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Abstract

We prove that groups definable in o-minimal structures have Cartan

subgroups, and only finitely many conjugacy classes of such subgroups.

We also delineate with precision how these subgroups cover the ambient

group, in general very largely in terms of the dimension.
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1 Introduction

If G is an arbitrary group, a subgroup Q of G is called a Cartan subgroup (in
the sense of Chevalley) if it satisfies the two following conditions:

(1) Q is nilpotent and maximal with this property among subgroups of G.

(2) For any subgroup X ≤ Q which is normal in Q and of finite index in Q,
the normalizer NG(X) of X in G contains X as a finite index subgroup.

The purely group-theoretic definition of a Cartan subgroup as above was de-
signed by Chevalley in order to capture critical properties of very specific sub-
groups of Lie groups.

In connected reductive algebraic groups over algebraically closed fields and
in connected compact real Lie groups, Cartan subgroups correspond typically
to centralizers of maximal tori and it is well known that they are connected.
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It is however worth emphasizing at the outset that in real Lie groups Cartan
subgroups need not be connected in general, a point also noticed by Chevalley in
the introduction of [Che55, Chapitre VI]: “Il convient de noter que les groupes de
Cartan de G ne sont en général pas connexes.” The diagonal subgroup of SL2(R)
is maybe the first example of a nonconnected Cartan subgroup one should bear
in mind. Most of the difficulties for the study of these subgroups in the past,
notably in the early work of Cartan, have been this failure of connectedness.
This is something that will eventually need considerable attention in the present
paper as well.

We are going to study Cartan subgroups from the model-theoretic point of
view of groups definable in an o-minimal structure, that is a first-order structure
M = 〈M,≤, · · ·〉 equipped with a total, dense, and without end-points definable
order ≤ and such that every definable subset of M is a boolean combination
of intervals with end-points in M ∪ {±∞}. The most typical example of an
o-minimal structure is of course the ordered field R of the reals, but there are
richer o-minimal structures, such as the field of the reals equipped in addition
with the exponential function [Wil96].

In order to deal with the non-connectedness of Cartan subgroups in gen-
eral, we will use the following notion. If G is a group definable in an arbitrary
structure M, then we say that it is definably connected if and only if it has no
proper subgroup of finite index definable in the sense of M. Now, a subgroup
of a group G definable in M is called a Carter subgroup of G if it is definable
and definably connected (in the sense of M as usual), and nilpotent and of
finite index in its normalizer in G. All the notions of definability depend on a
ground structure M, which in the present paper will typically be an o-minimal
structure. The notion of a Carter subgroup first appeared in the case of finite
groups as nilpotent and selfnormalizing subgroups. A key feature is that, in
the case of finite solvable groups, they exist and are conjugate [Car61]. For
infinite groups, the notion we are adopting here, incorporating definability and
definable connectedness, comes from the theory of groups of finite Morley rank.
That theory is another classical branch of group theory in model theory, partic-
ularly designed at generalizing algebraic groups over algebraically closed fields.
We note that the selfnormalization from the finite case becomes an almost self-
normalization property, and indeed the finite group NG(Q)/Q associated to a
Carter subgroup Q typically generalizes the notion of the Weyl group relative
to Q. This is something that will also make perfect sense here in the case of
groups definable in o-minimal structures.

We will see shortly in Section 2 that for groups definable in o-minimal struc-
tures, and actually for groups with the mere descending chain condition on
definable subgroups, there is an optimal correspondence between Cartan sub-
groups and Carter subgroups: the latter ones are exactly the definably connected
components of the former ones. In particular Cartan subgroups are automati-
cally definable subgroups, a point not following from the definition of Chevalley
in general, but which is always going to be true here.

In Sections 3-6 we will relate Cartan and Carter subgroups to a well be-
haved notion of dimension for sets definable in an o-minimal structure, notably
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to weak genericity (having maximal dimension) or to largeness (having smaller
codimension). We will mainly develop their generous analogs, where one actu-
ally considers the weak generosity or the largeness of the union of conjugates
of a given set. The technics and results here will be substantial adaptations
and generalizations from [Jal06, Jal09] in the finite Morley rank case, and our
arguments for Cartan and Carter subgroups of groups definable in o-minimal
structure will highly depend on dimensional computations and generosity ar-
guments. We will make such dimensional computations in a rather axiomatic
framework, essentially with the mere existence of a definable and additive di-
mension, as it may apply to other contexts as well (groups of finite Morley
rank, groups in supersimple theories of finite rank, groups definable over the
p-adics...).

Our main result can be summarized as follows.

Theorem 1.1 Let G be a group definable in an o-minimal structure. Then
Cartan subgroups of G exist, are definable, and fall into finitely many conjugacy
classes.

Our proof of Theorem 1.1 will also strongly depend on the main structural
theorem about groups definable in o-minimal structures. It says in essence that
any definably connected group G definable in an o-minimal structure is, modulo
a largest normal solvable (and definable) subgroup R(G), a direct product of
finitely many definably simple groups which are essentially “known” as groups
of Lie type. Hence our proof will consist in an analysis of the interplay between
these definably simple factors and the relevant definably connected solvable sub-
groups of G. Results specific about groups definable in an o-minimal structure
which are used here will be reviewed in Section 7.

A large part of the work will thus be concerned with the case of definably con-
nected solvable groups. In this case we will make a strong use of the previously
mentioned generosity arguments. Mixing them with more algebraic inductive
arguments inspired by [Fré00] in the finite Morley rank case, we will obtain the
following result in Section 8.

Theorem 8.1 Let G be a definably connected solvable group definable in an
o-minimal structure. Then Cartan subgroups of G exist and are conjugate, and
they are definably connected and selfnormalizing. Moreover, they are largely
generous in the following strong sense: for any Cartan subgroup Q, the (defin-
able) set of elements of Q contained in a unique conjugate of Q is large in Q
and largely generous in G.

A definably connected group is semisimple if it has a finite center and modulo
that center abelian normal subgroups are trivial. Semisimplicity is a first-order
property, and the main theorem about groups definable in o-minimal structures
actually says that any such semisimple group with a trivial center is a direct
product of definably simple groups, with each factor a “known” group of Lie
type modulo certain elementary equivalences. We will review certain facts more
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or less classical about Cartan subgroups of Lie groups in Section 9. In Section 10
we will transfer the theory of Cartan subgroups of Lie groups to definably simple
groups and get a quite complete description of Cartan subgroups of definably
simple groups definable in o-minimal structures.

In Section 11 we will elaborate further on the definably simple case to get a
similarly quite complete description of Cartan subgroups of semisimple groups
definable in o-minimal structures, obtaining the following general theorem.

Theorem 11.1 (lite) Let G be a definably connected semisimple group definable
in an o-minimal structure. Then G has definable Cartan subgroups and the
following holds.

(1) G has only finitely many conjugacy classes of Cartan subgroups.

(2) If Q1 and Q2 are Cartan subgroups and Q◦
1 = Q◦

2, then Q1 = Q2.

(3) If Q is a Cartan subgroup, then Z(G) ≤ Q, Q′ ≤ Z(G), and Q◦ ≤ Z(Q).

(4) If Q is a Cartan subgroup and a ∈ Q, then aQ◦ is weakly generous.

(5) The union of all Cartan subgroups, which is definable by (1), is large.

The general case of a definably connected group G definable in an o-minimal
structure will be considered in Section 12. In this case we have both G not
solvable and not semisimple, or in other words

G/R◦(G) 6= 1 and R◦(G) 6= 1.

In that case Theorem 1.1 follows rapidly from Theorems 8.1 and 11.1, but some
natural questions will remain without answer here. The most important one
is maybe the following: if Q is a Cartan subgroup of G, is it the case that
QR◦(G)/R◦(G) is a Cartan subgroup of the semisimple quotient G/R◦(G)?
This question is indeed equivalent to the fact that Cartan subgroups of G/R◦(G)
are exactly of the form QR◦(G)/R◦(G) for some Cartan subgroup Q of G.
We will only manage to prove that for a Cartan subgroup Q of G, the group
QR◦(G)/R◦(G) is a finite index subgroup of a Cartan subgroup of G/R◦(G),
obtaining in particular the expected lifting for the corresponding Carter sub-
groups. Getting the exact lifting of Cartan subgroups seems to be related to
interesting new problems of representation theory in a definable context. In any
case, we will mention all what we managed to prove on the correlations between
Cartan subgroup of G and of G/R◦(G), trying also to work with a not neces-
sarily definably connected ambient group G when possible. We will conclude in
Section 13 with further comments on certain specialized topics, including alge-
braic or compact factors, Weyl groups relative to the various Cartan subgroups,
and parameters.

In this paper definability always means definability with parameters. We
refer to [Ote08] for a complete introduction to groups definable in o-minimal
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structures. We insist that everything is done here for groups definable (as op-
posed to interpretable) in an arbitrary o-minimal structure. This is because
the theory of groups in o-minimal structure has been developed in this slightly
restricted context since [Pil88], where it is shown that definable groups can
be equipped with a nice definable manifold structure making them topological
groups. An arbitrary o-minimal structure does not eliminate imaginaries in
general, but any group definable in an arbitrary o-minimal structure eliminates
imaginaries, and actually has definable choice functions in a very strong sense
[Edm03, Theorem 7.2]. In particular, imaginaries coming from a group definable
in an o-minimal structure will always be considered as definable in the sequel,
and can be equipped with a finite dimension as any definable set. We refer to
[vdD98, Chapter 4] or [Pil88] for the dimension of sets definable in o-minimal
structures.

Since we already gave the organization of the paper, let us immediately enter
into its core.

2 Cartan subgroups and Carter subgroups

We first consider the relations between Cartan and Carter subgroups of groups
definable in o-minimal structures. Actually, by [Pil88, Remark 2.13], such
groups satisfy the descending chain condition on definable subgroups (dcc for
short), and we will analyze these relations in the more natural context of groups
with the dcc. Throughout the present section, G is a group definable in a struc-
ture M and definability may refer to Meq, and we say that it satisfies the dcc if
any strictly descending chain of definable subgroups is stationary after finitely
many steps. Notice that the dcc always pass to quotients by definable normal
subgroups.

We first list some general facts needed in the sequel.

Fact 2.1 [BJO11, Fact 3.1] Let G be a definably connected group.

(a) Any definable action of G on a finite set is trivial.

(b) If Z(G) is finite, then G/Z(G) is centerless.

In a group with the dcc, any subset X is contained in a smallest definable
subgroup H(X) called the definable hull of X : take H(X) to be the intersection
of all definable subgroups of G containing X .

Fact 2.2 [BJO11, 3.3 & 3.4] Let G be a group with the dcc and X a subset
of G.

(a) If X is K-invariant for some subset K of G, then H(X) is K-invariant
as well.

(b) If X is a nilpotent subgroup of G, then H(X) is nilpotent of the same
nilpotency class.
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We now prove an infinite version of the classical normalizer condition in finite
nilpotent groups. Our proof can be compared to that of [BN94, Lemma 6.3]
in the finite Morley rank case, but it differs in the fact that here we argue by
induction on the nilpotency class rather than on the dimension, and we deal with
“non-connected finite bits” throughout. We note also that we do not need the
full dcc on definable subgroups, but merely the existence of definably connected
components of definable subgroups.

Lemma 2.3 Let G be a nilpotent group with the dcc on definable subgroups,
and H a definable subgroup of infinite index in G. Then NG(H)/H is infinite.

Proof. We argue by induction on the nilpotency class of G. A counterexample
G of minimal nilpotency class is of course not abelian. Take such a G and the
correspondingH ≤ G. Let Z = Z(G). We claim thatHZ/Z has infinite index in
G := G/Z. Indeed, this is equivalent toHZ having infinite index in G, and if not
then G◦ = (HZ)◦ = H◦ (since Z◦ ≤ (NG(H))◦ = H◦), a contradiction. As G/Z
has smaller nilpotency class than G, and since N(HZ) is exactly the preimage in
G of NG(HZ/Z), the induction implies that HZ has infinite index in NG(HZ).
It follows that (HZ)◦ has infinite index in N◦(HZ) and since H◦ = (HZ)◦ we
get [N◦(HZ) : H◦] infinite. We are done if we show that N◦(HZ) normalizes
H . To show this, note that N◦(HZ) normalizes (HZ)◦ = H◦ and induces by
conjugation an action on the finite quotient (HZ)/(HZ)◦, which must be trivial
by Fact 2.1(a). Hence N◦(HZ) setwise stabilizes each hH◦ = h(HZ)◦, for each
h ∈ H ⊆ HZ. �

Lemma 2.4 Let G be a group with the dcc.

(a) If Q is a maximal nilpotent subgroup of G, then Q is definable.

(a′) If Q is a Cartan subgroup of G, then Q is definable and Q◦ is a Carter
subgroup of G.

(b) If Q is a Carter subgroup of G and Q is contained in a maximal nilpotent
subgroup Q̃ of G, then Q̃ is a Cartan subgroup of G with [Q̃]◦ = Q.

Proof. (a). By Fact 2.2(b).
(a′). Q is definable by item (a). Since Q◦ is a normal subgroup of Q of

finite index in Q, Q◦ is a finite index subgroup of NG(Q
◦), and Q◦ is a Carter

subgroup of G.
(b). Q̃ is definable by item (a) and we first prove that Q = [Q̃]◦. Clearly,

Q ≤ [Q̃]◦ and if Q < Q̃◦ then Q would have infinite index in its normalizer by
Lemma 2.3, a contradiction. Notice also that Q̃ ≤ NG([Q̃]◦) = NG(Q).

We now check that Q̃ is a Cartan subgroup. Let X be any normal subgroup
of finite index of Q̃. We first observe that H◦(X) = Q: since Q̃ is definable
we get H◦(X) ≤ [Q̃]◦ = Q, and since H◦(X) must have finite index in Q̃ we
get the desired equality. Now by Fact 2.2(a) NG(X) normalizes H◦(X) = Q,
so X ≤ NG(X) ≤ NG(Q). Since X has finite index in Q̃ and Q̃ has finite index
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in NG(Q), X has finite index in NG(Q), and in particular X has finite index in
NG(X). �

Definably connected nilpotent groups definable in o-minimal structures are
divisible by [Edm03, Theorem 6.10], so the following always applies to groups
definable in o-minimal structures.

Fact 2.5 [BJO11, Lemma 3.10] Let G be a nilpotent group with the dcc and
such that G◦ is divisible. Then G = B ∗ G◦ (central product) for some finite
subgroup B of G.

A group definable in an o-minimal structure cannot contain an infinite in-
creasing chain of definably connected subgroups by the existence of a well be-
haved notion of dimension (see [Ote08, Corollary 2.4]), hence the following ad-
ditional lemma is also always valid for groups definable in o-minimal structures.

Lemma 2.6 Let G be a group with the dcc. Assume that definably connected
definable nilpotent subgroups of G are divisible, and that G contains no infi-
nite increasing chain of such subgroups. Then any definably connected definable
nilpotent subgroup of G is contained in a maximal nilpotent subgroup of G. In
particular, any Carter subgroup Q of G is contained in a Cartan subgroup Q̃ of
G, which must satisfy [Q̃]◦ = Q.

Proof. By Lemma 2.4(b), it suffices to show our first claim. Let N be a de-
finably connected nilpotent subgroup of G. By assumption, N is contained in
a definably connected definable nilpotent subgroup N1 which is maximal for
inclusion. It suffices to show that N1 is then contained in a maximal nilpotent
subgroup of G, and by Fact 2.2(b) we may consider only definable nilpotent
subgroups containing N1. It suffices then to show that any strictly increasing
chain of definable nilpotent subgroups N1 < N2 < · · · is stationary after finitely
many steps.

Assume towards a contradiction that N1 < N2 < · · · is such an infinite
increasing chain of definable nilpotent subgroups. Recall that N1 = N◦

1 , and
notice also that N◦

i = N1 for each i, since N1 is maximal subject to being
definably connected and containing N . By Fact 2.5, each Ni has the form
Bi ∗N1 for some finite subgroup Bi ≤ Ni, and in particular Ni ≤ CG(N1) ·N1.
We may thus replace G by the definable subgroup CG(N1) ·N1.

Let X be the union of the groups Ni. Working modulo the normal subgroup
N1, we have an increasing chain of finite nilpotent groups. Now X/N1 is a
periodic locally nilpotent group with the dcc on centralizers, and by [Bry79,
Theorem A] it is nilpotent-by-finite. Replacing X by a finite index subgroup
of X if necessary, we may thus assume X/N1 nilpotent and infinite. Since
G = CG(N1) ·N1, the nilpotency of X/N1 and of N1 forces X to be nilpotent
(of nilpotency class bounded by the sum of that of X/N1 and N1). Replacing X
by H(X), we may now assume with Fact 2.2(b) that X is a definable nilpotent
subgroup containing N1 as a subgroup of infinite index. Then N1 < X◦, a
contradiction to the maximality of N1. �
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Applying Lemmas 2.4 and 2.6, we have thus that in groups definable in o-
minimal structures Carter subgroups are exactly the definably connected com-
ponents of Cartan subgroups, with the latter ones always definable. We also
note that Lemma 2.4(a) gives the automatic definability of unipotent subgroups
in many contexts of linear groups, but that such unipotent subgroups are in gen-
eral not almost selfnormalizing. We also note that if Q is a maximal nilpotent
subgroup, then it is a Cartan subgroup if and only if Q◦ is a Carter subgroup,
by Lemma 2.4. Finally, a selfnormalizing Carter subgroup must be a Cartan
subgroup by Lemma 2.6, and a definably connected Cartan subgroup must be
a Carter subgroup.

Before moving ahead, it is worth mentioning concrete examples of Cartan
subgroups of real Lie groups to be borned in mind in the present paper. In
SL2(R) there are up to conjugacy two Cartan subgroups, the subgroup of diag-
onal matrices Q1 ≃ R×, noncompact and not connected with the corresponding
Carter subgroup Q◦

1 ≃ R>0, and Q2 = SO2(R) isomorphic to the circle group,
compact and connected and hence also a Carter subgroup. More generally, and
referring to [Luk79, p.141-142] for more details, the group SLn(R) has up to
conjugacy

[

n
2

]

+ 1 Cartan subgroups

Qj ≃ [C×]j−1× [R×]n−2j+1 where 1 ≤ j ≤
[n

2

]

+ 1,

unless Qn
2
+1 ≃ [C×]

n
2
−1× SO2(R) if n = 2(j − 1).

We will need the following lemma relating the center to Cartan and Carter
subgroups. For any group G we define the iterated centers Zn(G) as follows:
Z0(G) = {1} and by induction Zn+1(G) is the preimage in G of the center
Z(G/Zn(G)) of G/Zn(G).

Lemma 2.7 Let G be a group and for n ≥ 0 let Zn := Zn(G).

(a) If Q is a Cartan subgroup of G, then Zn ≤ Q and Q/Zn is a Cartan
subgroup of G/Zn, and conversely every Cartan subgroup of G/Zn has
this form.

(b) If G and G/Zn satisfy the assumption of Lemma 2.6, then Carter sub-
groups of G/Zn are exactly subgroups of the form Q◦Zn/Zn, for Q a Car-
tan subgroup of G.

Proof. We may freely use the fact that the preimage in G of a nilpotent sub-
group of G/Zn is nilpotent.

(a). Clearly Zn ≤ Q by maximal nilpotence of Q. Clearly also, Q/Zn is
nilpotent maximal in the quotient G = G/Zn. Let X be a normal subgroup
of finite index of Q = Q/Zn, for some subgroup X of G containing Zn. The
preimage in G of NG(X) normalizes X , which clearly is normal and has finite
index in Q. Since Q is a Cartan subgroup of G, we easily get that X has finite
index in NG(X).

Conversely, let Q be a subgroup of G containing Zn such that Q/Zn is a
Cartan subgroup of G = G/Zn. Clearly Q has to be maximal nilpotent in G.
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Let X be a normal finite index subgroup of Q. NG(X) normalizes X modulo
Zn, so it must contain X as a finite index subgroup, and then X is also a finite
index subgroup of NG(X).

(b). By item (a) Cartan subgroups of G/Zn are exactly of the form Q/Zn for
a Cartan subgroup Q of G containing Zn. So Carter subgroups of G/Zn are by
Lemma 2.6 exactly of the form [Q/Zn]

◦ = Q◦Zn/Zn, for Q a Cartan subgroup
of G. �

Finally, we will also use the following lemma describing Cartan subgroups
of central products.

Lemma 2.8 Let G = G1 ∗ · · · ∗ Gn be a central product of finitely many and
pairwise commuting groups Gi. Then Cartan subgroups of G are exactly of the
form Q1 ∗ · · · ∗Qn where each Qi is a Cartan subgroup of Gi.

Proof. It suffices to prove our claim for n = 2. For i = 1 and 2 and X
an arbitrary subset of G, let πi(X) = {g ∈ Gi | ∃h ∈ Gi+1 gh ∈ X}, where
the indices i are of course considered modulo 2. It is clear that when X is a
subgroup of G, πi(X) is a subgroup Gi. If X is nilpotent (of nilpotency class
k), then πi(X) is nilpotent (of nilpotency class at most k + 1): it suffices to
consider G/Gi+1 and to use the fact that G1 ∩G2 ≤ Z(Gi).

Let Q be a Cartan subgroup of G1 ∗ G2. Since Q ≤ π1(Q) ∗ π2(Q), the
maximal nilpotence of Q forces equality. Now it is clear that each πi(Q) is
maximal nilpotent in Gi, by maximal nilpotence of Q again. Let now X be
a normal subgroup of π1(Q) of finite index. Then NG1

(X) ∗ π2(Q) normalizes
X ∗ π2(Q) and as the latter is a normal subgroup of finite index in Q one
concludes that X has finite index in NG1

(X). Hence π1(Q) is a Cartan subgroup
of G1. Similarly, π2(Q) is a Cartan subgroup of G2.

Conversely, let Q be a subgroup of G of the form Q1 ∗ Q2 for some Car-
tan subgroups Qi of Gi. Since each Qi is maximal nilpotent in Gi it follows,
considering projections as above, that Q is maximal nilpotent in G. Let now
X be a normal subgroup of Q of finite index. Then πi(NG(X)) normalizes
the normal subgroup of finite index πi(X) of Qi. Since Qi is a Cartan sub-
group of Gi it follows that πi(X) has finite index in πi(NG(X)). Finally, since
X ≤ π1(X) ∗ π2(X) ≤ Q, we get that X has finite index in NG(X). �

The special case of a direct product in Lemma 2.8 has also been observed in
[Che55, Chap. VI, §4, Prop. 3].
Corollary 2.9 Let G = G1×· · ·×Gn be a direct product of finitely many groups
Gi. Then Cartan subgroups of G are exactly of the form Q1 × · · · ×Qn where
each Qi is a Cartan subgroup of Gi.

3 Dimension and unions

In this section we work with a structure such that each nonempty definable
set is equipped with a dimension in N satisfying the following axioms for any
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nonempty definable sets A and B.

(A1) (Definability) If f is a definable function from A to B, then the set
{b ∈ B | dim(f−1(b)) = m} is definable for every m in N.

(A2) (Additivity) If f is a definable function from A to B, whose fibers have
constant dimension m in N, then dim(A) = dim(Im(f)) +m.

(A3) (Finite sets) A is finite if and only if dim(A) = 0.

(A4) (Monotonicity) dim(A ∪B) = max(dim(A), dim(B)).

In an o-minimal structure, definable sets are equipped with a finite dimension
satisfying all these four axioms, by [vdD98, Chapter 4] or [Pil88]. Hence our
reader only interested in groups definable in o-minimal structures may read all
the following dimensional computations in the restricted context of such groups.
But, as mentioned in the introduction, such computations may be relevant in
other contexts as well (groups of finite Morley rank, groups in supersimple
theories of finite rank, groups definable over the p-adics...), and thus we will
proceed with the mere axioms A1-4.

Axioms A2 and A3 guarantee that if f is a definable bijection between two
definable sets A and B, then dim(A) = dim(B). Axiom A4 is a strong form of
monotonicity in the sense that dim(A) ≤ dim(B) whenever A ⊆ B.

Definition 3.1 Let M be a first-order structure equipped with a dimension dim
on definable sets and X ⊆ Y two definable sets. We say that X is:

(a) weakly generic in Y whenever dim(X) = dim(Y ).

(b) generic in Y whenever Y is a definable group covered by finitely many
translates of X.

(c) large in Y whenever dim(Y \X) < dim(Y ).

Clearly, genericity and largeness both imply weak genericity when the dimen-
sion satisfies axioms A1-4. If G is a group definable in an o-minimal structure
and X is a large definable subset of G, then X is generic: see [Pil88, Lemma
2.4] for a proof by compactness, and [Pet10, Section 5] for a proof with precise
bounds on the number of translates needed for genericity. In the sequel we are
only going to use dimensional computations, hence the notions of weak generic-
ity and of largeness. We are not going to use the notion of genericity (which is
imported from the theory of stable groups in model theory), but we will make
some apparently quite new remarks on genericity and Cartan subgroups in real
Lie groups (Remark 9.8 below).

Our arguments for Cartan subgroups in groups definable in o-minimal struc-
tures will highly depends on computations of the dimension of their unions in
the style of [Jal06], and to compute the dimension of a union of definable sets
we adopt the following geometric argument essentially due to Cherlin.
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Assume from now on that Xa is a uniformly definable family of definable
sets, with a varying in a definable set A and such that Xa = Xa′ if and only
if a = a′. We have now a combinatorial geometry, where the set of points is
U :=

⋃

a∈A Xa, the set of lines is the set {Xa | a ∈ A} in definable bijection with
A, and the incidence relation is the natural one. The set of flags is then defined
to be the subset of couples (x, a) of U ×A such that x ∈ Xa. By projecting the
set of flags on the set of points, one sees with axiom A1 that for any r such that
0 ≤ r ≤ dim(A), the set

Ur := {x ∈ U | dim({a ∈ A | x ∈ Xa}) = r}

is definable. In particular, each subset of the form [Xa]r := Xa ∩ [U ]r, i.e., the
set of points x of Xa such the set of lines passing through x has dimension r, is
definable as well.

Proposition 3.2 In a structure equipped with a dimension satisfying axioms
A1-2, let Xa be a uniformly definable family of sets, with a varing in a definable
set A and such that Xa = Xa′ if and only if a = a′. Suppose, for some r such
that 0 ≤ r ≤ dim(A), that [Xa]r is nonempty and that dim([Xa]r) is constant
as a varies in A. Then

dim([
⋃

a∈A

Xa]r) + r = dim(A) + dim([Xa]r).

Proof. One can consider the definable subflag associated to [
⋃

a∈AXa]r in the
point/line incidence geometry described above. By projecting this definable set
on the set of points and on the set of lines respectively, one finds using axiom
A2 of the dimension the desired equality as in [Jal06, §2.3]. �

Given a permutation group (G,Ω) and a subset X of Ω, we denote by N(X)
and by C(X) the setwise and the pointwise stabilizer of X respectively, that is
G{X} and G(X) in a usual permutation group theory notation. We also denote
by XG the set {xg | (x, g) ∈ X ×G}, where xg denotes the image of x under
the action of g, as in the case of an action by conjugation. Subsets of the form
Xg for some g in G are also called G-conjugates of X . Notice that the set XG

can be seen, alternatively, as the union of G-orbits of elements of X , or also
as the union of G-conjugates of X . When considering the action of a group on
itself by conjugation, as we will do below, all these terminologies and notations
are the usual ones, with N(X) and C(X) the normalizer and the centralizer of
X respectively.

We shall now apply Proposition 3.2 in the context of permutation groups
in a way much reminiscent of [Jal09, Fact 4]. For that purpose we will need
that the dimension is well defined on certain imaginaries, and for that purpose
we will make the simplifying assumption that the theory considered eliminates
such specific imaginaries. We recall that groups definable in o-minimal struc-
tures eliminates all imaginaries by [Edm03, Theorem 7.2], so these technical
assumptions will always be verified in this context. (And our arguments are

11



also valid in any context where the dimension is well defined and compatible in
the relevant imaginaries.) For any quotient X/∼ associated to an equivalence
relation ∼ on a set X , we call transversal any subset of X intersecting each
equivalence class in exactly one point.

Corollary 3.3 Let (G,Ω) be a definable permutation group in a structure equi-
pped with a dimension satisfying axioms A1-3, X a definable subset of Ω such
that G/N(X) (right cosets) has a definable transversal A. Suppose that, for
some r between 0 and dim(A), the definable subset Xr := {x ∈ X | dim({a ∈
A | x ∈ Xa}) = r} is nonempty. Then

dim(Xr
G) = dim(G) + dim(Xr)− dim(N(X))− r.

Proof. We can apply Proposition 3.2 with the uniformly definable family of G-
conjugates of X , which is parametrized as {Xa | a ∈ A} since A is a definable
transversal of G/N(X). Notice that the sets [Xa]r are in definable bijection,
as pairwise G-conjugates, and hence all have the same dimension. Notice also
that dim(A) = dim(G)− dim(N(X)) by the additivity of the dimension and its
invariance under definable bijections. �

The following corollary, which is crucial in the sequel, can be compared to
[Jal09, Corollary 5].

Corollary 3.4 Assume furthermore in Corollary 3.3 that the dimension satis-
fies axiom A4, and that dim(G) = dim(Ω) and dim(X) ≤ dim(N(X)). Then

dim(XG) = dim(Ω) if and only if dim(X0) = dim(N(X)).

In this case, X0
G is large in XG, and dim(X0) = dim(X) = dim(N(X)).

Proof. If dim(XG) = dim(Ω), then one has for some r as in Corollary 3.3 that
dim(Xr

G) = dim(Ω) by axiom A4, and then

0 ≤ r = dim(Xr)− dim(N(X)) ≤ dim(X)− dim(N(X)) ≤ 0

by monotonicity of the dimension, showing that all these quantities are equal to
0. In particular r = 0, and dim(X0) = dim(N(X)). Conversely, if dim(X0) =
dim(N(X)), then dim(X0

G) = dim(G) = dim(Ω) by Corollary 3.3.
Assume now the equivalent conditions above are satisfied. The first part of

the proof above shows that dim(Xr
G) = dim(XG) (= dim(Ω)) can occur only for

r = 0. Hence X0
G is large in XG by axiom A4 again. Since dim(X0) ≤ dim(X)

by monotonicity of the dimension, we also have that dim(X0) = dim(X) =
dim(N(X)). �

Remark 3.5 In general it seems one cannot conclude also that X0 is large in
X in Corollary 3.4. One could imagine the (bizarre) configuration in which
dim(Xr) = dim(X) for some r > 0; in this case dim(Xr

G) = dim(Ω)− r.
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In the remainder we will always consider the action of a group G on itself by
conjugation, so the condition dim(G) = dim(Ω) will always be met in Corollary
3.4. Then we can apply Corollary 3.4 withX any normalizing coset of a definable
subgroup H of G, as commented in [Jal09, page 1064]. More generally, we now
see that we can apply it simultaneously to finitely many such cosets. We first
elaborate on the notion of generosity defined in [Jal06] and [Jal09] in the finite
Morley rank case.

Definition 3.6 Let X be a definable subset of a group G definable in a structure
equipped with a dimension satisfying axioms A1-4. We say that X is

(a) weakly generous in G whenever XG is weakly generic in G.

(b) generous in G whenever XG is generic in G.

(c) largely generous in G whenever XG is large in G.

Corollary 3.7 Suppose H is a definable subgroup of a group G definable in a
structure equipped with a dimension satisfying axioms A1-4, and suppose W is
a finite subset of N(H) such that G/N(WH) has a definable transversal. Then
WH is weakly generous in G if and only if

dim([WH ]0) = dim(N(WH)).

In this case, [WH ]G0 is large in [WH ]G, and dim([WH ]0) = dim(WH) =
dim(H) = dim(N(WH)).

Proof. Let X = WH . Since W is finite, X is definable. In order to apply
Corollary 3.4, one needs to check that dim(X) ≤ dim(N(X)). Of course, the
subgroup H normalizes each coset wH , for each w ∈ W ⊆ N(H), and in
particular H ≤ N(WH). We get thus that dim(X) = dim(WH) = dim(H) ≤
dim(N(WH)) = dim(N(X)).

Now Corollary 3.4 gives our necessary and sufficient condition, and the large-
ness of [WH ]G0 in [WH ]G. It also gives dim(X0) = dim(X) = dim(N(X)). We
have seen already that dim(X) = dim(H). �

The following lemma is a fundamental trick below.

Lemma 3.8 Let G be a group definable in a structure equipped with a dimension
satisfying axioms A1-4 and with the dcc. Let X be a definable subset of G, X0

the subset of elements of X contained in only finitely many G-conjugates of X,
and U a definable subset of X such that U ∩X0 6= ∅. Then N◦(U) ≤ N(X).

Proof. As in [Jal06, Lemma 3.3], essentially via Fact 2.1(a). �
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4 Cosets arguments

Corollary 3.7 may be used at the end of this paper in certain arguments remi-
niscent of a theory of Weyl groups from [Jal09]. Since such specific arguments
follow essentially from Corollary 3.7 we insert here, as a warm up, a short section
devoted to them.

Theorem 4.1 Let G be a group definable in a structure equipped with a dimen-
sion satisfying axioms A1-4 and with the dcc, H a weakly generous definable
subgroup of G, and w an element normalizing H and such that G/N(H) has a
definable transversal. Then one the following must occur:

(a) The coset wH is weakly generous in G, or

(b) The definable set {hwn−1

hwn−2 · · ·h | h ∈ H} is not large in H for any
multiple n of the (necessarily finite) order of w modulo H. If w centralizes
H in this case, then {hn | h ∈ H} is not large in H.

Proof. We proceed essentially as in [Jal09, Lemmas 11-12]. Assume wH not
weakly generous. In particular w ∈ N(H) \H since H is weakly generous by
assumption. By Corollary 3.7,H0 is weakly generic inN(H); in particularH has
finite index inN(H). Of course, N(wH) ≤ N(H) sinceH = {ab−1 : a, b ∈ wH},
and one sees then thatN(wH) is exactly the preimage inN(H) of the centralizer
of w modulo H . To summarize, H ≤ N(wH) ≤ N(H), with N(H)/H finite. In
particular w has finite order moduloH . Notice also at this stage that G/N(wH)
has a definable transversal (of the form AX where X is a definable transversal of
G/N(H) and A is a definable transversal of the finite quotient N(H)/N(wH)).
Since we assume wH not weakly generous, Corollary 3.7 implies that [wH ]0 is
not weakly generic in wH . In other words, the (definable) set of elements of the
coset wH contained in infinitely many G-conjugates of wH is large in wH .

Assume towards a contradiction {hwn−1

hwn−2 · · ·h | h ∈ H} large in H for
n a multiple of the finite order of w modulo H . Let φ : wh 7→ (wh)n denote
the definable map, from wH to H , consisting of taking n-powers. As

φ(wH) = wn · {hwn−1

hwn−2 · · ·h | h ∈ H}

our contradictory assumption forces that φ(wH) must be large in H .
Then H0 ∩ φ(wH) must be weakly generic in H . Since the dimension can

only get down when taking images by definable functions, φ−1(H0 ∩ φ(wH))
necessarily has to be weakly generic in the coset wH . Therefore one finds an
element x in this preimage and in the large subset [wH ] \ [wH ]0 of elements of
wH contained in infinitely many G-conjugates of wH . Now since wn ∈ H and
N(wH) has finite index in N(H) it follows that φ(x) = xn belongs to infinitely
many G-conjugates of H , a contradiction since φ(x) belongs to H0. This proves
our main statement in case (b).

For our last remark in case (b), notice that when w centralizes H one has

{hwn−1

hwn−2 · · ·h | h ∈ H} = {hn | h ∈ H}. �
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Corollary 4.2 Suppose additionally in Theorem 4.1 that w has order n modulo
H and that H is n-divisible (n ≥ 1). Then one of the following must occur:

(a) The coset wH is weakly generous in G, or

(b) CH(w) is a proper subgroup of H.

Proof. Suppose that both alternatives fail. Then {hn | h ∈ H} is not large in
H by Theorem 4.1, a contradiction since this set is H by n-divisibility. �

The following corollary of Theorem 4.1 will be particularly adapted in the
sequel to Cartan subgroups of groups definable in o-minimal structures.

Corollary 4.3 Suppose additionally in Theorem 4.1 that H is definably con-
nected and divisible and that 〈w〉H is nilpotent. Then the coset wH is weakly
generous in G.

Proof. This is clear if w is in H , so we may assume w ∈ N(H) \H . As above
w has finite order modulo H = H◦. By dcc of the ambient group and [BJO11,
Lemma 3.10], the coset wH contains a torsion element which commutes with
H = H◦, and thus we may assume CH(w) = H . By divisibility of H = H◦,
{hn | h ∈ H} = H is large in H , and by Theorem 4.1 the coset wH must be
weakly generous in G. �

We will also use the following more specialized results in the same spirit,
which apply as usual to nilpotent groups definable in o-minimal structures by
[Edm03, Theorem 6.10].

Lemma 4.4 Let H be a nilpotent divisible group definable in a structure equipped
with a dimension satisfying axioms A1-4, with the dcc, and with no infinite el-
ementary abelian p-subgroups for any prime p. Let φ be the map consisting of
taking n-th powers for some n ≥ 1. If X is a weakly generic definable subset of
H, then φ(X) is weakly generic as well.

Proof. Considering the dimension, it suffices to show that φ has finite fibers.
Suppose an = bn for some elements a and b in H . If aZ(H) = bZ(H), then our
assumption forces, with a fixed, that b can only vary in a finite set, as desired.
Hence, working in H/Z(H), it suffices to show that an = bn implies a = b. But
by [BJO11, Lemma 3.10(a’)] all definable sections of H/Z(H) are torsion-free,
and our claim follows easily by induction on the nilpotency class of H/Z(H).
�

Corollary 4.5 Let Q be a nilpotent group definable in a structure equipped
with a dimension satisfying axioms A1-4, with the dcc, and with no infinite
elementary abelian p-subgroups for any prime p. Suppose Q◦ divisible, and let
a ∈ Q, n a multiple of the order of a modulo Q◦, and φ the map consisting of
taking n-th powers. If X is a weakly generic definable subset of aQ◦, then φ(X)
is a weakly generic subset of Q◦.
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Proof. By [BJO11, Lemma 3.9], we may assume that a centralizes Q◦. Now
for any x ∈ Q◦ we have φ(ax) = anxn. Hence, if x varies in a weakly generic
definable subset X of Q◦, then φ(ax) also by Lemma 4.4 in H = Q◦. �

5 Generosity and lifting

In the present section we study the behaviour of weak or large generosity when
passing to quotients by definable normal subgroups. We continue with the mere
axioms A1-4 of Section 3 for the dimension, and with the existence of definable
transversal for certain imaginaries to ensure that their dimensions is also well
defined. As above, everything applies in particular to groups definable in o-
minimal structures.

Proposition 5.1 Let G be a group definable in a structure equipped with a
dimension satisfying axioms A1-4, N a definable normal subgroup of G, H a
definable subgroup of G containing N , and Y a definable subset of H large in
H. Suppose also that G/N and G/N(H \ Y H) have definable transversals.

(a) If H/N is weakly generous in G/N , then Y is weakly generous in G.

(b) If H/N is largely generous in G/N , then Y is largely generous in G.

Proof. First note that HG is a union of cosets of N , since N ≤ H and N E G.
Hence the weak (resp. large) generosity of H/N in G/N forces the weak (resp.
large) generosity of H in G. In any case, dim(HG) = dim(G).

Replacing Y by Y H if necessary, we may assume H ≤ N(Y ) and Y large in
H .

Claim 5.2 Let Z = H \ Y . Then ZG cannot be weakly generic in HG.

Proof. Suppose ZG weakly generic in HG. Then dim(ZG) = dim(HG) =
dim(G). Since Z ⊆ H ⊆ NG(Z), Corollary 3.4 yields dim(Z) = dim(NG(Z)).
In particular dim(Z) = dim(H), a contradiction to the largeness of Y in H . �

(a). Since dim(HG) = dim(G) and HG = Y G ∪ ZG, Claim 5.2 yields
dim(Y G) = dim(G).

(b). In this case HG is large in G. Since G = (G \HG) ⊔ (HG \ Y G) ⊔ Y G,
Claim 5.2 now forces Y G to be large in G. �

Corollary 5.3 Assume that G, N , H, and Y are as in Proposition 5.1, and
that Y = QH for some largely generous definable subgroup Q of H.

(a) If H/N is weakly generous in G/N , then so is Q in G

(b) If H/N is largely generous in G/N , then so is Q in G.
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Proof. It suffices to apply Proposition 5.1 with Y = QH , noticing that Y G =
QG. �

Corollary 5.4 Assume furthermore that Q is a Carter subgroup of H in Corol-
lary 5.3, and that NG(Q)/Q has a definable transversal. Then, in both cases (a)
and (b), Q is a Carter subgroup of G.

Proof. By definition, Q is definable, definably connected, and nilpotent. So it
suffices to check that Q is a finite index subgroup of NG(Q). But in any case,
it follows from the weak generosity of Q in G given in Corollary 5.3 and from
Corollary 3.7 that dim(Q) = dim(NG(Q)). Now axiom A3 applies. �

6 Weakly generous nilpotent subgroups

In the present section we shall rework arguments from [Jal06] concerning weakly
generous Carter subgroups. Throughout the section, G is a group definable in
a structure with a dimension satisfying axioms A1-4, and with the dcc. As in
the preceding sections, everything applies in particular to groups definable in
an o-minimal structure.

Lemma 6.1 Let G be a group definable in a structure with a dimension satis-
fying axioms A1-4, and with the dcc. Let H be a definable subgroup of G such
that N◦(H) = H◦, H0 the set of elements of H contained in only finitely many
conjugates of H, and N a definable nilpotent subgroup of G such that N ∩ H0

is nonempty. Then N◦ ≤ H◦.

Proof. Let U = N ∩H . By assumption U ∩H0 is nonempty, so by Lemma 3.8
N◦(U) ≤ N◦(H) = H◦. In particular, N◦

N(U) ≤ (N ∩H)◦ = U◦, which shows
that U has finite index in NN (U). Now Lemma 2.3 shows that U must have
finite index in N , and in particular U◦ = N◦. Hence, N◦ = (N ∩H)◦ ≤ H◦. �

Corollary 6.2 Let G be a group definable in a structure with a dimension sat-
isfying axioms A1-4, and with the dcc. Let Q be a definable nilpotent weakly
generous subgroup of G such that G/N(Q) has a definable transversal, and let
Q0 denote the set of elements of Q contained in only finitely many conjugates
of Q. Then:

(a) For any definable nilpotent subgroup N such that N ∩ Q0 6= ∅, we have
N◦ ≤ Q◦.

(b) For any g in G such that Q0 ∩Qg 6= ∅, we have that Q◦ = [Q◦]g.
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Proof. (a). As Q is weakly generous, we have N◦(Q) = Q◦ by Corollary 3.7.
Hence Lemma 6.1 gives N◦ ≤ Q◦. (b). Item (a) applied with N = Qg yields
[Q◦]g = [Qg]◦ ≤ Q◦. Now applying Lemma 2.3 shows that [Q◦]g cannot be of
infinite index in Q◦ (as otherwise we would contradict that N◦(Q) = Q◦), and
thus [Q◦]g = Q◦. �

Corollary 6.3 Suppose in addition in Corollary 6.2 that Q is a Carter subgroup
of G. Then, for any g ∈ Q0 and any definably connected definable nilpotent
subgroup N containing g, we have N ≤ Q. In particular, Q is the unique
maximal definably connected definable nilpotent subgroup containing g, and the
distinct conjugates of Q0 are indeed disjoint, forming thus a partition of a weakly
generic subset of G.

Proof. It suffices to apply Corollary 6.2. �

As a result one also obtains the following general theorem, which can be
compared to the main result of [Jal06].

Theorem 6.4 Let G be a group definable in a structure with a dimension sat-
isfying axioms A1-4, and with the dcc. Then G has at most one conjugacy
class of largely generous Carter subgroups Q such that G/N(Q) has a definable
transversal. If such a Carter subgroup exists, then the set of elements contained
in a unique conjugate of that Carter subgroup is large in G.

Proof. Let P and Q be two largely generous Carter subgroups of G. We want
to show that P and Q are conjugate. We have P0

G and Q0
G large in G by

Corollary 3.7. Since the intersection of two large sets is nontrivial (and in fact
large as well), we get that P0

G ∩Q0
G is nonempty, so after conjugation we may

thus assume P0 ∩Q0 nonempty. But then Corollary 6.3 gives P = Q.
Our last claim follows also from Corollary 6.3. �

7 On groups definable in o-minimal structures

We shall now collect results specific of groups definable in o-minimal structures
which are needed in the sequel. We recall that groups definable in o-minimal
structures satisfy the dcc on definable subgroups [Pil88, Remark 2.13], and
o-minimal structures are equipped with a dimension satisfying axioms A1-4
considered in the previous sections [vdD98, Chapter 4]. As commented before,
we can freely apply all the results of the preceding sections to the specific case of
groups definable in an o-minimal structure. We also recall that all the technical
assumptions on the existence of transversals in Sections 3-6 are satisfied, since
groups definable in o-minimal structures eliminate all imaginairies by [Edm03,
Theorem 7.2]. As mentioned already in the introduction, we consider only
groups G definable in an o-minimal structure, but [Edm03, Theorem 7.2] also
allows one to consider any group of the form K/L, where L E K ≤ G are
definable subgroups, as definable.
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Fact 7.1 [BJO11, §6] Let G be a group definable in an o-minimal structure,
with G◦ solvable, and A and B two definable subgroups of G normalizing each
other. Then [A,B] is definable, and definably connected whenever A and B are.

Any groupG definable in o-minimal structures has a largest normal nilpotent
subgroup F (G), which is also definable [BJO11, Fact 3.5], and a largest normal
solvable subgroup R(G), which is also definable [BJO11, Lemma 4.5].

Fact 7.2 Let G be a definably connected solvable group definable in an o-minimal
structure.

(a) [Edm03, Theorem 6.9] G′ is nilpotent.

(b) [BJO11, Proposition 5.5] G′ ≤ F ◦(G). In particular G/F ◦(G) and G/F (G)
are divisible abelian groups.

(c) [BJO11, Corollary 5.6] If G is nontrivial, then F ◦(G) is nontrivial. In
particular G has an infinite abelian characteristic definable subgroup.

(d) [BJO11, Lemma 3.6] If G is nilpotent and H is an infinite normal subgroup
of G, then H ∩ Z(G) is infinite.

If H and G are two subgroups of a group with G normalizing H , then a
G-minimal subgroup of H is an infinite G-normal definable subgroup of H ,
which is minimal with respect to these properties (and where definability refers
to the fixed underlying structure, as usual). If H is definable and satisfies
the dcc on definable subgroups, then G-minimal subgroups of H always exist.
As the definably connected component of a definable subgroup is a definably
characteristic subgroup, we get also in this case that any G-minimal subgroup
of H should be definably connected.

Lemma 7.3 Let G be a definably connected solvable group definable in an o-
minimal structure, and A a G-minimal subgroup of G. Then A ≤ Z◦(F (G)),
and CG(a) = CG(A) for every nontrivial element a in A.

Proof. By Fact 7.2(c), A has an infinite characteristic abelian definable sub-
group. Therefore the G-minimality of A forces A to be abelian. In particular,
A ≤ F (G). Since A is normal in F (G), Fact 7.2(d) and the G-minimality of A
now force that A ≤ Z(F (G)). Since A is definably connected, we have indeed
A ≤ Z◦(F (G)).

Now F (G) ≤ CG(A), and G/CG(A) is definably isomorphic to a quotient
of G/F (G). In particular G/CG(A) is abelian by Fact 7.2(b). If A ≤ Z(G),
then clearly CG(a) = CG(A) (= G) for every a in A, and thus we may assume
G/CG(A) infinite. Consider the semidirect product A ⋊ (G/CG(A)). Since
A is G-minimal, A is also G/CG(A)-minimal. Now an o-minimal version of
Zilber’s Field Interpretation Theorem for groups of finite Morley rank [PPS00b,
Theorem 2.6] applies directly to A⋊(G/CG(A)). It says that there is an infinite
interpretable field K, with A ≃ K+ and G/CG(A) an infinite subgroup of K×,
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and such that the action of G/CG(A) on A corresponds to scalar multiplication.
In particular, G/CG(A) acts freely (or semiregularly in another commonly used
terminology) on A \ {1}. This means exactly that for any nontrivial element a
in A, CG(a) ≤ CG(A), i.e., CG(a) = CG(A). �

For definably connected groups definable in an o-minimal structure which
are not solvable, our study of Cartan subgroups will make heavy use of the main
theorem about groups definable in o-minimal structures. It can be summarized
as follows, compiling several papers to which we will refer immediately after the
statement. Recall that a group is definably simple if the only definable normal
subgroups are the trivial and the full subgroup.

Fact 7.4 Let G be a definably connected group definable in an o-minimal struc-
ture M. Then

G/R(G) = G1 × · · · ×Gn

where each Gi is a definably simple infinite definable group. Furthermore, for
each i, there is an M-definable real closed field Ri such that Gi is M-definably
isomorphic to a semialgebraically connected semialgebraically simple linear semi-
algebraic group, definable in Ri over the subfield of real algebraic numbers of Ri.

Besides, for each i, either

(a) 〈Gi, ·〉 and 〈Ri(
√
−1),+, ·〉 are bi-interpretable; in this case Gi is definably

isomorphic in 〈Gi, ·〉 to the Ri(
√
−1)-rational points of a linear algebraic

group, or

(b) 〈Gi, ·〉 and 〈Ri,+, ·〉 are bi-interpretable; in this case Gi is definably iso-
morphic in 〈Gi, ·〉 to the connected component of the Ri-rational points of
an algebraic group without nontrivial normal algebraic subgroups defined
over Ri.

The description of G/R(G) as direct product of definably simple definable
groups can be found in [PPS00a, 4.1]. The second statement about definably
simple groups is in [PPS00a, 4.1 & 4.4], with the remark concerning the parame-
ters in the proof of [PPS02, 5.1]. The final alternative for each factor, essentially
between the complex case and the real case, is in [PPS00b, 1.1].

We finish the present section with specific results about definably compact
groups which might be used when such specific groups are involved in the sequel.

Fact 7.5 Let G be a definably compact definably connected group definable in
an o-minimal structure.

(a) [PS00, Corollary 5.4] Either G is abelian or G/Z(G) is semisimple. In
particular, if G is solvable, then it is abelian.

(b) [Edm05, Proposition 1.2] G is covered by a single conjugacy class of a
definably connected definable abelian subgroup T such that dim(T ) is max-
imal among dimensions of abelian definable subgroups of G.
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For a variation on Fact 7.5(b), see also [Ber08, Corollary 6.13]. With Fact
7.5 we can entirely clarify properties of Cartan subgroups in the specific case
of definably compact groups definable in o-minimal structures, with a picture
entirely similar to that in compact real Lie groups.

Corollary 7.6 Let G be a definably compact definably connected group definable
in an o-minimal structure. Then Cartan subgroups T of G exist and are abelian,
definable, definably connected, and conjugate, and G = TG.

Proof. Let T be a definably connected abelian subgroup as in Fact 7.5(b).
Since G = TG, T is in particular weakly generous, and thus of finite index in its
normalizer by Corollary 3.7. Hence T is a Carter subgroup of G. Since G = TG

again, and t ∈ T ≤ C◦(t) for every t ∈ T , we have the property that g ∈ C◦(g)
for every g in G.

We now prove our statement by induction on dim(G). By Lemma 2.6, T ≤ Q
for some Cartan subgroup such that Q◦ = T . This takes care of the existence of
Cartan subgroups of G, and their definability follows from Lemma 2.4(a). We
also have G = TG. We now claim that T = Q. Otherwise, T = Q◦ < Q, and
we find by Fact 2.5 and element a in Q \ T centralizing T . Since a ∈ T g for
some g ∈ G, we have T and T g in C◦(a). Now the Carter subgroups T and
T g of C◦(a) are conjugate by an element of C◦(a), obviously if C◦(a) = G and
by induction otherwise. Since a ∈ T g ≤ C◦(a), we get a ∈ T , a contradiction.
Hence T = Q is a Cartan subgroup of G.

It remains just to show that Cartan subgroups of G are conjugate. Let Q1

be an arbitrary Cartan subgroup of G, and z a nontrivial element of Z(Q1)
(Lemma 2.4(a) and Fact 7.2(d)). We also have z ∈ T g for some g ∈ G, and thus
Q1, T

g ≤ C(z). If C◦(z) < G, the induction hypothesis applied in C◦(z) yields
the conjugacy of Q◦

1 and of T , giving also Q1 = Q◦
1 by maximal nilpotence of

T . So we may assume z ∈ Z(G). If Z(G) is finite, then G/Z(G) has a trivial
center by Fact 2.1(b), and the previous argument applied in G/Z(G), together
with Lemma 2.7(a), yields the conjugacy of Q1 and T . Remains the case Z(G)
infinite: then applying the induction hypothesis in G/Z(G), and using Lemma
2.7(a), also gives the conjugacy of Q1 and T . This completes our proof. �

We have seen in the proof of Corollary 7.6 that the “maximal definable-tori”
T of Fact 7.5(b) must be Cartan subgroups, and then the two types of subgroups
coincide by the conjugacy of Cartan subgroups. We note that the conjugacy
of the “maximal definable-tori” T as in Fact 7.5(b) was also shown in [Edm05].
Besides, we note that the maximal nilpotence of a Cartan subgroup T of a group
G always implies that CG(T ) = Z(T ). In particular, in Corollary 7.6, C(T ) = T
and the “Weyl group” W (G, T ) := N(T )/C(T ) acts faithfully on T .

Finally, we take this opportunity to mention, parenthetically, a refinement
of Fact 7.5(a).

Corollary 7.7 Let G be a definably compact definably connected group definable
in an o-minimal structure. Then R(G) = Z(G).
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Proof. By Fact 7.5(a) and [BJO11, Lemma 3.13]. �

8 The definably connected solvable case

In the present section we are going to prove the following theorem.

Theorem 8.1 Let G be a definably connected solvable group definable in an
o-minimal structure. Then Cartan subgroups of G exist and are conjugate, and
they are definably connected and selfnormalizing. Moreover, they are largely
generous in the following strong sense: for any Cartan subgroup Q, the (defin-
able) set of elements of Q contained in a unique conjugate of Q is large in Q
and largely generous in G.

We first look at the minimal configuration for our analysis which can be
thought as an abstract analysis of Borel subgroups of SL2 (over C or R), first
studied by Nesin in the case of groups of finite Morley rank [BN94, Lemma
9.14].

Lemma 8.2 Let G be a definably connected solvable group definable in an o-
minimal structure, with G′ a G-minimal subgroup and Z(G) finite. Then G =
G′ ⋊Q for some (abelian) selfnormalizing definably connected definable largely
generous complement Q, and any two complements of G′ are G′-conjugate. More
precisely, we also have:

(a) F (G) = Z(G)×G′ = CG(G
′).

(b) For any x in G\F (G), xG′ = xG′

, G = G′⋊C(x), and C(x) is the unique
conjugate of C(x) containing x.

Proof. We elaborate on the proof given in [FJ08, Theorem 3.14] in the finite
Morley rank case. Since Z(G) is finite, the definably connected group G is not
nilpotent by Fact 7.2(d), and in particular CG(G

′) < G. By G-minimality of
G′ and Lemma 7.3, G′ ≤ Z◦(F (G)) and CG(a) = CG(G

′) for every non-trivial
element a of G′.

For any element x in G\CG(G
′), we now show that Q := CG(x) is a required

complement of G′. Since x /∈ CG(G
′), CG′(x) = 1 and in particular dim(xG) ≥

dim(G′). On the other hand, xG ⊆ xG′ as G/G′ is abelian, and it follows
that dim(xG) = dim(G′), or in other words that dim(G/Q) = dim(G′). Since
Q∩G′ = 1, the definable subgroupG′⋊Q has maximal dimension in G, and since
G is definably connected we get thatG = G′⋊Q. Of courseQ ≃ G/G′ is abelian,
and definably connected as G is. We also see that NG′(Q) = CG′(Q) = 1, since
CG′(x) = 1, and thus the definable subgroup Q = CG(x) is selfnormalizing.

(a). The finite center Z(G) is necessarily in Q = CG(x) in the previous
paragraph, and in particular Z(G) ∩G′ = 1. Since G = G′ ⋊ Q and Q is
abelian, CQ(G

′) ≤ Z(G), and since G′ ≤ Z(F (G)) one gets Z(G) × G′ ≤
F (G) ≤ CG(G

′) ≤ Z(G)×G′, proving item (a).
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(b). Let again x be any element in G \ F (G). The map G′ → G′ : u 7→ [x, u]
is a definable group homomorphism since G′ is abelian, with trivial kernel as
CG′(x) = 1, and an isomorphism onto G′ since the latter is definably connected.
It follows that any element of the form xu′, for u′ ∈ G′, has the form xu′ =
x[x, u] = xu for some u ∈ G′, i.e., xG′ = xG′

.
Next, notice that any complement Q1 of G′ is of the form Q1 = CG(x1) for

any x1 ∈ Q1 \ Z(G). Indeed, x1 6∈ Z(G) and Q1 abelian imply x1 6∈ CG(G
′),

and as above CG(x1) is a definably connected complement of G′ containing Q1,
and comparing the dimensions we get Q1 = CG(x1).

Moreover, if Q1 = CG(x1) and Q2 = CG(x2) are two complements of G′, we
can always choose x1 and x2 in the same G′-coset; then they are G′-conjugate,
as well as Q1 and Q2. It is also now clear that, for any x ∈ G \ F (G), CG(x) is
the unique complement of G′ containing x, proving item (b).

It is clear from item (b) that two complements of G′ are G′-conjugate, and
that such complement are largely generous in G. �

Corollary 8.3 Let G be a group as in Lemma 8.2. Then:

(a) If X is an infinite subgroup of a complement Q of G′, then NG(X) = Q
and NG(X) ∩G′ = 1.

(b) If X is a nilpotent subgroup of G not contained in F (G), then X is in an
abelian complement of G′.

(c) Complements of G′ in G are both Carter and Cartan subgroups of G, and
all are of this form.

Proof. (a). We have Q ≤ NG(X), and thus NG(X) = NG′(X) ⋊ Q. But
[NG′(X), X ] ≤ NG′(X) ∩X = 1 since Q ∩ G′ = 1. In view of Lemma 8.2, and
since X is infinite, the only possibility is that NG′(X) = 1. Hence NG(X) = Q,
which is disjoint from G′.

(b). X contains an element x outside of F (G) = CG(G
′). Replacing X by

its definable hull H(X) and using Fact 2.2(b), we may assume without loss that
X is definable. As in the proof of Lemma 8.2, X ∩G′ = {[x, u] | u ∈ X ∩G′},
and the nilpotency of X forces that X ∩G′ = 1. Hence X is abelian, and in the
complement C(x) of G′.

(c). Complements of G′ are selfnormalizing Carter subgroups by Lemma
8.2, and thus also Cartan subgroups by Lemma 2.6. Conversely, one sees easily
that a Carter or a Cartan subgroup of G cannot be contained in F (G), and then
must be a complement of G′ by item (b). �

Crucial in our proof of Theorem 8.1, the next point shows that any definably
connected nonnilpotent solvable group has a quotient as in Lemma 8.2.

Fact 8.4 (Cf. [Fré00, Proposition 3.5]) Let G be a definably connected
nonnilpotent solvable group definable in an o-minimal structure. Then G has
a definably connected definable normal subgroup N such that (G/N)′ is G/N -
minimal and Z(G/N) is finite.
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Proof. The proof works formally exactly as in [Fré00, Proposition 3.5] in the
finite Morley rank case. All facts used there about groups of finite Morley rank
have their formal analogs in Fact 7.2(a) and Lemma 7.3 in the o-minimal case.
We also use the fact that lower central series and derived series of definably
connected solvable groups definable in o-minimal structures are definable and
definably connected, which follows from Fact 7.1 here. �

We now pass to the proof of the general Theorem 8.1. At this stage we could
follow the analysis by abnormal subgroups of [Car61] in finite solvable groups, as
developed in the case of infinite solvable groups of finite Morley rank in [Fré00].
However we provide a more conceptual proof of Theorem 8.1, mixing the use
of Fact 8.4 with our general genericity arguments, in particular of Section 6.
We note that the proof of Theorem 8.1 we give here would work equally in
the finite Morley rank case (in that case there is no elimination of imaginaries
but the dimension is well defined on imaginaries), providing a somewhat more
conceptual proof of the analog theorem in [Fré00] in that case.

Proof of Theorem 8.1. We proceed by induction on dim(G). Clearly a
minimal counterexample G has to be nonnilpotent, and then has a definably
connected definable normal subgroup N as in Fact 8.4. In what follows we use
the notation “ ” to denote quotients by N . Notice that G is necessarily infinite
in Fact 8.4, and N is a subgroup of infinite index in G.

Claim 8.5 G contains a definably connected and selfnormalizing Cartan sub-
group Q which is largely generous in the following sense: the (definable) set of
elements of Q contained in a unique conjugate of Q is large in Q and largely
generous in G.

Proof. Let H be a definable subgroup of G containing N such that H is a
selfnormalizing largely generous Carter subgroup of G as in Lemma 8.2. Notice

that H is definably connected since H and N are. As G
′
is infinite, dim(H) <

dim(G), and dim(H) < dim(G). We can thus apply the induction hypothesis
in H , and assume that H contains a definably connected and selfnormalizing
Cartan subgroupQ with the strong large generosity property: the set of elements
of Q contained in a unique H-conjugate of Q is large in Q and largely generous
in H . We will show that Q is the required subgroup.

First note that Q, being definably connected, is a largely generous Carter
subgroup of H . By Corollaries 5.3 and 5.4, Q must be a largely generous Carter
subgroup of G. We now show that Q is selfnormalizing in G. Notice that Q
has an infinite image in H , since it is largely generous in H and N is normal
and proper in H . If x ∈ NG(Q), then x ∈ NG(Q) = H by Corollary 8.3(a),
and since Q is selfnormalizing in H it follows that x ∈ NH(Q) = Q. Thus Q is
selfnormalizing in G. By Lemma 2.6, Q is also a Cartan subgroup of G.

It remains just to show the largeness issue. Let Q0 denote the set of elements
of Q contained in a unique H-conjugate of Q. We know that Q0 is large in Q
and that [Q0]

H is large in H , so [Q0]
G (= [[Q0]

H ]G) is large in G by Proposition
5.1. This shows that Q is largely generous in G, and thus it remains only to

24



show it is in the strong sense of our claim. For that purpose, one easily sees
that it is enough to show that the subset X of elements of Q0 contained in a
unique G-conjugate of Q is still large in Q0, given the large partition of G as
in Corollary 6.3 and Theorem 6.4 (see also Proposition 3.2). Since Q is largely
generous in H and the preimage L in H of F (G) is normal and proper in H ,
we get that Q � L, and thus it suffices to show that Q0 \X is in L. Suppose
towards a contradiction that an element x in Q0 and not in L is in Qg for some
g not in NG(Q). Looking at images in G and since x ∈ H \ Z(G), we then see
with Lemma 8.2 that g ∈ NG(H) = H , and thus g ∈ H . Then x ∈ Q ∩ Qg for
some g ∈ H \NH(Q), a contradiction since x is in a unique H-conjugate of Q.
This completes our proof of Claim 8.5. �

Claim 8.6 Carter subgroups of G are conjugate.

Proof. There are indeed at this stage two quick ways to argue for the conjugacy
of Carter subgroups, either by quotienting by a G-minimal subgroup of G as in
[FJ08, Proof of Theorem 3.11], or still looking at the quotient G. Since we have
already used G for the existence of a largely generous Carter subgroup we keep
on this second line of arguments.

Let Q1 be an arbitrary Carter subgroup of G. By Theorem 6.4, it suffices
to prove that Q1 is a largely generous Carter subgroup of G. Let L be the
preimage of [G]′ in G; notice that L is definably connected as [G]′ and N are. If
Q1 ≤ L, then a Frattini Argument applied in L, using the induction hypothesis
in L, gives G = L · NG(Q1), and since Q1 is a Carter subgroup this gives that
L has finite index in G, a contradiction. Therefore Q1 � L, and since Q1 is
definably connected we also get Q1 � F (G) by Lemma 8.2(a). In particular, by
Corollary 8.3(b), Q1 is contained in a definably connected definable subgroup H
as in the proof of Claim 8.5. Since H < G, the induction hypothesis applies in
H , and thus Q1 must be conjugate in H to a largely generous Carter subgroup
Q of H . In particular, by the proof of Claim 8.5, Q1 is a largely generous Carter
subgroup of G, as required. �

The Cartan subgroup Q provided by Claim 8.5 is also a Carter subgroup
by definable connectedness and Lemma 2.4(a′). If Q1 is an arbitrary Cartan
subgroup, then Q◦

1 is a Carter subgroup by Lemma 2.4(a′), hence a conjugate
of Q by Claim 8.6, and the maximal nilpotence of Q forces Q◦

1 = Q1. Hence
Cartan subgroups are definably connected and conjugate. This completes the
proof of Theorem 8.1. �

Corollary 8.7 In a definably connected solvable group definable in an o-minimal
structure, Cartan subgroups and Carter subgroups coincide.

Proof. If Q is a Cartan subgroup, then it is definably connected by Theorem
8.1, and thus a Carter subgroup by Lemma 2.4(a′). If Q is a Carter subgroup,
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then Q is the definably connected component of a Cartan subgroup Q̃ by Lemma
2.6, and thus Q = Q̃ by Theorem 8.1. �

There are other aspects refining further the structure of definably connected
solvable groups that we won’t follow here, but which could be. It includes the
already mentioned approach of Cartan/Carter subgroups as minimal abnormal
subgroups [Car61, Fré00], as well as covering properties of nilpotent quotients
by Cartan/Carter subgroups (see also [FJ08, §4-5]), and also the peculiar theory
of “generalized centralizers” of [Fré00, §5.3]. We merely mention the most basic
covering property, but before that a Frattini argument following Theorem 8.1.

Corollary 8.8 Let G be a group definable in an o-minimal structure, N a de-
finably connected definable normal solvable subgroup, and Q a Cartan/Carter
subgroup of N . Then G = NG(Q)N .

Proof. By a standard Frattini argument, following the conjugacy in Theorem
8.1. �

Lemma 8.9 Let G be a definably connected solvable group definable in an o-
minimal structure, N a definable normal subgroup such that G/N is nilpotent,
and Q a Cartan/Carter subgroup of G. Then G = QN .

Proof. Suppose QN < G. Then QN/N is a definable subgroup of infinite index
in the definably connected nilpotent group G/N . By Lemma 2.3, and since
NG(QN) is the preimage in G of NG/N(QN/N), we have thus QN of infinite
index in K := NG(QN). But Q is a Cartan/Carter subgroup of the definably
connected solvable group [QN ]◦, normal in K, and thus K = NK(Q)[QN ]◦ =
NK(Q)N◦ by Corollary 8.8. Since Q is a Carter subgroup, we get that QN
must have finite index in K, a contradiction. �

We note that Lemma 8.9 always applies with N = F ◦(G), in view of Fact
7.2(b), giving thus in particular G = QF ◦(G) for any definably connected solv-
able group G and any Cartan/Carter subgroup Q of G.

9 On Lie groups

In this section we collect properties needed in the sequel concerning Cartan
subgroups (in the sense of Chevalley as usual) of Lie groups. These are facts
more or less known, but because of the different notions of a Cartan subgroup
used in the literature we will be careful with references.

By a Lie algebra we mean a finite dimensional real Lie algebra. We are
going to make use of the following concepts about Lie algebras: subalgebras,
commutative, nilpotent, and semisimple Lie algebras [Bou98, I.1.1, I.1.3, I.4.1
and I.6.1]. If g is a Lie algebra and x ∈ g, the linear map adx : g → g : y 7→ [x, y]
is called the adjoint map of x. If h is a subalgebra of g, the normalizer of h in
g is ng(h) := {x ∈ g : adx(h) ⊆ h} and the centralizer of h in g is zg(h) := {x ∈
g : [adx]|h = id|h}.
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Definition 9.1 Let g be a Lie algebra and h a subalgebra of g. We say that h
is a Cartan subalgebra of g if h is nilpotent and selfnormalizing in g.

The two following facts can be found in [Var74, Theorem 4.1.2] and [Var74,
Theorem 4.1.5] respectively.

Fact 9.2 Every Lie algebra has a Cartan subalgebra.

Fact 9.3 Let g be a semisimple Lie algebra and h a subalgebra of g. Then h is
a Cartan subalgebra of g if and only if

(a) h is a maximal abelian subalgebra of g, and
(b) For every x ∈ h, adx is a semisimple endomorphism of g, i.e., adx is

diagonalizable over C.

By a Lie group we mean a finite dimensional real Lie groupG. The connected
component of the identity is denoted by G◦. The Lie algebra of G is denoted
by L(G). A connected Lie group G is called a semisimple Lie group if L(G)
is a semisimple Lie algebra (equivalently, every normal commutative connected
immerse subgroup of G is trivial [Bou98, Proposition III.9.8.26]). If g is an
element of a Lie group G, then Ad(g) : L(G) → L(G) denotes the differential at
the identity of G of the map from G to G mapping h to ghg−1, for each h ∈ G.
If g is the Lie algebra of G and h a subalgebra of g, the centralizer of h in G is
ZG(h) := {g ∈ G : Ad(g)(x) = x for every x ∈ h}.

Fact 9.4 Let G be a connected semisimple Lie group with Lie algebra g, and
let H be a subgroup of G. Then H is a Cartan subgroup of G if and only if
H = ZG(h) for some Cartan subalgebra h of g. Moreover, in this case, h is
L(H).

Proof. As G is connected, [Nee96, Theorem A.4] implies that H is a Cartan
subgroup of G if and only if

(C0) H is a closed subgroup of G;
(C1) h(= L(H)) is a Cartan subalgebra of g, and
(C2) H = C(h).

Here C(h) is defined by a centralizer-like condition. To avoid introducing more
notation, instead of properly defining C(h), we make use of [Nee96, Lemma I.5],
which states that C(h) = ZG(h) provided h is reductive in g, which is our case.
Indeed, G is a semisimple Lie group, so g is a semisimple Lie algebra, hence g

is reductive [Bou98, Proposition I.6.4.5], and then by [Nee96, Lemma I.4] every
Cartan subalgebra of g is reductive in g; in particular h is reductive in g.

For the converse, we observe that if H = ZG(h) for some Cartan subalgebra
h of g, then H is closed in G and L(H) = h. Indeed, H is closed by definition
of centralizers, and by [Bou98, Proposition III.9.3.7], L(H) = zg(h). Now h is
abelian by Fact 9.3, and hence h ⊆ zg(h). Moreover, if x ∈ zg(h), the subalgebra
of g generated by x and h is abelian, so it must coincide with h by maximality
of h, and x ∈ h; hence h = zg(h). We then conclude as above, first applying
Lemma I.4 and then Theorem A.4 from [Nee96]. �
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Fact 9.5 Let G be a connected semisimple centreless Lie group and H a sub-
group of G. If H is a Cartan subgroup of G, then H is abelian.

Proof. By Fact 9.4, H = ZG(h) with h = L(H) a Cartan subalgebra of g. By
[HC64, Lemma 8, p. 556] we have that H/Z(G) is abelian (see also [War72,
Theorem 1.4.1.5], noting that since G is semisimple the general assumption
(1.1.5) holds). Hence H is abelian. �

We note that the assumption Z(G) = 1 is essential to get the Cartan sub-
group abelian in Fact 9.5. For example SL3(R) has a simply-connected double
covering with non-abelian Cartan subgroups [Luk79, p.141], an example which
can also occur in the context of our Theorem 11.1 below.

Fact 9.6 Let G be a connected semisimple Lie group. Then:

(a) There are only finitely many conjugacy classes of Cartan subgroups of G.
All Cartan subgroups of G have the same dimension.

(b) If H1 and H2 are two Cartan subgroups of G with H◦
1 = H◦

2 , then H1 =
H2. In particular, if H◦

1 and H◦
2 are conjugate, then H1 and H2 are

conjugate as well.

(c) For any Cartan subgroup H of G, the set of elements of H contained in a
unique conjugate of H is dense in H.

Proof. (a). Let g = L(G). Then g is semisimple and it has finitely many
Cartan subalgebras, say h1, . . . , hs, such that any Cartan subalgebra h of g is
conjugate to one of them by an element of Ad(G), i.e., Ad(g)(h) = hi for some
i ∈ {1, . . . , s} and some g ∈ G (see [HC56, Corollary to Lemma 2] or [War72,
Corollary 1.3.1.11]).

Next, note that for every g in G and every (Cartan) subalgebra h of g,
we have ZG(Ad(g)(h)) = gZG(h)g

−1. For, h ∈ ZG(Ad(g)(h)) if and only
if Ad(h)Ad(g)x = Ad(g)x for every x ∈ h, and the latter is equivalent to
g−1hg ∈ ZG(h). Therefore, conjugate Cartan subalgebras correspond to conju-
gate centralizers, and by Fact 9.4 to conjugate Cartan subgroups.

We prove the second part. By Fact 9.4 the Lie algebra of a Cartan subgroup
is a Cartan subalgebra. By [Var74, Corollary 4.1.4] all Cartan subalgebras have
the same dimension.

(b). It is clear since L(Hi) = L(H◦
i ), for i = 1, 2, and Hi = ZG(L(Hi)).

(Actually, to prove (b) we do not need G to be semisimple: just consider the
C(L(Hi))’s of the proof of Fact 9.4, instead of the centralizers.)

(c). We essentially refer to [Hof92]. Recall, by Fact 9.4 and its proof, that
in the semisimple case our notion of a Cartan subgroup equals the one used
in that paper and C(h) = ZG(h) for any Cartan subalgebra h of g := L(G).
Let Reg(G) be the set of regular elements of G, as defined after Lemma 1.3 in
[Hof92]. We first show that each element g of Reg(G) lies in a unique Cartan
subgroup of G. Fix g ∈ Reg(G). By the proof of [Hof92, Prop. 1.5] we have that
g1(Ad(g)) := {X ∈ g : (∃n ∈ N)(Ad(g)− 1)nX = 0} is a Cartan subalgebra of g
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and g belongs to the Cartan subgroup ZG(g
1(Ad(g))). To show the uniqueness,

let H be a Cartan subgroup of G with g ∈ H . By Fact 9.4, H = ZG(h) with
h = L(H) a Cartan subalgebra of g. On the other hand, since g ∈ H = ZG(h)
we have that h ⊆ g1(Ad(g)) (by [Hof92, Prop. 1.2] noting that since g is
semisimple its nilradical is trivial). In particular h = g1(Ad(g)) because both h

and g1(Ad(g)) are Cartan subalgebras. Hence H = ZG(g
1(Ad(g))).

Finally, by [Hof92, Proposition 1.6], the subset Reg(G) ∩ H is dense in H
for all Cartan subgroup H of G. �

For the following, we refer directly to [Win02, Proposition 5] and (the proof
of) [Win02, Lemma 11] respectively.

Fact 9.7 Let G be a connected Lie group. Then:

(a) The union of all Cartan subgroups of G is dense in G.

(b) For any Cartan subgroup H of G, [H◦]G contains an open subset.

We finish this section with a remark which, as far as we know, does not
seem to have been made before. We will show later that all Cartan and Carter
subgroups of a group definable in an o-minimal structure are, as indicated by
Fact 9.7(b), weakly generous in the sense of Definition 3.6(a). Our remark
is essentially that the stronger notion of generosity of Definition 3.6(b) may
be satisfied or not, depending of the Carter subgroups considered, and this
phenomenon occurs even inside SL2(R). Recall that the Cartan subgroups of
SL2(R) are, up to conjugacy, the subgroup Q1 of diagonal matrices and Q2 =
SO2(R). Considering the characteristic polynomial, the two following equalities
are easily checked:

Q
SL2(R)
1 = {A ∈ SL2(R) : |tr(A)| > 2} ∪ {I,−I}

Q
SL2(R)
2 = {A ∈ SL2(R) : |tr(A)| < 2} ∪ {I,−I}

Remark 9.8 Let G = SL2(R). Then, according to Definition 3.6(b):
(a) The Cartan subgroup Q1 of diagonal matrices is generous in G.
(b) The Cartan subgroup Q2 = SO2(R) is not generous in G.

Proof. (a). Fix a, b ∈ (0, 1
13 ) and consider the matrices A1 = I,

A2 =

(

0 1
−1 0

)

, A3 =

(

a−1 0
0 a

)

, and A4 =

(

0 −b−1

b 0

)

.

We show that G = ∪4
i=1AiQ

G
1 . Suppose there exists

M =

(

x y
u v

)

∈ G

with M /∈ ∪4
i=1AiQ

G
1 . Since M /∈ A1Q

G
1 ∪ A2Q

G
1 , we have x = ǫ − v and

y = u+ δ for some ǫ, δ ∈ [−2, 2]. Since M /∈ A3Q
G
1 we have that |ax+ a−1v| =
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|a(ǫ−v)+a−1v| ≤ 2, so that v ∈ [−2a−a2ǫ
1−a2 , 2a−a2ǫ

1−a2 ]. Since ǫ ∈ [−2, 2], we deduce

that v ∈ [−2a
1−a ,

2a
1−a ]. Similarly, it follows from M /∈ A4Q

G
1 that u ∈ [−2b

1−b ,
2b
1−b ].

Finally, since a, b < 1
13 we have that |v|, |u| < 1

6 and |x|, |y| < 2 + 1
6 < 3. In

particular, det(M) = |xv − uy| ≤ |x||v| + |u||y| < 1, a contradiction.
(b). We show that the family of matrices

Mx =

(

x2 x− 1
1 x−1

)

with x > 0 cannot be covered by finitely many translates of QG
2 . It suffices to

prove that for a fixed matrix

A =

(

a b
c d

)

∈ G

we have that {x ∈ R>0 : |tr(A−1Mx)| > 2} ⊆ {x ∈ R>0 : Mx /∈ AQG
2 } is not

bounded. Since tr(A−1Mx) = x2d − b − c(x − 1) + ax−1 and x is positive, it
follows that |tr(A−1Mx)| > 2 if and only if one of the following two conditions
holds:

dx3 − cx2 − (b− c+ 2)x+ a > 0 (1)

dx3 − cx2 − (b− c− 2)x+ a < 0 (2)

It is easy to check that if d 6= 0, then either (1) or (2) is satisfied for large enough
x. If d = 0, then c 6= 0 (otherwise det(A) = 0) and again the same holds. �

In Remark 9.8, the generous Cartan subgroup is noncompact and the non-
generous one is compact. One can then wonder about the various possibil-
ities for generosity depending on compactness. But considering Q1 × Q2 in
SL2(R) × SL2(R) one gets from Remark 9.8 a nongenerous and noncompact
Cartan subgroup. Besides, any compact group is typically covered by a sin-
gle conjugacy class of compact Cartan subgroups by Corollary 7.6, and these
compact Cartan subgroups are in particular generous.

10 From Lie groups to definably simple groups

We now return to the context of groups definable in o-minimal structures. In the
present section we prove the following theorem, essentially transferring via Fact
7.4 the results of Section 9 on Lie groups to definably simple groups definable
in an o-minimal structure.

Theorem 10.1 Let G be a definably simple group definable in an o-minimal
structure. Then G has definable Cartan subgroups and the following holds.

(1) G has only finitely many conjugacy classes of Cartan subgroups.

(2) If Q1 and Q2 are Cartan subgroups of G and Q◦
1 = Q◦

2, then Q1 = Q2.
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(3) Cartan subgroups of G are abelian and have the same dimension.

(4) If Q is a Cartan subgroup of G, then the set of elements of Q contained
in a unique conjugate of Q is large in Q. In particular, if a ∈ Q, then the
set of elements of aQ◦ contained in a unique conjugate of aQ◦ is large in
aQ◦, and aQ◦ is weakly generous in G.

(5) The union of all Cartan subgroups of G, which is definable by (1), is large
in G.

Before passing to the proof of Theorem 10.1, we explain the “In particular”
part of item (4). So let Q be a Cartan subgroup such that the set Q0 of elements
of Q contained in a unique conjugate of Q is large in Q. Let [aQ◦]0 be the set
of elements of aQ◦ contained in a unique conjugate of aQ◦, for some a ∈ Q.
We see easily that Q0 ∩ aQ◦ ⊆ [aQ◦]0, and since Q0 is large in Q we get that
Q0 ∩ aQ◦ is large in aQ◦, as well as [aQ◦]0. Now, since Q

◦ ≤ N(aQ◦) ≤ N(Q◦)
and dim(Q◦) = dim(N(Q◦)), we get that dim([aQ◦]0) = dim(N(aQ◦)), and
Corollary 3.7 gives the weak generosity of aQ◦.

We now embark on the proof of Theorem 10.1, bearing in mind that for
item (4) we only need to prove the first statement. We first begin with some
lemmas. By a system of representatives we mean a system of representatives of
conjugacy classes of a set of subgroups of a given group.

Lemma 10.2 Let M be an o-minimal expansion of an ordered group, A ⊆ M
a set of parameters containing an element different from 0, and G a group de-
finable in M over A. Assume G has, for some s ∈ N, at least s non-conjugate
Carter subgroups. Then G has at least s non-conjugate Carter subgroups defin-
able over A. In particular, if G has a finite number of Carter subgroups up to
conjugacy, then in each conjugacy class there exists a Carter subgroup definable
over A.

Proof. The second part follows easily from the first one. Let Q1, · · · , Qs be
non-conjugate Carter subgroups of G. We denote them by Qb̄

1, . . . , Q
b̄
s to stress

the fact that they are defined over the tuple b̄. For each i = 1, · · · , s, let
si = [N(Qi) : Qi] and ri be the nilpotency class of Qi. Consider the set Ξ of
tuples c̄ satisfying the following conditions for each i.

(1) Qc̄
i is a nilpotent subgroup of G, of nilpotency class ri.

(2) [N(Qc̄
i ) : Q

c̄
i ] = si.

(3) For any j = 1, · · · , s with j 6= i, Qc̄
i and Qc̄

j are not conjugate.
(4) Qc̄

i is definably connected.
The three first properties are clearly first-order definable. The fact that the

fourth is also definable is well-known, and for completeness we sketch the proof
(following unpublished notes of Y. Peterzil). Let X ⊆ Mn+m be a definable set
and for each d ∈ Mn denote by Xd the fiber of X over d. We have to show
that the set {d ∈ Mn : Xd is definably connected} is definable (here definable
connectedness is in the topological sense, but by [Pil88, Proposition 2.12] for
a definable group the topological notion of definable connectedness coincides
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with the one generally in use here). By the cell decomposition [vdD98, Thm.
III.2.11], X is the union of definably connected definable sets C1, · · · , Ck with
the property that for each d ∈ Mn the fiber (Ci)d is also definably connected.

Finally, it suffices to note that for each d ∈ Mn the set Xd =
⋃k

i=1(Ci)d is
definably connected if and only if there is an ordering (Ci1 )d, . . . , (Cik)d such

that ((Ci1 )d ∪ · · · ∪ (Cij )d)∩(Cij+1
)d 6= ∅ or ((Ci1 )d∪· · ·∪(Cij )d)∩(Cij+1

)d 6= ∅.
Now the set Ξ is definable, over A since G is, and it is non-empty since

it contains b̄. Since M expands a group and A contains an element different
from 0, the definable closure in M of A is an elementary substructure of M:
the theory of M expanded with a symbol for each element in A has definable
Skolem functions [vdD98, Chap. 6 §1(1.1-3)], and we may apply the Tarski-
Vaught test (see also [Mac00, §2.3]). Hence there exists a tuple c̄ ∈ Ξ with each
coordinate in the definable closure of A. Now Qc̄

1, · · · , Qc̄
s are non-conjugate

Carter subgroups of G, and each can be defined with parameters in A. �

Corollary 10.3 Let M, A, and G be as in Lemma 10.2. Assume G has a
finite number of Cartan subgroups up to conjugacy. Then, in each conjugacy
class there exists a Cartan subgroup definable over A.

Proof. By Lemma 2.6, a finite number of conjugacy classes of Cartan subgroups
implies a finite number of conjugacy classes of Carter subgroups. Hence, by
Lemma 10.2, there exists a finite system of representatives of Carter subgroups
Q◦

1, · · · , Q◦
s, each defined over A. Now given any Cartan subgroup Q, we have

up to conjugacy Q◦ = Q◦
i for some i by Lemma 2.4(a′), and in particular

Q ≤ N(Q◦
i ). Since both N(Q◦

i ) and the finite group N(Q◦
i )/Q

◦
i are definable

over A, we deduce that Q is definable over A up to conjugacy, as desired. �

We will also make use of the following elementary remark, actually valid in
any context where Lemmas 2.4 and 2.6 hold.

Remark 10.4 Let G be a group definable in an o-minimal structure such that
for every pair of Cartan subgroups Q1 and Q2, Q1 = Q2 if and only if Q◦

1 = Q◦
2.

Then the cardinality of a system of representatives of Cartan subgroups of G
equals the cardinality of a system of representatives Carter subgroups of G.

From now on we will use a standard notation from model theory, namely, if
N1 is a substructure of N2 and X is definable in N1 (respectively in N2 with
parameters in N1), then X(N2) (resp. X(N1)) denotes the realization of X in
N2 (resp. in N1).

Corollary 10.5 Let M, A, and G be as in Lemma 10.2. Assume G satisfies
properties (1-5) of Theorem 10.1. Then:

(a) If N is an elementary substructure of M with A ⊆ N , then G(N) also
satisfies properties (1-5).
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(b) If N is an elementary extension of M, then G(N) also satisfies properties
(1-5).

Proof. (a). Since G satisfies property (1), it follows from Corollary 10.3 that
there is a finite system of representatives Q1, · · · , Qs of Cartan subgroups of G
defined over A. Moreover, by Lemmas 2.4(a′) and 2.6 and property (2) of G it
follows as in Remark 10.4 that Q◦

1, · · · , Q◦
s form a system of representatives of

Carter subgroups of G (all defined over A).
We claim that

(†) Q◦
1(N), · · · , Q◦

s(N) form a system of representatives of Carter subgroups
of G(N), and

(‡) Q1(N), · · · , Qs(N) form a system of representatives of Cartan subgroups
of G(N).

The claim (†) follows from the definition of a Carter subgroup. Indeed, for
each i ∈ {1, · · · , s}, since Q◦

i is definably connected, nilpotent, and almost
selfnormalizing, Q◦

i (N) satisfies the same properties, and is a Carter subgroup
of G(N). If Q◦ is a Carter subgroup of G(N), then as before Q◦(M) is a Carter
subgroup of G, and is Q◦

i for some i up to conjugacy in G. Since N � M,
Q◦ = Q◦

i (N) up to conjugacy in G(N). Similarly, the groups Q◦
i (N) cannot be

conjugate because the groups Q◦
i are not, proving (†).

We now show (‡). We first observe: if R is a nilpotent definable subgroup
of G(N) with [R◦]g = Q◦

i (N) for some g ∈ G(N) and i ∈ {1, · · · , s}, then Rg ≤
Qi(N). Indeed, Q◦

i = [R◦]g(M)(= [R◦(M)]g = [R(M)◦]g). Since [R(M)]g(=
[Rg(M)]) is nilpotent and [R(M)g]◦ = [R(M)◦]g = Q◦

i is a Carter subgroup, by
Lemma 2.4(b) R(M)g must be contained in a Cartan subgroup which must be
Qi by property (2) of G. Therefore Rg ≤ Qi(N), as required. Now we deduce
(‡) as follows. Each Qi(N) is a Cartan subgroup: by Lemma 2.6 there is a
Cartan subgroup Q with Q◦ = Qi(N)◦ and by the observation above we have
Q ≤ Qi(N), and Q = Qi(N) by maximal nilpotence of Q. It just remains to see
that Q1(N), · · · , Qs(N) form a system of representatives. Let Q be a Cartan
subgroup of G(N). By Lemma 2.4(a′) Q◦ is a Carter subgroup and then by
(†) there exist g ∈ G(N) and k ∈ {1, · · · , s} such that [Q◦]g = Q◦

k(N). Hence
Qg ≤ Qk(N) because of the observation above, and Qg = Qk(N) by maximal
nilpotence of Q. Finally, observe that Q1(N), · · · , Qs(N) cannot be conjugate
in G(N), since Q1, · · · , Qs are not in G, proving (‡).

We now deduce properties (1-5) for G(N) from (†) and (‡). Property (1)
is exactly (‡). For (2), let R1 and R2 be Cartan subgroups of G(N) such that
R◦

1 = R◦
2. By (†), R◦

1
g = R◦

2
g = Q◦

i (N) for some g ∈ G(N) and some i, and
by the observation in (‡) above we get Rg

1 , R
g
2 ≤ Qi(N), and an equality by

maximal nilpotence. In particular Rg
1 = Rg

2, and R1 = R2. Since the dimension
in o-minimal structures is invariant under elementary substructures, and one
considers only definable sets, properties (3-5) transfer readily from G to G(N).

(b). Let Q1, . . . , Qs be a system of representatives of Cartan subgroups of
G. By Lemmas 2.4(a′) and 2.6 and property (2) of G it follows as in Remark
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10.4 that Q◦
1, · · · , Q◦

s form a system of representatives of Carter subgroups. We
first prove that Q◦

1(N), · · · , Q◦
s(N) is a system of representatives of Carter sub-

groups of G(N). As in (a), we see that Q◦
1(N), · · · , Q◦

s(N) are (non-conjugate)
Carter subgroups of G(N). To see that they represent all the conjugacy classes,
suppose there is a Carter subgroup Q◦ of G(N) which is non-conjugate with
Q◦

1(N), · · · , Q◦
s(N). By Corollary 10.2 we can assume that Q◦ is defined over

M . Since Q◦(M) is clearly a Carter subgroup of G, Q◦(M)g = Q◦
i for some

g ∈ G and some i. Therefore [Q◦]g = Q◦
i (N), a contradiction.

We next prove that Q1(N), · · · , Qs(N) is a system of representatives of
Cartan subgroups of G(N). As in (a), it suffices to observe: if R is a nilpo-
tent definable subgroup of G(N) with [R◦]g = Q◦

i (N) for some g ∈ G(N)
and i ∈ {1, . . . , s}, then Rg ≤ Qi(N). Indeed, since [R◦]g = Q◦

i (N) and
Rg ≤ NG(N)(Q

◦
i (N)), Rg is defined over M . Hence Rg(M) is a definable nilpo-

tent subgroup of G such that Rg(M)◦ = [Rg]◦(M) = Q◦
i . Then, by Lemma

2.4(b) and property (2) of G, Rg(M) ≤ Qi. In particular Rg ≤ Qi(N), as
required.

Now we can transfer properties (1-5) from G to G(N) as in (a). �

Proof of Theorem 10.1. Let M denote the ground o-minimal structure. By
Fact 7.4, there is an M-definable real closed field R (with no extra structure)
such that G is M-definably isomorphic to a semialgebraically connected semi-
algebraically simple semialgebraic group, definable in R over the real algebraic
numbers Ralg. Since M-definable bijections preserve dimensions, all the conclu-
sions of Theorem 10.1 would be true if we prove them in this semialgebraic group
definable in R. Therefore, replacing M by R, we may suppose that M is a pure
real closed field, and that G = G(M) is a semialgebraically connected semial-
gebraically simple group defined over Ralg. By quantifier elimination Ralg � R
and by Corollary 10.5(b) it suffices to show our statements for G(Ralg). By
quantifier elimination again, Ralg � R, and by Corollary 10.5(a) it now suffices
to prove our statements for G(R).

Now, we observe that G(R) is a finite dimensional semisimple centerless con-
nected real Lie group. By Facts 9.2 and 9.4 it has Cartan subgroups, necessarily
definable as usual by Lemma 2.4(b). It remains just to notice that all items (1-
5) are true in the connected real Lie group G(R) by Facts 9.5, 9.6, and 9.7(a).
For item (4), we recall that it suffices to prove the first claim, as explained
just after the statement of Theorem 10.1. It follows from Fact 9.6(c), noticing
that a definable subset has maximal dimension if and only it has interior [Pil88,
Proposition 2.14], and thus is dense if and only if it is large. �

We note that the second claim in Theorem 10.1(4) could also have been
shown using Fact 9.7(b).

11 The semisimple case

We now prove a version of Theorem 10.1 for definably connected semisimple
groups definable in an o-minimal structure. Recall that a definably connected
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group G is semisimple if R(G) = Z(G) is finite; modulo that finite center, G is
a direct product of finitely many definably simple groups by Fact 7.4.

Theorem 11.1 Let G be a definably connected semisimple group definable in an
o-minimal structure. Then G has definable Cartan subgroups and the following
holds.

(1) G has only finitely many conjugacy classes of Cartan subgroups.

(2) If Q1 and Q2 are Cartan subgroups of G and Q◦
1 = Q◦

2, then Q1 = Q2.

(3) If Q is a Cartan subgroup, then Z(G) ≤ Q, Q′ ≤ Z(G), and Q◦ ≤ Z(Q).
Furthermore all Cartan subgroups have the same dimension.

(4) If Q is a Cartan subgroup of G and a ∈ Q, then the set [aQ◦]0 of elements
of aQ◦ contained in a unique conjugate of aQ◦ is large in aQ◦, and aQ◦

is weakly generous in G. In addition, if a1 belongs to another Cartan
subgroup Q1, then either [aQ◦]0 ∩ [a1Q

◦
1]0 = ∅ or aQ◦ = a1Q

◦
1.

(5) The union of all Cartan subgroups of G, which is definable by (1), is large
in G. In fact, there are finitely many pairwise disjoint definable sets of
the form [aQ◦]G0 with Q a Cartan subgroup of G and a ∈ Q, each weakly
generic and consisting of pairwise disjoint conjugates of [aQ◦]0, whose
union is large in G.

Proof. Assume first R(G) = Z(G) = 1. By Fact 7.4, G = G1 × · · · ×Gn where
each Gi is an infinite definably simple definable factor. Now by Corollary 2.9
Cartan subgroups Q of G are exactly of the form

Q = Q̃1 × · · · × Q̃n

with Q̃i is a Cartan subgroup of Gi for each i. In particular G has defin-
able Cartan subgroups by Theorem 10.1. Since Q◦ = Q̃◦

1 × · · · × Q̃◦
n and the

dimension is additive, items (1-3) follow easily from Theorem 10.1(1-3). By
additivity of the dimension, the first claim in item (4) also transfers read-
ily from Theorem 10.1(4). If some element α belongs to [aQ◦]0 ∩ [a1Q

◦
1]0,

for some Cartan subgroups Q and Q1 and some a ∈ Q and a1 ∈ Q1, then
Q◦ = C◦

G(α) = Q◦
1 by the commutativity of Q and Q1 and Lemma 3.8. In

particular aQ◦ = αQ◦ = αQ◦
1 = a1Q

◦
1, proving item (4). For item (5), notice

that if some [aQ◦]G0 ∩ [a1Q
◦
1]

G
0 is non empty in item (4), then aQ◦ = [a1Q

◦
1]

g

for some g (conjugating in particular Q◦ to Q◦
1), so the finitely many weakly

generic definable sets of the form [aQ◦]G0 are pairwise disjoint and consist of a
disjoint union of G-conjugates of [aQ◦]0. By the largeness of [aQ◦]G0 in [aQ◦]G

provided by Corollary 3.7 and the largeness of the union of all Cartan subgroups
provided by Theorem 10.1(5), the union of all these sets [aQ◦]G0 is large in G,
proving item (5).

Assume now just R(G) = Z(G) finite, and let the notation “ ” denote
the quotients by Z(G). By the centerless case, all the conclusions of Theorem
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11.1 hold in G. By Lemma 2.7, Cartan subgroups of G contain Z(G) and are
exactly the preimages in G of Cartan subgroups of G/Z(G). In particular, G
has definable Cartan subgroups, and we now check that they still satisfy (1-5).

(1) Since Z(G) is contained in each Cartan subgroup, item (1) transfers
from the centerless case. (2) If Q1 and Q2 are two Cartan subgroups of G with
Q◦

1 = Q◦
2, then Q◦

i = [Qi]
◦ and Q1 = Q2 by (2) in G, giving Q1 = Q2. (3) By

the centerless case Q is abelian, and thus Q′ ≤ Z(G). In particular [Q,Q◦] is in
the finite center Z(G), but since [Q,Q◦] is definable and definably connected by
[BJO11, Corollary 6.5] we get [Q,Q◦] = 1, proving the first claim of (3). Since
the natural (and definable) projection from G onto G has finite fibers one gets
by axioms A2-3 of the dimension that dim(Q) = dim(Q), transferring also from
G to G the second claim of (3). (4) Let Q and Q1 be two Cartan subgroups,
a ∈ Q and a1 ∈ Q1. If some element α belongs to [aQ◦]0 ∩ [a1Q

◦
1]0, one sees as

in the centerless case, still using Lemma 3.8 but now the fact that Q◦ ≤ Z(Q)
and Q◦

1 ≤ Z(Q1), that aQ
◦ = a1Q

◦
1. We now show that [aQ◦]0 is large in aQ◦.

For that purpose, first notice that [aQ◦]0 is exactly the set of elements of aQ◦

contained in finitely many conjugates of aQ◦: for, if α is in aQ◦ and in only
finitely many of its conjugates, say (aQ◦)

g1 , · · · (aQ◦)
gk , then as above Lemma

3.8 yields Q◦ = C◦(α), and aQ◦ = (aQ◦)g1 = · · · = (aQ◦)gk . For the largeness
of [aQ◦]0 in aQ◦, it suffices as in item (3) to show that [aQ◦]0 contains the
preimage of the set of elements α of aQ◦ contained in a unique G-conjugate
of aQ◦. So assume towards a contradiction that there exists an element α in
aQ◦, in infinitely many G-conjugates of aQ◦ but such that α is in a unique
conjugate of aQ◦. Now for g varying in infinitely many cosets of N(aQ◦), and
in particular in infinitely many cosets of N◦(aQ◦) = N◦(Q◦) = Q◦, we have
aZ(G)Q◦ = [aZ(G)Q◦]g. But such elements g must normalize the subgroup
Z(G)Q◦, and in particular [Z(G)Q◦]◦ = Q◦, and hence cannot vary in infinitely
many cosets of Q◦. This contradiction proves that [aQ◦]0 is large in aQ◦, and
the weak generosity of aQ◦ in G follows as usual with Corollary 3.7. (5) Using
the projection from G to G, the non weak genericity of the complement of the
union of all Cartan subgroups passes from G to G, and thus the union of all
Cartan subgroups of G is large in G. Then all other claims of item (5) follow
as in the case Z(G) = 1. �

In Theorem 11.1(3) Cartan subgroups need not be abelian outside of the
centerless case, since the simply-connected double covering of SL3(R) with non-
abelian Cartan subgroups mentioned after Fact 9.5 is definable in R. The fol-
lowing question then arises naturally.

Question 11.2 Let G be a definably connected semisimple group definable in
an o-minimal structure, and Q a Cartan subgroup of G. When is it the case
that Q is abelian? That Q = Q◦Z(G)?

For Carter subgroups, one gets the following corollary of Theorem 11.1.

Corollary 11.3 Let G be a definably connected semisimple group definable in
an o-minimal structure. Then G has finitely many conjugacy classes of Carter
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subgroups. Each Carter subgroup Q◦ is abelian and weakly generous in the
following strong sense: the set of elements of Q◦ contained in a unique conjugate
of Q◦ is large in Q◦ and weakly generous in G.

Proof. We know by Lemma 2.6 that Carter subgroups are exactly the definably
connected components Q◦ of Cartan subgroups Q of G. In particular item (3) of
Theorem 11.1 shows that Q◦ ≤ Z(Q), and Q◦ is abelian. The other conclusions
follow immediately from items (1) and (4) in Theorem 11.1. �

Before moving to more general situations, we make a few additional remarks
about the semisimple case. We first mention a general result on control of fusion,
reminiscent from [DJ11, Corollary 2.12] in the finite Morley rank case.

Lemma 11.4 (Control of fusion) Let G be a group definable in an o-minimal
structure, Q a Cartan subgroup of G, X and Y two G-conjugate subsets of C(Q◦)
such that C◦(Y ) has a single conjugacy class of Carter subgroups. Then Y = Xg

for some g in N(Q◦).

Proof. Let g in G be such that Y = Xg. Then C◦(Y ) = C◦(X)g contains both
Q◦ and Q◦g, so our assumption forces that [Q◦]

gγ
= Q◦ for some γ in C◦(Y ).

Now gγ normalizes Q◦ and Xgγ = Y γ = Y . �

Lemma 11.5 Let G be a definably connected semisimple group G definable in
an o-minimal structure and Q a Cartan subgroup of G. Then Q = F (NG(Q

◦)).

Proof. Any definable nilpotent subgroup containing the Carter subgroup Q◦ is
a finite extension of it by Lemma 2.3, and hence is in NG(Q

◦). By Theorem
11.1(2), there is a unique maximal one. This proves that Q E NG(Q

◦). Hence
Q ≤ F (NG(Q

◦)), and in fact there is equality by maximal nilpotence of Q. �

With Lemma 11.4, we can rephrase the last part of Theorem 11.1(4).

Corollary 11.6 Let G be a definably connected semisimple group definable in
an o-minimal structure and Q a Cartan subgroup of G. If a1 and a2 are two
G-conjugate elements of Q such that ai ∈ [aiQ

◦]0 as in Theorem 11.1(4) for
i = 1 and 2, then a1Q

◦ and a2Q
◦ are N(Q)-conjugate.

Proof. By Theorem 11.1(3), ai ∈ C(Q◦) for each i, and by Lemma 3.8 Q◦ =
C◦(a1) = C◦(a2). Lemma 11.4 implies then that a2 = a1

g for some g in N(Q◦).
But since Q E NG(Q

◦) by Lemma 11.5, g ∈ NG(Q). �

As just seen in Corollary 11.6, if Q is a Cartan subgroup of a definably
connected semisimple group G definable in an o-minimal structure, then

NG(Q) = NG(Q
◦).

Now the finite group W (G,Q) := NG(Q)/Q = NG(Q
◦)/Q can naturally be

called the Weyl group relative to Q, or, equivalently, relative to Q◦. If G is
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definably simple, then one has the two alternatives at the end of Fact 7.4. In
the first caseG is essentially a simple algebraic group over an algebraically closed
field (of characteristic 0). It is well known in this case that there is only one
conjugacy of Cartan subgroups, the maximal (algebraic and split) tori which
are also Carter subgroups (by divisibility). Then there is only one relative Weyl
group, and their classification is provided by the classification of the simple
algebraic groups. In the second alternative at the end of Fact 7.4, the group is
essentially a simple real Lie group, and again the Weyl groups relative to the
various Cartan subgroups, corresponding to the various split or non-split tori,
are classified in this case. For a general definably connected semisimple ambient
group G, the structure of the Weyl groups is inherited from that of the definably
simple factors of G/R(G), as we will see in Section 13.

Theorem 11.1(5) equips any definably connected semisimple group with some
kind of a partition into finitely many canonical “generic types”. We finish this
section by counting them precisely.

Remark 11.7 The number n(G) of weakly generic definable sets of the form
[aQ◦]G0 as in Theorem 11.1(5) is clearly bounded by the sum ΣQ∈Q|Q/Q◦| where
Q is a system of representatives of the set of Cartan subgroups of G. But it
might happen in Theorem 11.1(4) that two distinct sets of the form aQ◦ and
a′Q◦, for a and a′ in a common Cartan subgroup Q, are conjugate by the action
of the Weyl group W (G,Q) = NG(Q)/Q. If one denotes by ∼Q the equivalence
relation on Q/Q◦ by the action of W (G,Q) naturally induced by conjugation on
Q/Q◦, then one sees indeed with Corollary 11.6 that

n(G) = ΣQ∈Q|[Q/Q◦]∼Q
|.

12 The general case

We now analyze the general case of a group definable in an o-minimal structure.
As far as possible, we will restrict ourselves to definably connected groups only
when necessary. We start by lifting Carter subgroups.

Lemma 12.1 Let G be a group definable in an o-minimal structure, and N a
definable normal subgroup of G such that N◦ is solvable. Then Carter subgroups
of G/N are exactly of the form QN/N for Q a Carter subgroup of G.

Proof. We may use the notation “ ” to denote the quotients by N . Let Q
be a Carter subgroup of G. Then Q is also a Carter subgroup of the definable
subgroup QN . The preimage in G of NG(Q) normalizes [QN ]◦ = QN◦, and
thus is contained in NG(Q)N by Corollary 8.8. Hence Q, which is definable and
definably connected, must have finite index in its normalizer in G, and is thus a
Carter subgroup of G. Conversely, let X/N be a Carter subgroup of G for some
subgroup X of G containing N . Since X/N is definable, X must be definable.
By Theorem 8.1, X◦ has a Carter subgroup Q, and of course Q must also be a
Carter subgroup of X . Since X = X◦N and X◦ = Q(X◦ ∩N) by Lemma 8.9,
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we get that X = QN . Since QN/N is a Carter subgroup G, we get that QN
has finite index in NG(QN). Since NG(Q) ≤ NG(QN) and Q has finite index
in NQN (Q), we get that Q has finite index in NG(Q). Hence X = QN for a
Carter subgroup Q of G. �

The following special case of Lemma 12.1 with N = R◦(G) is of major
interest, and for the rest of the paper one should bear in mind that

R◦(G) = R◦(G◦).

Corollary 12.2 Let G be a group definable in an o-minimal structure. Then
Carter subgroups of G/R◦(G) are exactly of the form QR◦(G)/R◦(G) for Q a
Carter subgroup of G.

At this stage, we can prove our general Theorem 1.1 giving the existence, the
definability, and the finiteness of the set of conjugacy classes of Carter subgroups
in an arbitrary group definable in an o-minimal structure.

Proof of Theorem 1.1. Let G be our arbitrary group definable in an arbitrary
o-minimal structure. The quotient G◦/R◦(G) is semisimple by Fact 2.1, and
has Carter subgroups by Theorem 11.1. Hence G◦ has Carter subgroups by
Corollary 12.2. This takes care of the existence of Carter subgroups of G◦,
and of course of G as well. Now G has Cartan subgroups by Lemma 2.6.
Their definability is automatic as usual in view of Lemma 2.4(a′). To prove
that Cartan subgroups fall into only finitely many conjugacy classes, it suffices
by Lemma 2.4(a′) to prove it for Carter subgroups. We may then assume G
definably connected. Now groups of the form QR◦(G)/R◦(G), for Q a Carter
subgroup of G, are Carter subgroups of the semisimple quotient G/R◦(G). By
Theorem 11.1(1), there are only finitely many G/R◦(G)-conjugacy classes of
groups of the form QR◦(G)/R◦(G), and thus only finitely many G-conjugacy
classes of groups of the form QR◦(G). Replacing G by such a QR◦(G), we may
thus assume G definably connected and solvable. But now in G there is only
one conjugacy class of Carter subgroups by Theorem 8.1. This completes our
proof of Theorem 1.1. �

We mention the following form of a Frattini Argument as a consequence of
Theorem 1.1.

Corollary 12.3 Let G be a definably connected group definable in an o-minimal
structure and N a definable normal subgroup of G. Then G = N◦

G(Q)N◦ for
any Cartan subgroup Q of N .

Proof. Clearly, for any element g of G, Qg is a Cartan subgroup of N . On the
other hand, the set Q of conjugacy classes of Cartan subgroups of N is finite
by Theorem 1.1, and the action of G on N by conjugation naturally induces a
definable action on the finite set Q. Since G is definably connected, Fact 2.1(a)
shows that this action must be trivial. Hence, for any g in G, Qg is indeed in

39



the same N -conjugacy class as Q, i.e., Qg = Qh for some h ∈ N ; in particular
g = gh−1h ∈ NG(Q)N . Hence G = NG(Q)N , and in fact G = N◦

G(Q)N◦ by
definable connectedness. �

We shall now inspect case by case what survives of Theorem 11.1(2-5) in the
general case. We first consider Theorem 11.1(2).

Theorem 12.4 Let G be a definably connected group definable in an o-minimal
structure and Q a Cartan subgroup of G. Then there is a unique (definable)
subgroup KQ of G containing R◦(G) such that KQ/R

◦(G) is the unique Cartan
subgroup of G/R◦(G) containing Q◦R◦(G)/R◦(G). Moreover, QR(G) ≤ KQ

and
Q = F (NKQ

(Q◦)) = CKQ
(Q◦)Q◦ = CG(Q

◦)Q◦.

Proof. By Corollary 12.2, the group Q◦R◦(G)/R◦(G) is a Carter subgroup
of the semisimple quotient G/R◦(G). By Theorem 11.1(2), it is contained in a
unique Cartan subgroup, of the form K/R◦(G) for some subgroup K containing
R◦(G) and necessarily definable by Lemma 2.4(a′). We will show that KQ = K
satisfies all our claims. Since QR◦(G)/R◦(G) is nilpotent and contains the
Carter subgroup Q◦R◦(G)/R◦(G), we have QR◦(G) ≤ K. Since R(G)/R◦(G)
is the center of G/R◦(G), it is contained in K/R◦(G) by Lemma 2.7(a), and
thus R(G) ≤ K. Hence, QR(G) ≤ K.

To prove our last equalities, we first show that F (NK(Q◦)) = CK(Q◦)Q◦.
Since Q◦ = F ◦(NK(Q◦)) by Lemma 2.3, the inclusion from left to right follows
from Fact 2.5. For the reverse inclusion, notice that CK(Q◦)Q◦ is normal in
NK(Q◦). Since Cartan subgroups of G/R◦(G) are nilpotent in two steps by
Theorem 11.1(3), the second term of the descending central series of CK(Q◦)Q◦

is in R◦(G), and thus in Q◦ because Q◦ is selfnormalizing in Q◦R◦(G) by The-
orem 8.1. By keeping taking descending central series and using the nilpotency
of Q◦, we then see that CK(Q◦)Q◦ is nilpotent, and thus in F (NK(Q◦)) by
normality in NK(Q◦).

Since CG(Q
◦) ≤ K, clearly by considering its image modulo R◦(G), our

last equality is true. Finally, Q = CQ(Q
◦)Q◦ by Fact 2.5, and thus Q ≤

CK(Q◦)Q◦ = F (NK(Q◦)). Now the maximal nilpotence of Q forces Q =
F (NK(Q◦)), and our proof is complete. �

With Theorem 12.4 one readily gets the analog of Theorem 11.1(2). Of
course definable connectedness is a necessary assumption here, since a finite
group may have several Cartan subgroups.

Corollary 12.5 Let G be a definably connected group definable in an o-minimal
structure, Q1 and Q2 two Cartan subgroups. If Q◦

1 = Q◦
2, then Q1 = Q2.

We also get that QR◦(G) is normal in KQ, and actually has a quite stronger
uniqueness property in KQ.
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Corollary 12.6 Same assumptions and notation as in Theorem 12.4. Then
[KQ]

◦ = Q◦R◦(G) and QR◦(G) is invariant under any automorphism of KQ

leaving [KQ]
◦ invariant.

Proof. The first equality comes from Lemma 12.1.
Let σ be an arbitrary automorphism of KQ leaving [KQ]

◦ invariant. Since
Q◦ is a Cartan subgroup of [KQ]

◦ by Corollary 8.7, its image by σ is also a
Cartan subgroup of [KQ]

◦, and with Theorem 8.1 one gets [Q◦]σ = [Q◦]k for
some k in [KQ]

◦. Since QR◦(G) is normalized by k, we can thus assume that
σ leaves Q◦ invariant. But now σ leaves F (NKQ

(Q◦)) invariant. Hence by
Theorem 12.4 Q is left invariant by σ, and thus σ leaves Q[KQ]

◦ = QR◦(G)
invariant. �

The main question we are facing with at this stage is the following.

Question 12.7 Is it the case, in Theorem 12.4, that KQ = QR◦(G)?

Question 12.7 has a priori stronger forms, which are indeed equivalent as the
following lemma shows.

Lemma 12.8 Under the assumptions and notation of Theorem 12.4, the fol-
lowing are equivalent:

(a) KQ = PR◦(G) for some Cartan subgroup P of G
(b) KQ = PR◦(G) for any Cartan subgroup P of KQ.

Proof. Assume KQ = P1R
◦(G) for some Cartan subgroup P1 of G, and suppose

P2 is a Cartan subgroup of KQ. Then P ◦
1 and P ◦

2 are Carter subgroups of [KQ]
◦

by Lemma 2.4(a′). Since they are [KQ]
◦-conjugate by Theorem 8.1, we may

assume P ◦
1 = P ◦

2 up to conjugacy. Now applying Theorem 12.4 with the Cartan
subgroup P1, or just Corollary 12.5, we see that P1 = P2 up to conjugacy, and
thus KQ = P2R

◦(G).
Conversely, suppose KQ = PR◦(G) for any Cartan subgroup P of KQ. This

applies in particular to the Cartan subgroup Q of G. �

By the usual Frattini Argument following the conjugacy of Cartan/Carter
subgroups in [KQ]

◦, we have that KQ = Q̂R◦(G) where

Q̂ = NKQ
(Q◦).

The subgroup Q̂ is solvable and nilpotent-by-finite, and with the selfnormal-
ization property of Q◦ in the definably connected solvable group Q◦R◦(G) one
sees easily that Q̂/Q ≃ KQ/(QR◦(G)). Hence Question 12.7 is equivalent to

proving that the finite quotient Q̂/Q is trivial.
Retaining all the notation introduced so far, Theorem 11.1(3) takes the fol-

lowing form for a general definably connected group.

Theorem 12.9 Same assumptions and notation as in Theorem 12.4. Then
[KQ]

′ ≤ R(G), and [Q̂, [Q̂]′] ≤ Q◦ ∩R◦(G) where Q̂ = NKQ
(Q◦).
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Proof. By Theorem 11.1(3), [KQ]
′ ≤ R(G) and [KQ, [KQ]

′] ≤ R◦(G). The

second inclusion shows in particular that [Q̂, [Q̂]′] ≤ R◦(G), and since Q◦ is
selfnormalizing in Q◦R◦(G) by Theorem 8.1, we get inclusion in Q◦ as well. �

We now consider Theorem 11.1(4) and give its most general form in the
general case (working in particular without any assumption of definable con-
nectedness of the ambient group).

Theorem 12.10 Let G be a group definable in an o-minimal structure, Q a
Cartan subgroup of G and a ∈ Q. Then aQ◦ is weakly generous in G. In fact,
the set of elements of aQ◦ contained in a unique conjugate of aQ◦ is large in
aQ◦. Furthermore, if G is definably connected, then the set of elements of Q
contained in a unique conjugate of Q is large in Q.

Proof. We first prove that the set of elements of Q◦ contained in a unique
G-conjugate of Q◦ is large in Q◦. For that purpose, it suffices by Corollary
6.3 to show that the set of elements of Q◦ contained in only finitely many G-
conjugates of Q◦ is large in Q◦. Assume towards a contradiction that the set
Q∞ of elements of Q◦ contained in infinitely many G-conjugates of Q◦ is weakly
generic in Q◦. By Theorem 8.1, we may restrict Q∞ to the subset of elements
contained in a unique Q◦R◦(G)-conjugate of Q◦, and still have a weakly generic
subset of Q◦. Now Q∞ must have a weakly generic image in Q◦ modulo R◦(G).
By Theorem 11.1(4), we must then find an element x ∈ Q∞ which, modulo
R◦(G), is in a unique conjugate of Q◦. Then we have infinitely many Carter
subgroups of Q◦R◦(G) passing through x, a contradiction since they are all
Q◦R◦(G)-conjugate by Theorem 8.1.

We now consider the full Cartan subgroup Q, and an arbitrary element a in
Q. For the weak generosity of aQ◦ in G, it suffices to use our general Corollary
4.3. Indeed, by Corollary 3.7, it suffices to show the stronger property that the
set of elements of aQ◦ in a unique conjugate of aQ◦ is large in aQ◦. Assume
towards a contradiction that the set X of elements of aQ◦ in at least two distinct
conjugates of aQ◦ is weakly generic in aQ◦. If n is the order of a modulo Q◦,
then the set of n-th powers of elements of X would be weakly generic in Q◦ by
Corollary 4.5. Hence by the preceding paragraph one would find an element x
in X such that xn is in a unique conjugate of Q◦. This is a contradiction as
usual since xQ◦ must then be the unique conjugate of aQ◦ containing x.

We now prove our last claim aboutQ whenG is definably connected. Assume
towards a contradiction that the set X of elements in Q and in at least two
distinct conjugates of Q is weakly generic in Q. Then it should meet one of the
cosets aQ◦ of Q◦ in Q in a weakly generic subset, say X ′. By Corollary 4.5
again, one finds an element x in X ′ such that x|Q/Q◦| is in a unique conjugate
of Q◦. Now all the conjugates of Q passing through x should have the same
definably connected component, and thus are NG(Q

◦)-conjugate. Then they
are all equal by Corollary 12.5, a contradiction. �

In case Question 12.7 fails, we unfortunately found no way of proving The-
orem 12.10 for a in Q̂ \Q. Besides, our method for proving the weak generosity
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of aQ◦ in G does not seem to be appropriate for attacking the following more
refined question.

Question 12.11 Let G, Q, and a be as in Theorem 12.10, with G definably
connected and such that, modulo R◦(G), a is in a unique conjugate of aQ◦.

(a) Is it the case that [aQ◦]R
◦(G) is large in aQ◦R◦(G)?

(b) Same question, with a in Q̂ instead of a in Q?

By Theorem 12.10, the union of Cartan subgroups of a group definable in an
o-minimal structure must be weakly generic, but the much stronger statement
of Theorem 11.1(5) now becomes a definite question.

Question 12.12 Let G be a definably connected group definable in an o-minimal
structure. Is it the case that the union of its Cartan subgroups forms a large
subset?

We now prove that Question 12.12 can be seen on top of both Questions
12.7 and 12.11.

Proposition 12.13 Let G be a definably connected group definable in an o-
minimal structure whose Cartan subgroups form a large subset. Then

(a) Cartan subgroups of G/R◦(G) are exactly of the form QR◦(G)/R◦(G) with
Q a Cartan subgroup of G.

(b) For every Cartan subgroup Q and a in Q such that, modulo R◦(G), a is
in a unique conjugate of aQ◦, [aQ◦]R

◦(G) is large in aQ◦R◦(G).

Proof. (a). Assume towards a contradiction that for some Cartan subgroup
Q, and with the previously used notation, we have QR◦(G) < KQ. Let B be
the large subset of (KQ/R

◦(G)) \ (QR◦(G)/R◦(G)) then provided by Theorem
11.1(4), and B its pull back in G. By additivity of the dimension, BG must
be weakly generic in G. Now the largeness of the set of Cartan subgroups
forces the existence of an element g in B ∩ P for some Cartan subgroup P of
G. Let g denote the image of g in G/R◦(G). We have g ∈ KQ \QR◦(G), and
C◦(g) = Q◦R◦(G)/R◦(G) by considering the structure of Cartan subgroups
in the semisimple quotient G/R◦(G) and the uniqueness property of g. By
Lemma 12.1 the group P ◦, modulo R◦(G), is a Carter subgroup of G/R◦(G).
Now P , modulo R◦(G), is included in a Cartan subgroup of G/R◦(G), and its
definably connected component centralizes g by Theorem 11.1(3). We then get
P ◦R◦(G)/R◦(G) ≤ C◦(g) = Q◦R◦(G)/R◦(G), and actually equality since the
first group is a Carter subgroup. Hence P ◦R◦(G) = Q◦R◦(G) and Theorem 12.4
yields P ≤ KQ. Since Q◦ and P ◦ are conjugate in Q◦R◦(G) by Theorem 8.1,
we may also assume without loss that P ◦ = Q◦. But then P = Q by Corollary
12.5, a contradiction since g /∈ QR◦(G).

(b). Let A be the pull back in G of the large set of G/R◦(G) provided in
Theorem 11.1(5), and

A = A1 ⊔ · · · ⊔ An(G)
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the pull back in G of the corresponding partition of that large set equally pro-
vided in Theorem 11.1(5). Here n(G) is the number of “generic types” of
G/R◦(G) computed with precision in Remark 11.7. By additivity of the di-
mension, A is large in G and each Ai is weakly generic. Our claim is that for Q
a Cartan subgroup of G and a ∈ Q ∩Ai for some i, the set [aQ◦]R

◦(G) is large
in aQ◦R◦(G). Since Q◦ normalizes the coset aQ◦, this is equivalent to showing
that [aQ◦]Q

◦R◦(G) is large in aQ◦R◦(G). But by Theorem 11.1(4-5) applied in
G/R◦(G), one can see that the largeness of the set of Cartan subgroups of G and
the additivity of the dimension forces [aQ◦]Q

◦R◦(G) to be large in aQ◦R◦(G).
�

For instance, if G is a definably connected real Lie group definable in an
o-minimal expansion of R, then its Cartan subgroups form a large subset by
Fact 9.7(a) and the fact that density implies largeness for definable sets (as
seen in the proof of Theorem 10.1). Hence, by Proposition 12.13, such a G
can produce a counterexample to neither Question 12.7 nor Question 12.11.
Attacking Question 12.12 in general would seem to rely on an abstract version
of Fact 9.7(a), but with a priori no known abstract analog of regular elements
(as in the proof of Fact 9.6(c)) it seems difficult to find any spark plug.

13 Final remarks

We begin this final section with additional comments on Question 12.7 in special
cases. If G is a definably connected group definable in an o-minimal structure,
then by Fact 7.4 we have

G/R(G) = G1/R(G)× · · · ×Gn/R(G)

for some definable subgroups Gi containing R(G) and such that Gi/R(G) is
definably simple. For each i, Gi/R(G) is definably connected, and thus Gi =
G◦

iR(G). From the decomposition G = G1 · · ·Gn we get G = G◦
1 · · ·G◦

nR(G).
By definable connectedness of G we also get a decomposition

(∗) G = G◦
1 · · ·G◦

n

where each G◦
i is definably connected, contains R◦(G), and G◦

i /R
◦(G) is finite-

by-(definably simple), as R(G◦
i ) = G◦

i ∩R(G) and G◦
i /R(G◦

i ) is definably iso-
morphic to Gi/R(G).

Fact 13.1 Let M be an o-minimal structure and G a definably connected group
definable in M with R(G) = Z(G) finite and G/R(G) definably simple.

(a) If G/R(G) is stable as in the first case of Fact 7.4, then G is (definably
isomorphic in M to) an algebraic group over an algebraically closed field.

(b) If G/R(G) is definably compact, then G is definably compact as well.
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Proof. As G is definably connected and semisimple, there is an M-definable
real closed field R such that G is definably isomorphic in M to a semialgebraic
group over the field of real algebraic numbers Ralg ⊆ R, by [HPP11, 4.4(ii)]
or [EJP07]. In case (a) our claim follows from [HPP11, 6.3] and thus we only
have to consider case (b). Assume towards a contradiction that α : (0, 1) → G
is a continuous definable curve not converging in G. Since G/Z(G) is definably
compact, the composition of α with the projection p : G → G/Z(G) converges
to a point x ∈ G/Z(G). By [EO04, Prop.2.11], p is a definable covering map. In
particular, there exists a definable open neighbourhood U of x in G/Z(G) such
that each definable connected component of p−1(U) is definably homeomorphic
to U via p. Since α does not converge to any point of p−1(x) = {y1, · · · , ys}, by
o-minimality there exist definable open neighbourhoods Vi ⊆ p−1(U) of yi and
δ ∈ (0, 1) such that α(t) /∈ V1 ∪ · · · ∪ Vs for t ∈ (δ, 1). Hence p ◦ α(t) does not
lie in the open neighbourhood p(V1) ∩ · · · ∩ p(Vs) of x for t ∈ (δ, 1), which is a
contradiction. �

Corollary 13.2 If G is as in Fact 13.1, case (a) or (b), then it has a single
conjugacy class of Cartan subgroups, which are divisible and definably connected.

Proof. It is well known that in a connected reductive algebraic group over
an algebraically closed field, Cartan subgroups are the selfcentralizing maximal
algebraic tori, and are conjugate. They are isomorphic to a direct product of
finitely many copies of the multiplicative group of the ground field (where the
number of copies is the Lie rank of the group seen as a pure algebraic group). In
particular they are divisible, and thus with no proper subgroup of finite index.
In the definably compact case we refer to Corollary 7.6, getting the divisibility
from the definable connectedness in this case. �

Consider the decomposition (∗) of a definably connected group G as above,
and let I = {1, · · · , n}. Let I1 be the subset of elements i ∈ I such that
G◦

i /R
◦(G◦

i ) is stable (as a pure group) or definably compact. Notice that, by
Fact 13.1, it suffices to require the definably simple groupG◦

i /R(G◦
i ) to be stable

(as a pure group) or definably compact. Let I2 be the subset of elements i ∈ I
such that Cartan subgroups of G◦

i /R
◦(G◦

i ) are definably connected. Finally, let
I3 be the subset of elements i ∈ I such that in G◦

i Question 12.7 has a positive
answer for any Cartan subgroup. Corollary 13.2 shows that I1 ⊆ I2 and Lemma
12.1 shows that I2 ⊆ I3. Hence

I1 ⊆ I2 ⊆ I3 ⊆ I

and the inclusion I1 ⊆ I3 reads informally as the fact that the definably simple
factors of G/R(G) which are algebraic or compact cannot produce any coun-
terexample to the lifting problem of Question 12.7. More precisely, we have the
following statement.

Remark 13.3 If I2 = I, then G cannot produce any counterexample to the
lifting problem of Question 12.7.
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Proof. First one can check that, modulo R◦(G), the decomposition (∗) of G
becomes a central product:

G/R◦(G) = G◦
1/R

◦(G) ∗ · · · ∗G◦
1/R

◦(G).

Indeed, if i 6= j, then [G◦
i , G

◦
j ] ≤ R(G), and R(G) is finite modulo R◦(G).

Hence any element in G◦
i /R

◦(G) has a centralizer of finite index in the other
factor G◦

j/R
◦(G), which must then be the full factor G◦

j/R
◦(G) by definable

connectedness. Therefore the factors G◦
i /R

◦(G) pairwise commute, as claimed.
Now Lemma 2.8 gives that Cartan subgroups ofG/R◦(G) are exactly of the form
Q1/R

◦(G) ∗ · · · ∗Qn/R
◦(G) with, for each i, Qi/R

◦(G) a Cartan subgroup of
G◦

i /R
◦(G).

Assuming now that I2 = I we get that, for each i, each Cartan subgroup
Qi/R

◦(G) of G◦
i /R

◦(G) is definably connected. We then see that Cartan sub-
groups of G/R◦(G) must be definably connected as well. Now Lemma 12.1
implies that Question 12.7 is positively satisfied for every Cartan subgroup of
G (and that such Cartan subgroups of G are all definably connected and Carter
subgroups by Corollary 8.7). �

The decomposition (∗) of a definably connected group G as above is also
convenient for describing the various relative Weyl groups. If Q is a Cartan
subgroup of G, then we still have that NG(Q

◦) = NG(Q) by Corollary 12.5. If
Question 12.7 is positively satisfied for Q, then retaining the notation of Section
12 and using the notation “ ” for quotients modulo R◦(G) we get, as after
Lemma 12.8, that

W (G,KQ) ≃ NG(Q)/Q.

We also see, with Theorem 12.4 or just Lemma 2.7(a), that R(G) does not
contribute to the Weyl group W (G,KQ). Hence the latter is isomorphic to
the direct product of the Weyl groups in Gi/R(G) relative to the factors of
QR(G)/R(G) in its decomposition along the decomposition G1/R(G) × · · · ×
Gn/R(G) of G/R(G) (Corollary 2.9). Since the group NG(Q)/Q is isomorphic
to W (G,KQ), it has the same isomorphism type and may be called the Weyl
group relative to Q.

Without assuming the exact lifting of Question 12.7 for the Cartan subgroup
Q we only get, with Corollary 12.6 and as after Lemma 12.8, that

W (G,KQ) ≃ (NG(Q)/Q)/(Q̂/Q).

In this case the Weyl group W (G,KQ) has the same description as above, but
NG(Q)/Q just has a quotient isomorphic to W (G,KQ).

We finish on a more model-theoretic note.

Proposition 13.4 Let M be an o-minimal structure, A ⊆ M a set of parame-
ters such that dclM(A) � M, and G a group definable in M over A. Then G
has a finite system of representatives of Cartan (resp. Carter) subgroups, with
each definable over A.
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Of course, having now Theorem 1.1 at hand, the proof of Proposition 13.4
is the same as in Lemma 10.2 and Corollary 10.3. As seen in the proof of
Lemma 10.2, when M expands an ordered abelian group, examples of A such
that dclM(A) � M include any A not contained in {0}.
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