifts of remace peaks. It clearly shows a relationship
between modal softening and vibration amplitudes and tepeddence is non linear as previously
noticed by Ungar [4]. For larger amplitudes, this modal eoiihg becomes less remarkable revealing
the beginning of macro-slip and so the stabilization of thetact stiffness.

In order to compare the five non linear cases, frequency respéunctions (FRFs) are computed
by dividing the maximal amplitude of vibration by the extiten force amplitude for each frequency
value. Results, which are very similar for the three congdelofs, are presented in the particular case
of the dof19 in Fig 11 for all the frequency band (a), for the first three geé), for the fifth peak
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Figure 4: Maximal amplitude of vibration for dofs 7(a,d),(@%), 59(c,f) and for different linear and
non linear cases: (a-c) over all the frequency band; — —dtintdBM 1 harm.); — (non linear, HBM

1 harm.); ... (non linear, adaptive HBM) (d-f) zoom on 1.1kiésonance; — (non linear, HBM 1
harm.); —.— (non linear, HBM 3 harm.); ... (non linear, adapHBM); —.— (non linear, HBM 11harm.)
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Figure 5: Evolution of the number of harmonics: — number ahhanics; ... maximal amplitude of
vibration for dof 19.

(c) and for the seventh peak (d). First we note that modakrofy is still observed on resonance
peaks and FRF maximal value decreases when excitationtagglincreases, reaching a minimal
value between th24 N and42 N cases before a new increase for larger excitation ampbtugieept
for the 2.2k H = peak where only a decrease is observed. Damping providedig jis non linear
and amplitude dependent and this may explain this behaviduyang et al. [22] observed the same
phenomenon on the relation between energy dissipationxaithgon amplitude for a torsional joint
and notices that, as excitation amplitude becomes largerpsslip increases.

Excitation amplitude has an influence on non linear effents @nsequently on the number of har-
monics used by the adaptive algorithm. Figure 12(a,bcptesents the number of obtained har-
monics for the five different excitation values. A zoom on thietH =z peak is done. For the lowest
amplitude value, the adaptive HBM only requires one harmartiereas for the highest amplitude it
uses nine harmonics. This increase is progressive andgfadncy interval for which more than one
harmonic are needed widens. Left shifts of resonances soenaticeable because the frequency for
which the number of harmonics is maximum decreases as @goi@nplitude becomes higher.

3.3.4 Influence of threshold value

Three threshold values df%, 3%, 5% have been tested for the adaptive algorithm. Figure 13(a,b,
shows the evolution of the number of harmonics for the twokpesearl.1kHz and1.5kH z and

for these three threshold values. Unsurprisingly, an seeof the selected number of harmonics
is observed when the threshold value decreases becausehararenics are needed to reach this
precision. Threshold value still remains a value to be deiteed by user.
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Figure 6: Contribution ot*t,3" and5"* harmonics on maximal amplitude of vibration and associated
ratios for dofs 7(a,d,g), 19(b,e,h), 59(c,f,i): (a-c) Feucoefficient modulus of the: ! harmonic;
——374 harmonic; ...5' harmonic; (d-f) ratia3"?/15¢; (g-i) ratio 5 /15t

3.3.5 Analysis of general and reduced criteria

An expression of approximate strain energy has been esttigoliin Eqn. (38) when a condensation
procedure is used in order to avoid the calculation of liféaurier coefficients for each step of the
adaptive algorithm. This expression is based on an assomitiat linear and non linear Fourier co-
efficients are linked in a static case allowing to obtain apraximate strain energy described only
with the reduced stiffness matrix and not with mass and dagpiatrices. A calculation with this
reduced criteria has been carried out and the evolutioneafiproximate strain energy for the two
condensation and general cases are overlaid in Fig 14(a)twidhquantities clearly differ for frequen-
cies higher than that of the first resonance, invalidatimgassumption used for the calculation of the
strain energy. However Fig. 14(b), which plots the evolutas the number of obtained harmonics
when the reduced criterion is used, shows that the resulieftaptive algorithm is very close to
the result for the general case presented in Fig. 5. This neagxplained by the fact that the used
criterion computes a relative quantity and observes stagrgy saturation by evaluating a relative
difference between two consecutive values. The use of thesion may represent an alternative for
an adaptive HBM calculation.
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Figure 8: Approximate strain energy for different lineardamon linear cases: (a) over all the fre-
guency band; — — (linear, HBM 1 harm.); — (non linear, HBM 1r3gr ... (non linear, adaptive
HBM) (b) zoom on 1.1kHz resonance; — (non linear, HBM 1 haym.} (non linear, HBM 3 harm.);
... (non linear, adaptive HBM); —.— (non linear, HBM 11harm.

4 Conclusion

This article develops a new adaptive harmonic balance ndetimich selects the number of harmonics
at each frequency value for a mechanical system integrédicaized non linearities. A two beam
system linked by a bolted joint is chosen for applicationecadBM formulation is combined with
a reduction on non linear dofs of the system and a simulatioa frequency band is carried out by
using a prediction method based on Lagrange polynomialsaadrection method based on Newton
and MoorePenrose methods. In order to adapt the number ofdmécs taken into account at each
frequency, an adaptive algorithm has been developed. Thieosheomputes an approximate strain
energy from Fourier coefficients of the response and obsetysaturation by evaluating the relative
difference between two consecutive cases corresponditvgptdifferent number of harmonics. This
new criterion, based on Fourier coefficients, does not regtime integration and may be easily
estimated. In a condensation case, criterion formulatoalso expressed. Furthermore geometric
non linearity due to axial forces in the clamped-clampedbaae not taken into account and non
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linear effects in the joint consider only frictional sliplapping is not modelled in this study. Slip in
the bolted joint element is represented by a LuGre model hvigiads to adapt the HBM formulation
in order to develop internal variables as Fourier series.

Results show that one harmonic is sufficient to give a satisfg approximation of the response away
from resonances and is necessary to highlight non lineactsfisuch as damping of resonance peaks
and modal softening. Indeed the dynamic behaviour is styomgdified compared with the linear
case. Moreover, adaptive HBM shows that, for a given threstalue of the criterion, the number
of harmonics may increase on resonances indicating thatinear effects are predominant. The
evolution of the approximate strain energy shows that a peakbserved near each resonance and
saturation of this quantity is noted when the number of hancincreasesHowever, calculation

is performed only on odd harmonics due to dry friction legdio a smooth convergence rate of
the strain energy on tested harmonics. This condition domas a limitation of the method which
cannot deal with non consecutive predominant harmoniasgfample system with predominant
harmonicsl, 3 and11). Analysis of each harmonic contribution notices the emergesf third and
fifth harmonics both on the response and on approximatensémaergy near resonances, showing
the global characteristic of the criterion based on appnate strain energy. In order to obtain a
wider range of harmonics and to model a more physical bolgstes, slapping and geometric non
linearities could be considered for further work. A cohdrbehaviour is noticed when threshold
value varies because more harmonics are needed to reaciveéhegecision when threshold value of
the adaptive algorithm is decreased.

A parametric study is carried out by varying the excitationcE amplitude. Vibration amplitude
increases with higher force amplitude because non lindactsf notably micro slip in the joint,
become more pronounced. Modal softening and damping depamdibration amplitude and this
dependency is non linear. Maximum of frequency responsetiums for each resonance depends
non linearly on excitation amplitude and may reach a mininuate for an intermediate excitation
amplitude. The number of needed harmonics becomes largerdeasing amplitudes underlining
the predominance of non linear effects.
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Figure 9: Influence of excitation force amplitude on maximalplitude of vibration for dofs 7(a),
19(b), 59(c): ..6N; - --12N; ——24N; ——42N; — 66N .
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Figure 10: Influence of excitation force amplitude on maXiesu@plitude of vibration for dof 19:
(&) Zoom on 3 first resonances, (b) Zoom on 1.1kHz resonan&oom on 2kHz resonance: ...
(replaced by +++ on (CN; - - - 12N; ——24N; ——42N; — 66 N.
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Figure 11: Influence of excitation force amplitude on fregyeresponse functions for dof 19: (a)
over all the frequency band, (b) Zoom on 3 first resonancéZdqem on 1.1kHz resonance, (d) Zoom
on 2kHz resonance : ...(replaced by +++ on @)); - - - 12N; —.—24N; ——42N; — 66 N.
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Figure 12: Influence of excitation force amplitude on the benof harmonics, zoom on the 1.1kHz
resonance: (&) N, (b) 12N, (c) 24N, (d) 42N, (e) 66 N.
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Figure 13: Influence of threshold value on the number of haiosy zoom on the 1.1kHz and the
1.5kHz resonances: (&Y, (b) 3%, (c) 1%.
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Figure 14: (a) Approximate strain energy: — general expogss- — condensation case expression
(b)Number of harmonics obtained with the condensation eapesssion.
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