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Hysteresis for ferromagnetism: asymptotics of

some 2-scale Landau-Lifshitz model

Eric Dumas∗, Stéphane Labbé†

September 20, 2011

Abstract. We study a 2-scale version of the Landau-Lifshitz system of ferro-
magnetism, introduced by Starynkevitch to modelize hysteresis: the response of
the magnetization is fast compared to a slowly varying applied magnetic field.
Taking the exchange term into account, in space dimension 3, we prove that, un-
der some natural stability assumption on the equilibria of the system, the strong
solutions follow the dynamics of these equilibria. We also give explicit exam-
ples of relevant equilibria and exterior magnetic fields, when the ferromagnetic
medium occupies some ellipsoidal domain.
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1 Introduction

Hysteresis is a widely studied, yet not completely understood phenomenon. It
has played a role from the very beginning of the works on magnetism. Lord
Rayleigh [9] proposed a model for ferromagnetic hysteresis in 1887, while the
most achieved micromagnetism theory goes back to Landau and Lifshitz, in
1935 (see [7]).

In [12], Visintin gives many historical references, underlines the links between
several forms of hysteresis (in particular, from plasticity, and from ferromag-
netism), and how it is related to phase transitions. He performs a mathematical
study of the so-called hysteresis operators, including the most famous one, due
to Preisach.

Recently in [3], Carbou, Effendiev and Fabrie have proved the existence of
strong solutions to a model of ferromagnetic hysteresis due to Effendiev.

In this paper, we rather investigate properties of a two-scale model intro-
duced by Starynkevitch in [11]. This model describes the dynamics obtained
when some exterior magnetic field is applied to the ferromagnetic material under
consideration, while the response of the magnetization occurs on a much shorter
time scale (say, denoted by ε > 0). Mathematically, such models, associated to
ordinary differential equations, had been studied in the nonstandard analysis
framework, leading to “canard cycles” (see [6]). Considering a Landau-Lifshitz
model in 0 space dimension (thus, an ODE), Starynkevitch studies the possible
equilibria of the system, and the asymptotic behavior of the solutions (as the
above mentioned parameter ε goes to zero) when the exterior magnetic field
slowly varies.

Our aim is to extend Starynkevitch’s approach to the Landau-Lifshitz model
in space dimension three, taking exchange term into account. This means, giving
the asymptotic description of solutions to the slow-fast corresponding system
of partial differential equations. Here, we prove such a result away from the
bifurcation points of hysteresis loops. More precisely, assuming that the system
(described by its magnetization) possesses at each time t some stable equilibrium
meq(t), and is submitted to some slowly varying exterior magnetic field, we
show that the magnetization follows the dynamics of meq. We also give explicit
examples (for ellipsoidal domains) of relevant equilibria and exterior magnetic
fields.
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2 Statement of the results

The initial and boundary value problem associated to the 2 scale Landau-Lifshitz
equation considered reads:

(2.1)







ε∂tm
ε = mε ∧ hεT − αmε ∧ (mε ∧ hεT ), for t > 0, x ∈ Ω,

∂νm
ε
|∂Ω

= 0,

mε
|t=0

= m0.

The unknown is the magnetization mε, function of the time variable t > 0 and
of the space variable x ∈ Ω, with values in the sphere S2 ⊂ R3. The domain Ω
occupied by the ferromagnet is a subset of R3. Furthermore, hεT = hT (t,m

ε(t)),
where the total magnetic field hT is defined by

(2.2) hT (t,m) = ∆m+ hd(m) + hext(t).

Here, the first term ∆m is the “exchange term”, which tends to impose a con-
stant magnetization (domains where magnetization is constant are called “Weiss
domains”), and ∆m denotes the extension of ∆m by 0 out of Ω. The second
term, yielding spatial variations of the magnetization, is the “demagnetizing
field” hd(m), which results from a quasi-stationary approximation of Maxwell’s
equations; it is defined (at least, form ∈ L2(Ω,R3), as an element of L2(R3,R3))
by

curlhd(m) = 0 and div (hd(m) +m) = 0 in R
3.

Classical properties of the mapping m 7→ hd(m) are recalled in Section 3.1. The
third term, hext, denotes some given exterior field, which is assumed to depend
on time (and possibly on space). The positive constant α is some damping
coefficient, which appears in the model when passing from a microscopic to a
macroscopic description. The small parameter ε > 0 expresses the fact that,
while the exterior field hext depends on t, and has time variations at scale 1,
the magnetization mε essentially depends on t/ε, and thus has variations at the
much more rapid scale ε.

Throughout this paper, for any s ∈ N, we denote byHs(Ω) the usual Sobolev
space of functions with values in some vector space RN , whereas Hs(Ω, S2) is
the Sobolev space of functions with values in the sphere S2 (which is not a
vector space),

Hs(Ω, S2) = {m ∈ Hs(Ω) | |m| ≡ 1 almost everywhere}.

Finally, for s > 2, Hs
N (Ω) denotes the subspace of functions in Hs(Ω) with

homogeneous von Neumann boundary condition,

Hs
N (Ω) = {m ∈ Hs(Ω) | ∂νm|∂Ω

= 0},

and
Hs

N (Ω, S2) = Hs(Ω, S2) ∩Hs
N (Ω).

All these spaces (even if not vector spaces) inherit the (metric) topology given
by the usual norm on Hs(Ω).

We prove the following
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Theorem 2.1. Let Ω be an open and bounded subset of R3, with smooth bound-
ary. Let T > 0, and hext ∈ C1([0, T ], C∞(R3)), bounded with bounded deriva-
tives. Assume that there exist meq ∈ C1([0, T ], H2

N (Ω, S2)) and m0 ∈ H2
N (Ω, S2)

such that
(i) for all t0 ∈ [0, T ], meq(t0) is an equilibrium for

(2.3) ∂tm = m ∧ hT (t0,m)− αm ∧
(

m ∧ hT (t0,m)
)

(see (3.1));
(ii) the solution n0 to the initial and boundary value problem

(2.4)











∂tn0 = n0 ∧ hT (0, n0)− αn0 ∧
(

n0 ∧ hT (0, n0)
)

,

∂νn0|∂Ω
= 0,

n0|t=0
= m0,

is global (n0 ∈ C([0,∞), H2
N (Ω, S2))), with ∇∆n0 ∈ L2((0,∞)× Ω), and n0(t)

converges in H2(Ω), as t goes to ∞, towards meq(0);
(iii) the linearized operator L(meq) given by (4.31) has the following dissipation
property:

there exist Clin > 0 and η > 0 such that,

for all δ ∈ C([0, T ], H∞(Ω)) with |meq + δ| ≡ 1 and ∂νδ|∂Ω
= ∂ν∆δ|∂Ω

= 0,

sup
t∈[0,T ]

‖δ(t)‖H2(Ω) 6 η implies:

∀t ∈ [0, T ],
(

L(t,meq(t)) δ(t) | δ(t)
)

H2(Ω)
6 −Clin‖δ(t)‖

2
H2(Ω).

(2.5)

Then, there is ε0 > 0 such that, for all ε ∈ (0, ε0), the solution mε to (2.1) exists
up to time T (mε ∈ C([0, T ], H2

N (Ω, S2))), and converges in L2((0, T ), H2(Ω))∩
C([t, T ], H2(Ω)) towards meq as ε goes to zero, for all t ∈ (0, T ).

To prove Theorem 2.1, we first show that mε converges to meq(0) within
an initial layer of size tε = Cε ln(1/ε). This is achieved via classical energy
estimates (inH2), carefully controlling the dependence upon ε –more technically
speaking, the quasilinear and elliptic degenerate system of PDE’s in (2.1) is first
converted into a perturbation of some linear, strongly elliptic system, yielding
the usual smooting properties, and a Galerkine approximation is used. In a
second step, we prove that mε converges towards meq on the whole time interval
[tε, T ]. This amount to proving of long-time existence and return to equilibrium
result for small initial data. Toward this end, we use again energy estimates,
together with the stability assumption (2.5).

Figure 1 illustrates this corresponding asymptotic behaviour.
The above assumptions on the equilibrium meq are discussed in Section 3.2

below. In particular, Assumption (ii) in Theorem 2.1 may be understood as a
choice of ‘prepared’ datam0 allowing to deal with the initial layer (0, cε ln(1/ε)).
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Figure 1: Dynamics of the magnetization away from bifurcation points.

Figure 1: Dynamics of the magnetization away from bifurcation points.

The dissipation property (2.5) expresses, for all t0 ∈ [0, T ], the stability of the
linearization around meq(t0) of (2.1), with ε = 1 and with hext replaced with
hext(t0), independent of time. This is a strong assumption, which ensures global
existence of the solutions to the corresponding Landau-Lifshitz equation, for
initial data close to meq(t0):

Proposition 2.2. Let Ω be an open and bounded subset of R3, with smooth
boundary. Consider an exterior magnetic field hext ∈ C∞(R3) (independent
of time) bounded with bounded derivatives. Assume that there exists meq ∈
H2

N (Ω, S2) (independent of time) satisfying the equilibrium condition

(2.6) meq ∧ (∆meq + hd(meq) + hext) = 0 on Ω,

as well as the stability condition

there exist Clin > 0 and η > 0 such that,

for all δ ∈ H∞(Ω) with |meq + δ| ≡ 1 and ∂νδ|∂Ω
= ∂ν∆δ|∂Ω

= 0,

‖δ(t)‖H2(Ω) 6 η implies:
(

L(0,meq)δ | δ
)

H2(Ω)
6 −Clin‖δ‖

2
H2(Ω),

(2.7)
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for the linearized operator L(0,meq) given by (4.31) (with meq(0) and hext(0)
replaced with meq and hext, respectively).

Then, there exists η0 > 0 such that, for all m0 ∈ H2
N (Ω, S2) satisfying

‖m0 −meq‖H2(Ω) 6 η0,

the solution n to the initial and boundary value problem

(2.8)











∂tn = n ∧ hT (0, n)− αn ∧
(

n ∧ hT (0, n)
)

,

∂νn|∂Ω
= 0,

n|t=0
= m0,

is global (n ∈ C([0,∞), H2
N (Ω, S2))), with ∇∆(n−meq) ∈ L2((0,∞)×Ω), and

n(t) converges in H2(Ω), as t goes to ∞, towards meq.

In the case of meq(0) constant over Ω, Proposition 2.2 expresses that in
Theorem 2.1, assumptions (i) and (iii) imply assumption (ii), so that we get:

Corollary 2.3. Let Ω be an open and bounded subset of R3, with smooth
boundary. Let T > 0, and hext ∈ C1([0, T ], C∞(R3)), bounded with bounded
derivatives. Assume that there exist meq ∈ C1([0, T ], H2

N (Ω, S2)) satisfying as-
sumptions (i) and (iii) from Theorem 2.1. Assume furthermore that meq(0) is
constant over Ω.

Then, there exist η0, ε0 > 0 such that, for all m0 ∈ H2
N (Ω, S2) such that

‖m0 −meq(0)‖H2(Ω) 6 η0,

and for all ε ∈ (0, ε0), the solution mε to (2.1) exists up to time T (mε ∈
C([0, T ], H2

N (Ω, S2))), and converges in L2((0, T ), H2(Ω))∩C([t, T ], H2(Ω)) to-
wards meq as ε goes to zero, for all t ∈ (0, T ).

In Lemma 3.5 below, we give examples (in ellipsoidal domains) of equilibria
meq satisfying the assumptions of Corollary 2.3.

3 Preliminaries

3.1 Some functional analysis

In this section, we recall some functional analysis results useful in the sequel.
The first of them deals with the continuity properties of the demagnetizat-
ing field operator hd, immediately deduced from the Fourier representation

ĥd(u)(ξ) = −
(

ξ · ˆ̄u(ξ)
) ξ

|ξ|2
:

Lemma 3.1 (hd properties). Let Ω be an open subset of R3. For all s in N and
u in Hs(Ω), one has

‖hd(u)‖Hs(R3) 6 ‖u‖Hs(Ω).
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Furthermore, for all v in L2(Ω) we have

(hd(u) | v)L2(Ω) = −(u | hd(v))L2(Ω).

In addition to the usual Sobolev embeddings, we recall the following esti-
mate, which results from the coercivity of the operator A = 1−∆, with domain
D(A) = {m ∈ H2(Ω) | ∂νm|∂Ω

= 0} (see for example [5])

Lemma 3.2. Let Ω be a smooth bounded open set in R3. There exists a constant
C > 0 such that for all u in H2

N (Ω) one has

‖u‖L∞(Ω) 6 C
(

‖u‖2L2(Ω) + ‖∆u‖2L2(Ω)

)
1
2

.

In the sequel, we will need the following definition.

Definition 3.3. Let Ω be a smooth bounded open set in R3. For k ∈ N⋆, let Pk

be the L2(Ω)-orthogonal projection onto Vk, the vector space spanned by the first
k eigenfunctions of A = 1−∆, with domain D(A) = {m ∈ H2(Ω) | ∂νm|∂Ω

= 0}.

The family of operators (Pk)k∈N satisfies useful properties:

Lemma 3.4. The following properties are true.

(i) ∀k ∈ N⋆, ∀u ∈ D(A), ∆Pku = Pk∆u,

(ii) ∀k ∈ N⋆, ∀s ∈ N, ∀u ∈ Hs(Ω), Pku ∈ Hs(Ω)
(and Pku ∈ Hs

N (Ω) when s > 2),

(iii) ∀s ∈ N, lim
k→∞

‖(1 − Pk)u‖Hs(Ω) = 0 for all u ∈ Hs(Ω) when s = 0, 1, and

for all u ∈ Hs
N (Ω) when s > 2.

Proof. (i) For all u in D(A), k in N⋆, one has

Pk∆u =

k
∑

j=1

(∆u | ψj)L2ψj ,

with (ψi)i∈N the L2-orthonormal basis of the eigenvectors of ∆ associated to the
eigenvalues (λi)i∈N. Then, using the vanishing Neumann boundary conditions,

(∆u | ψj)L2 = −

∫

Ω

∇u · ∇ψj = (u | ∆ψj)L2 ,

so that

Pk∆u =

k
∑

j=1

λj(u | ψj)L2ψj = ∆Pku.

Point (ii) follows from the regularity properties of the family (ψi)i∈N.

Point (iii) is a consequence of the fact that u 7→
(

∑∞
j=1(1 + λsj)|(u | ψj)L2 |2

)1/2

provides a norm equivalent to the usual one on Hs(Ω).
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3.2 About equilibria

Global solutions and equilibria. In [1, Th. 4.3], in the case of ellip-
soidal domains Ω ⊂ R3 and under a smallness assumption (on ‖hext‖L∞ and
‖∆m0‖L2), Alouges and Beauchard construct global smooth solutions to (2.1).
Furthermore, these solutions satisfy

∀T > 0, ‖∆m(T )‖2L2(Ω) + C

∫ T

0

‖∇∆m‖2L2(Ω) 6 ‖∆m0‖L2(Ω),

so that ∇∆m belongs to L2((0,∞) × Ω). This is a part of our assumptions
on the equilibrium meq, when requiring the existence of the global solution n0.
Saying that meq(t0) is an equilibrium for (2.3) means

(3.1)

{

meq(t0) ∧ hT (t0,meq(t0)) = 0,
∂νmeq(t0)|∂Ω

= 0,

and requiring H2 convergence of n0(t) towards meq(0) as t goes to ∞ implies
that meq(0) is an equilibrium for (2.3) with t0 = 0.

Energy minimization. It is worth noting that energy decay occurs along
the evolution of n0(t), so that one may hope at least H1 convergence of n0(t)
towards some local minimum of the energy, as t goes to ∞. To the Landau-
Lifshitz system (2.1) is associated the energy

E(t,m) =
1

2

∫

Ω

|∇m|2 −
1

2

∫

Ω

m · hd(m)−

∫

Ω

m · hext(t),

and when m is solution to (2.1), we have

d

dt
E(t,m(t)) = −

α

ε
‖m(t) ∧ hT (t,m(t))‖2L2(Ω) −

∫

Ω

m(t) · ∂thext(t).

Since the exterior magnetic field does not depend on time during the evolution
of n0, we get

d

dt
E(t, n0(t)) = −α‖n0(t) ∧ hT (t, n0(t))‖

2
L2(Ω).

In the case of ellipsoidal domains, special configurations are available. See
[8], and references therein: there exists a real 3× 3 definite positive diagonaliz-
able matrix D giving the demagnetizing field resulting from any magnetization
constant constant over Ω:

∀v ∈ R
3, hd(v)|Ω ≡ −Dv.

Hence, if u ∈ S2 is an eigenvector of D associated to the eigenvalue d > 0, and
if the exterior magnetic field is hext = λu for some λ > 0 (or hext(x) = λχ(x)u

8



for some χ ∈ C∞
c (R3, [0, 1]) to get a spatially localized field), then the system

possesses two explicit equilibria m+
eq and m−

eq:

(3.2) m±
eq = ±u.

One easily computes the energy associated to perturbations of these equilibria:
for all δ ∈ H2

N (Ω,R3) such that |m±
eq + δ| = 1 a.e.,

E(m±
eq + δ)− E(m±

eq) =
1

2

∫

Ω

|∇δ|2 −
1

2

∫

Ω

δ · hd(δ) +
1

2
(±λ− d)

∫

Ω

|δ|2.

The first two terms are non-negative, so that for λ large enough (λ > d), m+
eq is

a global minimum of E ; but for λ small, it may fail to be even a local minimum.
Concerning m−

eq, for all λ > 0, if d is the largest eigenvalue of D, and δ is

constant in space, then the difference of energies above is less than −
λ

2

∫

Ω

|δ|2,

thus negative, whereas for δ with large variations, the gradient term dominates,
and the energy difference becomes positive. Hence, m−

eq is always a saddle point
for E .

The dissipation property (2.5). We have the following lemma, the proof of
which is postponed to Section 6.1:

Lemma 3.5. For λ > 0 large enough, the equilibrium m+
eq from (3.2) satisfies

the dissipation property (2.5) (for some constant Clin depending on λ).

For m−
eq, it is shown in Section 6.1 that for λ large, we have on the contrary:

Lemma 3.6. For λ > 0 large enough, there exist C = C(α, λ) > 0 and
η = η(α, λ) > 0 such that, for all δ ∈ C([0, T ], H∞(Ω)) with |meq + δ| ≡
1 and ∂νδ|∂Ω

= ∂ν∆δ|∂Ω
= 0, when ‖δ‖H2(Ω) 6 η, we have:

∀t ∈ [0, T ],
(

L(t,m−
eq(t))δ(t) | δ(t)

)

H2(Ω)
> C‖δ‖2H2(Ω).

4 Proof of Theorem 2.1

First, consider the solution n0 to the Cauchy problem










∂tn0 = n0 ∧ hT (0, n0)− αn0 ∧
(

n0 ∧ hT (0, n0)
)

,

∂νn0|∂Ω
= 0,

n0|t=0
= m0,

and define nε by
∀t > 0, nε(t) = n0(t/ε).

Then, nε ∈ Cb([0,∞), H2(Ω)) (with ∇∆nε ∈ L2((0,∞)×Ω), and we know that

(4.1) tε/ε−→
ε→0

∞ =⇒ nε(tε)−→
ε→0

meq(0) in H
2(Ω).
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Next, as in [4], we observe that for smooth functions m with constant mod-
ulus (w.r.t. x), one has m ·∆m = −2|∇m|2, so that smooth solutions to (2.1)
equivalently satisfy

(4.2)







ε∂tm
ε − α∆mε = F(t,mε),

∂νm
ε
|∂Ω

= 0,

mε
|t=0

= m0,

where

(4.3) F(t,m) = m ∧ hT (t,m) + α|∇m|2m− αm ∧
(

m ∧ (hd(m) + hext(t))
)

.

Furthermore, smooth (L∞
t H

2
x) solutions to (4.2) issued from m0 with constant

modulus, equal to one, are shown to keep the same modulus for all time, (due to
uniqueness of the solution a = |m|2 to ε∂ta = α∆a+2α|∇u|2(a−1), ∂νa|∂Ω

= 0,
a|t=0

= 1). We thus solve (4.2) in the Banach space C([0, T ], H2
N (Ω)), and

deduce from this conservation that the solution actually belongs to the space
C([0, T ], H2

N (Ω, S2)).
It is worth noting that (2.1) is an initial and boundary value problem for

some quasilinear and parabolic degenerate operator, which is seen in (4.2) as a
perturbation of a linear and strongly parabolic one.

Standard energy estimates ensure local-in-time existence and uniqueness of
solutions continuous in time, with values in H2(Ω)) (with an existence time
depending on ε): see for example [1] or [4]. By the usual continuation argument,
we simply need to bound the H2 norm of mε to ensure existence up to time T .
Actually, we shall prove convergence (as ε goes to zero) at the same time, via
energy estimates.

We first show that, after some time tε of the form tε = Cε ln(1/ε), mε and nε

are close: sup[0,tε] ‖m
ε −nε‖H2(Ω) goes to zero with ε; thus, for ε small enough,

mε(tε) is as close (in H2(Ω)) to meq(0) as desired. We then use the stability
property of meq(t) to show that mε(t) stays close to it, for t ∈ [tε, T ].

4.1 First step: the initial layer [0, tε]

4.1.1 Galerkine scheme

For k ∈ N⋆, let Pk be the L2(Ω)- orthogonal projection onto Vk, the vector space
spanned by the first k eigenfunctions of A = 1−∆, with domain D(A) = {m ∈
H2(Ω) | ∂νm|∂Ω

= 0}, as in Definition 3.3. Define a Galerkine approximation of
(4.2) by:

(4.4)

{

ε∂tm
ε
k − α∆mε

k = PkF(t,mε
k),

mε
k|t=0

= Pkm0.

The projection nε
k = Pkn

ε also satisfies

ε∂tn
ε
k − α∆nεk =PkF(0, nεk) + α[Pk,∆]nε + Pk

(

F(0, nε)−F(0, nεk)
)

=PkF(0, nεk) + Pk[Pk,F(0, ·)](nε),

10



since for u ∈ D(A), Pk∆u = ∆Pku, according to Lemma 3.4.
Now, perform energy estimates (in L2) for ϕε

k = mε
k − nε

k, solution to

(4.5)

{

ε∂tϕ
ε
k − α∆ϕε

k = Pk

(

F(t,mε
k)−F(0, nεk)

)

− Pk[Pk,F(0, ·)](nε),

ϕε
k|t=0

= 0.

4.1.2 L2 estimates

Take the scalar product (in L2(Ω)) of ϕε
k with the first equation in (4.5) to get

ε

2

d

dt

(

‖ϕε
k‖

2
L2(Ω)

)

+ α‖∇ϕε
k‖

2
L2(Ω) = I1 + I2 + I3 + I4,

with

I1 =
(

ϕε
k | mε

k ∧ hT (t,m
ε
k)− nε

k ∧ hT (0, n
ε
k)
)

L2(Ω)
,

I2 = α
(

ϕε
k | |∇mε

k|
2mε

k − |∇nε
k|

2nεk

)

L2(Ω)
,

I3 = −α
(

ϕε
k | mε

k ∧
(

mε
k ∧ (hd(m

ε
k) + hext(t))

)

− nεk ∧
(

nεk ∧ (hd(n
ε
k) + hext(0))

))

L2(Ω)
,

I4 =
(

ϕε
k | [Pk,F(0, ·)](nε)

)

L2(Ω)
.

Estimating I1. Decompose mε
k = nε

k + ϕε
k. For all ϕ, h ∈ R3, ϕ · (ϕ∧ h) = 0,

so that

I1 =
(

ϕε
k | nεk ∧

(

∆(nεk + ϕε
k) + hd(n

ε
k + ϕε

k) + hext(t)
)

− nεk ∧
(

∆nε
k + hd(n

ε
k) + hext(0)

))

L2(Ω)

=
(

ϕε
k | nεk ∧ (∆ϕε

k + hd(ϕ
ε
k))

)

L2(Ω)
+

(

ϕε
k | nεk ∧ (hext(t)− hext(0))

)

L2(Ω)
.

Using the continuity of hd on L2(Ω), we get, for some constant C depending on
‖∂thext‖L∞

t,x
and ‖n0‖L∞((0,∞),L2(Ω)):

(4.6) I1 6 C‖ϕε
k‖L2(Ω)

(

‖ϕε
k‖H2(Ω) + t

)

.

Estimating I2. Write

|∇mε
k|

2mε
k − |∇nε

k|
2nεk = (|∇mε

k|
2 − |∇nε

k|
2)mε

k + |∇nεk|
2ϕε

k

= (∇(2nεk + ϕε
k) · ∇ϕ

ε
k)(n

ε
k + ϕε

k) + |∇nε
k|

2ϕε
k.

Then, use Sobolev’s embeddings, such as
(

ϕε
k | (∇nε

k · ∇ϕε
k)n

ε
k

)

L2(Ω)
6 ‖ϕε

k‖L∞(Ω)‖∇n
ε
k‖L2(Ω)‖∇ϕ

ε
k‖L4(Ω)‖n

ε
k‖L4(Ω)

. ‖ϕε
k‖H2(Ω)‖n

ε
k‖H1(Ω)‖∇ϕ

ε
k‖H1(Ω)‖n

ε
k‖H1(Ω),
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and
(

ϕε
k | |∇nεk|

2ϕε
k

)

L2(Ω)
6 ‖ϕε

k‖
2
L∞(Ω)‖∇n

ε
k‖

2
L2(Ω) . ‖ϕε

k‖
2
H2(Ω)‖n

ε
k‖

2
H1(Ω),

to get the estimate

(4.7) I2 6 C‖ϕε
k‖H2(Ω)

(

‖ϕε
k‖H2(Ω) + ‖ϕε

k‖
3
H2(Ω)

)

,

for some constant C depending on ‖n0‖L∞((0,∞),H1(Ω)).

Estimating I3. As for I1, cancellations allow to write

I3 =− α
(

ϕε
k | nεk ∧

(

nεk ∧ hd(ϕ
ε
k) + ϕε

k ∧ hd(n
ε
k)
)

+ nεk ∧
(

ϕε
k ∧ hext(t)

))

L2(Ω)

− α
(

ϕε
k | nεk ∧

(

nε
k ∧ (hext(t)− hext(0))

))

L2(Ω)
.

Boundedness of hd on Lp for finite p provides the bounds

‖nεk ∧ (nε
k ∧ hd(ϕ

ε
k))‖L2(Ω) 6 ‖nε

k‖
2
L6(Ω)‖ϕ

ε
k‖L6(Ω),

and
‖nεk ∧ (ϕε

k ∧ hd(n
ε
k))‖L2(Ω) 6 ‖nε

k‖
2
L6(Ω)‖ϕ

ε
k‖L6(Ω).

The above L6 norms are controlled by H1 norms. Thus, for some constant C
depending on ‖hext‖L∞

t,x
, ‖∂thext‖L∞

t,x
and ‖n0‖L∞((0,∞),H1(Ω)):

(4.8) I3 6 C‖ϕε
k‖L2(Ω)

(

‖ϕε
k‖H2(Ω) + t

)

.

Estimating I4. Setting rεk = ‖[Pk,F(0, ·)](nε
k)‖

2
L2(Ω), we have:

(4.9)
I4 6 ‖ϕε

k‖
2
L2(Ω) + rεk, and r

ε
k −→
k→∞

0 in L1(0, T ) for all T > 0, with ε fixed.

This is a consequence of the following lemma, the proof of which is postponed
to Section 6.2.

Lemma 4.1. For all T > 0 and n ∈ C([0, T ], H2
N (Ω)) ∩ L2((0, T ), H3(Ω)),

[Pk,F(0, ·)](n) −→
k→∞

0 in L2((0, T ), H1(Ω)).

Gathering L2 estimates. Adding (4.6), (4.7), (4.8) and (4.9), we get

ε

2

d

dt

(

‖ϕε
k‖

2
L2(Ω)

)

+ α‖∇ϕε
k‖

2
L2(Ω)

6 C‖ϕε
k‖H2(Ω)

(

t+ ‖ϕε
k‖H2(Ω) + ‖ϕε

k‖
3
H2(Ω) + rεk

)

,
(4.10)

for some constant depending on the quantities ‖hext‖L∞

t,x
, ‖∂thext‖L∞

t,x
and

‖n0‖L∞((0,∞),H1(Ω)), and r
ε
k from (4.9).
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4.1.3 H2 estimates

Next, take the scalar product in L2(Ω) of ∆2ϕε
k with the first equation in (4.5)

to get

ε

2

d

dt

(

‖∆ϕε
k‖

2
L2(Ω)

)

+ α‖∇∆ϕε
k‖

2
L2(Ω) = II1 + II2 + II3 + II4,

with

II1 =
(

∆2ϕε
k | mε

k ∧ hT (t,m
ε
k)− nε

k ∧ hT (0, n
ε
k)
)

L2(Ω)
,

II2 = α
(

∆2ϕε
k | |∇mε

k|
2mε

k − |∇nε
k|

2nεk

)

L2(Ω)
,

II3 = −α
(

∆2ϕε
k | mε

k ∧
(

mε
k ∧ (hd(m

ε
k) + hext(t))

)

− nεk ∧
(

nεk ∧ (hd(n
ε
k) + hext(0))

))

L2(Ω)
,

II4 =
(

∆2ϕε
k | [Pk,F(0, ·)](nε)

)

L2(Ω)
.

Estimating II1. Split

II1 = II1,1 + II1,2 + II1,3,

with

II1,1 =
(

∆2ϕε
k | mε

k ∧ (∆ϕε
k + hd(ϕ

ε
k))

)

L2(Ω)
,

II1,2 =
(

∆2ϕε
k | ϕε

k ∧ hT (t, n
ε
k)
)

L2(Ω)
,

II1,3 =
(

∆2ϕε
k | nεk ∧ (hext(t)− hext(0))

)

L2(Ω)
.

The first term is written

II1,1 =
(

∆2ϕε
k | nεk∧(∆ϕ

ε
k+hd(ϕ

ε
k))

)

L2(Ω)
+
(

∆2ϕε
k | ϕε

k∧(∆ϕ
ε
k+hd(ϕ

ε
k))

)

L2(Ω)
.

Integrating by parts,

(

∆2ϕε
k | nεk ∧ (∆ϕε

k + hd(ϕ
ε
k))

)

L2(Ω)
=

−
(

∇∆ϕε
k | ∇nεk ∧ (∆ϕε

k + hd(ϕ
ε
k)) + nεk ∧∇hd(ϕ

ε
k)
)

L2(Ω)

6 η‖∇∆ϕε
k‖

2
L2(Ω) +

1

4η
‖∇nε

k ∧ (∆ϕε
k + hd(ϕ

ε
k)) + nεk ∧∇hd(ϕ

ε
k)‖

2
L2(Ω)

6 η‖∇∆ϕε
k‖

2
L2(Ω) + Cη

(

‖nεk‖
2
H2(Ω) + ‖∇∆nεk‖

2
L2(Ω)

)

‖ϕε
k‖H2(Ω),
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for all η > 0, for some (large) constant Cη, using Sobolev’s inequalities. ¿From
this, we deduce that for all η > 0, there exists Cη > 0, depending only on
‖n0‖L∞((0,∞),H2(Ω)), such that

(

∆2ϕε
k | nεk∧(∆ϕ

ε
k + hd(ϕ

ε
k))

)

L2(Ω)
6

η‖∇∆ϕε
k‖

2
L2(Ω) + Cη

(

1 + ‖∇∆nεk‖
2
L2(Ω)

)

‖ϕε
k‖

2
H2(Ω).

(4.11)

Integrating by parts again,
(

∆2ϕε
k | ϕε

k ∧ (∆ϕε
k + hd(ϕ

ε
k))

)

L2(Ω)
=

−
(

∇∆ϕε
k | ∇ϕε

k ∧ (∆ϕε
k + hd(ϕ

ε
k)) + ϕε

k ∧∇hd(ϕ
ε
k)
)

L2(Ω)

6 ‖∇∆ϕε
k‖L2(Ω)‖∇ϕ

ε
k‖L∞(Ω)‖∆ϕ

ε
k‖L2(Ω)

+ ‖∇∆ϕε
k‖L2(Ω)

(

‖∇ϕε
k‖L4(Ω)‖hd(ϕ

ε
k))‖L4(Ω) + ‖ϕε

k‖L4(Ω)‖∇hd(ϕ
ε
k))‖L4(Ω)

)

. ‖∇∆ϕε
k‖L2(Ω)

(

‖∆∇ϕε
k‖L2(Ω) + ‖∇ϕε

k‖L2(Ω)

)

‖ϕε
k‖H2(Ω)

+ ‖∇∆ϕε
k‖L2(Ω)‖ϕ

ε
k‖

2
H2(Ω),

using ‖∇hd(ϕ
ε
k)‖L4(Ω) . ‖hd(ϕ

ε
k)‖H2(Ω) . ‖ϕε

k‖H2(Ω). Hence, there exists an
absolute constant C > 0, and for all η > 0, there exists Cη > 0 such that

(

∆2ϕε
k | ϕε

k∧(∆ϕ
ε
k + hd(ϕ

ε
k))

)

L2(Ω)
6

(

η + C‖ϕε
k‖H2(Ω)

)

‖∇∆ϕε
k‖

2
L2(Ω) + Cη‖ϕ

ε
k‖

4
H2(Ω).

(4.12)

Summing up (4.11) and (4.12), one gets C > 0 and, for all η > 0, a constant
Cη > 0 (depending on ‖n0‖L∞((0,∞),H2(Ω))) such that

II1,1 6 (η+C‖ϕε
k‖H2(Ω))‖∇∆ϕε

k‖
2
L2(Ω)

+ Cη

(

1 + ‖∇∆nε
k‖

2
L2(Ω) + ‖ϕε

k‖
2
H2(Ω)

)

‖ϕε
k‖

2
H2(Ω).

(4.13)

The second term is

II1,2 =−
(

∇∆ϕε
k | ∇ϕε

k ∧ (∆nε
k + hd(n

ε
k) + hext(t))

)

L2(Ω)

−
(

∇∆ϕε
k | ϕε

k ∧ (∇∆nε
k +∇hd(ϕ

ε
k) +∇hext(t))

)

L2(Ω)
.

Using Sobolev’s inequalities again, we have, for all η > 0, a constant Cη (de-
pending on ‖n0‖L∞((0,∞),H2(Ω)) and ‖hext‖L∞

t,x
) such that

−
(

∇∆ϕε
k | ∇ϕε

k ∧ (∆nεk + hd(n
ε
k) + hext(t))

)

L2(Ω)
6 ‖∇∆ϕε

k‖L2(Ω)×

×
(

‖∇ϕε
k‖L4(Ω)‖∆n

ε
k + hd(n

ε
k)‖L4(Ω) + ‖∇ϕε

k‖L2(Ω)‖hext(t)‖L∞(Ω)

)

6 C‖∇∆ϕε
k‖L2(Ω)‖ϕ

ε
k‖H2(Ω)

(

‖∇∆nεk‖L2(Ω) + ‖nεk‖H2(Ω) + ‖hext(t)‖L∞(Ω)

)

6 η‖∇∆ϕε
k‖

2
L2(Ω) + Cη

(

1 + ‖∇∆nεk‖
2
L2(Ω)

)

‖ϕε
k‖

2
H2(Ω).

(4.14)
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In the same way, for all η > 0, there is Cη > 0 (depending on ‖n0‖L∞((0,∞),H2(Ω))

and ‖∇hext‖L∞

t,x
) such that

−
(

∇∆ϕε
k | ϕε

k ∧ (∇∆nεk +∇hd(ϕ
ε
k) +∇hext(t))

)

L2(Ω)
6

6 η‖∇∆ϕε
k‖

2
L2(Ω) + Cη

(

1 + ‖∇∆nε
k‖

2
L2(Ω)

)

‖ϕε
k‖

2
H2(Ω).

(4.15)

Summing up (4.14) and (4.15), we get, for all η > 0, a constant Cη > 0 (de-
pending on ‖hext‖L∞

t,x
, ‖∇hext‖L∞

t,x
and ‖n0‖L∞((0,∞),H2(Ω))) such that

(4.16) II1,2 6 η‖∇∆ϕε
k‖

2
L2(Ω) + Cη

(

1 + ‖∇∆nεk‖
2
L2(Ω)

)

‖ϕε
k‖

2
H2(Ω).

The third term is

II1,3 =
(

∆2ϕε
k | nεk ∧ (hext(t)− hext(0))

)

L2(Ω)
.

Integrating two times by parts, it is easily estimated, thanks to a constant C
depending on ‖∂thext‖L∞

t W 2,∞
x

, as

(4.17) II1,3 6 Ct‖nε
k‖H2(Ω)‖ϕ

ε
k‖H2(Ω).

This gives finally, summing up (4.13), (4.16) and (4.17): there is C > 0,
and for all η > 0, there is Cη > 0 (depending on η, ‖n0‖L∞((0,∞),H2(Ω)),
‖hext‖L∞

t W 1,∞
x

and ‖∂thext‖L∞

t W 2,∞
x

), such that

II1 6
(

η + C‖ϕε
k‖H2(Ω)

)

‖∇∆ϕε
k‖

2
L2(Ω)

+ Cη

((

1 + ‖∇∆nεk‖
2
L2(Ω) + ‖ϕε

k‖
2
H2(Ω)

)

‖ϕε
k‖

2
H2(Ω) + t‖ϕε

k‖H2(Ω)

)

.

(4.18)

Estimating II2. Split
II2 = II2,1 + II2,2,

with

II2,1 =
(

∆2ϕε
k | (|∇mε

k|
2 − |∇nεk|

2)(nεk + ϕε
k)
)

L2(Ω)

=
(

∆2ϕε
k | ∇ϕε

k · (∇ϕε
k + 2∇nεk)m

ε
k

)

L2(Ω)
,

II2,2 =
(

∆2ϕε
k | |∇nεk|

2(mε
k − nεk)

)

L2(Ω)
=

(

∆2ϕε
k | |∇nε

k|
2ϕε

k

)

L2(Ω)
.

Then, using in particular the Sobolev inequality from Lemma 3.2

‖∇nεk‖L∞(Ω) . ‖∇nε
k‖L2(Ω) + ‖∇∆nεk‖L2(Ω),
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we get:

II2,1 = −
(

∇∆ϕε
k | ∆ϕε

k · (∇ϕε
k + 2∇nεk)(n

ε
k + ϕε

k)
)

L2(Ω)

−
(

∇∆ϕε
k | ∇ϕε

k · (∆ϕε
k + 2∆nε

k)(n
ε
k + ϕε

k)
)

L2(Ω)

−
(

∇∆ϕε
k | ∇ϕε

k · (∇ϕε
k + 2∇nε

k)(∇n
ε
k +∇ϕε

k)
)

L2(Ω)

6 ‖∇∆ϕε
k‖L2(Ω)‖∆ϕ

ε
k‖L2(Ω)×

×
(

‖∇ϕε
k‖L∞(Ω) + 2‖∇nεk‖L∞(Ω)

)(

‖nεk‖L∞(Ω) + ‖ϕε
k‖L∞(Ω)

)

+ ‖∇∆ϕε
k‖L2(Ω)‖∇ϕ

ε
k‖L4(Ω)×

×
(

‖∆ϕε
k‖L4(Ω) + 2‖∆nεk‖L4(Ω)

)(

‖nεk‖L∞(Ω) + ‖ϕε
k‖L∞(Ω)

)

+ ‖∇∆ϕε
k‖L2(Ω)‖∇ϕ

ε
k‖L6(Ω)×

×
(

‖∇ϕε
k‖L6(Ω) + 2‖∇nε

k‖L6(Ω)

)(

‖∇nε
k‖L6(Ω) + ‖∇ϕε

k‖L6(Ω)

)

. ‖∇∆ϕε
k‖L2(Ω)‖ϕ

ε
k‖H2(Ω)

(

‖nε
k‖H2(Ω) + ‖ϕε

k‖H2(Ω)

)

×

×
(

‖∇ϕε
k‖L2(Ω) + ‖∇∆ϕε

k‖L2(Ω) + ‖∇nεk‖L2(Ω) + ‖∇∆nεk‖L2(Ω)

)

+ ‖∇∆ϕε
k‖L2(Ω)‖ϕ

ε
k‖H2(Ω)

(

‖nεk‖H2(Ω) + ‖ϕε
k‖H2(Ω)

)

×

×
(

‖∆ϕε
k‖L2(Ω) + ‖∇∆ϕε

k‖L2(Ω) + ‖∆nεk‖L2(Ω) + ‖∇∆nεk‖L2(Ω)

)

+ ‖∇∆ϕε
k‖L2(Ω)‖ϕ

ε
k‖H2(Ω)

(

‖nε
k‖H2(Ω) + ‖ϕε

k‖H2(Ω)

)2

. ‖∇∆ϕε
k‖L2(Ω)‖ϕ

ε
k‖H2(Ω)

(

‖nε
k‖H2(Ω) + ‖ϕε

k‖H2(Ω)

)

×

×
(

‖ϕε
k‖H2(Ω) + ‖∇∆ϕε

k‖L2(Ω) + ‖nεk‖H2(Ω) + ‖∇∆nεk‖L2(Ω)

)

.
(

η + ‖ϕε
k‖H2(Ω)

(

‖nεk‖H2(Ω) + ‖ϕε
k‖H2(Ω)

))

‖∇∆ϕε
k‖

2
L2(Ω)

+ Cη‖ϕ
ε
k‖

2
H2(Ω)

(

‖ϕε
k‖H2(Ω) + ‖nε

k‖H3(Ω) + ‖∇∆nε
k‖L2(Ω)

)2

×

×
(

‖nεk‖H2(Ω) + ‖ϕε
k‖H2(Ω)

)2

,

(4.19)

for all η > 0, for some Cη > 0.

16



Also, for all η > 0, there is Cη > 0 such that

II2,2 = −
(

∇∆ϕε
k | 2∇nε

k∆n
ε
kϕ

ε
k

)

L2(Ω)
−
(

∇∆ϕε
k | |∇nεk|

2∇ϕε
k

)

L2(Ω)

6 ‖∇∆ϕε
k‖L2(Ω)

(

2‖∇nεk‖L∞(Ω)‖∆n
ε
k‖L2(Ω)‖ϕ

ε
k‖L∞(Ω)

+ ‖∇nεk‖
2
L6(Ω)‖∇ϕ

ε
k‖L6(Ω)

)

. η‖∇∆ϕε
k‖

2
L2(Ω)

+ Cη

(

‖nε
k‖

2
H2(Ω) + ‖∇∆nε

k‖
2
L2(Ω) + 1

)

‖nε
k‖

2
H2(Ω)‖ϕ

ε
k‖

2
H2(Ω).

(4.20)

Summing up (4.19) and (4.20), we get: there is C > 0, and for all η > 0, there
is Cη > 0 (with C and Cη depending on ‖n0‖L∞((0,∞),H2(Ω))) such that

II2 6 C
(

η + ‖ϕε
k‖H2(Ω)

(

1 + ‖ϕε
k‖H2(Ω)

))

‖∇∆ϕε
k‖

2
L2(Ω)

+ Cη‖ϕ
ε
k‖

2
H2(Ω)

(

1 + ‖ϕε
k‖

2
H2(Ω)

)(

1 + ‖ϕε
k‖

2
H2(Ω) + ‖∇∆nε

k‖
2
L2(Ω)

)

.

(4.21)

Estimating II3. Now,
II3 = II3,1 + II3,2,

with

II3,1 = −α
(

∆2ϕε
k | mε

k ∧
(

mε
k ∧ hd(m

ε
k)
)

− nεk ∧
(

nε
k ∧ hd(n

ε
k)
))

L2(Ω)
,

II3,2 = −α
(

∆2ϕε
k | mε

k ∧
(

mε
k ∧ hext(t)

)

− nε
k ∧

(

nεk ∧ hext(0)
))

L2(Ω)
.

Concerning II3,1, first write m
ε
k = nε

k+ϕ
ε
k, then integrate once by parts, so that

II3,1 takes the form of a L2 scalar product between ∇∆ϕε
k and a sum of terms

∇(abc), where a, b, c may be nεk (or hd(n
ε
k)) or ϕ

ε
k (or hd(ϕ

ε
k)), and at least one

of them is nε
k (or hd(n

ε
k)). Estimating each of a, b, c and their gradients in L6,

one gets: for all η > 0, there is Cη > 0 such that

(4.22) II3,1 6 η‖∇∆ϕε
k‖

2
L2(Ω) + Cη

(

1 + ‖nε
k‖

2
H2(Ω) + ‖ϕε

k‖
2
H2(Ω)

)2

‖ϕε
k‖

2
H2(Ω).

Then, split II3,2,

II3,2 = −α
(

∆2ϕε
k | mε

k ∧
(

mε
k ∧ (hext(t)− hext(0))

))

L2(Ω)

− α
(

∆2ϕε
k | mε

k ∧
(

mε
k ∧ hext(0)

)

− nε
k ∧

(

nεk ∧ hext(0)
))

L2(Ω)
.

The second term is estimated as II3,1. The first one is split into a sum

involving nεk∧
(

nεk∧(hext(t)−hext(0))
)

, and products of hext(t) with two terms,
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one of them being ϕε
k, and the other, ϕε

k or nεk. This leads to: for all η > 0,
there is Cη > 0 (also depending on hext) such that

II3,2 6η‖∇∆ϕε
k‖

2
L2(Ω) + Cη

((

1 + ‖nε
k‖

2
H2(Ω) + ‖ϕε

k‖
2
H2(Ω)

)

‖ϕε
k‖

2
H2(Ω)

+ t‖nε
k‖

2
H2(Ω)‖ϕ

ε
k‖H2(Ω)

)

.
(4.23)

Finally, summing up (4.22) and (4.23), we have: for all η > 0, there is Cη > 0
(depending on ‖n0‖L∞((0,∞),H2(Ω))) such that

II3 6η‖∇∆ϕε
k‖

2
L2(Ω)

+ Cη

((

1 + ‖ϕε
k‖

2
H2(Ω)

)2

‖ϕε
k‖

2
H2(Ω) + t‖ϕε

k‖H2(Ω)

)

.
(4.24)

Estimating II4. Integrating once by parts, we get

II4 = −
(

∇∆ϕε
k | ∇[Pk,F(0, ·)](nε)

)

L2(Ω)
.

Thus, for all η > 0, there exists Cη > 0 such that

(4.25) II4 6 η‖∇∆ϕε
k‖

2
L2(Ω) + Cηr

ε
k,1,

with

rεk,1 = ‖∇[Pk,F(0, ·)](nε)‖2L2(Ω) −→
k→∞

0 in L∞(0, T ) for all T > 0, with ε fixed,

thanks to Lemma 4.1.

4.1.4 Conclusion

¿From (4.18), (4.21), (4.24) and (4.25), we deduce that there is a constant
C > 0 (depending on ‖n0‖L∞((0,∞),H3(Ω))), and for all η > 0, there is Cη >
0 (depending on η, ‖n0‖L∞((0,∞),H3(Ω)), ‖hext‖L∞

t W 1,∞
x

and ‖∂thext‖L∞

t W 2,∞
x

),

such that

ε

2

d

dt

(

‖∆ϕε
k‖

2
L2(Ω)

)

+
(

α− C(η + ‖ϕε
k‖H2(Ω)(1 + ‖ϕε

k‖H2(Ω)))
)

‖∇∆ϕε
k‖

2
L2(Ω)

6 Cη

(

‖ϕε
k‖

2
H2(Ω)(1 + ‖ϕε

k‖
2
H2(Ω))(1 + ‖ϕε

k‖
2
H2(Ω) + ‖∇∆nε

k‖
2
L2(Ω))

+ t‖ϕε
k‖H2(Ω) + rεk,1

)

.

(4.26)

Sum up (4.10) and (4.26), to get: there is a constant C > 0 (depending on
‖n0‖L∞((0,∞),H3(Ω))), and for all η > 0, there is Cη > 0 (depending on η,
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‖n0‖L∞((0,∞),H2(Ω)), ‖hext‖L∞

t W 1,∞
x

and ‖∂thext‖L∞

t W 2,∞
x

), such that

ε

2

d

dt

(

‖ϕε
k‖

2
H2(Ω)

)

+
(

α− C(η + ‖ϕε
k‖H2(Ω)(1 + ‖ϕε

k‖H2(Ω)))
)

‖∇∆ϕε
k‖

2
H2(Ω)

6 Cη

(

‖ϕε
k‖

2
H2(Ω)(1 + ‖ϕε

k‖
2
H2(Ω))(1 + ‖ϕε

k‖
2
H2(Ω) + ‖∇∆nε

k‖
2
L2(Ω))

+ t‖ϕε
k‖H2(Ω) + r̃εk

)

,

(4.27)

with r̃εk = ‖[Pk,F(0, ·)](nε)‖2H1(Ω) −→
k→∞

0 in L∞(0, T ) for all T > 0, with ε fixed.

Now, apply the following Gronwall lemma (the proof of which is postponed
to Section 6.3).

Lemma 4.2. There is a constant K > 0 (depending on n0 and hext) such that,
for all c ∈ (0, 1/K), setting tε = cε ln(1/ε), there is ε0 = ε0(α, c,K) such that
(4.27) implies:

∀ε ∈ (0, ε0], ∃k(ε) ∈ N
⋆, ∀k > k(ε),

sup
[0,tε]

‖ϕε
k‖

2
H2(Ω) 6

(

ε1−cK

K
+K‖r̃εk‖L1(0,tε0 )

ε−1−cK

)

e
K‖∇∆Pkn0‖

2
L2((0,∞)×Ω) .

4.1.5 Passing to the limit k → ∞

For each ε ∈ (0, ε0] fixed, by Lemma 4.2, the sequence (ϕε
k)k∈N⋆ is bounded in

L∞((0, tε), H
2(Ω)). Equation (4.5) then implies that the sequence (∂tϕ

ε
k)k∈N⋆

is bounded in L∞((0, tε), L
2(Ω)). Furthermore, (4.27) shows that (ϕε

k)k∈N⋆ is
also bounded in L2((0, tε), H

3(Ω)). Aubin’s Lemma (see [2], [10]) then implies
that there is a subsequence of (ϕε

k)k∈N⋆ converging in L2((0, tε), H
2(Ω)) towards

some ϕε.
Up to a subsequence, we may assume that (∂tϕ

ε
k)k∈N⋆ also converges weakly

in L2((0, tε), L
2(Ω)) towards ∂tϕ

ε. As k goes to ∞, Pkn
ε converges towards nε

in C([0, tε], H
2(Ω))∩H1((0, tε), L

2(Ω)). Thus, (mε
k)k∈N⋆ converges towards some

mε in L2((0, tε), H
2(Ω)), with (∂tm

ε
k)k∈N⋆ converging weakly in L2((0, tε), L

2(Ω))
towards ∂tm

ε. This is enough to pass to the limit in (4.4), so that mε is solution
to (4.2). With ε fixed, showing that mε is continuous in time with values in H2

is standard, as well as uniqueness and stability properties: see [4], or [1].
Finally, passing to the limit in Lemma 4.2 yields:

sup
[0,tε]

‖ϕε‖2H2(Ω) 6
ε1−cK

K
e
K‖∇∆n0‖

2
L2((0,∞)×Ω) ,

which we write

(4.28) sup
[0,tε]

‖ϕε‖2H2(Ω) 6 K ′ε1−cK .
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4.2 Second step: following the slow dynamics after tε

¿From the local-in-time existence result, we know that, for each ε ∈ (0, ε0),
there is tε > tε such that mε exists, as a solution to (4.2), in C([0, tε], H2(Ω))∩
L2((0, tε), H3(Ω)). We shall show, via a priori estimates, that tε > T (possibly
reducing ε0).

¿From (3.1), and with F from (4.3), we deduce that, on [0, T ]× Ω,

ε∂tmeq − α∆meq = F(t,meq) + ε∂tmeq.

Substracting to (4.2), we get (on [0, tε]× Ω):
(4.29)

{

(ε∂t − α∆)(mε −meq) =
(

L(meq) +R(meq)
)

(mε −meq) + ε∂tmeq,

∂ν(m
ε −meq)|∂Ω

= 0,

and we consider the associated Cauchy problem with data given at time tε. The
data at time tε = cε ln(1/ε) satisfy (using (4.28) and (4.1)):

‖(mε −meq)(tε)‖H2(Ω) 6 ‖(mε − nε)(tε)‖H2(Ω) + ‖nε(tε)−meq(0)‖H2(Ω)

+ ‖meq(0)−meq(tε)‖H2(Ω)

6 K ′ε1−cK + ‖n0(c ln(1/ε))−meq(0)‖H2(Ω)

+ ‖meq(0)−meq(tε)‖H2(Ω) −→
ε→0

0.

(4.30)

Here, for all δ ∈ H2(Ω) and t ∈ [0, T ],

L(t,meq(t)) δ =α|∇meq(t)|
2δ + 2α

(

∇meq(t) · ∇δ
)

meq(t)

+ δ ∧ hT (t,meq(t)) +meq(t) ∧
(

∆δ + hd(δ)
)

− αδ ∧
(

meq(t) ∧
(

hd(meq(t)) + hext(t)
))

− αmeq(t) ∧
(

δ ∧
(

hd(meq(t)) + hext(t)
))

− αmeq(t) ∧
(

meq(t) ∧ hd(δ)
)

,

(4.31)

and

R(t,meq(t)) (δ) = 2α
(

∇meq(t) · ∇δ
)

δ + α|∇δ|2δ + δ ∧
(

∆δ + hd(δ)
)

− αδ ∧
(

δ ∧
(

hd(meq(t)) + hext(t)
))

− αδ ∧
(

meq(t) ∧ hd(δ)
)

− αmeq(t) ∧
(

δ ∧ hd(δ)
)

− αδ ∧
(

δ ∧ hd(δ)
)

.

(4.32)

In the sequel, we consider

δε := mε −meq ∈ C([0, tε], H2(Ω)) ∩ L2((0, tε), H3(Ω)),
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and we simply prove that in (H2) energy estimates, the term due to the resid-
ual R(meq)δ

ε is dominated by the terms due to α∆δε and to the linear term
L(meq)δ

ε. We thus come back to the Galerkine approximation δεk of δε, as
in Paragraph 4.1.1. Take the L2(Ω) scalar product of the equations with
δεk and ∆2δεk and integrate by parts. Estimating (δεk | R(meq)(δ

ε
k))L2(Ω) is

straightforward. Due to the continuity properties of hd on Sobolev spaces,
(∆2δεk | R(meq)(δ

ε
k))L2(Ω) produces three kinds of terms. Dropping the expo-

nent ε and subscript k (and using the notation L(v1, . . . , vn) for any n-linear
application), we examine each of them.

From δ ∧
(

δ ∧ hd(δ)
)

. We have

(∆2δ | L(δ, δ, δ))L2(Ω) = (∆δ | ∆L(δ, δ, δ))L2(Ω) 6 ‖∆δ‖L2(Ω)‖∆L(δ, δ, δ)‖L2(Ω),

which is bounded from above by C‖δ‖4H2(Ω), since H
2(Ω) is an algebra.

In the same way, the terms of the form (∆2δ | L(δ, δ))L2(Ω) are controlled by

‖δ‖3H2(Ω). This rules out the terms from δ∧hd(δ), δ∧
(

δ∧
(

hd(meq(t))+hext(t)
))

,

δ ∧
(

meq(t) ∧ hd(δ)
)

and meq(t) ∧
(

δ ∧ hd(δ)
)

.

From |∇δ|2δ. Write

(∆2δ | L(∇δ,∇δ,δ))L2(Ω) =

− (∇∆δ | L(∇δ,∇δ,∇δ))L2(Ω) − (∇∆δ | L̃(∆δ,∇δ, δ))L2(Ω).

Then,

|(∇∆δ | L(∇δ,∇δ,∇δ))L2(Ω)| 6 ‖∇∆δ‖L2(Ω)‖L(∇δ,∇δ,∇δ)‖L2(Ω)

6 C‖∇∆δ‖L2(Ω)‖∇δ‖
3
L6(Ω),

and by Sobolev’s inequalities, ‖∇δ‖L6(Ω) is controlled by ‖δ‖H2(Ω).
Also,

|(∇∆δ | L̃(∆δ,∇δ, δ))L2(Ω)| 6 C‖∇∆δ‖L2(Ω)‖∆δ‖L2(Ω)‖∇δ‖L∞(Ω)‖δ‖L∞(Ω).

¿From the estimate

‖∇δ‖L∞(Ω) . ‖∇δ‖L2(Ω) + ‖∇∆δ‖L2(Ω),

we get

|(∇∆δ | L̃(∆δ,∇δ, δ))L2(Ω)| 6 C(‖∇∆δ‖L2(Ω)‖δ‖
3
H2(Ω) + ‖∇∆δ‖2L2(Ω)‖δ‖

2
H2(Ω)).

This leads to

(∆2δ | L(∇δ,∇δ, δ))L2(Ω) 6 C(‖∇∆δ‖L2(Ω)‖δ‖
3
H2(Ω) + ‖∇∆δ‖2L2(Ω)‖δ‖

2
H2(Ω)).

In the same way, we have

(∆2δ | (∇meq(t) · ∇δ)δ) 6 C‖∇∆δ‖L2(Ω)‖δ‖
2
H2(Ω).
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The δ ∧∆δ term. Again,

(∆2δ | L(δ,∆δ))L2(Ω) = −(∇∆δ | L(∇δ,∆δ))L2(Ω) − (∇∆δ | L(δ,∇∆δ))L2(Ω),

and as above, we get

(∆2δ | L(δ,∆δ))L2(Ω) 6 C(‖∇∆δ‖L2(Ω)‖δ‖
2
H2(Ω) + ‖∇∆δ‖2L2(Ω)‖δ‖H2(Ω)).

Finally, there is C > 0, and for all η > 0, there is Cη > 0 such that

(δεk | R(meq)(δ
ε
k))H2(Ω) 6

(

η + C‖δεk‖H2(Ω) + C‖δεk‖
2
H2(Ω)

)

‖∇∆δεk‖
2
L2(Ω)

+ Cη

(

‖δεk‖
3
H2(Ω) + ‖δεk‖

4
H2(Ω) + ‖δεk‖

6
H2(Ω)

)

.

Let k go to infinity, so that the above estimate applies to δε instead of δεk, up
to the local existence time tε obtained via the convergence of the Galerkine
scheme. Coming back to (4.29), still with δε = mε −meq, we get, using (2.5):
there is C > 0, and for all η > 0, there is Cη > 0 such that

ε

2

d

dt

(

‖δε‖2H2(Ω)

)

+
(

α− η − C(1 + ‖δε‖H2(Ω))‖δ
ε‖H2(Ω)

)

‖∇δε‖2H2(Ω)

6
(

Cη(1 + ‖δε‖H2(Ω))
3‖δε‖H2(Ω) − Clin

)

‖δε‖2H2(Ω) + ε2‖∂tmeq‖
2
H2(Ω).

(4.33)

As in the proof of Lemma 4.2, fix η ∈ (0, α), and consider the time t̃ε 6 tε up
to which, in (4.33), the parenthesis in front of ‖∇δε‖2H2(Ω) (resp. ‖δε‖2H2(Ω))

remains positive (resp. less than −Clin/2). We have, for t ∈ (tε, t̃ε):

ε

2

d

dt

(

‖δε‖2H2(Ω)

)

6 −
Clin

2
‖δε‖2H2(Ω) + ε2‖∂tmeq‖

2
H2(Ω).

Gronwall’s lemma then implies that

sup
[tε,t̃ε]

‖δε‖2H2(Ω) 6 ‖δε(tε)‖
2
H2(Ω) + 2εT sup

[0,T ]

‖∂tmeq‖
2
H2(Ω),

so that, for ε small enough, we get t̃ε > T , and sup[tε,T ] ‖δ
ε‖H2(Ω) −→

ε→0
0. This

finishes the proof of Theorem 2.1. �

5 Proof of Proposition 2.2 and Corollary 2.3

Proof of Proposition 2.2. For any T > 0 and n ∈ C([0, T ], H2(Ω)), it is
equivalent for n to be solution to (2.8) or to

(∂t − α∆)(n−meq) =
(

L(0,meq) +R(0,meq)
)

(n−meq),
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with the same initial and boundary conditions. The operators L(0,meq) and
R(0,meq) from (4.31) and (4.32) do not depend on time, now. Arguing as in
Section 4.2, we get an estimate analogue to (4.33),

1

2

d

dt

(

‖n−meq‖
2
H2(Ω)

)

+
(

α− η − C(1 + ‖n−meq‖H2(Ω))‖n−meq‖H2(Ω)

)

‖∇(n−meq)‖
2
H2(Ω)

6
(

Cη(1 + ‖n−meq‖H2(Ω))
3‖n−meq‖H2(Ω) − Clin

)

‖n−meq‖
2
H2(Ω).

(5.1)

Once η ∈ (0, α/2) is chosen, take η0 > 0 such that, when ‖m0−meq‖H2(Ω) 6 η0,
the parentheses in front of ‖∇(n −meq)‖

2
H2(Ω) and in front of ‖n −meq‖

2
H2(Ω)

are positive and negative at t = 0, respectively. The bootstrap argument then
shows that n ∈ C([0,∞), H2(Ω)), and that n(t) converges in H2(Ω, S2), as t
goes to ∞, towards meq(t0):

(5.2) ‖n(t)−meq‖H2(Ω) ≤ η0e
−Ct,

for some C ∈ (0, Clin) depending on η0. Coming back to (5.1), we see also that
∇(n−meq) ∈ L2((0,∞), H2(Ω)). �

Proof of Corollary 2.3. When meq(0) is constant over Ω, Proposition 2.2
ensures there exists some η0 > 0 such that for all m0 ∈ H2

N (Ω, S2) satisfying

‖m0 −meq‖H2(Ω) 6 η0,

Asumption (ii) in Theorem 2.1 holds true. Furthermore, estimations (5.1) and
(5.2) show that the corresponding function n0 has norms in L∞((0,∞), H2(Ω))
and in L2((0,∞) × Ω)) controlled in terms of meq(0) and η0 only. Thus, ε0 in
the proof of Theorem 2.1 may also be chosen depending on meq(0) and η0 only,
uniformly with respect to m0. �

6 Appendix

6.1 About the dissipation property (2.5): proof of Lem-

mas 3.5 and 3.6

Let δ ∈ C([0, T ], H∞(Ω)) be such that |meq+ δ| ≡ 1 and ∂νδ|∂Ω
= ∂ν∆δ|∂Ω

= 0.
Then,
(6.1)
L(m±

eq) δ = (λ∓d)δ∧u ± u∧(∆δ+hd(δ)) + α(d∓λ)u∧(δ∧u) − αu∧(u∧hd(δ)).
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6.1.1 L2 estimates

Take the L2(Ω) scalar product of (6.1) with δ. This yields

(

L(m±
eq) δ | δ

)

L2(Ω)
= ±

∫

Ω

δ · (u ∧∆δ)±

∫

Ω

δ · (u ∧ hd(δ))

+ α(d∓ λ)

∫

Ω

|δ ∧ u|2 − α

∫

Ω

(u · hd(δ))(u · δ) + α

∫

Ω

δ · hd(δ).

(6.2)

First consider the case of m+
eq. Denoting n the exterior normal vector to Ω, the

first term in the right-hand side of (6.2) is equal to

(6.3)

3
∑

i=1

∫

Ω

δ · ∂i(u ∧ ∂iδ) =

3
∑

i=1

∫

∂Ω

δ · (u ∧ ∂iδ)ni =

∫

∂Ω

δ · (u ∧ ∂nδ) = 0.

Since hd is continuous on L2 with norm 1, the second term is bounded from
above by ‖δ‖2L2(Ω). Similarly, due to the non-positivity of hd, the last term is
non-positive. In the two other terms, we inject the identities

(6.4) |δ|2 = −2u · δ and |δ ∧ u|2 = |δ|2 −
1

4
|δ|4,

which stem from the equality |u+ δ| ≡ 1. This leads to

(

L(m+
eq) δ | δ

)

L2(Ω)
6 ‖δ‖2L2(Ω) + α(d− λ)

∫

Ω

(

|δ|2 − |δ|4/4
)

+
α

2

∫

Ω

(u · hd(δ))|δ|
2

= (1 + α(d− λ))‖δ‖2L2(Ω) +O(‖δ‖3L2(Ω)).

(6.5)

In the case of m−
eq, we obtain in the same way

(6.6)
(

L(m−
eq) δ | δ

)

L2(Ω)
> (α(λ+ d)− c) ‖δ‖2L2(Ω) +O(‖δ‖3L2(Ω)),

for some constant c depending on Ω and α only.

6.1.2 H2 estimates

Take the L2(Ω) scalar product of the Laplacian of each term in (6.1) with ∆δ.
This yields

(

∆L(m±
eq) δ | ∆δ

)

L2(Ω)
=(λ∓ d)

∫

Ω

∆δ ·∆(δ ∧ u)±

∫

Ω

∆δ ·∆(u ∧∆δ)

±

∫

Ω

δ ·∆(u ∧ hd(δ)) + α(d∓ λ)

∫

Ω

|∆δ ∧ u|2

− α

∫

Ω

∆δ ·∆(u ∧ (u ∧ hd(δ))).

(6.7)
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Since ∆(δ∧u) = (∆δ)∧u = 0, the first term on the right-hand side vanishes. So
does the second one, by the same argument as in (6.3). The equality |u+ δ| ≡ 1
implies

|∆δ ∧ u|2 = |∆δ|2 −
(

|∇δ|2 − (δ ·∆δ)2
)2
,

so that (6.7) gives, for m+
eq:

(6.8)
(

∆L(m+
eq) δ | ∆δ

)

L2(Ω)
6 −α(λ− d)‖∆δ‖2L2(Ω) + c‖δ‖2H2(Ω) +O

(

‖δ‖3H2(Ω)

)

,

for some constant c depending on Ω and α only. Together with (6.5), we get
finally

(6.9)
(

L(m+
eq) δ | δ

)

H2(Ω)
6 − (α(λ− d)− c) ‖δ‖2H2(Ω) +O

(

‖δ‖3H2(Ω)

)

,

which concludes the proof of Lemma 3.5. �

In the case of m−
eq, we have

(

∆L(m+
eq) δ | ∆δ

)

L2(Ω)
=−

∫

Ω

∆δ ·∆(u ∧ hd(δ)) + α(λ+ d)‖∆δ‖2L2(Ω)

− α

∫

Ω

∆δ ·∆(u ∧ (u ∧ hd(δ))) +O
(

‖δ‖3H2(Ω)

)

,

(6.10)

which, together with (6.6), leads to Lemma 3.6. �

6.2 Proof of the commutator lemma 4.1

Writting

[Pk,F(0, ·)](n) = (Pk − 1)F(0, n) + F(0, n)−F(0, Pkn),

the result follows from the convergence of Pk towards 1 pointwise as an operator
on H1(Ω) (which rules out the term (Pk − 1)F(0, n)) as well as on H2

N (Ω),
combined (to deal with F(0, n)−F(0, Pkn)) with the continuity of F(0, ·) from
C([0, T ], H2(Ω)) ∩ L2((0, T ), H3) to L2((0, T ), H1).

The latter is a consequence of the continuity properties of hd and of Sobolev’s
embeddings, implying that H2(Ω) is an algebra (so that all applications n 7→
n ∧ hd(n), n 7→ n ∧ (n ∧ hd(n)), n 7→ n ∧ hext(0), n 7→ n ∧ (n ∧ hext(0))
are continuous on L∞((0, T ), H2(Ω))), and that the product operation maps
H2 × H1 to H1, so that n 7→ n ∧ ∆n and n 7→ |∇n|2n are continuous from
L∞((0, T ), H2(Ω)) ∩ L2((0, T ), H3) to L2((0, T ), H1). �

6.3 Proof of Gronwall’s lemma 4.2

First, consider k ∈ N⋆ and ε > 0 fixed. Set φε(t) = ‖ϕε
k‖

2
H2(Ω), r(t) = r̃εk(t),

N0(t) = ‖∇∆Pkn0(t)‖
2
L2(Ω) and N

ε(t) = ‖∇∆nεk(t)‖
2
L2(Ω), so that

Nε(t) = N0(t/ε) and N0 ∈ L1(0,∞).
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With C from (4.27), choose η ∈ (0, α/(2C)). Hence, there exists κη ∈ (0, 1)
such that

∀ϕ ∈ [0, κη], C(η + ϕ(1 + ϕ)) < α/2.

Set K = 8Cη (also from (4.27)), c ∈ (0, 1/K) and tε = cε ln(1/ε). Then, with

tεk = sup{t ∈ [0, tε] | ∀t
′ ∈ [0, t], φε(t′) 6 κη}

(tεk > 0 since φε(0) = 0), we have:

∀t ∈ [0, tεk], εφε′(t) 6 K((1 +Nε(t))φε(t) + t+ r(t)).

¿From this, we deduce:

∀t ∈ [0, tεk], φε(t) 6

∫ t

0

K

ε

(

t′ + r(t′)
)

exp

(

K

ε

∫ t

t′
(1 +Nε(t′′))dt′′

)

dt′

6

(
∫ t

0

K

ε

(

t′ + r(t′)
)

exp

(

K
t− t′

ε

)

dt′
)

eK‖N0‖L1(0,∞)

6

(

ε

K
+
K

ε
‖r‖L1(0,T0)

)

eKt/εeK‖N0‖L1(0,∞) ,

with T0 = cε0 ln(1/ε0) (and ε0 is chosen below). Now, since c ∈ (0, 1/K) and
tε = cε ln(1/ε),

∀t ∈ [0,min(tεk, tε)], φε(t) 6

(

ε1−cK

K
+K‖r‖L1(0,T0)ε

−1−cK

)

eK‖N0‖L1(0,∞) ,

which is less or equal to κη as soon as ε belongs to (0, ε0], for

ε0 =

(

1

2
κηKe

−K‖N0‖L1(0,∞)

)1/(1−cK)

,

and k greater than K(ε) such that

∀k > K(ε), ‖r̃εk‖L1(0,T0) 6
1

2
κη
ε1+cK

K
e−K‖N0‖L1(0,∞)

(which is possible by Lemma 4.1). For this choice of ε and k, we thus have
tεk > tε, and the result follows. �
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