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We give a strong approximation of Rosenblatt process via transport processes and
we give the rate of convergence.
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1 Introduction

Self-similar stochastic processes are of practical interest in various applications, including
econometrics, internet traffic, and hydrology. These are processes X = (X (t) : t ≥ 0) whose
dependence on the time parameter t is self-similar, in the sense that there exists a (self-
similarity) parameter H ∈ (0, 1) such that for any constant c > 0, (X (ct) : t ≥ 0) and
(

cHX (t) : t ≥ 0
)

have the same finite dimensional distributions. These processes are often
endowed with other distinctive properties.
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The fractional Brownian motion (fBm) is the usual candidate to model phenomena
in which the self-similarity property can be observed from the empirical data. This fBm
BH is the continuous centered Gaussian process with covariance function given by

RH(t, s) := E
[

BH (t)BH (s)
]

=
1

2
(t2H + s2H − |t− s|2H). (1)

The parameter H characterizes all the important properties of the process. In addition, to
being self-similar with parameter H, which is evident from the covariance function, fBm
has correlated increments: in fact, from (1) we get, as n→ ∞,

E
[(

BH (n)−BH (1)
)

BH (1)
]

= H (2H − 1)n2H−2 + o
(

n2H−2
)

; (2)

when H < 1/2, the increments are negatively correlated and the correlation decays more
slowly than quadratically; when H > 1/2, the increments are positively correlated and the
correlation decays so slowly that they are not summable, a situation which is commonly
known as the long memory property. The covariance structure (1) also implies

E

[

(

BH (t)−BH (s)
)2
]

= |t− s|2H ; (3)

this property shows that the increments of fBm are stationary and self-similar; its immedi-
ate consequence for higher moments can be used, via the so-called Kolmogorov continuity
criterion, to imply that BH has paths which are almost-surely (H − ε)-Hölder-continuous
for any ε > 0.

It turns out that fBm is the only continuous Gaussian process which is self-similar
with stationary increments. This constitutes an alternative definition of the process. How-
ever, there are other stochastic processes which, except for the Gaussian character, share
all the other properties above for H > 1/2 (i.e. (1) which implies (2), the long-memory
property, (3), and in many cases the Hölder-continuity). In some models the Gaussian
assumption may be implausible and in this case one needs to use a different self-similar
process with stationary increments to model the phenomenon. Natural candidates are the
Hermite processes: these non-Gaussian stochastic processes appear as limits in the so-called
Non-Central Limit Theorem (see [2], [5], [16]) and do indeed have all the properties listed
above. While fBm can be expressed as a Wiener integral with respect to the standard
Wiener process, i.e. the integral of a deterministic kernel w.r.t. a standard Brownian
motion, the Hermite process of order q ≥ 2 is a qth iterated integral of a deterministic
function with q variables with respect to a standard Brownian motion. When q = 2, the
Hermite process is called the Rosenblatt process. This stochastic process typically appears
as a limiting model in various applications such as unit the root testing problem (see [20])
or semiparametric approach to hypothesis test (see [10]). On the other hand, since it is
non-Gaussian and self-similar with stationary increments, the Rosenblatt process can also
be an input in models where self-similarity is observed in empirical data which appears to
be non-Gaussian. The need of non-Gaussian self-similar processes in practice (for example
in hydrology) is mentioned in the paper [17] based on the study of stochastic modeling for
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river-flow time series in [11]. Recent interest in the Rosenblatt and other Hermite processes,
due in part to their non-Gaussian character, and in part for their independent mathematical
value, is evidenced by the following references: [1], [3], [14], [18], [19].

In this paper we will give a strong approximation result for the Rosenblatt process
by means of transport processes. It is also interesting from the theoretical point of view
since all the approximation results for the Rosenblatt process known in the literature are
in the weak sense ([5], [16]).

Our work is a natural extension of the strong approximation results for the Brownian
motion and for the fractional Brownian motion. The study of the convergence of transport
processes to the Brownian motion has a long history. We mention the works ([4], [9], [8])
among others. More recently, due to the development of the stochastic analysis for fractional
Brownian motion, the need of simulating the paths of this process led to the study of the
strong approximation of the fBm by means. We refer to [7] for such an approximation in
terms of transport processes and to [6] or [15] for related works.

Our paper is organized as follows. In Section 2 we give some preliminares on multiple
integrals and Malliavin derivatives. In section 3 we describe the approximating processes
and prove the convergence to Rosenblatt process.

2 Multiple Wiener-Itô Integrals and Malliavin Derivatives

We start by introducing the elements from stochastic analysis that we will need in the
paper. Consider H a real separable Hilbert space and (B(ϕ), ϕ ∈ H) an isonormal Gaussian
process on a probability space (Ω,A, P ), which is a centered Gaussian family of random
variables such that E (B(ϕ)B(ψ)) = 〈ϕ,ψ〉H. Denote by In the multiple stochastic integral
with respect to B (see [13]). This In is actually an isometry between the Hilbert space
H⊙n(symmetric tensor product) equipped with the scaled norm 1√

n!
‖·‖H⊗n and the Wiener

chaos of order n which is defined as the closed linear span of the random variables Hn(B(ϕ))
where ϕ ∈ H, ‖ϕ‖H = 1 and Hn is the Hermite polynomial of degree n ≥ 1

Hn(x) =
(−1)n

n!
exp

(

x2

2

)

dn

dxn

(

exp

(

−
x2

2

))

, x ∈ R.

The isometry of multiple integrals can be written as: for m,n positive integers,

E (In(f)Im(g)) = n!〈f, g〉H⊗n if m = n,

E (In(f)Im(g)) = 0 if m 6= n. (4)

It also holds that
In(f) = In

(

f̃
)

where f̃ denotes the symmetrization of f defined by f̃(x1, . . . , xn) =
1
n!

∑

σ∈Sn
f(xσ(1), . . . , xσ(n)).
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We recall the following hypercontractivity property for the Lp norm of a multiple stochastic
integral (see [12, Theorem 4.1])

E |Im(f)|2m ≤ cm
(

EIm(f)2
)m

(5)

where cm is an explicit positive constant and f ∈ H⊗m.
In this paper we will use multiple stochastic integrals with respect to the Brownian motion
(Bm) on R as introduced above. Note that the Brownian motion on the real line is an
isonormal process and its underlying Hilbert space is H = L2(R).

For every 1
2 ≤ H < 1 the Rosenblatt process (XH

t )t∈[0,T ] could be defined as follows,

XH
t = c(H)I2(gt(·)) (6)

where for every t ∈ [0, T ]

gt(y1, y2) =

∫ t

y1∨y2
(u− y1)

H
2
−1

+ (u− y2)
H
2
−1

+ du. (7)

The constant d(H) is a normalizing constant which ensures that E(XH
t )2 = t2H for every t ∈

[0, T ]. This constant can be explicitly computed but it has no interest for our investigation.
It can be proved that the process XH is self-similar with stationary increment and has the
same covariance (1) as the fBm. Moreover it satisfies properties (2) and (3).

3 Strong convergence to the Rosenblatt process

The Rosenblatt process (XH
t )t∈[0,T ] defined above can be written as an iterated double

integral in the following way

XH
t = c(H)

∫

R

∫

R

(
∫ t

0
(s− x1)

H
2
−1

+ (s− x2)
H
2
−1

+ ds

)

dB(x1)dB(x2), t ∈ [0, T ] (8)

where B is a Wiener process on the whole real line and the Hurst parameter H belongs to
the interval (12 , 1). The process XH is H self similar with stationary increments and it has
the same covariance as the fractional Brownian motion.

We will separate XH into three terms. For every t ∈ [0, T ]

XH
t = c(H)

[
∫ 0

−∞

∫ 0

−∞

(
∫ t

0
(s − x1)

H
2
−1(s− x2)

H
2
−1ds

)

dB(x1)dB(x2)

+

∫ 0

−∞

∫ t

0

(
∫ t

x1

(s− x1)
H
2
−1(s− x2)

H
2
−1ds

)

dB(x1)dB(x2)

+

∫ t

0

∫ 0

−∞

(
∫ t

x2

(s− x1)
H
2
−1(s− x2)

H
2
−1ds

)

dB(x1)dB(x2)
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+

∫ t

0

∫ t

0

(
∫ t

x1∨x2

(s− x1)
H
2
−1(s− x2)

H
2
−1ds

)

dB(x1)dB(x2)

]

:= X1,H
t + 2X2,H

t +X3,H
t , (9)

note that the second and the third integrals are actually equal, for that reason the term
X2,H appears twice . We will treat separately the third terms above since they have different
behavior which comes from the singularity of the integral appearing in their expression.

3.1 Transport processes

For each n = 1, 2, . . ., let (Z(n)(t))t≥0 be a process such that Z(n)(t) is the position on the
real line at time t of a particle moving as follows. It starts from 0 with constant velocity +n
or −n, each with probability 1/2. It continues until a random time τ1 which is exponentially
distributed with parameter n2, and at that time it switches from velocity ±n to ∓n and
continues for an additional independent random time τ2 − τ1 which is again exponentially
distributed with parameter n2. At time τ2 it changes velocity as before, and so on. This
process is called a (uniform) transport process. Griego, Heath and Ruiz-Moncayo [9] showed
that Z(n) converges to Brownian motion strongly and uniformly on bounded time intervals,
and a rate of convergence was derived by Gorostiza and Griego in [8] as follows,

Theorem 1 There exist versions of the transport processes Z(n) on the same probability
space as a given Brownian motion (Bt)t≥0 such that for each q > 0,

P

(

sup
a≤t≤b

|Bt − Z
(n)
t | > Cn−1/2(log n)5/2

)

= o(n−q) as n→ ∞,

where C is a positive constant depending on a, b and q.

Let (XH
t )t∈[0,T ] a Rosenblatt process. With a < 0 fixed, we consider the following

Bm’s constructed from the Bm B in (8),

1. (B1(s))s∈[0,T ] , the restriction of B to the interval [0, T ].

2. (B2(s))a≤s≤0, the restriction of B to the interval [a, 0].

3. B3(s) =

{

sB(1s ) if s ∈
[

1
a , 0
)

,

0 if s = 0.

Let us define now the transport processes that will intervene in our main results. By
Theorem 1, there are three transport processes

(Z
(n)
1 (s))0≤s≤T , (Z

(n)
2 (s))a≤s≤0, and (Z

(n)
3 (s)) 1

a
≤s≤0, (10)
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such that for each q > 0,

P

(

sup
bi≤t≤ci

|Bi(t)− Z
(n)
i (t)| > C(i)n−1/2(log n)5/2

)

= o(n−q) as n→ ∞, (11)

where bi, ci, i = 1, 2, 3, are the endpoints of the corresponding intervals, and C(i) is a positive
constant depending on bi, ci and q.

3.2 Strong approximation

We will approximate successively each summand X1,H ,X2,H ,X3,H from (9) in the strong

sense by processes construct in terms of the transport processes Z
(n)
1 , Z

(n)
2 , Z

(n)
3 introduced

above. Let us start with the summand X1,H . Using Fubini theorem, we can express it as

X1,H
t = c(H)

∫ t

0
ds

∫ 0

−∞

∫ 0

−∞
dB(x1)dB(x2)(s − x1)

H
2
−1(s− x2)

H
2
−1

= c(H)

∫ t

0
ds

(
∫ 0

−∞
(s− x)

H
2
−1dB(x)

)2

(12)

= c(H)

∫ t

0
ds
(

Y 1,H
s

)2
, t ∈ [0, T ]

where

Y 1,H
s =

∫ 0

−∞
(s− x)

H
2
−1dB(x), s ∈ [0, T ]. (13)

Remark 1 Notice that integral
∫ 0
−∞(s−x)

H
2
−1dB(x) is well-defined in L2(Ω) as a Wiener

integral for every s > 0 since

E

(
∫ 0

−∞
(s − x)

H
2
−1dB(x)

)2

=

∫ 0

−∞
(s − x)H−2dx =

1

1−H
s2H−1.

The situation will be different when we treat the summand X3,H . This is one of the reasons
to decompose the Rosenblatt process into several parts.

Let 0 < max
(

1−H/2
3−2H , 2−H

2H+2

)

< β < 1/2 be fixed (note that 1−H/2
3−2H < 1

2 since H < 1

and 2−H
2H+2 <

1
2 because H > 1

2), denote in the sequel by

εn = n
− β

1−H/2 (14)

and by

αn = n−( 1
2
−β)(log n)

5

2 . (15)

We will use the notation

‖Y ‖∞,[a,b] = sup
a≤s≤b

|Ys|.
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When the interval is of the form [0, T ] we will use the shorter notation ‖Y ‖∞,[0,T ] := ‖Y ‖∞,T .
We will denoted by C a generic strictly positive constant that may depend on a, T,H, p and
may change from line to line.

Let us give a different expression for the process Y 1,H .

Lemma 1 Let Y 1,H be the process defined by (13) and a < 0 fixed, then for every s ∈ [0, T ]

Y 1,H
s = fs(a)B2(a)−

∫ −εn

1/a
∂xfs

(

1

u

)

1

u3
B3(u)du −

∫ 0

−εn

∂xfs

(

1

u

)

1

u3
B3(u)du

+

∫ −εn

a
fs(x)dB2(x) +

∫ 0

−εn

[fs(x)− fs(x− εn)]dB2(x)

+

∫ 0

−εn

fs(x− εn)dB2(x) (16)

where ∂xfs denotes the derivative of the function fs(x) = (s − x)H/2−1, s > x with respect
to its second variable (even when this second variable is not denoted by x).

Proof: We can write, for every t ∈ [0, T ]

Y 1,H
s =

∫ a

−∞
fs(x)dB(x) +

∫ 0

a
fs(x)dB(x). (17)

We express the first Wiener integral above as an integral with respect to ds. Since by the
Hölder continuity of B,

lim
b→−∞

fs(b)B(b) = 0,

by integration by parts and putting x = 1/u,

∫ a

−∞
fs(x)dB(x) = fs(a)B(a)−

∫ a

−∞
∂xfs(x)B(x)dx

= fs(a)B(a)−

∫ 0

1/a
∂xfs

(

1

u

)

1

u2
B

(

1

u

)

du

= fs(a)B2(a)−

∫ 0

1/a
∂xfs

(

1

u

)

1

u3
B3(u)du. (18)

By (17) and (18), for every s ∈ [0, T ] we have the result.

We first approximate the process (Y 1,H
s )s∈[0,T ] (in the strong sense (11)) by stochas-

tic processes constructed from transport processes. Basically, in the expression of Y 1,H , we
replace the Brownian motions by their corresponding transport processes. The approximat-
ing processes to Y 1,H is defined as
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Y 1,H,n
s = fs(a)Z

(n)
2 (a)−

∫ −εn

1/a
∂xfs

(

1

u

)

1

u3
Z

(n)
3 (u)du +

∫ −εn

a
fs(x)dZ

(n)
2 (x)

+

∫ 0

−εn

fs(x− εn)dZ
(n)
2 (x), s ∈ [0, T ]. (19)

We state the result concerning the approximation of Y 1,H . Its proof follows the ideas
of the proofs in [7] but the context is technically more complex. Note that the singularity

of the integrand (s − x)
H
2
−1 at s = x does not allows to use directly the results in [7] and

the arguments of the proofs must be adapted to fit in our context.

Proposition 1 Let Y 1,H and Y 1,H,n be the processes defined by (13) and (19), respectively

and let αn given by (15). Then for each q > 0 and each β such that 0 < 1−H/2
3−2H < β < 1

2 ,

P

(

sup
0≤s≤T

s1−H/2
∣

∣Y 1,H
s − Y 1,H,n

s

∣

∣ > Cαn

)

= o(n−q) as n→ ∞. (20)

Proof: From (16) and Lemma 1 we have

|Y 1,H
t − Y 1,H,n

t | ≤

{

∣

∣

∣
ft(a)B2(a)− ft(a)Z

(n)
2 (a)

∣

∣

∣

+

∣

∣

∣

∣

∣

∫ −εn

1/a
∂xfs

(

1

u

)

1

u3
B3(u)du −

∫ −εn

1/a
∂xfs

(

1

u

)

1

u3
Z

(n)
3 (u)du

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ 0

−εn

∂xfs

(

1

u

)

1

u3
B3(u)du

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ −εn

a
fs(x)dB2(x)−

∫ −εn

a
fs(x)dZ

(n)
2 (x)

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ 0

−εn

fs(x− εn)dB2(x)−

∫ 0

−εn

fs(x− εn)dZ
(n)
2 (x)

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ 0

−εn

[fs(x)− fs(x− εn)]dB2(x)

∣

∣

∣

∣

}

.

By Lemmas 2, 3, 4, 5, 6 and 7 below we have the result.

Lemma 2 Let Z
(n)
2 be the process defined by (10). Then for each q > 0 there is C > 0 such

that

I1 := P

(

sup
0≤s≤T

∣

∣

∣
fs(a)B2(a)− fs(a)Z

(n)
2 (a)

∣

∣

∣
> Cαn

)

= o(n−q) as n→ ∞. (21)

Proof: It holds, for fixed a < 0,

∣

∣

∣
fs(a)B2(a)− fs(a)Z

(n)
2 (a))

∣

∣

∣
≤ ‖B2 − Z

(n)
2 ‖∞,[a,0](s− a)H/2−1

≤ ‖B2 − Z
(n)
2 ‖∞,[a,0](−a)

H/2−1

8



then (recall that C is a generic strictly positive constant that may depend on a, T,H)

I1 ≤ P
(

‖B2 − Z
(n)
2 ‖∞,[a,0](−a)

H/2−1 > Cαn

)

≤ P
(

‖B2 − Z
(n)
2 ‖∞,[a,0] > Cαn

)

= o(n−q).

Remark 2 The conclusion of Lemma 2 is clearly true if we add the factor s1−
H
2 after the

supremum. This remark is also available for the following lemmas and we will not mention
it at each time.

Lemma 3 Let Z
(n)
3 be the process defined by (10). Then for each q > 0,

I2 := P

(

sup
0≤s≤T

s1−H/2

∣

∣

∣

∣

∣

∫ −εn

1/a
∂xfs

(

1

u

)

1

u3
B3(u)du−

∫ −εn

1/a
∂xfs

(

1

u

)

1

u3
Z

(n)
3 (u)du

∣

∣

∣

∣

∣

> Cαn

)

= o(n−q) as n→ ∞. (22)

Proof: Putting z = 1/u and w = s− z,
∣

∣

∣

∣

∣

∫ −εn

1/a
∂xfs

(

1

u

)

1

u3
B3(u)du −

∫ −εn

1/a
∂xfs

(

1

u

)

1

u3
Z

(n)
3 (u)du

∣

∣

∣

∣

∣

≤ ‖B3 − Z
(n)
3 ‖∞,[1/a,0]

∫ −εn

1/a

∣

∣

∣

∣

∂xfs

(

1

u

)

1

u3
B3(u)

∣

∣

∣

∣

du

= ‖B3 − Z
(n)
3 ‖∞,[1/a,0](1−H/2)

∫ −εn

1/a

1

(−u)3
(s− 1/u)H/2−2du

= ‖B3 − Z
(n)
3 ‖∞,[1/a,0](1−H/2)

∫ a

−1/εn

(−z)(s − z)H/2−2dz

= ‖B3 − Z
(n)
3 ‖∞,[1/a,0](1−H/2)

∫ s+1/εn

s−a
(w − s)(w)H/2−2dw

≤ ‖B3 − Z
(n)
3 ‖∞,[1/a,0](1−H/2)

∫ s+1/εn

s−a
wH/2−1dw

= ‖B3 − Z
(n)
3 ‖∞,[1/a,0]

1−H/2

H/2
[(s + 1/εn)

H/2 − (s− a)H/2]

≤ ‖B3 − Z
(n)
3 ‖∞,[1/a,0]

1−H/2

H/2
(T + 1/εn)

H/2

≤ ‖B3 − Z
(n)
3 ‖∞,[1/a,0]

1−H/2

H/2
2H/2(TH/2 + (εn)

−H/2),

then

I2 ≤ P

(

‖B3 − Z
(n)
3 ‖∞,[1/a,0]

1−H/2

H/2
2H/2(TH/2 + (εn)

−H/2) > Cαn

)

9



≤ P

(

‖B3 − Z
(n)
3 ‖∞,[1/a,0]

1−H/2

H/2
2H/2TH/2 > Cαn

)

+P

(

‖B3 − Z
(n)
3 ‖∞,[1/a,0]

1−H/2

H/2
2H/2T 1−H/2(εn)

−H/2 > Cαn

)

≤ P
(

‖B3 − Z
(n)
3 ‖∞,[1/a,0] > Cαn

)

+P
(

‖B3 − Z
(n)
3 ‖∞,[1/a,0] > C(εn)

H/2αn

)

≤ o(n−q) + P
(

‖B3 − Z
(n)
3 ‖∞,[1/a,0] > Cn−1/2+β(1−H)/(1−H/2)(log n)5/2

)

= o(n−q).

The following lemma explains one of the conditions imposed on β in the statement
of Proposition 1. Another restriction comes from Proposition 4 later.

Lemma 4 Let (1−H/2)/(3 − 2H) < β < 1
2 . Then for each q > 0

I3 := P

(

sup
0≤s≤T

∣

∣

∣

∣

∫ 0

−εn

∂xfs

(

1

u

)

1

u3
B3(u)du

∣

∣

∣

∣

> αn

)

= o(n−q) as n→ ∞. (23)

Proof: For every s ∈ [0, T ] and u ∈ [−εn, 0) we can write

∣

∣

∣

∣

1

u3
∂xfs

(

1

u

)
∣

∣

∣

∣

=

∣

∣

∣

∣

1

u3
(H/2 − 1).− (s− 1/u)H/2−2

∣

∣

∣

∣

=
1−H/2

(−u)3
·

(

1− us

−u

)H/2−2

≤ (1−H/2)(−u)−1−H/2 (24)

By (24) and the pathwise Hölder continuity of the Bm B3 there exists a random
variable Y (having all its moments finite) such that for any γ < 1/2 −H/2,

∣

∣

∣

∣

∫ 0

−εn

∂xfs

(

1

u

)

1

u3
B3(u)du

∣

∣

∣

∣

≤ Y

∫ 0

−εn

(1−H/2)(−u)−1−H/2(−u)1/2−γdu

= Y
1−H/2

1/2 −H/2− γ
(εn)

1/2−H/2−γ .

By Chebyshev’s inequality, for r > 0,

I3 ≤ P

(

Y
1−H/2

1/2−H/2− γ
n
−β 1/2−H/2−γ

1−H/2 > αn

)

= P
(

CY > nκ(log n)5/2
)

≤
E(|C̃Y |r)

nrκ(log n)r5/2
,

where κ = −(1/2 − β) + β(1/2 −H/2− γ)/(1 −H/2). Taking

(1−H/2)/(3 − 2H) < (1−H/2)/(3 − 2H − γ) < β < 1/2,
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then κ > 0. For q > 0 there is r > 0 such that q < rκ, then

lim
n→∞

nqI3 = 0.

Lemma 5 Let Z
(n)
2 be the process defined by (10). Then for each q > 0,

I4 := P

(

sup
0≤s≤T

∣

∣

∣

∣

∫ −εn

a
fs(x)dB2(x)−

∫ −εn

a
fs(x)dZ

(n)
2 (x)

∣

∣

∣

∣

> Cαn

)

= o(n−q) as n→ ∞ (25)

Proof: By integration by parts,

∫ −εn

a
fs(x)dB2(x) = fs(−εn)B2(−εn)− fs(a)B2(a)−

∫ −εn

a
(1−H/2)(s − x)H/2−2B2(x)dx

and

∫ −εn

a
fs(x)dZ

(n)
2 (x) = fs(−εn)Z

(n)
2 (−εn)− fs(a)Z

(n)
2 (a)

−

∫ −εn

a
(1−H/2)(s − x)H/2−2Z

(n)
2 (x)dx

then
∣

∣

∣

∣

∫ −εn

a
fs(x)dB2(x)−

∫ −εn

a
fs(x)dZ

(n)
2 (x)

∣

∣

∣

∣

≤ ‖B2 − Z
(n)
2 ‖∞,[a,0]

{

fs(−εn) + fs(a) +

∫ −εn

a
(1−H/2)(s − x)H/2−2dx

}

≤ ‖B2 − Z
(n)
2 ‖∞,[a,0]

{

(s+ εn)
H/2−1 + (s− a)H/2−1 + (s+ εn)

H/2−1 − (s− a)H/2−1
}

= ‖B2 − Z
(n)
2 ‖∞,[a,0]2(s + εn)

H/2−1

≤ ‖B2 − Z
(n)
2 ‖∞,[a,0]2(εn)

H/2−1 = ‖B2 − Z
(n)
2 ‖∞,[a,0]2n

β

Consequently,

I4 ≤ P
(

‖B2 − Z
(n)
2 ‖∞,[a,0]2n

β > Cαn

)

= P
(

‖B2 − Z
(n)
2 ‖∞,[a,0] > Cn−1/2(log n)5/2

)

= o(n−q)

11



Lemma 6 Let Z
(n)
2 be the process defined by (10). Then for each q > 0,

I5 := P

(

sup
0≤s≤T

∣

∣

∣

∣

∫ 0

−εn

fs(x− εn)dB2(x)−

∫ 0

−εn

fs(x− εn)dZ
(n)
2 (x)

∣

∣

∣

∣

> Cαn

)

= o(n−q) as n→ ∞. (26)

Proof: By integration by parts as before and taking into account that B2(0) = Z
(n)
2 (0) = 0

we can express the two integrals in the statement as

∫ 0

−εn

fs(x− εn)dB2(x) = −fs(−2εn)B2(−εn)−

∫ 0

−εn

(1−H/2)(s + εn − x)H/2−2B2(x)dx

and

∫ 0

−εn

fs(x− εn)dZ
(n)
2 (x) = −fs(−2εn)Z

(n)
2 (−εn)

−

∫ 0

−εn

(1−H/2)(s + εn − x)H/2−2Z
(n)
2 (x)dx.

then
∣

∣

∣

∣

∫ 0

−εn

fs(x− εn)dB2(x)−

∫ 0

−εn

fs(x− εn)dZ
(n)
2 (x)

∣

∣

∣

∣

≤ ‖B2 − Z
(n)
2 ‖∞,[a,0]

{

fs(−2εn) +

∫ 0

−εn

(1−H/2)(s + εn − x)H/2−2dx

}

≤ ‖B2 − Z
(n)
2 ‖∞,[a,0]

{

(s+ 2εn)
H/2−1 + (s+ εn)

H/2−1 − (s+ 2εn)
H/2−1

}

= ‖B2 − Z
(n)
2 ‖∞,[a,0](s+ εn)

H/2−1 ≤ ‖B2 − Z
(n)
2 ‖∞,[a,0](εn)

H/2−1

= ‖B2 − Z
(n)
2 ‖∞,[a,0]n

β

Consequently,

I5 ≤ P
(

‖B2 − Z
(n)
2 ‖∞,[a,0]n

β > Cαn

)

= P
(

‖B2 − Z
(n)
2 ‖∞,[a,0] > Cn−1/2(log n)5/2

)

= o(n−q)

Finally, we prove our last auxiliary approximation result. Here we need to add the

factor s1−
H
2 which appears in Proposition 1. This is due to the singularity of the derivative

of fs(x) with respect to x. s1−
H
2 .

12



Lemma 7 Let (1−H/2)/(3 − 2H) < β < 1
2 . Then for each q > 0

I6 := P

(

sup
0≤s≤T

s1−
H
2

∣

∣

∣

∣

∫ 0

−εn

[fs(x)− fs(x− εn)]dB2(x)

∣

∣

∣

∣

> Cαn

)

= o(n−q) as n→ ∞. (27)

Proof: We first write the difference fs(x) − fs(x − εn) as an integral and we use Fubini
theorem. We obtain

∫ 0

−εn

[fs(x)− fs(x− εn)]dB2(x) =

∫ 0

−εn

∫ s+εn−x

s−x
(1−H/2)uH/2−2dudB2(x)

= (1−H/2)

[
∫ s+εn

s
uH/2−2

∫ 0

s−u
dB2(x)du +

∫ s+2εn

s+εn

uH/2−2

∫ s+εn−u

−εn

dB2(x)du

]

= (1−H/2)

[
∫ s+εn

s
uH/2−2[B2(0)−B2(s− u)]du

+

∫ s+2εn

s+εn

uH/2−2[B2(s+ εn − u)−B2(−εn)]du

]

The Hölder continuity of the Wiener process B2 implies for every 0 < γ < 1
2

∣

∣

∣

∣

∫ 0

−εn

[fs(x)− fs(x− εn)]dB2(x)

∣

∣

∣

∣

≤ (1−H/2)Y

[
∫ s+εn

s
uH/2−2[u− s]1/2−γdu+

∫ s+2εn

s+εn

uH/2−2[s+ 2εn − u]1/2−γdu

]

≤ (1−H/2)Y

[
∫ s+εn

s
uH/2−2[εn]

1/2−γdu+

∫ s+2εn

s+εn

uH/2−2[εn]
1/2−γdu

]

≤ (1−H/2)Y

[
∫ s+2εn

s
uH/2−2ε1/2−γ

n du

]

≤ Y ε1/2−γ
n sH/2−1

and consequently

P

(

sup
0≤s≤T

s1−
H
2

∣

∣

∣

∣

∫ 0

−εn

[fs(x)− fs(x− εn)]dB2(x)

∣

∣

∣

∣

> Cαn

)

≤ P
(

CY ε1/2−γ
n > αn

)

and the result follows by analogous arguments as in proof of Lemma 4.

Remark 3 In particular Proposition 1 implies that

P

(

lim
n

{

sup
0≤s≤T

s1−
H
2

∣

∣Y 1,H
s − Y 1,H,n

s

∣

∣ > Cαn

}

)

= 0

by using Borel-Cantelli lemma.
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We finish the strong approximation of the termX1,H appearing in the decomposition
of the Rosenblatt process XH in (9). By (12), we define for every n and Y 1,H,n given by
(19)

X1,H,n = c(H)

∫ t

0
(Y 1,H,n

s )2ds. (28)

We have the following.

Proposition 2 Let X1,H be given by (12) and β ∈
(

1−H/2
3−2H , 12

)

fixed. Define X1,H,n by

(28). Then for any γ such that 0 < γ < β and β + γ < 1/2,

P
(

lim
n→∞

{‖X1,H,n −X1,H‖∞,T ≥ Cn−(1/2−β−γ)(log n)5/2}
)

= 0.

Proof: Using the fact that A2 − B2 = (A − B)2 + 2B(A − B) we can write, for every
t ∈ [0, T ]

X1,H,n
t −X1,H

t = c(H)

∫ t

0
((Y 1,H,n

s )2 − (Y 1,H
s )2)ds

= c(H)

∫ t

0

[

(Y 1,H,n
s − Y 1,H

s )2 + 2Y 1,H
s (Y 1,H,n

s − Y 1,H
s )

]

ds

and hence

sup
t∈[0,T ]

|X1,H,n
t −X1,H

t | ≤ c(H) sup
t∈[0,T ]

∫ t

0

∣

∣(Y 1,H,n
s − Y 1,H

s )2 + 2Y 1,H
s (Y 1,H,n

s − Y 1,H
s )

∣

∣ ds

= c(H)

∫ T

0

∣

∣(Y 1,H,n
s − Y 1,H

s )2 + 2Y 1,H
s (Y 1,H,n

s − Y 1,H
s )

∣

∣ ds

≤ c(H)

∫ T

0
(Y 1,H,n

s − Y 1,H
s )2ds + 2c(H)

∫ T

0
|Y 1,H

s |
∣

∣Y 1,H,n
s − Y 1,H

s

∣

∣ ds

≤ C sup
s∈[0,T ]

s2−H(Y 1,H,n
s − Y 1,H

s )2

+ 2C

∫ T

0
s

H
2
−1
∣

∣Y 1,H
s

∣

∣ ds sup
s∈[0,T ]

s1−
H
2 |Y 1,H,n

s − Y 1,H
s |.

We used above the trivial inequality P (|X|2 ≥ Cαn) ≤ P (|X| ≥ Cαn) for any random
variable X. We will get (C denoted a generic strictly positive constant depending on T,H
that may change from line to line) by Proposition 1

P
(

‖X1,H,n −X1,H‖∞,T > Cn−(1/2−β−γ)(log n)5/2
)

≤ P

(

sup
s∈[0,T ]

s2−H |Y 1,H,n
s − Y 1,H

s |2 > Cn−(1/2−β−γ)(log n)5/2

)
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+ P

(

sup
s∈[0,T ]

s1−
H
2 |Y 1,H,n

s − Y 1,H
s |

∫ T

0
s

H
2
−1|Y 1,H

s |ds > Cn−(1/2−β−γ)(log n)5/2

)

= o(n−q) + P

(

∫ T

0
s

H
2
−1|Y 1,H

s |ds sup
s∈[0,T ]

s1−
H
2 |Y 1,H,n

s − Y 1,H
s | > Cn−(1/2−β−γ)(log n)5/2

)

.

(29)

We apply Lemma 8 below with

A =

∫ T

0
s

H
2
−1|Y 1,H

s |ds and Γ = sup
0≤s≤T

s1−
H
2

∣

∣Y 1,H
s − Y 1,H,n

s

∣

∣ .

We note first that

E

∫ T

0
s

H
2
−1|Y 1,H

s |ds ≤ c(H)

∫ T

0
ds s

H
2
−1
(

E(Y 1,H
s )2

)

1

2 ds

≤ c(H)

∫ T

0
ds s

H
2
−1

(
∫ 0

−∞
(s− x)H−2dx

)

1

2

= c(H)

∫ T

0
ds s

H
2
−1s

H−1

2 = c(H)TH− 1

2

and thus the random variable A is almost surely finite. We obtain by (29) and Remark 3

P
(

lim{‖X1,H,n −X1,H‖∞,T > Cn−(1/2−β−γ)(log n)5/2}
)

≤ P

(

lim
n→∞

{A sup
0≤s≤T

s1−
H
2

∣

∣Y 1,H
s − Y 1,H,n

s

∣

∣ > Cn−(1/2−β−γ)(log n)5/2}

)

≤ P

(

lim
n→∞

{ sup
0≤s≤T

s1−
H
2

∣

∣Y 1,H
s − Y 1,H,n

s

∣

∣ > Cαn}

)

= 0.

The following lemma has been used in the proof of Proposition 2.

Lemma 8 Let A and Γ be random variables with A an almost surely finite. Then for every
γ > 0

P
(

lim
n→∞

{AΓ > Cn−(1/2−β−γ)(log n)5/2}
)

≤ P
(

lim
n→∞

{Γ > Cn−(1/2−β)(log n)5/2}
)

with C a generic strictly positive constant.
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Proof: We prove the following inclusion

lim
n→∞

{

AΓ > n−(1/2−β−γ)(log n)5/2
}

⊆ lim
n→∞

{

Γ > n−(1/2−β)(log n)5/2
}

.

Since

ω ∈ lim
n→∞

{

AΓ > n−(1/2−β−γ)(log n)5/2
}

= lim
n→∞

{

(An−γ)Γ > n−(1/2−β)(log n)5/2
}

= ∩∞
n=1 ∪

∞
k=n

{

(Ak−γ)Γ > k−(1/2−β)(log k)5/2
}

,

then for all n ≥ 1,

ω ∈ ∪∞
k=n

{

(Ak−γ)Γ > k−(1/2−β)(log k)5/2
}

,

and since A is an almost surely finite random variable, there is N̂ = N̂(ω) such that for
all n ≥ N̂ , An−γ < 1, then ω ∈ ∪∞

k=n

{

Γ > k−(1/2−β)(log k)5/2
}

and the conclusion follows
easily.

Let us handle now the term X3,H appearing in (9). We will decompose it as follows:

X3,H
t = c(H)

∫ t

0

∫ t

0
dB(x1)dB(x2)

∫ t

(x1∨x2+εn)∧t
ds(s− x1)

H
2
−1(s− x2)

H
2
−1

+c(H)

∫ t

0

∫ t

0
dB(x1)dB(x2)

∫ (x1∨x2+εn)∧t

x1∨x2

ds(s− x1)
H
2
−1(s− x2)

H
2
−1

:= c(H)(Fn
t +Gn

t ) (30)

where εn is given by (14).

Remark 4 For the term X3,H we cannot use Fubini theorem (as in the case of X1,H)

because
∫ s
0 (s− x)

H
2
−1dB(x) is not defined as a Wiener integral in L2(Ω) since the function

(s− x)H−2 is not integrable on [0, s] with respect to dx.

For every t ∈ [0, T ] the summand Fn
t can be written as

Fn
t =

∫ t

0

∫ t

0
dB(x1)dB(x2)

∫ t

(x1∨x2+εn)∧t
ds(s− x1)

H
2
−1(s− x2)

H
2
−1

=

∫ t−εn

0

∫ t−εn

0
dB(x1)dB(x2)

∫ t−εn

(x1∨x2)
ds(s+ εn − x1)

H
2
−1(s + εn − x2)

H
2
−1

=

∫ t−εn

0

(
∫ s

0
(s+ εn − x)

H
2
−1dB(x)

)2

ds =

∫ t−εn

0
(Y 3,H

s )2ds (31)

where we denoted by

Y 3,H
s =

∫ s

0
(s+ εn − x)

H
2
−1dB(x) for 0 ≤ s ≤ T. (32)
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Note that the process Y 3,H depends on n. But we prefer to use the notation Y 3,H without
n in order to keep the coherence with the other terms treated before and in the sequel.

Let (B1(s))s∈[0,T ] the restriction of the Wiener process B to the interval [0, T ] and

let Z
(n)
1 be the corresponding transport process defined in (10) that converges to B in the

strong sense (11). Then,

Y 3,H
s =

∫ s

0
(s+ εn − x)

H
2
−1dB1(x) (33)

and we define

Y 3,H,n
s =

∫ s

0
(s+ εn − x)

H
2
−1dZ

(n)
1 (x) for 0 ≤ s ≤ t. (34)

We will show first that Y 3,H,n is a strong approximation of Y 3,H .

Proposition 3 Let Y 3,H , Y 3,H,n and αn be given by (33), (34) and (15) respectively,

P

(

sup
s∈[0,T ]

|Y 3,H,n
s − Y 3,H

s | > Cαn

)

= o(n−q)

for each q > 0 and for β ∈ (0, 12).

Proof: After integrating by parts, we can write, for every s ∈ [0, T ],

|Y 3,H,n
s − Y 3,H

s | ≤ ε
H
2
−1

n

∣

∣

∣
B1(s)− Z

(n)
1 (s)

∣

∣

∣

+(1−H/2)

∫ s

0
(s+ εn − x)

H
2
−2
∣

∣

∣
B1(x)− Z

(n)
1 (x)

∣

∣

∣
dx

≤ 2ε
H
2
−1

n ‖B1 − Z
(n)
1 ‖∞,T = 2nβ‖B1 − Z

(n)
1 ‖∞,T

using the choice of εn and hence by (11),

P
(

‖Y 3,H,n − Y 3,H‖∞,T ≥ Cαn

)

≤ P
(

‖B1 − Z
(n)
1 ‖∞,T ≥ Cn−1/2(log n)5/2

)

= o(n−q)

for every q > 0 by (11).

We will introduce now the approximation processes that will converge to X3,H . Let
us denote, for every t ∈ [0, T ], by

X3,H,n
t = c(H)

∫ t

0
(Y 3,H,n

s )2ds. (35)

The part X3,H is approximated as follows.
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Proposition 4 For 0 < max

(

1−H
2

3−2H ,
2−H
2+2H

)

< β < 1
2 fixed, let X3,H and X3,H,n defined

by (30) and (35) respectively. Then for every γ such that 0 < γ < β and γ + β < 1
2 ,

P
(

lim
n→∞

{‖X3,H,n −X3,H‖∞,T ≥ Cn−(1/2−β−γ)(log n)5/2}
)

= 0.

Proof: By (30) and (31),

X3,H,n
t −X3,H

t = c(H)

∫ t

0

[

(Y 3,H,n
s )2 − (Y 3,H

s )2
]

ds− c(H)Gn
t

= c(H)

∫ t

0

[

(Y 3,H
s − Y 3,H,n

s )2 + 2Y 3,H
s (Y 3,H,n

s − Y 3,H
s )

]

ds− c(H)Gn
t

we have the bound

‖X3,H −X3,H,n‖∞,T ≤ c(H)

∫ T

0
|Y 3,H

s − Y 3,H,n
s |2ds

+ 2c(H)

∫ T

0
|Y 3,H

s ||Y 3,H
s − Y 3,H,n

s |ds+ c(H) sup
t∈[0,T ]

|Gn
t |.

The first two summand in the right hand side above can be treated as in the case
of X1,H in Proposition 2. We note, in order to apply Lemma 8, we need to notice that

E

∣

∣

∣

∫ t
0 Y

3,H
s ds

∣

∣

∣
< C with C not depending on n (Lemma 8 can still be used although the

process Y 3,H depends on n). Let us handle the term Gn. We will actually show that

∑

n

P ( sup
t∈[0,T ]

Gn
t > Cn−(1/2−β−γ)(log n)5/2) <∞. (36)

which will imply that

P
(

lim
n
{‖Gn‖∞,T > Cn−(1/2−β−γ)(log n)5/2}

)

= 0.

For every t ∈ [0, T ] we have, using the fact that the integrand is symmetric with respect to
the variables x1 and x2,

Gn
t = 2

∫ t

0
dB(x1)

∫ x1

0
dB(x2)

∫ (x1+εn)∧t

x1

ds(s− x1)
H
2
−1(s − x2)

H
2
−1

= 2

∫ (t−εn)∨0

0
dB(x1)

∫ x1

0
dB(x2)

∫ x1+εn

x1

ds(s− x1)
H
2
−1(s− x2)

H
2
−1

+2

∫ t

(t−εn)∨0
dB(x1)

∫ x1

0
dB(x2)

∫ t

x1

ds(s− x1)
H
2
−1(s− x2)

H
2
−1

:= G1,n
t +G2,n

t .
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Note that the mapping

x1 →

∫ x1

0
dB(x2)

∫ x1+εn

x1

ds(s− x1)
H
2
−1(s− x2)

H
2
−1

is adapted with respect to Fx1
(the filtration generated by the Wiener process B). Then the

process (G1,n
t )t is a martingale for every n. Then we have, taking α̂n = n−(1/2−β−γ)(log n)5/2

and using Doob’s inequality,

P

(

sup
t∈[0,T ]

G1,n
t ≥ Cn−(1/2−β−γ)(log n)5/2

)

≤ α̂−p
n E sup

t∈[0,T ]

∣

∣

∣
G1,n

t

∣

∣

∣

p

≤ Cα̂−p
n E

∣

∣

∣

∣

∣

∫ (T−ε)∨0

0
dB(x1)

∫ x1

0
dB(x2)

∫ x1+εn

x1

ds(s− x1)
H
2
−1(s− x2)

H
2
−1

∣

∣

∣

∣

∣

p

with C allowed to depend also on p in this proof. Note that the random variable
∫ (T−εn)∨0
0 dB(x1)

(

∫ x1

0 dB(x2)
∫ x1+εn
x1

ds(s− x1)
H
2
−1(s− x2)

H
2
−1
)2

is a multiple integral of

order two. Therefore, by the hypercontractivity property (5), it is not difficult to see that

P

(

sup
t∈[0,T ]

G1,n
t ≥ Cn−(1/2−β−γ)(log n)5/2

)

≤ Cα̂−p
n

[

∫ (T−εn)∨0

0
dx1

∫ x1

0
dx2

(
∫ x1+εn

x1

ds(s− x1)
H
2
−1(s− x2)

H
2
−1

)2
]

p
2

Let us first compute the integral with respect to ds. By making the change of variables
z = s−x1

s−x2
with ds = x1−x2

(1−z)2
dz we get

∫ T−εn

0
dx1

∫ x1

0
dx2

(
∫ x1+εn

x1

ds(s− x1)
H
2
−1(s− x2)

H
2
−1

)2

=

∫ T−εn

0
dx1

∫ x1

0
dx2(x1 − x2)

2H−2

(

∫ εn
εn+x1−x2

0
z

H
2
−1(1− z)−Hdz

)2

.

We separate the integral dx1dx2 into two regions: when x1−x2 ≤ εn and when x1−x2 > εn.
The above term will be bounded by

∫ T

0
dx1

∫ x1

(x1−εn)∨0
dx2(x1 − x2)

2H−2

(

∫ εn
εn+x1−x2

0
z

H
2
−1(1− z)−Hdz

)2
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+

∫ T

0
dx1

∫ (x1−εn)∨0

0
dx2(x1 − x2)

2H−2

(

∫ εn
εn+x1−x2

0
z

H
2
−1(1− z)−Hdz

)2

≤

∫ T

0
dx1

∫ x1

(x1−εn)∨0
dx2(x1 − x2)

2H−2

(
∫ 1

0
z

H
2
−1(1− z)−Hdz

)2

+

∫ T

0
dx1

∫ (x1−εn)∨0

0
dx2(x1 − x2)

2H−2

(

∫ εn
εn+x1−x2

0
z

H
2
−1(1− z)−Hdz

)2

≤ c(H)

∫ T

0
dx1

∫ x1

x1−εn

dx2(x1 − x2)
2H−2

+c(H)

∫ T

0
dx1

∫ (x1−εn)∨0

0
dx2(x1 − x2)

2H−2F 2
1 (H/2,H,H/2 + 1, 1)

(

εn
εn + x1 − x2

)H

≤ Cε2H−1
n ,

where F 2
1 (H/2,H,H/2 + 1, 1) is the incomplete beta function and hence

P

(

sup
t∈[0,T ]

G1,n
t ≥ cα̂n

)

≤ Cα̂−p
n ε

(2H−1)p
2

n

and the series
∑

n ε
p
2
(2H−1)

n α̂−p
n is finite if

p

(

β
2H − 1

2−H
− (

1

2
− β − γ)

)

> 1.

Note that β > 2−H
2+2H implies that β 2H−1

2−H − (12 − β − γ > 0 for small γ > 0. By choosing p
large enough we obtain that

∑

n

P

(

sup
t∈[0,T ]

G1,n
t ≥ Cα̂n

)

<∞

for every β ∈ (0, 12 ).
Let us handle now the term denoted by G2,n. We have

P

(

sup
t∈[0,T ]

G2,n
t ≥ Cα̂n

)

≤ α̂−p
n E sup

t∈[0,T ]

∣

∣

∣
G2,n

t

∣

∣

∣

p

In order to control E supt∈[0,T ]

∣

∣

∣
G2,n

t

∣

∣

∣

2
we will use Garsia’s lemma. To this end we need to

estimate the Lp norm of the increment G2,n
t −G2,n

s when t is close to s. Note first that, by
the change of variables z = s−x1

s−x2
we have

G2,n
t =

∫ t

t−εn

dB(x1)

∫ x1

0
dB(x2)|x1 − x2|

H−1

∫
t−x1
t−x2

0
z

H
2
−1(1− z)−Hdz
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and for t, s ∈ [0, T ] such that s > t− εn, by the isometry of multiple stochastic integrals (4)

E

∣

∣

∣
G2,n

t −G2,n
s

∣

∣

∣

2

= c(H)

∫ t

t−εn

dx1

∫ x1

0
dx2|x1 − x2|

2H−2

(

∫

t−x1
t−x2

0
z

H
2
−1(1− z)−Hdz

)2

+c(H)

∫ s

s−εn

dx1

∫ x1

0
dx2|x1 − x2|

2H−2

(

∫

s−x1
s−x2

0
z

H
2
−1(1− z)−Hdz

)2

−2c(H)

∫ s

t−ε
dx1

∫ x1

0
dx2|x1 − x2|

2H−2

(

∫

s−x1
s−x2

0
z

H
2
−1(1 − z)−Hdz

)(

∫

t−x1
t−x2

0
z

H
2
−1(1− z)−Hdz

)

and by majorizing
∫

t−x1
t−x2
0 z

H
2
−1(1−z)−Hdz by

∫ 1
0 z

H
2
−1(1−z)−Hdz = β(H2 , 1−H) we obtain

the bound

E

∣

∣

∣
G2,n

t −G2,n
s

∣

∣

∣

2
≤ c(H)

∫ t

t−εn

dx1

∫ x1

0
dx2|x1 − x2|

2H−2

+c(H)

∫ t

s−εn

dx1

∫ x1

0
dx2|x1 − x2|

2H−2 + c(H)

∫ t

s−εn

dx1

∫ x1

0
dx2|x1 − x2|

2H−2εn.

The hypercontractivity property of multiple integrals (5) implies that for all t, s

E

∣

∣

∣
G2,n

t −G2,n
s

∣

∣

∣

p
≤ c(p,H)

(

E

∣

∣

∣
G2,n

t −G2,n
s

∣

∣

∣

2
)

p
2

≤ Cε
p
2
n .

where C is a constant that depend on H and p. Finally, by Garsia lemma (see e.g. [13],
Appendix A.3) for p > 2

E sup
0≤t≤T

|G2,n|p ≤ Cεγn (37)

for every γ such that 0 < γ < p
2 − 1. The bound (37) implies, using Markov’s inequality

and taking suitable p large enough, that

∑

n

P

(

sup
t∈[0,T ]

G2,n
t ≥ cα̂n

)

<∞ (38)

due to the fact that β >
1−H

2

3−2H and this finishes the proof.

Let us finally treat the summand X2,H in (9). Its approximation will be a mixture
of the approximations of X1,H and X3,H . We have

X2,H
t =

∫ 0

−∞
dB(x1)

∫ t

0
dB(x2)

∫ t

x2

(s− x1)
H
2
−1(s − x2)

H
2
−1ds
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=

∫ t

0
dB(x2)

∫ t

x2

Y 1,H
s (s− x2)

H
2
−1ds

with Y 1,H given by (13). To avoid the singularity of the integral with respect to ds at
s = x2 we will decompose this integral into two parts. In this way we can write, for εn the
sequence converging to 0 as n→ ∞ chosen before

X2,H
t =

∫ t

0
dB(x2)

∫ t

(x2+εn)∧t
Y 1,H
s (s− x2)

H
2
−1ds

+

∫ t

0
dB(x2)

∫ (x2+εn)∧t

x2

Y 1,H
s (s− x2)

H
2
−1ds

=

∫ t

εn

dsY 1,H
s

∫ s−εn

0
(s− x2)

H
2
−1dB(x2) +

∫ t

(t−εn)∨0
dB(x2)

∫ (x2+εn)∧t

x2

Y 1,H
s (s − x2)

H
2
−1ds

+

∫ (t−εn)∨0

0
dB(x2)

∫ (x2+εn)∧t

x2

Y 1,H
s (s− x2)

H
2
−1ds

=

∫ t

εn

Y 1,H
s Y

′,3,H
s ds+ Fn +Gn (39)

with

Y
′,3,H
s =

∫ s−εn

0
(s−x2)

H
2
−1dB(x2), Y

′,3,H,n
s =

∫ s−εn

0
(s−x2)

H
2
−1dZ(1)(s), s ∈ [0, T ] (40)

As in the proof of (36) and (38] we can show that

∑

n

P

(

sup
t∈[0,T ]

Fn
t ≥ cα̂2

n

)

<∞ and
∑

n

P

(

sup
t∈[0,T ]

Gn
t ≥ cα̂2

n

)

<∞

The approximation result to X2,H is stated in the next proposition. We will use the process
Y 3,H,n instead of Y

′,3,H,n because clearly they are very close and one can replace the other.

Proposition 5 For 0 < max
(

1−H/2
3−2H , 2−H

2+2H

)

< β < 1
2 fixed, let Y 1,H,n, Y 3,H,n and X2,H

be given by (19), (34) and (39) respectively. Define

X2,H,n
t =

∫ t

0
dsY 1,H,n

s Y 3,H,n
s , t ∈ [0, T ]. (41)

Then for every γ such that 0 < γ < β and γ + β < 1
2 ,

P
(

lim
n
{‖X2,H,n −X2,H‖∞,T > Cn−(1/2−β−γ)(log n)5/2}

)

= 0.
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Proof: The proof follows from the proofs of Proposition 2 and Proposition 4 since for every
s we have

2Y 1,H,n
s Y

′,3,H,n
s ≤ (Y 1,H,n

s )2 + (Y
′,3,H,n
s )2.

Let us summarize the conclusions of Proposition 2, 4 and 5 in the main result of our
paper.

Theorem 2 Let XH be the Rosenblatt process (8) and 0 < max
(

1−H/2
3−2H , 2−H

2+2H

)

< β < 1
2

fixed. Define
XH,n

t = X1,H,n
t + 2X2,H,n

t +X3,H,n
t , t ∈ [0, T ]

with X1,H,n,X2,H,n,X3,H,n given by (28), (41), (35) respectively. Then for every γ such
that 0 < γ < β and γ + β < 1

2 ,

P
(

lim
n
{‖XH,n −XH‖∞,T > Cn−(1/2−β−γ)(log n)5/2}

)

= 0.

Remark 5 The slowest rate of convergence is obtained for H close to one because in this
case β is close to 1

2 . When H is close to 1
2 then β is close to 3

8 . But this situation cannot be
compared with previous results in the literature because the Rosenblatt process is not defined
for H = 1

2 .
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