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Introduction

The mathematical theory of homogenization for second-order elliptic partial differential equations has been widely studied since the pioneer works of Spagnolo on G-convergence [START_REF] Spagnolo | Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche[END_REF], of Murat, Tartar on H-convergence [START_REF] Murat | Séminaire d'Analyse Fonctionnelle et Numérique[END_REF][START_REF] Murat | Topics in the Mathematical Modelling of Composite Materials[END_REF], and of Bensoussan, Lions, Papanicolaou on periodic structures [START_REF] Bensoussan | Asymptotic analysis for periodic structures[END_REF], in the framework of uniformly bounded (both from below and above) sequences of conductivity matrixvalued functions. It is also known since the end of the seventies [START_REF] Fenchenko | Asymptotic of solution of differential equations with strongly oscillating matrix of coefficients which does not satisfy the condition of uniform boundedness[END_REF][START_REF] Ya | Composite Media and Homogenization Theory[END_REF] (see also the extensions [START_REF] Bellieud | Homogenization of elliptic problems in a fiber reinforced structure[END_REF][START_REF] Briane | Fibered microstructures for some nonlocal Dirichlet forms[END_REF][START_REF] Briane | Homogenization of high-conductivity periodic problems: Application to a general distribution of one-directional fibers[END_REF][START_REF] Ya | Homogenization of Partial Differential Equations[END_REF]) that the homogenization of the sequence of conductivity problems, in a bounded open set

Ω of R 3 , div (σ n ∇u n ) = f in Ω u n = 0 on ∂Ω, (1.1) 
with a uniform boundedness from below but not from above for σ n , may induce nonlocal effects. However, the situation is radically different in dimension two since the nature of problem (1.1) is shown [START_REF] Briane | Nonlocal effects in two-dimensional conductivity[END_REF][START_REF] Briane | Asymptotic behaviour of equicoercive diffusion energies in dimension two[END_REF] to be preserved in the homogenization process provided that the sequence σ n is uniformly bounded from below. H-convergence theory includes the case of non-symmetric conductivities in connection with the Hall effect [START_REF] Hall | On a new action of the magnet on electric currents[END_REF] in electrodynamics (see, e.g., [START_REF] Landau | Électrodynamique des Milieux Continus[END_REF][START_REF] Omar | Elementary Solid State Physics: Principles and Applications[END_REF]). Indeed, in the presence of a constant magnetic field the conductivity matrix is modified and becomes non-symmetric. Here, we consider an idealized model of an isotropic conductivity σ(h) depending on a parameter h which characterizes the antisymmetric part of the conductivity in the following way:

• in dimension two, σ(h) = αI 2 + βhJ, J := 0 -1 1 0 , (

where α, β are scalar an h ∈ R,

• in dimension three,

σ(h) = αI 3 + βE (h), E (h) := 0 -h 3 h 2 h 3 0 -h 1 -h 2 h 1 0 , (1.3) 
where α, β are scalar and h ∈ R 3 .

Since the seminal work of Bergman [START_REF] Bergman | Self-duality and the low field Hall effect in 2D and 3D metal-insulator composites. Percolation Structures and Processes[END_REF] the influence of a low magnetic field in composites has been studied for two-dimensional composites [START_REF] Milton | Classical hall effect in two-dimensional composites: A characterization of the set of realizable effective conductivity tensors[END_REF][START_REF] Bergman | Macroscopic conductivity tensor of a threedimensional composite with a one-or two-dimensional microstructure[END_REF][START_REF] Briane | Homogenization of the two-dimensional hall effect[END_REF], and for columnar composites [START_REF] Bergman | Duality transformation in a three dimensional conducting medium with two dimensional heterogeneity and an in-plane magnetic field[END_REF][START_REF] Bergman | Magnetotransport in conducting composite films with a disordered columnar microstructure and an in-plane magnetic field[END_REF][START_REF] Bergman | Exact between magnetoresistivity tensor components of conducting composites with a columnar microstructure[END_REF][START_REF] Grabovsky | An application of the general theory of exact relations to fiber-reinforced conducting composites with hall effect[END_REF][START_REF] Grabovsky | Exact relations for effective conductivity of fiber-reinforced conducting composites with the hall effect via a general theory[END_REF].

The case of a strong field, namely when the symmetric part and the antisymmetric part of the conductivity are of the same order, has been also investigated [START_REF] Bergman | Strong-field magnetotransport of conducting composites with a columnar microstructure[END_REF][START_REF] Bergman | Recent advances in strong field magnetotransport in a composite medium[END_REF]. Moreover, dimension three may induce anomalous homogenized Hall effects [START_REF] Briane | Homogenization of the three-dimensional hall effect and change of sign of the hall coefficient[END_REF][START_REF] Briane | Giant hall effect in composites[END_REF][START_REF] Briane | An antisymmetric effective hall matrix[END_REF] which do not appear in dimension two [START_REF] Briane | Homogenization of the two-dimensional hall effect[END_REF].

In the context of high-contrast problems the situation is more delicate when the conductivities are not symmetric. An extension in dimension two of H-convergence for non-symmetric and nonuniformly bounded conductivities was obtained in [START_REF] Briane | Two-dimensional div-curl results. application to the lack of nonlocal effects in homogenization[END_REF] thanks to an appropriate div-curl lemma. More recently, the Keller, Dykhne [START_REF] Keller | A theorem on the conductivity of a composite medium[END_REF][START_REF] Dykhne | Conductivity of a two-dimensional two-phase system[END_REF] two-dimensional duality principle which claims that the mapping

A → A T det A (1.4)
is stable under homogenization, was extended to high-contrast conductivities in [START_REF] Briane | Duality results in the homogenization of two-dimensional highcontrast conductivities[END_REF]. However, the homogenization of both high-contrast and non-symmetric conductivities has not been precisely studied in the context of the strong field magneto-transport especially in dimension three. In this paper we establish an effective perturbation law for a mixture of two high-contrast isotropic phases in the presence of a magnetic field. The two-dimensional case is performed in a general way for non-periodic and periodic microstructures. It is then compared to the case of a three-dimensional fiber-reinforced microstructure.

In dimension two, following the modelization (1.2), consider a sequence σ n (h) of isotropic twophase matrix-valued conductivities perturbed by a fixed constant h ∈ R, and defined by

σ n (h) := (1 -χ n ) α 1 I 2 + β 1 h J + χ n α 2,n I 2 + β 2,n h J , (1.5) 
where χ n is the characteristic function of phase 2, with volume fraction θ n → 0, α 1 > 0, β 1 are the constants of the low conducting phase 1, and α 2,n → ∞, β 2,n are real sequences of the highly conducting phase 2 where β 2,n is possibly unbounded. The coefficients α 1 and β 1 , respectively α 2,n and β 2,n also have the same order of magnitude according to the strong field assumption.

Assuming that the sequence θ -1 n χ n converges weakly- * in the sense of the Radon measures to a bounded function, and that θ n α 2,n , θ n β 2,n converge respectively to constants α 2 > 0, β 2 , we prove (see Theorem 2.2) that the perturbed conductivity σ n (h) converges in an appropriate sense of Hconvergence (see Definition 1.1) to the homogenized matrix-valued function

σ * (h) = σ 0 * α 1 , α 2 + α -1 2 β 2 2 h 2 + β 1 h J, (1.6) 
for some matrix-valued function σ 0 * which depends uniquely on the microstructure χ n in the absence of a magnetic field, and is defined for a subsequence of n. The proof of the result is based on a Dykhne transformation of the type

A n → (p n A n + q n J) -1 + r n J -1 , (1.7) 
In the periodic case, i.e. when σ n (h)(•) = Σ n (•/ε n ) with Σ n Y -periodic and ε n → 0, we use an alternative approach based on an extension of Theorem 4.1 of [START_REF] Briane | Asymptotic behaviour of equicoercive diffusion energies in dimension two[END_REF] to ε n Y -periodic but non-symmetric conductivities (see Theorem 3.1). So, it turns out that the homogenized conductivity σ * (h) is the limit as n → ∞ of the constant H-limit (σ n ) * associated with the periodic homogenization (see, e.g., [START_REF] Bensoussan | Asymptotic analysis for periodic structures[END_REF]) of the oscillating sequence Σ n (•/ε) as ε → 0 and for a fixed n. Finally, the Dykhne transformation performed by Milton [START_REF] Milton | Classical hall effect in two-dimensional composites: A characterization of the set of realizable effective conductivity tensors[END_REF] (see also [START_REF] Milton | The Theory of Composites[END_REF], Chapter 4) applied to the local periodic conductivity Σ n and its effective conductivity (σ n ) * , allows us to recover the perturbed homogenized formula (1.6). An example of a periodic cross-like thin structure provides an explicit computation of σ * (h) (see Proposition 3.2).

To make a comparison with dimension three we restrict ourselves to the ε n Y -periodic fiberreinforced structure introduced by Fenchenko, Khruslov [START_REF] Fenchenko | Asymptotic of solution of differential equations with strongly oscillating matrix of coefficients which does not satisfy the condition of uniform boundedness[END_REF] to derive a nonlocal effect in homogenization. However, in the present context the fiber radius r n is chosen to be super-critical, i.e. r n → 0 and ε 2 n | ln r n | → 0, in order to avoid such an effect. Similarly to (1.5) and following the modelization (1.3), the perturbed conductivity is defined for h ∈ R 3 , by

σ n (h) := (1 -χ n ) α 1 I 3 + β 1 E (h) + χ n α 2,n I 3 + β 2,n E (h) , (1.8) 
where χ n is the characteristic function of the fibers which are parallel to the direction e 3 . The form of (1.8) ensures the rotational invariance of σ n (h) for those orthogonal transformations which leave h invariant. Under the same assumptions on the conductivity coefficients as in the two-dimensional case, with θ n = π r 2 n , but using a quite different approach, the homogenized conductivity is given by (see Theorem 4.1)

σ * (h) = α 1 I 3 + α 3 2 + α 2 β 2 2 |h| 2 α 2 2 + β 2 2 h 2 3 e 3 ⊗ e 3 + β 1 E (h). (1.9) 
The difference between formulas (1.6) and (1.9) provides a new example of gap between dimension two and dimension three in the high-contrast homogenization framework. As former examples of dimensional gap, we refer to the works [START_REF] Briane | Homogenization of the two-dimensional hall effect[END_REF][START_REF] Briane | Homogenization of the three-dimensional hall effect and change of sign of the hall coefficient[END_REF] about the 2d positivity property, versus the 3d nonpositivity, of the effective Hall coefficient, and to the works [START_REF] Briane | Asymptotic behaviour of equicoercive diffusion energies in dimension two[END_REF][START_REF] Fenchenko | Asymptotic of solution of differential equations with strongly oscillating matrix of coefficients which does not satisfy the condition of uniform boundedness[END_REF] concerning the 2d lack, versus the 3d appearance, of nonlocal effects in the homogenization process.

The paper is organized as follows. Section 2 and 3 deal with dimension two. In Section 2 we study the two-dimensional general (non-periodic) case thanks to an appropriate div-curl lemma. In Section 3 an alternative approach is performed in the periodic framework. Finally, Section 4 is devoted to the three-dimensional case with the fiber-reinforced structure.

Notations

• Ω denotes a bounded open subset of R d ;

• I d denotes the unit matrix in R d×d , and J := 0 -1 1 0 ;

• for any matrix A in R d×d , A T denotes the transposed of the matrix A, A s denotes its symmetric part;

• for h ∈ R 3 , E (h) denotes the antisymmetric matrix in R 3×3 defined by E (h) x := h × x, for x ∈ R 3 ; • for any A, B ∈ R d×d , A ≤ B means that for any ξ ∈ R d , Aξ • ξ ≤ Bξ • ξ;
we will use the fact that for any invertible matrix

A ∈ R d×d , A ≥ αI d ⇒ A -1 ≤ α -1 I d ;
• | • | denotes both the euclidean norm in R d and the subordinate norm in R d×d ;

• for any locally compact subset X of R d , M(X) denotes the space of the Radon measures defined on X;

• for any α, β > 0, M(α, β; Ω) is the set of the invertible matrix-valued functions

A : Ω → R d×d such that ∀ ξ ∈ R d , A(x)ξ • ξ ≥ α|ξ| 2 and A -1 (x)ξ • ξ ≥ β -1 |ξ| 2 a.e.

in Ω;

(1.10)

• C denotes a constant which may vary from a line to another one.

In the sequel, we will use the following extension of H-convergence and introduced in [16]:

Definition 1.1 Let α n and β n be two sequences of positive numbers such that α n ≤ β n , and let A n be a sequence of matrix-valued functions in M(α n , β n ; Ω) (see (1.10)).

The sequence A n is said to H(M(Ω) 2 )-converge to the matrix-valued function A * if for any distribution f in H -1 (Ω), the solution u n of the problem

div (A n ∇u n ) = f in Ω u n = 0 on ∂Ω,
satisfies the convergences

u n -⇀ u in H 1 0 (Ω) A n ∇u n -⇀ A * ∇u weakly- * in M(Ω) 2 ,
where u is the solution of the problem

div (A * ∇u) = f in Ω u = 0 on ∂Ω.
We now give a notation for H(M(Ω) 2 )-limits of high-contrast two-phase composites. We consider the characteristic function χ n of the highly conducting phase, and denote ω n := {χ n = 1}. Notation 1.1 A sequence of isotropic two-phase conductivities in the absence of a magnetic field is denoted by

σ 0 n (α 1,n , α 2,n ) := (1 -χ n )α 1,n I 2 + χ n α 2,n I 2 , (1.11 
)

with lim n→∞ α 1,n = α 1 > 0 and lim n→∞ |ω n | α 2,n = α 2 > 0, (1.12) 
and its H(M(Ω) 2 )-limit is denoted by σ 0 * (α 1 , α 2 ).

2 A two-dimensional non-periodic medium

A div-curl approach

We extend the classical div-curl lemma.

Lemma 2.1 Let Ω be a bounded open subset of R 2 . Let α > 0, let ā ∈ L ∞ (Ω)
and let A n be a sequence of matrix-valued functions in L ∞ (Ω) 2×2 (not necessarily symmetric) satisfying

A n ≥ αI 2 a.e. in Ω and det A n det A s n |A s n | ⇀ ā ∈ L ∞ (Ω) weakly- * in M(Ω). (2.1)
Let ξ n be a sequence in L 2 (Ω) 2 and v n a sequence in H 1 (Ω) satisfying the following assumptions: (i) ξ n and v n satisfy the estimate

ˆΩ A -1 n ξ n • ξ n dx + ||v n || H 1 (Ω) ≤ C; (2.2) (ii) ξ n satisfies the classical condition div ξ n is compact in H -1 (Ω). (2.3)
Then, there exist ξ in L 2 (Ω) 2 and v in H 1 (Ω) such that the following convergences hold true up to a subsequence ξ n ⇀ ξ weakly- * in M(Ω) 2 and ∇v n ⇀ ∇v weakly in L 2 (Ω) 2 .

(2.4)

Moreover, we have the following convergence in the distribution sense

ξ n • ∇v n ⇀ ξ • ∇v weakly in D ′ (Ω).
Proof of Lemma 2.1. The proof consists in considering the "good-divergence" sequence ξ n as a sum of a compact sequence of gradients ∇u n and a sequence of divergence-free functions J∇z n . We then use Lemma 3.1 of [START_REF] Briane | Duality results in the homogenization of two-dimensional highcontrast conductivities[END_REF] to obtain the strong convergence of z n in L 2 loc (Ω). Finally, replacing ξ n by ∇u n + J∇z n , we conclude owing to integration by parts.

First step: Proof of convergences (2.4).

An easy computation gives

A -1 n s -1 = det A n det A s n A s n . (2.5)
The sequence ξ n is bounded in L 1 (Ω) 2 since the Cauchy-Schwarz inequality combined with the weak- * convergence of (2.1), (2.2) and (2.5) yields

ˆΩ |ξ n | dx 2 ≤ ˆΩ A -1 n s -1 dx ˆΩ A -1 n s ξ n •ξ n dx = ˆΩ det A n det A s n |A s n | dx ˆΩ A -1 n ξ n •ξ n dx ≤ C.
Therefore, ξ n converges up to a subsequence to some ξ ∈ M(Ω) 2 in the weak- * sense of the measures. Let us prove that the vector-valued measure ξ is actually in L 2 (Ω) 2 . Again by the Cauchy-Schwarz inequality combined with (2.1), (2.2) and (2.5) we have, for any

Φ ∈ C 0 (Ω) 2 , ˆΩ ξ(dx) • Φ = lim n→∞ ˆΩ ξ n • Φ dx ≤ lim sup n→∞ ˆΩ det A n det A s n |A s n | |Φ| 2 dx 1 2 ˆΩ A -1 n ξ n • ξ n dx 1 2 ≤ C ˆΩ ā|Φ| 2 dx 1 2
, which implies that ξ is absolutely continuous with respect to the Lebesgue measure. Since ā ∈ L ∞ (Ω), we also get that

ˆΩ ξ • Φ dx ≤ ||Φ|| L 2 (Ω) 2 hence ξ ∈ L 2 (Ω) 2 .
Therefore, the first convergence of (2.4) holds true with its limit in L 2 (Ω) 2 . The second one is immediate.

Second step: Introduction of a stream function. By (2.3), the sequence u n in H 1 0 (Ω) defined by u n := ∆ -1 (div ξ n ) strongly converges in H 1 0 (Ω):

u n -→ u in H 1 0 (Ω). (2.6)
Let ω be a regular simply connected open set such that ω ⊂⊂ Ω. Since by definition ξ n -∇u n is a divergence-free function in L 2 (Ω) 2 , there exists (see, e.g., [START_REF] Girault | Finite Element Approximation of the Navier-Stokes Equations[END_REF]) a unique stream function z n ∈ H 1 (ω) with zero ω-average such that ξ n = ∇u n + J∇z n a.e. in ω.

(2.7)

Third step: Convergence of the stream function z n .

Since ∇u n is bounded in L 2 (Ω) 2 by the second step, ξ n is bounded in L 1 (Ω) 2 by the first step and z n has a zero ω-average, the Sobolev embedding of W 1,1 (ω) into L 2 (ω) combined with the Poincaré-Wirtinger inequality in ω implies that z n is bounded in L 2 (ω) and thus converges, up to a subsequence still denoted by n, to a function z in L 2 (ω). Moreover, let us define

S n := J -1 (A -1 n ) s J -1 .
The Cauchy-Schwarz inequality gives

ˆω S -1 n ∇z n • ∇z n dx = ˆω J -1 (A -1 n ) s J∇z n • ∇z n dx = ˆω(A -1 n ) s J∇z n • J∇z n dx = ˆω(A -1 n ) s ξ n -∇u n • ξ n -∇u n ] dx ≤ 2 ˆω(A -1 n ) s ξ n • ξ n dx + 2 ˆω(A -1 n ) s ∇u n • ∇u n dx = 2 ˆω A -1 n ξ n • ξ n dx + 2 ˆω A -1 n ∇u n • ∇u n dx.
The first term is bounded by (2.2) and the last term by the inequality A -1 n ≤ α -1 I 2 and the convergence (2.6). Therefore, the sequences v n := z n and, by (2.14), S n satisfy all the assumptions of Lemma 3.1 of [START_REF] Briane | Duality results in the homogenization of two-dimensional highcontrast conductivities[END_REF] since, by (2.5),

S n = det A n det A s n J -1 A s n J.
Then, we obtain the convergence z n -→ z strongly in L 2 loc (ω).

(2.8)

Moreover, the convergence (2.6) gives

ξ = ∇u + J∇z in D ′ (ω).
(2.9)

Fourth step: Integration by parts and conclusion.

We have, as J∇v n is a divergence-free function,

ξ n • ∇v n = (∇u n + J∇z n ) • ∇v n = ∇u n • ∇v n -div (z n J∇v n ) . (2.10) 
The strong convergence of ∇u n in (2.6), the second weak convergence of (2.4) justified in the first step and (2.8) give

∇u n • ∇v n -div (z n J∇v n ) -⇀ ∇u • ∇v -div (zJ∇v) in D ′ (ω). (2.11)
We conclude, by combining this convergence with (2.10), (2.9) and integrating by parts, to the convergence

ξ n • ∇v n -⇀ ∇u • ∇v -div (zJ∇v) = (∇u + J∇z) • ∇v = ξ • ∇v weakly in D ′ (ω).
for an arbitrary open subset ω of Ω.

For the reader's convenience, we first recall in Theorem 2.1 below the main result of [START_REF] Briane | Duality results in the homogenization of two-dimensional highcontrast conductivities[END_REF] concerning the Keller duality for high contrast conductivities. Then, Proposition 2.1 is an extension of this result to a more general transformation.

Theorem 2.1 ( [START_REF] Briane | Duality results in the homogenization of two-dimensional highcontrast conductivities[END_REF]) Let Ω be a bounded open subset of R 2 such that |∂Ω| = 0. Let α > 0, let β n , n ∈ N be a sequence of real numbers such that β n ≥ α, and let A n be a sequence of matrixvalued functions (not necessarily symmetric) in M(α, β n ; Ω). Assume that there exists a function

ā ∈ L ∞ (Ω) such that det A n det A s n |A s n | ⇀ ā weakly- * in M(Ω).
(2.12)

Then, there exist a subsequence of n, still denoted by n, and a matrix-valued function A * in M(α, β; Ω), with β = 2||ā|| L ∞ (Ω) , such that

A n H(M(Ω) 2 ) -⇀ A * and A T n det A n H(M(Ω) 2 ) -⇀ A T * det A * . (2.13) Proposition 2.1
Let Ω be a bounded open subset of R 2 such that |∂Ω| = 0. Let p n , q n and r n , n ∈ N be sequences of real numbers converging respectively to p > 0, q and 0. Let α > 0, let β n , n ∈ N be a sequence of real numbers such that β n ≥ α, and let A n be a sequence of matrix-valued functions in M(α, β n ; Ω) (not necessarily symmetric) satisfying

r n A n is bounded in L ∞ (Ω) 2×2 and det A n det A s n |A s n | ⇀ ā ∈ L ∞ (Ω) weakly- * in M(Ω), (2.14) 
and that B n = (p n A n + q n J) -1 + r n J -1 is a sequence of symmetric matrices.

(2.15)

Then, there exist a subsequence of n, still denoted by n, and a matrix-valued function

A * in M(α, β; Ω), with β = 2||ā|| L ∞ (Ω) , such that A n H(M(Ω) 2 ) -⇀ A * and (p n A n + q n J) -1 + r n J -1 H(M(Ω) 2 ) -⇀ pA * + qJ. (2.16) 
Remark 2.1 Proposition 2.1 completes Theorem 2.1 performed with the transformation

A -→ A T det A = J -1 A -1 J, (2.17) 
to other Dykhne transformations of type (see [START_REF] Milton | The Theory of Composites[END_REF], Section 4.1):

A -→ (pA + qJ) -1 + rJ -1 = pA + qJ (1 -rq)I 2 + rpJA -1 (2.18) Remark 2.2
The convergence of r n to r = 0 is not necessary but sufficient for our purpose. If r = 0, the different convergences are conserved but lead us to the expression

pA * + qJ = B * (1 -qr)I 2 + p rJA * . (2.19)
Proof of Proposition 2.1. The proof is divided into two steps. In the first step, we use Lemma 2.1 to show the H(M(Ω) 2 )-convergence of A n := p n A n + q n J to pA * + qJ. In the second step, we build a matrix Q n which will be used as a corrector for B n and then use again Lemma 2.1.

First step:

A * = pA * + qJ.
First of all, thanks to Theorem 2.2 [START_REF] Briane | Duality results in the homogenization of two-dimensional highcontrast conductivities[END_REF], we already know that, up to a subsequence still denoted by n, A n H(M(Ω) 2 )-converges to A * . We consider a corrector P n associated with A n in the sense of Murat-Tartar (see, e.g., [START_REF] Murat | Topics in the Mathematical Modelling of Composite Materials[END_REF]), such that, for λ ∈ R 2 , P n λ = ∇w λ n is defined by

div(A n ∇w λ n ) = div(A * ∇(λ • x)) in Ω w λ n = λ • x on ∂Ω (2.20)
Again with Theorem 2.2 of [START_REF] Briane | Duality results in the homogenization of two-dimensional highcontrast conductivities[END_REF] and Definition 1.1, we know that P n λ converges weakly in L 2 (Ω) 2 to λ and

A n P n λ converges weakly- * in M(Ω) to A * λ. Since, for any λ, µ ∈ R 2 , α||∇w µ n || 2 L 2 (Ω) 2 ≤ ˆΩ A n ∇w µ n • ∇w µ n dx = ˆΩ A * µ • ∇w µ n dx ≤ 2||ā|| L ∞ (Ω) |µ| |Ω| 1/2 ||∇w µ n || L 2 (Ω) 2 and ˆΩ A -1 n A n ∇w λ n • A n ∇w λ n dx = ˆΩ A n ∇w λ n • ∇w λ n dx,
the sequences ξ n := A n ∇w λ n and v n := w µ n satisfy (2.2) and (2.3). This combined with (2.14) implies that we can apply Lemma 2.1 to obtain

∀ λ, µ ∈ R, A n P n λ • P n µ -⇀ A * λ • µ in D ′ (Ω).
(2.21)

We denote A n := p n A n + q n J and consider δ n such that δ n J := A n -A s n . Then, the matrix

A n satisfies A n ξ • ξ = p n A n ξ • ξ ≥ p n α|ξ| 2 . (2.22) Moreover, det A n = p 2 n det A s n + (p n δ n + q n ) 2 ≤ p 2 n (det A s n + 2δ 2 n ) + 2q 2 n ≤ 2p 2 n det A n + 2q 2 n ≤ C det A n ,
the last inequality being a consequence of A n ≥ αI 2 . This inequality gives, by (2.14),

det A n det A s n | A s n | = det A n p 2 n det A s n p n |A s n | ≤ C det A n det A s n |A s n | ≤ C. (2.23) 
Then by (2.22), (2.23) and [START_REF] Briane | Duality results in the homogenization of two-dimensional highcontrast conductivities[END_REF] again, up to a subsequence still denoted by n, A n H(M(Ω) 2 )converges to A * and we have, by the classical div-curl lemma of [START_REF] Murat | Topics in the Mathematical Modelling of Composite Materials[END_REF] for

JP n λ • P n µ and (2.21), ∀ λ, µ ∈ R, (p n A n + q n J)P n λ • P n µ = p n A n P n λ • P n µ + q n JP n λ • P n µ D ′ (Ω) -⇀ pA * λ • µ + qJλ • µ,
that can be rewritten A * = pA * + qJ.

Second step: B

* = A * . Let θ ∈ C 1 c (Ω) and P n a corrector associated with A n , such that, for λ ∈ R 2 , P n λ = ∇ w λ n is defined by div( A n ∇ w λ n ) = div A * ∇(θλ • x) in Ω w λ n = 0 on ∂Ω. (2.24)
By Definition 1.1, we have

w λ n -⇀ θλ • x weakly in H 1 0 (Ω), A n ∇ w λ n -⇀ A * ∇(θλ • x) weakly- * in M(Ω) 2 . (2.25) Let us now consider B n = A -1 n + r n J -1 .
B n is symmetric and so is its inverse :

B -1 n = A -1 n + r n J = ( A -1 n + r n J) s = ( A -1 n ) s .
We then have, by a little computation (like in (2.5)) and (2.23),

det B n det B s n |B s n | = |B n | = A -1 n s -1 = det A n det A s n | A s n | ≤ C. (2.26)
For any ξ ∈ R 2 , the sequence

ν n := (I + r n J A n ) -1 ξ satisfies, by (2.14), |ξ| ≤ 1 + ||r n A n || L ∞ (Ω) 2×2 |ν n | ≤ 1 + p n ||r n A n || L ∞ (Ω) 2×2 + q n r n |ν n | ≤ (1 + C)|ν n |, hence B n ξ •ξ = A n ν n •(I +r n J A n )ν n = A n ν n •ν n = p n A n ν n •ν n ≥ p n α|ν n | 2 ≥ α p n (1 + C) 2 |ξ| 2 ≥ C|ξ| 2 (2.27)
with C > 0. Therefore, with (2.27) and (2.26), again by Theorem 2.2 of [START_REF] Briane | Duality results in the homogenization of two-dimensional highcontrast conductivities[END_REF], up to a subsequence still denoted by n, B n H(M(Ω) 2 )-converges to B * .

Let

ψ ∈ C 1 c (Ω) and R n be a corrector associated to B n , such that, for µ ∈ R 2 , R n µ = ∇v µ n is defined by div (B n ∇v µ n ) = div B * ∇(ψµ • x) in Ω v µ n = 0 on ∂Ω.
(2.28)

By Definition 1.1, we have the convergences

v µ n -⇀ ψµ • x weakly in H 1 0 (Ω), B n ∇v µ n -⇀ B * ∇(ψµ • x) weakly- * in M(Ω) 2 . (2.29)
Let us define the matrix Q n := (I + r n J A n ) P n . We have

B n Q n = ( A -1 n + r n J) -1 (I + r n J A n ) P n = ( A -1 n + r n J) -1 ( A -1 n + r n J) A n P n = A n P n . (2.30) 
We are going to pass to the limit in D ′ (Ω) the equality given by (2.30) and the symmetry of B n : 

A n P n λ • R n µ = B n Q n λ • R n µ = Q n λ • B n R n µ. ( 2 
ˆΩ A n -1 ξ n • ξ n dx + ||v n || H 1 0 (Ω) = ˆΩ A n P n λ • P n λ dx + ||v µ n || H 1 0 (Ω) dx ≤ C by (2.
A n P n λ • R n µ -⇀ A * ∇(θλ • x) • ∇(ψµ • x) in D ′ (Ω). (2.32) 
On the other hand, we have the equality 

Q n λ • B n R n µ = B n R n µ • P n λ + B n R n µ • r n J A n P n . ( 2 
ˆΩ B n -1 ξ n • ξ n dx + ||v n || H 1 0 (Ω) = ˆΩ B n R n µ • R n µ dx + || w λ n || H 1 0 (Ω) dx ≤ C by (2.
B n R n µ • P n λ -⇀ B * ∇(ψµ • x) • ∇(θλ • x) in D ′ (Ω). (2.34)
The convergence of the right part of (2.33) is more delicate. The demonstration is the same as for Lemma 2.1. Let ω be a simply connected open subset of Ω such as ω ⊂⊂ Ω. The function

A n P n λ -A * ∇(θλ • x)
is divergence-free and we can introduce a function z λ n such as

A n P n λ = A * ∇(θλ • x) + J∇z λ n , (2.35) 
z λ n -→ 0 strongly in L 2 loc (ω). (2.36)
The equality

B n R n µ • r n J A n P n λ = r n B n R n µ • J A * ∇(θλ • x) -r n B n R n µ • ∇z λ n = r n B n R n µ • J A * ∇(θλ • x) -r n div(z λ n B n R n µ) + r n z λ n div B * ∇(θλ • x)
leads us, by (2.29), (2.36) and the convergence to 0 of r n , like in the demonstration of Lemma 2.1, to 

B n R n µ • r n J A n P n -⇀ 0 in D ′ (ω). ( 2 
A * ∇(θλ • x) • ∇(ψµ • x) = B * ∇(ψµ • x) • ∇(θλ • x) in D ′ (ω).
We conclude, by taking θ = 1 and ψ = 1 on ω and taking into account that B * is symmetric and ω, λ, µ are arbitrary, that:

B * = A * = pA * + qJ.

An application to isotropic two-phase media

In this section, we study the homogenization of a two-phase isotropic medium with high contrast and non-necessarily symmetric conductivities. The study of the symmetric case in Proposition 2.2 permits to obtain Theorem 2.2 by applying the transformation of Proposition 2.1. We use Notation 1.1. 

χ n θ n H( --⇀ a ∈ L ∞ (Ω) weakly- * in M(Ω). (2.38) 
We assume that there exists α 1 , α 2 > 0 and two positive sequences

α 1,n , α 2,n ≥ a 0 > 0 verifying lim n→∞ α 1,n = α 1 and lim n→∞ θ n α 2,n = α 2 , (2.39) 
and that the conductivity takes the form

σ 0 n (α 1,n , α 2,n ) = (1 -χ n )α 1,n I 2 + χ n α 2,n I 2 .
Then, there exists a subsequence of n, still denoted by n, and a locally Lipschitz function

σ 0 * : (0, ∞) 2 -→ M(a 0 , 2||a|| ∞ ; Ω) such that ∀ (α 1 , α 2 ) ∈ (0, ∞) 2 , σ 0 n (α 1,n , α 2,n ) H(M(Ω) 2 ) -⇀ σ 0 * (α 1 , α 2 ). (2.40)
Proof of Proposition 2.2. The proof is divided into two parts. We first prove the theorem for α 1,n = α 1 , α 2,n = θ -1 n α 2 , and then treat the general case. [START_REF] Briane | Duality results in the homogenization of two-dimensional highcontrast conductivities[END_REF] implies that for any α ∈ (0, ∞) 2 , there exists a subsequence of n such that σ 0 n (α) H(M(Ω) 2 )-converges in the sense of Definition 1.1 to some matrix-valued function in M(a 0 , 2||a|| ∞ ; Ω).

First step: The case α 1,n = α 1 , α 2,n = θ -1 n α 2 . In this step we denote σ 0 n (α) := σ 0 n (α 1 , θ -1 n α 2 ), for α = (α 1 , α 2 ) ∈ (0, ∞) 2 . Theorem 2.2 of
By a diagonal extraction, there exists a subsequence of n, still denoted by n, such that

∀ α ∈ Q 2 ∩ (0, ∞) 2 , σ 0 n (α) H(M(Ω) 2 )
-⇀ σ 0 * (α).

(2.41)

We are going to show that this convergence is true any pair α ∈ (0, ∞) 2 . We have, by (2.38), for any

α ∈ Q 2 ∩ (0, ∞) 2 , |σ 0 n (α)| = (1 -χ n )α 1 + χ n α 2 θ n H( --⇀ α 1 + α 2 a ∈ L ∞ (Ω) weakly- * in M(Ω) (2.42)
and, since θ n ∈ (0, 1), 

∀ ξ ∈ R 2 , σ 0 n (α)ξ • ξ = α 1 (1 -χ n )|ξ| 2 + χ n α 2 θ n |ξ| 2 ≥ min(α 1 , α 2 )
|σ 0 * (α)λ| ≤ 2|λ| (α 1 + α 2 ||a|| ∞ ) . (2.44) For any α ∈ Q 2 ∩ (0, ∞) 2 and λ ∈ R 2 , consider the corrector w α,λ n associated with σ 0 n (α) defined by    div σ 0 n (α)∇w α,λ n = div σ 0 * (α)λ in Ω, w α,λ n = λ • x on ∂Ω, (2.45) 
which depends linearly on λ.

Let α ∈ Q 2 ∩ (0, ∞) 2 .
Let us show that the energies

ˆΩ σ 0 n (α)∇w α,λ n • ∇w α,λ n dx (2.46)
are bounded. We have, by (2.45), (2.44) and the Cauchy-Schwarz inequality

ˆΩ σ 0 n (α)∇w α,λ n • ∇w α,λ n dx = ˆΩ σ 0 * (α)λ • ∇w α,λ n -λ dx + ˆΩ σ 0 n (α)∇w α,λ n • λ dx = ˆΩ σ 0 * (α)λ • ∇w α,λ n dx -ˆΩ σ 0 * (α)λ • λ ≥0 dx + ˆΩ σ 0 n (α)∇w α,λ n • λ dx which leads us to ˆΩ σ 0 n (α)∇w α,λ n • ∇w α,λ n dx ≤ ˆΩ |σ 0 * (α)λ • ∇w α,λ n | dx + ˆΩ |σ 0 n (α)∇w α,λ n • λ| dx. (2.47)
On the one hand, the Cauchy-Schwarz inequality gives

ˆΩ |σ 0 n (α)∇w α,λ n • λ| dx 2 ≤ |λ| 2 ˆΩ |σ 0 n (α)| dx ˆΩ σ 0 n (α)∇w α,λ n • ∇w α,λ n dx that is ˆΩ |σ 0 n (α)∇w α,λ n • λ| dx 2 ≤ |λ| 2 |α| ˆΩ σ 0 n (α)∇w α,λ n • ∇w α,λ n dx. (2.48)
On the other hand, by (2.43) and the Cauchy-Schwarz inequality, we have 

ˆΩ |σ 0 * (α)λ • ∇w α,λ n | dx ≤ 2|λ|(α 1 + α 2 ||a|| ∞ ) ˆΩ |∇w α,λ n | 2 dx ≤ 2|λ|(α 1 + α 2 ||a|| ∞ ) 1 α 1 + 1 α 2 ˆΩ σ 0 n (α)∇w α,λ n • ∇w α,λ n dx that is ˆΩ |σ 0 * (α)λ • ∇w α,λ n | dx ≤ C |λ| 2 |α| 1 α 1 + 1 α 2 ˆΩ σ 0 n (α)∇w α,λ n • ∇w α,
ˆΩ σ 0 n (α)∇w α,λ n • ∇w α,λ n dx ≤ C |λ| 2 |α| + |α| 2 (α 1 -1 + α 2 -1 ) =:M (α) (2.50)
where C does not depend on n nor α.

Let α ′ ∈ Q 2 ∩ (0, ∞) 2 .
The sequences ξ n := σ 0 n (α)∇w α,λ n and v n := w α ′ ,λ n satisfy the assumptions (2.2) and (2.3) of Lemma 2.1. By symmetry, we have the convergences

   σ 0 n (α)∇w α,λ n • ∇w α ′ ,λ n -⇀ σ 0 * (α)λ • λ weakly in D ′ (Ω), σ 0 n (α ′ )∇w α ′ ,λ n • ∇w α,λ n -⇀ σ 0 * (α ′ )λ • λ weakly in D ′ (Ω).
(2.51)

As the matrices are symmetric, we have

σ 0 n (α) -σ 0 n (α ′ ) ∇w α,λ n • ∇w α ′ ,λ n = σ 0 n (α)∇w α,λ n • ∇w α ′ ,λ n -σ 0 n (α ′ )∇w α ′ ,λ n • ∇w α,λ n , hence σ 0 n (α) -σ 0 n (α ′ ) ∇w α,λ n • ∇w α ′ ,λ n -⇀ σ 0 * (α) -σ 0 * (α ′ ) λ • λ weakly in D ′ (Ω). (2.52) Let λ ∈ R 2 .
We have, by the Cauchy-Schwarz inequality, with the Einstein convention

ˆΩ σ 0 n (α) -σ 0 n (α ′ ) ∇w α,λ n • ∇w α ′ ,λ n dx = ˆΩ\ωn |α 1 -α ′ 1 | ∇w α,λ n • ∇w α ′ ,λ n dx + ωn |α 2 -α ′ 2 | ∇w α,λ n • ∇w α ′ ,λ n dx ≤ |α 1 -α ′ 1 | ˆΩ\ωn |∇w α,λ n | 2 dx ˆΩ\ωn |∇w α ′ ,λ n | 2 dx + |α 2 -α ′ 2 | ωn |∇w α,λ n | 2 dx ωn |∇w α ′ ,λ n | 2 dx ≤ |α i -α ′ i | 1 α i ˆΩ σ 0 n (α)∇w α,λ n • ∇w α,λ n dx 1 α ′ i ˆΩ σ 0 n (α)∇w α ′ ,λ n • ∇w α ′ ,λ n dx.
This combined with (2.50) yields

ˆΩ σ 0 n (α) -σ 0 n (α ′ ) ∇w α,λ n • ∇w α ′ ,λ n ≤ C|λ| 2 |α i -α ′ i | |α i ||α ′ i | M (α) M (α ′ )
The sequence of (2.52) is thus bounded in L 1 (Ω) 2 which implies that (2.52) holds weakly- * in M(Ω). Hence, we get, for any ϕ ∈ C c (Ω), that

ˆΩ σ 0 * (α) -σ 0 * (α ′ ) λ • λ ϕ dx ≤ C |λ| 2 |α i -α ′ i | |α i ||α ′ i | M (α) M (α ′ ) ||ϕ|| ∞ . (2.53)
Then, the Riesz representation theorem implies that

σ 0 * (α) -σ 0 * (α ′ ) L 1 (Ω) 2×2 ≤ C |α i -α ′ i | |α i ||α ′ i | M (α) M (α ′ ).
Therefore, by the definition of M in (2.50), for any compact subset

K ⊂ (0, ∞) 2 , ∃ C > 0, ∀ α, α ′ ∈ Q 2 ∩ K, σ 0 * (α) -σ 0 * (α ′ ) L 1 (Ω) 2×2 ≤ C |α -α ′ |. (2.54)
This estimate permits to extend the definition (2.41) of σ 0 * on (0, ∞) 2 by [START_REF] Briane | Duality results in the homogenization of two-dimensional highcontrast conductivities[END_REF] implies that there exists a subsequence of n, denoted by n ′ , and a matrix-valued function σ * ∈ M(a 0 , 2||a|| ∞ ; Ω) such that

∀ α ∈ (0, ∞) 2 , σ 0 * (α) = lim α ′ →α α ′ ∈Q 2 ∩(0,∞) 2 σ 0 * (α ′ ) strongly in L 1 (Ω) 2×2 . (2.55) Let α ∈ (0, ∞) 2 . Theorem 2.2 of
σ n ′ (α) H(M(Ω) 2 ) -⇀ σ * .
(2.56)

Repeating the arguments leading to (2.54), for any positive sequence of rational pair (α q ) q∈N converging to α, we have

∃ C > 0, σ * -σ 0 * (α q ) L 1 (Ω) 2×2 ≤ C |α -α q |, (2.57) 
hence, by (2.55), σ * = σ 0 * (α). Therefore by the uniqueness of the limit in (2.56), we obtain for the whole sequence satisfying (2.41)

∀ α ∈ (0, ∞) 2 , σ n (α) H(M(Ω) 2 ) -⇀ σ 0 * (α).
(2.58)

In particular, the function σ 0 * satisfies (2.54) and (2.55), i.e. σ 0 * is a locally Lipschitz function on (0, ∞) 2 .

Second step: The general case. We denote [START_REF] Briane | Duality results in the homogenization of two-dimensional highcontrast conductivities[END_REF] implies that there exists a subsequence of n, denoted by n ′ , such that

α n = (α 1,n , α 2,n ) and σ 0 n (α n ) = σ 0 n (α 1,n , α 2,n ). Theorem 2.2 of
σ 0 n ′ (α n ′ ) H(M(Ω) 2 )-converges to some tt σ * ∈ M(a 0 , 2||a|| ∞ ; Ω) in the sense of Definition 1.1.
As in the first step, for any α n ′ ∈ (0, ∞) 2 and λ ∈ R 2 , we can consider the corrector

w α n ′ ,λ n ′ associated with σ 0 n ′ (α n ′ ) defined by      div σ 0 n ′ (α n ′ )∇w α n ′ ,λ n ′ = div ( σ * λ) in Ω, w α n ′ ,λ n ′ = λ • x on ∂Ω, (2.59) 
which depends linearly on λ. Proceeding as in the first step, we obtain like in (2.52), with α = (α 1 , α 2 ) the limit of α n according to (2.39),

σ 0 n ′ (α) -σ 0 n ′ (α n ′ ) ∇w α n ′ ,λ n ′ • ∇w α,λ n ′ -⇀ σ 0 * (α) -σ * λ • λ weakly in D ′ (Ω). (2.60)
Moreover, by the energy bound (2.50), which also holds for α n ′ , we have, for any ϕ ∈ D(Ω),

ˆΩ σ 0 n ′ (α) -σ 0 n ′ (α n ′ ) ∇w α n ′ ,λ n ′ • ∇w α,λ n ′ ϕ dx -→ n ′ →∞ 0.
This combined with (2.60), yields

ˆΩ σ 0 * (α) -σ * λ • λ ϕ dx = 0,
which implies that σ 0 * (α) = σ * . We conclude by a uniqueness argument.

We can now obtain a result for (perturbed) non-symmetric conductivities. Then, we will use a Dykhne transformation to recover the symmetric case following the Milton approach [START_REF] Milton | The Theory of Composites[END_REF] (pp. 61-65). This will allow us to apply Proposition 2.2. (2.61)

Consider the conductivity defined by

σ n (h) = (1 -χ n )σ 1 (h) + χ n θ n σ 2 (h) (2.62
)

where for j = 1, 2, σ j (h) = α j + hβ j J ∈ R 2×2 with α 1 , α 2 > 0 and (β 1 , β 2 ) = (0, 0).
Then, there exists a subsequence of n, still denoted by n, and a locally Lipschitz function

σ 0 * : (0, ∞) 2 -→ M min(α 1 , α 2 ), 2 |σ 1 | + |σ 2 | ||a|| ∞ ; Ω such that σ n (h) H(M(Ω) 2 ) -⇀ σ 0 * α 1 , α 2 + α -1 2 β 2 2 h 2 + hβ 1 J.
Proof of Theorem 2.2. We have

∀ ξ ∈ R 2 , σ n (h)ξ • ξ = (1 -χ n )α 1 |ξ| 2 + χ n θ n α 2 |ξ| 2 ≥ min(α 1 , α 2 )|ξ| 2 a.e. in Ω
and, by (2.61),

|σ n (h)| = (1 -χ n )|σ 1 (h)| + χ n θ n |σ 2 (h)|-⇀ |σ 1 (h)| + a|σ 2 (h)| ∈ L ∞ (Ω) weakly- * in M(Ω).
In order to make a Dykhne transformation like in p.62 of [START_REF] Milton | The Theory of Composites[END_REF], we consider two real coefficients a n and b n in such a way that

B n := a n σ n (h) + b n J a n I 2 + Jσ n (h) -1 = (p n σ n (h) + q n J) -1 + r n J -1
is symmetric. An easy computation shows that the previous equality holds when

p n := a 2 n a 2 n + b n , q n := a n b n a 2 n + b n and r n := 1 a n .
On the one hand, the estimates (3.39) and (3.40) with α 2,n = θ -1 n α 2 , β 2,n = θ -1 n β 2 , yield (note that they are independent of χ n )

p n ∼ n→∞ 1, q n -→ n→∞ -hβ 1 , r n -→ n→∞ 0 and ||r n σ n (h)|| ∞ ≤ C |σ 1 (h)| + |σ 2 (h)| .
(2.63)

On the other hand, as in Section 3.2, with Notation 1.1 and (3.34), we have

B n = σ 0 n α ′ 1,n (h), α ′ 2,n (h) , (2.64) 
where

α ′ 1,n (h) = a n (α 1 + ihβ 1 ) + ib n a n + i(α 1 + ihβ 1 ) and α ′ 2,n (h) = a n (α 2 /θ n + ihβ 2 /θ n ) + ib n a n + i(α 2 /θ n + ihβ 2 /θ n ) . (2.65)
Hence, like in (3.41), we have

lim n→∞ α ′ 1,n (h) = α 1 and lim n→∞ θ n α ′ 2,n (h) = α 2 + α -1 2 β 2 2 h 2 .
(2.66)

We can first apply Proposition 2.2 with the conditions (2.64) and (2.66) to have the H(M(Ω) 2 )convergence of B n . Then, by virtue of Proposition 2.1, with (2.63) we get that

σ n (h) H(M(Ω) 2 ) -⇀ σ 0 * α 1 , α 2 + α -1 2 β 2 2 h 2 + hβ 1 J.

A two-dimensional periodic medium

In this section we consider a sequence Σ n of matrix valued functions (not necessarily symmetric) in L ∞ (R 2 ) 2×2 , which satisfies the following assumptions:

1 . Σ n is Y -periodic, where Y := (0, 1) 2 , i.e., ∀ n ∈ N, ∀ κ ∈ Z 2 , Σ n (. + κ) = Σ n (.) a.e. in R 2 , (3.1) 2 . Σ n is equi-coercive in R 2 , i.e., ∃ α > 0 such that ∀ n ∈ N, ∀ ξ ∈ R 2 , Σ n ξ • ξ ≥ α|ξ| 2 a.e. in R 2 . (3.2) 
Let ε n be a sequence of positive numbers which tends to 0. From the sequences Σ n and ε n we define the highly oscillating sequence of matrix-valued functions σ n by

σ n (x) = Σ n x ε n , a.e. x ∈ R 2 . (3.3)
By virtue of (3.1) and (3.2), σ n is an equi-coercive sequence of ε n -periodic matrix-valued functions in L ∞ (R 2 ) 2×2 . For a fixed n ∈ N, let (σ n ) * be the constant matrix defined by

∀ λ, µ ∈ R 2 , (σ n ) * λ • µ = ˆY Σ n ∇W λ n • ∇W µ n dy, (3.4) 
where, for any λ ∈ R 2 , W λ n ∈ H 1 ♯ (Y ), the set of Y -periodic functions belonging to H 1 loc (R 2 ), is the solution of the auxiliary problem 

ˆY W λ n -λ • y dy = 0 and div Σ n ∇W λ n = 0 in D ′ (R 2 ) (3.5) or equivalently        ˆY Σ n ∇W λ n • ∇ϕ dy = 0, ∀ ϕ ∈ H 1 ♯ (Y ) ˆY W λ n (y) -λ • y dy = 0. (3.6) Set w λ n (x) := ε n W λ n x ε n , for x ∈ Ω, (3.7 
(σ n ) * -→ σ * in R 2×2 . (3.9)
Consider, for f ∈ H -1 (Ω) ∩ W -1,q (Ω) with q > 2, the solution u n of the problem

P n -div(σ n ∇u n ) = f in Ω u n = 0 on ∂Ω. (3.10)
Then, u n converges uniformly to the solution u ∈ H 1 0 (Ω) of

P -div(σ * ∇u) = f in Ω u = 0 on ∂Ω. (3.11)
Moreover we have the corrector result, with the ε n Y -periodic sequence w n defined in (3.8):

∇u n - 2 i=1 ∂ i u ∇w i n -→ 0 in L 1 (Ω) 2 .
(3.12)

Remark 3.1 The first point of Theorem 3.1 is an extension to the non-symmetric case of the results of [START_REF] Briane | Asymptotic behaviour of equicoercive diffusion energies in dimension two[END_REF] and [START_REF] Briane | Uniform convergence of sequences of solutions of twodimensional linear elliptic equations with unbounded coefficients[END_REF]. The uniform convergence of u n is a straightforward consequence of Theorem 2.7 of [START_REF] Briane | Uniform convergence of sequences of solutions of twodimensional linear elliptic equations with unbounded coefficients[END_REF] taking into account that in the present case σ n ∈ L ∞ (Ω) 2×2 for a fixed n. The fact that f ∈ W -1,q (Ω) with q > 2 ensures the uniform convergence.

Proof of Theorem 3.1. Derivation of the limit problem P.

We only have to show that u is the solution of P in (3.11). We consider a corrector D w n : R 2 -→ R 2×2 associated with σ T n defined by

w n (x) := ε n W n x ε n = ε n W 1 n x ε n , ε n W 2 n x ε n where for i = 1, 2, W i n ∈ H 1 ♯ (Y )
is the solution of the auxiliary problem

ˆY W i n -e i • x dx = 0 and div Σ T n ∇ W i n = 0 in D ′ (R 2 ). (3.13) 
Again, thanks to Theorem 2.7 of [START_REF] Briane | Uniform convergence of sequences of solutions of twodimensional linear elliptic equations with unbounded coefficients[END_REF], w n converges uniformly to the identity in Ω by the integral condition (3.13). Let ϕ ∈ D(Ω). We have, using the Einstein convention, by integrating by parts and by the Schwarz theorem (∂ 2 i,j ϕ = ∂ 2 j,i ϕ)

ˆΩ σ n ∇u n • ∇ (ϕ( w n )) dx = ˆΩ ∇u n • σ T n ∇ w i n (∂ i ϕ)( w n ) dx = ˆΩ σ T n ∇ w i n • ∇(u n ∂ i ϕ( w n )) dx =0 -ˆΩ σ T n ∇ w i n • ∇ w j n ∂ 2 i,j ϕ( w n ) u n dx = -ˆΩ σ n ∇ w i n • ∇ w i n ∂ 2 i,i ϕ( w n ) u n dx -ˆΩ σ T n ∇ w 2 n • ∇ w 1 n ∂ 2 2,1 ϕ( w n ) u n dx espace -ˆΩ σ T n ∇ w 1 n • ∇ w 2 n ∂ 2 1,2 ϕ( w n ) u n dx = -ˆΩ σ n ∇ w i n • ∇ w i n ∂ 2 i,i ϕ( w n ) u n dx -ˆΩ σ n ∇ w 1 n • ∇ w 2 n ∂ 2 1,2 ϕ( w n ) u n dx espace -ˆΩ σ T n ∇ w 1 n • ∇ w 2 n ∂ 2 1,2 ϕ( w n ) u n dx = -ˆΩ σ s n ∇ w i n • ∇ w i n ∂ 2 i,i ϕ( w n ) u n dx -2 ˆΩ σ s n ∇ w 1 n • ∇ w 2 n ∂ 2 1,2 ϕ( w n ) u n dx.
This leads us to the equality

f, ϕ( w n ) H -1 (Ω),H 1 0 (Ω) = ˆΩ σ n ∇u n • ∇ (ϕ( w n )) dx = -ˆΩ σ s n ∇ w i n • ∇ w j n ∂ 2 i,j ϕ( w n ) u n dx. (3.14)
To study the convergence of the last term of (3.14), we first show that σ s n ∇ w i n • ∇ w j n is bounded in L 1 (Ω). We have, by periodicity and the Cauchy-Schwarz inequality

ˆΩ |σ s n ∇ w i n • ∇ w j n | dx = ˆΩ |Σ s n ∇ W i n • ∇ W j n | x ε n dx ≤ C ˆY |Σ s n ∇ W i n • ∇ W j n | dx ≤ C ˆY Σ s n ∇ W i n • ∇ W i n dx ˆY Σ s n ∇ W j n • ∇ W j n dx ≤ C (σ n ) * e i • e i (σ n ) * e j • e j
which is bounded by the hypothesis (3.9). Therefore,

σ s n ∇ w i n • ∇ w j n is bounded in L 1 (Ω). (3.15) 
Due to the periodicity, we know that for i, j = 1, 2,

2σ s n ∇ w i n • ∇ w j n = σ T n ∇ w i n • ∇ w j n + σ T n ∇ w j n • ∇ w i n ⇀ (σ * ) T e i • e j + (σ * ) T e j • e i = 2 (σ * ) s e i • e j
weakly- * in M(Ω). Hence, we get that

σ s n ∇ w i n • ∇ w j n ⇀ (σ * ) s e i • e j weakly- * in M(Ω). (3.16)
Moreover, ∂ 2 i,j ϕ( w n ) u n converges uniformly to ∂ 2 i,j ϕ u. Thus, by passing to the limit in (3.14), we have, again with the Einstein convention

f, ϕ H -1 (Ω),H 1 0 (Ω) = -ˆΩ (σ * ) s e i • e j ∂ 2 i,j ϕ u dx = -ˆΩ σ * : ∇ 2 ϕ u dx.
Therefore, by integrating by parts and using ϕ = 0 on ∂Ω,

ˆΩ σ * ∇u • ∇ϕ dx = f, ϕ H -1 (Ω),H 1 0 (Ω) .
(3.17)

Proof of the corrector result

First of all, we show that the corrector function w n is bounded in H 1 (Ω) 2 . By the definition (3.8) of w n , the Y -periodicity of W e i n and the equi-coercivity of Σ n , we have, for i = 1, 2,

α ||∇w i n || 2 L 2 (Ω) 2 ≤ Cα ||∇W e i n || 2 L 2 (Y ) 2 ≤ C ˆY Σ n ∇W i n • ∇W i n dx = C (σ n ) * e i • e i (3.18)
which is bounded. This inequality combined with the uniform convergence of w n yields to the boundedness of w n in H 1 (Ω) 2 . Let us consider an approximation

u δ ∈ D(Ω) of u such that ||u -u δ || H 1 0 (Ω) ≤ δ. (3.19)
On the one hand, we have

ˆΩ σ n ∇u n • ∇ u n -u δ (w n ) dx = f, u n -u δ (w n ) H -1 (Ω),H 1 0 (Ω) .
Since w n converges uniformly to identity on Ω and is bounded in H 1 (Ω) (see (3.18)), with u δ ∈ D(Ω), u δ (w n ) converges weakly to u δ in H 1 0 (Ω). Hence, by the weak convergence of u n to u in H 1 0 (Ω) and (3.19), we can pass to the limit the previous inequality and obtain, for any δ > 0,

lim sup n→∞ ˆΩ σ n ∇u n • ∇ u n -u δ (w n ) dx = f, u -u δ H -1 (Ω),H 1 0 (Ω) ≤ Cδ. (3.20) 
On the other hand, similarly to the proof of the first point (3.14), we are led to the equality

ˆΩ σ n ∇ u δ (w n ) • ∇ u n -u δ (w n ) dx = -ˆΩ σ s n ∇w i n • ∇w j n ∂ 2 i,j u δ (w n ) u n -u δ (w n ) dx. (3.21)
As in the first point, σ s n ∇w i n • ∇w j n is bounded in L 1 (Ω) (see (3.15)), u n converges uniformly to u and ∂ i,j u δ (w n ) converges uniformly to ∂ i,j u δ because u δ is a D(Ω) function. By passing to the limit in (3.21)

ˆΩ σ n ∇ u δ (w n ) • ∇ u n -u δ (w n ) dx -→ n→∞ -ˆΩ(σ * ) s e i • e j ∂ 2 i,j u δ u -u δ dx. (3.22)
Moreover, like in (3.17) we have

ˆΩ(σ * ) s e i • e j ∂ 2 i,j u δ u -u δ dx = ˆΩ σ * ∇u δ • ∇ u -u δ dx. (3.23)
By combining this equality with the convergence (3.22), we obtain the inequality

lim n→∞ ˆΩ σ n ∇ u δ (w n ) • ∇ u n -u δ (w n ) dx ≤ ˆΩ σ * ∇u δ • ∇ u -u δ (3.24) ≤ C|σ * | ||∇u δ || L 2 (Ω) 2 ||∇ u -u δ || L 2 (Ω) 2 ≤ Cδ. (3.25)
Thus, by adding (3.20) and (3.25), we have

lim sup n→∞ ˆΩ σ n ∇ u n -u δ (w n ) • ∇ u n -u δ (w n ) dx ≤ Cδ
which leads us, by equi-coercivity, to

lim sup n→∞ α ||∇(u n -u δ (w n ))|| 2 L 2 (Ω) 2 ≤ lim sup n→∞ ˆΩ σ n ∇ u n -u δ (w n ) • ∇ u n -u δ (w n ) dx ≤ Cδ. (3.26)
Thus, the Cauchy-Schwarz inequality, the boundedness of ∇w i n in L 2 (Ω) 2 (3.18) and the Einstein convention give, for any δ > 0,

||∇u n -∇w i n ∂ i u|| L 1 (Ω) 2 ≤ ||∇u n -∇w i n ∂ i u δ || L 1 (Ω) 2 + ||∇w i n ∂ i u δ -u || L 1 (Ω) 2 ≤ ||∇u n -∇w i n ∂ i u δ || L 1 (Ω) 2 + ||∇w i n || L 2 (Ω) 2 ||∂ i u δ -u || L 2 (Ω) ≤ ||∇u n -∇w i n ∂ i u δ || L 1 (Ω) 2 + Cδ ≤ ||∇u n -∇w i n ∂ i u δ (w n )|| L 1 (Ω) 2 + ||∇w i n ∂ i u δ -∂ i u δ (w n ) || L 1 (Ω) 2 + Cδ ≤ ||∇u n -∇w i n ∂ i u δ (w n )|| L 1 (Ω) 2 + ||∇w i n || L 2 (Ω) 2 ||∂ i u δ -∂ i u δ (w n )|| L 2 (Ω) + Cδ ≤ ||∇u n -∇w i n ∂ i u δ (w n )|| L 1 (Ω) 2 + C||∂ i u δ -∂ i u δ (w n )|| L 2 (Ω) + Cδ.
Since u δ ∈ D(Ω) and w n converges uniformly to the identity on Ω, the second term of the last inequality converges to 0. Hence, we get that

lim sup n→∞ ||∇u n -∇w i n ∂ i u|| L 1 (Ω) 2 ≤ lim sup n→∞ ||∇u n -∇w i n ∂ i u δ (w n )|| L 1 (Ω) 2 + Cδ. (3.27) 
Finally, this inequality combined with (3.26) gives, for any δ > 0,

0 ≤ lim sup n→∞ ||∇u n -∇w i n ∂ i u|| L 1 (Ω) 2 ≤ C √ δ + Cδ,
which implies the corrector result (3.12).

Remark 3.2 If the solution u is a C 2 function, then the convergence (3.12) holds true in L 2 loc (Ω) since we may take u = u δ .

A two-phase result

Here, we recall a two-phase result due to G.W. Milton (see [START_REF] Milton | The Theory of Composites[END_REF] pp. 61-65) using the Dykhne transformation.

In order to apply the previous theorem, we reformulate Milton's calculus in such a way that every coefficient depends on n. We then consider, for a fixed n, the periodic homogenization of a conductivity σ n (h) to obtain (σ n ) * (h) through the link between the homogenization of the transformed conductivity and (σ n ) * (h) given by formula (4.16) in [START_REF] Milton | The Theory of Composites[END_REF]. Finally, we study the limit of (σ n ) * (h) through the asymptotic behavior of the coefficients of the transformation, and apply Theorem 3.1 in the example Section 3.3.

In this section we consider a two-phase periodic isotropic medium. Let χ n be a sequence of characteristic functions of subsets of Y . We define for any α 1 > 0, β 1 ∈ R, any sequences α 2,n > 0, β 2,n ∈ R and any h ∈ R, a parametrized conductivity Σ n (h):

Σ n (h) = (1 -χ n )(α 1 I 2 + hβ 1 J) + χ n (α 2,n I 2 + hβ 2,n J) in Y.
(3.28)

We still denote by Σ n (h) the periodic extension to R 2 of Σ n (h) (which satisfies (3.1)). We assume that Σ n (h) satisfies (3.2), and define σ n (h) by (3.3) and (σ n ) * (h) by (3.4).

We have the following result based on an analysis of [START_REF] Milton | The Theory of Composites[END_REF] (pp. 61-65). Assume that the effective conductivity in the absence of a magnetic field

σ 0 n * (γ 1,n , γ 2,n ) is bounded when lim n→∞ γ 1,n = α 1 and lim n→∞ γ 2,n α 2,n = γ 2 > 0. (3.30)
Then, there exist two parametrized positive sequences

α ′ 1,n (h), α ′ 2,n (h) such that lim n→∞ α ′ 1,n (h) = α 1 and α ′ 2,n (h) ∼ n→∞ α 2 2 + h 2 β 2 2 α 2 2 α 2,n , (3.31) 
and

(σ n ) * (h) = σ 0 n * α ′ 1,n (h), α ′ 2,n (h) + hβ 1 J + o n→∞ (1) (3.32)
where

σ 0 n * α ′ 1,n (h), α ′ 2,n (h) is bounded. Remark 3.3
In view of condition (3.29), the case where β 2,n tends to β 1 corresponds to perturb the symmetric conductivity

σ s n = (1 -χ n )α 1 I 2 + χ n α 2,n I 2 by σ s n + β 1 J + o n→∞ (1).
Then it is clear that

(σ n ) * (h) = σ s n * + β 1 J + o n→∞ (1) 
.

Proof of Proposition 3.1. The proof is divided into two parts. After applying Milton's computation (pp. 61-64 of [START_REF] Milton | The Theory of Composites[END_REF]), we study the asymptotic behavior of the different coefficients. t First step: Applying Dykhne's transformation through Milton's computations.

In order to make the Dykhne's transformation following Milton [START_REF] Milton | The Theory of Composites[END_REF] (pp. 62-64), we consider two real coefficients a n and b n such that

σ ′ n := a n σ n (h) + b n J a n I 2 + Jσ n (h) -1 = a n σ n (h) + (a n ) -1 b n J a n I 2 + Jσ n (h) -1 (3.33)
is symmetric and, more precisely, according to Notation 1.1, reads as

σ ′ n = (1 -χ n )α ′ 1,n (h)I 2 + χ n α ′ 2,n (h)I 2 = σ 0 n α ′ 1,n (h), α ′ 2,n (h) . (3.34)
Then, using the complex representation

αI 2 + βJ ←→ α + βi (3.35)
suggested by Tartar [START_REF] Tartar | Private communication to G[END_REF], the constants a n , b n must satisfy

α ′ 1,n (h) = a n (α 1 + ihβ 1 ) + ib n a n + i(α 1 + ihβ 1 ) ∈ R and α ′ 2,n (h) = a n (α 2,n + ihβ 2,n ) + ib n a n + i(α 2,n + ihβ 2,n ) ∈ R, (3.36) 
which implies that

b n = -a 2 n hβ 1 + a n ∆ 1 a n -hβ 1 = -a 2 n hβ 2,n + a n ∆ 2,n a n -hβ 2,n . (3.37) 
Denoting

∆ 1 := α 2 1 + h 2 β 2 1 and ∆ 2,n := α 2 2,n + h 2 β 2 2
,n (thanks to (3.29), n is considered to be larger enough such that β 2,n -β 1 = 0 and a n is real), the equality (3.37) provides two non-zero solutions for a n :

a n = ∆ 2,n -∆ 1 + (∆ 2,n -∆ 1 ) 2 + 4h 2 (β 2,n -β 1 )(β 2,n ∆ 1 -β 1 ∆ 2,n ) 2h(β 2,n -β 1 ) , (3.38) 
and

a - n = ∆ 2,n -∆ 1 -(∆ 2,n -∆ 1 ) 2 + 4h 2 (β 2,n -β 1 )(β 2,n ∆ 1 -β 1 ∆ 2,n ) 2h(β 2,n -β 1
) .

The value (3.38) is associated with a positive matrix σ ′ n , while a - n leads us to the negative matrix σ - n = -J(σ ′ n ) -1 J -1 to exclude (see [START_REF] Milton | Classical hall effect in two-dimensional composites: A characterization of the set of realizable effective conductivity tensors[END_REF] for more details). t Second step: asymptotic behavior of the coefficients and the homogenized matrix.

One the one hand, by the equality (3.38) combined with (3.29), we have

lim n→∞ a n h(β 2,n -β 1 ) α 2 2,n = α 2 2 + h 2 β 2 2 α 2 2
which clearly implies that

a n ∼ n→∞ α 2 2 + h 2 β 2 2 α 2 2 α 2 2,n h(β 2,n -β 1 ) and a n -hβ 2,n ∼ n→∞ α 2 2,n h(β 2,n -β 1 ) . (3.39) 
On the other hand, (

and the first equality of (3.37) give

b n = -a n hβ 1 + ∆ 1 + o n→∞ (1). (3.40) From (3.29), (3.38), (3.39) and (3.40) 
we deduce the following asymptotic behavior for the modified phases:

lim n→∞ α ′ 1,n (h) = α 1 and lim n→∞ α ′ 2,n (h) α 2,n = α 2 2 + h 2 β 2 2 α 2 2 . (3.41) 
To consider σ ′ n * , we need to verify that σ ′ n is equi-coercive. We have, by denoting for any

ξ ∈ R 2 , ν n = a n I 2 + Jσ n (h) -1 ξ, ∀ ξ ∈ R 2 , σ ′ n ξ • ξ = a n σ n (h) + b n J ν n • a n I 2 + Jσ n (h) ν n = (a 2 n + b n )σ n (h)ν n • ν n and, because a -1 n σ n (h) is bounded in L ∞ (Ω) 2×2 by (3.39), ∀ ξ ∈ R 2 , |ξ| = a n ν n + Jσ n (h)ν n ≤ a n (1 + C)|ν n |.
The equi-coercivity of σ n (h) gives

∃ C > 0, ∀ ξ ∈ R 2 , σ ′ n ξ • ξ ≥ C (1 + C) 2 a 2 n + b n a 2 n |ξ| 2 (3.42)
that is, for n larger enough, by (3.39) and (3.40), σ ′ n is equi-coercive. We can now apply the Keller-Dykhne duality theorem (see, e.g., [START_REF] Keller | A theorem on the conductivity of a composite medium[END_REF][START_REF] Dykhne | Conductivity of a two-dimensional two-phase system[END_REF]) to equality (3.33) 

to obtain (σ ′ n ) * = a n (σ n ) * + b n J a n I 2 + J(σ n ) * -1 . (3.43) 
Moreover, by inverting this transformation, we have 

(σ n ) * (h) = a n I 2 -(σ ′ n ) * J -1 a n (σ ′ n ) * -b n J . a α 1 I 2 + β 1 hJ α 2,n I 2 + β 2,n hJ 2t n 2t n ℓ 1 x 1 x 2
(σ n ) * (h) = (σ ′ n ) * - b n a n J + o n→∞ (1) = (σ ′ n ) * + hβ 1 J + o n→∞ (1), (3.44) 
which concludes the proof taking into account (3.34).

To derive the limit of

σ 0 n * (α ′ 1,n (h), α ′ 2,n (h) 
), we need more information on the geometry of the high conductive phase. To this end, we study the following example.

A cross-like thin structure

We consider a bounded open subset Ω of R 2 with a Lipschitz boundary, a real sequence ε n converging to 0, and f ∈ H -1 (Ω) ∩ W -1,q (Ω) with q > 2. We define, for any h ∈ R, α 1 , β 1 > 0 and positive sequences t n ∈ (0, 1/2], α 2,n , β 2,n , a parametrized matrix-valued function Σ n (h) from the unit rectangular cell period Y := (-ℓ 2 , ℓ 2 ) × (-1 2 , 1 2 ), with ℓ ≥ 1, to R 2×2 , by (cf. figure 3.1)

Σ n (h) := α 2,n I 2 + β 2,n hJ in ω n := {(x 1 , x 2 ) ∈ Y | |x 1 |, |x 2 | ≤ t n } α 1 I 2 + β 1 hJ in Y \ ω n (3.45) 
Denoting again by Σ n (h) its periodic extension to R 2 , we finally consider the conductivity

σ n (h)(x) = Σ n (h) x ε n , x ∈ Ω, (3.46) 
and the associated homogenization problem:

P n -div σ n (h)∇u n = f in Ω u n = 0 on ∂Ω. (3.47) 
By virtue of Theorem 3.1 and Proposition 3.1, we focus on the study of the limit of

σ 0 n * α ′ 1,n (h), α ′ 2,n (h) .
Proposition 3.2 Let σ n (h) be the conductivity defined by (3.45) and (3.46) its homogenization problem (3.47). We assume that:

2t n (ℓ + 1)α 2,n -→ n→∞ α 2 > 0 and 2t n (ℓ + 1)β 2,n -→ n→∞ β 2 > 0. (3.48)
Then, the homogenized conductivity is given by

σ * (h) =     α 1 + α 2 2 + β 2 2 h 2 (ℓ + 1)α 2 -hβ 1 hβ 1 α 1 + α 2 2 + β 2 2 h 2 ℓ(ℓ + 1)α 2     .
Remark 3.4 The previous proposition does not respect exactly the framework defined at the beginning of this section because the period cell is not the unit square Y = (0, 1) 2 : we can nevertheless extend all this section to any type of period cells.

Remark 3.5 The condition (3.48) is a condition of boundedness in L 1 (Ω) 2×2 of σ n because |ω n | = 2t n (ℓ + 1) -4t 2 n ∼ 2t n (ℓ + 1),
which will ensure the convergence of σ 0 n * .

Proof of Proposition 3.2. In order to apply Proposition 3.1, we consider two positive sequences

α ′ 1,n (h), α ′ 2,n (h) satisfying lim n→∞ α ′ 1,n (h) = α 1 and α ′ 2,n (h) ∼ n→∞ α 2 2 + h 2 β 2 2 α 2 2 α 2,n . (3.49) 
We will study the homogenization of

σ ′ n := σ 0 n α ′ 1,n (h), α ′ 2,n (h) 
. To this end, consider a corrector W λ n = λ • x -X λ n in the Murat-Tartar sense (see, e.g., [START_REF] Murat | Topics in the Mathematical Modelling of Composite Materials[END_REF]) associated with

Σ ′ n := α ′ 2,n (h) I 2 in ω n = {(x 1 , x 2 ) ∈ Y | |x 1 |, |x 2 | ≤ t n } α ′ 1,n (h) I 2 in Y \ ω n (3.50)
and defined by

         div Σ ′ n ∇X λ n = div Σ ′ n λ in D ′ (R 2 ) X λ n is Y -periodic ˆY X λ n dy = 0. (3.51) 
On one hand, the extra diagonal coefficients of (σ ′ n ) * are equal to 0 because, as Σ ′ n is an even function on Y , we have, for i = 1, 2,

y i -→ W e i n (y) is an odd function, y i -→ W e j n (y) is an even function for i = j, which implies that y 1 -→ Σ ′ n ∇W e 1 n •∇W e 2
n is an odd function. Then, by symmetry of Y with respect to 0,

(σ ′ n ) * e i • e j = ˆY Σ ′ n ∇W e i n • ∇W e j
n dy = 0.

On the other hand, as Σ ′ n is isotropic, for the diagonal coefficients, we use the Voigt-Reuss inequalities (see, e.g., [START_REF] Jikov | Homogenization of Differential Operators and Integral Functionals[END_REF] p.44 or [START_REF] Mortola | Un problema di omogeneizzazione bidimensionale[END_REF]): for any i = 1, 2 and j = i,

(Σ ′ n e i • e i ) -1 -1 i j ≤ (σ ′ n ) * e i • e i ≤ Σ ′ n e i • e i -1 j -1 i (3.52)
where • i denotes the average with respect to y i at a fixed y j for j = i.

An easy computation gives, for the direction e 1 ,

(1 -2t n ) ℓ -2t n ℓα ′ 1,n (h) + 2t n ℓα ′ 2,n (h) -1 + 2t n ℓ ℓα ′ 2,n (h) -1 ≤ (σ ′ n ) * e 1 • e 1 and (σ ′ n ) * e 1 • e 1 ≤ ℓ ℓ -2t n (1 -2t n )α ′ 1,n (h) + 2t n α ′ 2,n (h) + 2t n α ′ 2,n (h) -1 
.

By (3.48) and (3.49), we have the convergence

lim n→∞ (σ ′ n ) * e 1 • e 1 = α 1 + α 2 2 + β 2 2 h 2 (ℓ + 1)α 2 .
A similar computation on the direction e 2 gives the asymptotic behavior:

lim n→∞ (σ ′ n ) * = lim n→∞ σ 0 n * α ′ 1,n (h), α ′ 2,n (h) =     α 1 + α 2 2 + β 2 2 h 2 (ℓ + 1)α 2 0 0 α 1 + α 2 2 + β 2 2 h 2 ℓ(ℓ + 1)α 2     .
(3.53)

Moreover, the matrix σ n (h) clearly satisfies all the hypothesis of Theorem 3.1. By Theorem 3.1 and (3.53), we have

lim n→∞ (σ n ) * (h) = lim n→∞ σ 0 n * α ′ 1,n (h), α ′ 2,n (h) + β 1 hJ =     α 1 + α 2 2 + β 2 2 h 2 (ℓ + 1)α 2 -hβ 1 hβ 1 α 1 + α 2 2 + β 2 2 h 2 ℓ(ℓ + 1)α 2     .
We finally apply Theorem 3.1 to get that σ * (h) = lim n→∞ (σ n ) * (h).

A three-dimensional fibered microstructure

In this section we study a particular two-phase composite in dimension three. One of the phases is composed by a periodic set of high conductivity fibers embedded in an isotropic medium (figure 4.1a). The conductivity σ n (h) is not symmetric due to the perturbation of a magnetic field.

First, describe the geometry of the microstructure. Let Y := -1 2 , 1 2 3 be the unit cube centered at the origin of R 3 . For r n ∈ 0, 1 2 , consider the closed cylinder ω n parallel to the x 3 -axis, of radius r n and centered in Y :

ω n := y ∈ Y | y 2 1 + y 2 2 ≤ r 2 n . (4.1) 
Let Ω = Ω × (0, 1) be an open cylinder of R 3 , where Ω is a bounded domain of R 2 with a Lipschitz boundary. For ε n ∈ (0, 1), consider the closed subset Ω n of Ω defined by the intersection with Ω of the ε n Y -periodic network in R 3 composed by the closed cylinders parallel to the x 3 -axis, centered on the points ε n k, k ∈ Z 2 , in the x 1 -x 2 plane, and of radius ε n r n , namely:

Ω n := Ω ∩ ν∈Z 3 ε n (ω n + ν). (4.2)
The period cell of the microstructure is represented in figure 4.1b.

(a) The fibers lattice

ε n ε n r n Ω n ∩ ε n (Y + ν) x 1 x 2
x 3 (b) The period cell We then define the two-phase conductivity by

σ n (h) = α 1 I 3 + β 1 E (h) in Ω \ Ω n α 2,n I 3 + β 2,n E (h) in Ω n , (4.3) 
where α 1 > 0, β 1 ∈ R, α 2,n > 0 and β 2,n are real sequences, and

E (h) :=   0 -h 3 h 2 h 3 0 -h 1 -h 2 h 1 0   , for h =   h 1 h 2 h 3   ∈ R 3 .
Our aim is to study the homogenization problem

P Ω,n -div(σ n (h)∇u n ) = f in Ω u n = 0 on ∂Ω. (4.4) 
Theorem 4.1 Let α 1 > 0, β 1 ∈ R, and let ε n , r n , α 2,n , β 2,n , n ∈ N, be real sequences such that ε n , r n > 0 converge to 0, α 2,n > 0, and

lim n→∞ ε 2 n | ln r n | = 0, lim n→∞ |ω n | α 2,n = α 2 > 0, lim n→∞ |ω n | β 2,n = β 2 ∈ R. (4.5)
Consider, for h ∈ R 3 , the conductivity σ n (h) defined by (4.3).

Then, there exists a subsequence of n, still denoted by n, such that, for any f ∈ H -1 (Ω) and any h ∈ R 3 , the solution u n of P Ω,n converges weakly in H 1 0 (Ω) to the solution u of

P Ω, * -div(σ * (h)∇u n ) = f in Ω u = 0 on ∂Ω, (4.6) 
where σ * (h) is given by 

σ * (h) = α 1 I 3 + α 3 2 + α 2 β 2 2 |h| 2 α 2 2 + β 2 2 h 2 3 e 3 ⊗ e 3 + β 1 E (h).
ω n := 3 j=1 y ∈ Y | i =j y 2 i ≤ r 2 n
and

Ω n := Ω ∩ ν∈Z 3 ε n (ω n + ν),
as represented in figure 4.2. Then, we derive the following homogenization conductivity: Remark 4. [START_REF] Bergman | Self-duality and the low field Hall effect in 2D and 3D metal-insulator composites. Percolation Structures and Processes[END_REF] We can check that when the volume fraction θ n = θ and the highly conducting phase of the conductivity α 2,n = α θ and β 2,n = β θ are independent of n, the explicit formula of [START_REF] Grabovsky | Exact relations for effective conductivity of fiber-reinforced conducting composites with the hall effect via a general theory[END_REF] denoted by σ * (θ, h), for the classical (since the period cell is now independent of n) periodically homogenized conductivity (see (3.4)) has a limit as θ → 0 when θα θ and θβ θ converge. Indeed, we may replace in the computations of [START_REF] Grabovsky | Exact relations for effective conductivity of fiber-reinforced conducting composites with the hall effect via a general theory[END_REF] the optimal Vigdergauz shape by the circular cross-section in the previous asymptotic regime. Therefore, Theorem 4.1 validates the double process characterized by the homogenization at a fixed volume fraction θ combined with the limit as θ → 0, by one homogenization process in which both the period and the volume fraction θ n = πr 2 n of the high conductivity phase tend to 0 as n → ∞.

σ * (h) = α 1 I 3 + 3 i=1 α 3 2 + α 2 β 2 2 |h| 2 α 2 2 + β 2 2 h 2 i e i ⊗ e i + β 1 E (h). ε n ε n r n Ω n ∩ ε n (Y + ν) x 1 x 2 x 3

Remark 4.4

The hypothesis on the convergence of ε 2 n | ln r n | (4.5) allows us to avoid nonlocal effects in dimension three (see [START_REF] Fenchenko | Asymptotic of solution of differential equations with strongly oscillating matrix of coefficients which does not satisfy the condition of uniform boundedness[END_REF][START_REF] Bellieud | Homogenization of elliptic problems in a fiber reinforced structure[END_REF]). These effects do not appear in dimension two as shown in [START_REF] Briane | Homogenization of non-uniformly bounded operators: Critical barrier for nonlocal effects[END_REF]. Therefore, we can make a comparison between dimension two and dimension three based on the strong field perturbation in the absence of nonlocal effects. which reduces to the simplified two-dimensional case when the symmetric part of the conductivity is independent of h 3 (i.e. σ 0 * in (2.40) does not depend on its second argument).

Proof of Theorem 4.1 The proof will be divided into four parts. We first prove the weak- * convergence in M(Ω) of σ n (h)∇u n in Ω n . Then we establish a linear system satisfied by the limits defined by

1 Ωn |ω n | ∂u n ∂x i -⇀ ξ i weakly- * in M(Ω).
Moreover, we deduce from Lemma 4.1 that

1 Ωn |ω n | ∂u n ∂x 3 -⇀ ∂u ∂x 3 weakly- * in M(Ω).
We finally calculate the homogenized matrix.

We first remark that, classically, the sequence of solutions u n of P Ω,n (see (4.4)) is bounded in

H 1 0 (Ω) because, since α 2,n diverges to ∞ : ||∇u n || 2 L 2 (Ω) 3 ≤ C ˆΩ(α 1 1 Ω\Ωn I 3 + α 2,n 1 Ωn I 3 )∇u n • ∇u n dx = ˆΩ σ n (h)∇u n • ∇u n dx.
By the Poincaré inequality, the previous inequality and (4.4) lead us to

||u n || 2 H 1 0 (Ω) ≤ C||∇u n || 2 L 2 (Ω) 3 ≤ C f, u n H -1 (Ω),H 1 0 (Ω) ≤ C||f || H -1 (Ω) ||u n || H 1 0 (Ω)
and then to

||u n || H 1 0 (Ω) ≤ C||f || H -1 (Ω)
. Thus, up to a subsequence still denoted by n, u n converges weakly to some function u in H 1 0 (Ω).

First step: Weak- * convergence in M(Ω) of the conductivity in the fibers 1 Ωn α 2,n I 3 +β 2,n E (h) ∇u n . We proceed as in [START_REF] Briane | Fibered microstructures for some nonlocal Dirichlet forms[END_REF] with a suitable oscillating test function. For R ∈ (0, 1/2), define the Y -periodic (independent of y 3 ) function V n by

V n (y 1 , y 2 , y 3 ) =        1 if y 2 1 + y 2 2 ≤ r n ln R -ln y 2 1 + y 2 2 ln R -ln r n if r n ≤ y 2 1 + y 2 2 ≤ R 0 if y 2 1 + y 2 2 ≥ R, for y ∈ Y,
and the rescaled function

v n (x) = V n x ε n , for x ∈ R 3 . (4.8)
In particular, by using the cylindrical coordinates and the fact that r n converges to 0, this function satisfies the inequalities

||v n || 2 L 2 (Ω) ≤ C||V n || 2 L 2 (Y ) = C ln R r n -2 πr 2 n + ˆ2π 0 ˆR rn r ln 2 R r drdθ = C ln R r n -2 π R 2 -r 2 n 2 -πr 2 n ln 2 R r n -π ln R r n ≤ C ln R r n -2 , ||∇v n || 2 L 2 (Ω) 3 ≤ C ε 2 n ||∇V n || 2 L 2 (Y ) 3 = C ε 2 n ln R r n -2 ˆ2π 0 ˆR rn 1 r drdθ ≤ C ε 2 n ln R r n -1
and, consequently

||v n || L 2 (Ω) + ε n ||∇v n || L 2 (Ω) 3 ≤ C ln R r n -1 -→ n→∞ 0. (4.9)
Let λ be a vector in R 3 perpendicular to the x 3 -axis. Define the Y -periodic function X n by ∇ X n = λ in ω n , such that X n ∈ D(Y ) and is Y -periodic, and the rescaled function X n by

X n (x) = ε n X n x ε n . (4.10)
In particular, X n satisfies

||X n || ∞ = ε n || X n || ∞ ≤ Cε n , ||∇X n || ∞ = ||∇ X n || ∞ ≤ C and ∇X n = λ in Ω n . (4.11)
We have, by (4.11) and (4.9),

||v n X n || H 1 (Ω) ≤ ||X n || ∞ ||v n || L 2 (Ω) + ||X n || ∞ ||∇v n || L 2 (Ω) 3 + ||∇X n || ∞ ||v n || L 2 (Ω) ≤ C ||v n || L 2 (Ω) + ε n ||∇v n || L 2 (Ω) 3 -→ n→∞ 0, which gives ∀ ϕ ∈ D(Ω), ϕ v n X n -→ n→∞ 0 strongly in H 1 0 (Ω). (4.12) 
Let ϕ ∈ D(Ω). By the strong convergence (4.12), we have

ˆΩ σ n (h)∇u n • ∇ ϕ v n X n dx = f, ϕ v n X n H -1 (Ω),H 1 0 (Ω) -→ n→∞ 0. (4.13) 
Let us decompose this integral which converges to 0, into the integral on the fibers set Ω n and the integral on its complementary:

ˆΩ σ n (h)∇u n • ∇ ϕ v n X n dx = ˆΩ\Ωn (α 1 I 3 + β 1 E (h))∇u n • ∇ ϕ v n X n dx (4.14a) + ˆΩn (α 2,n I 3 + β 2,n E (h))∇u n • ∇ ϕ v n X n dx. (4.14b)
The expression (4.14a) converges to 0 since, by the Cauchy-Schwarz inequality, the boundedness of u n in H 1 0 (Ω) and (4.12), we have

ˆΩ\Ωn (α 1 I 3 + β 1 E (h))∇u n • ∇ ϕ v n X n dx ≤ |α 1 I 3 + β 1 E (h)| ||∇u n || L 2 (Ω) 3 ||ϕ v n X n || H 1 0 (Ω) -→ n→∞ 0.
(4.15) Consequently, as v n = 1 and ∇X n = λ on Ω n , by (4.13), (4.14a), (4.14b) and (4.15), we have

ˆΩn σ n (h)∇u n • λ ϕ dx + ˆΩn σ n (h)∇u n • ∇ϕ X n dx -→ n→∞ 0. (4.16)
To prove the convergence to 0 of the right term, we now show that 1 Ωn α 2,n I 3 + β 2,n E (h) ∇u n is bounded in L 1 (Ω) 3 . We have, by the Cauchy-Schwarz inequality, (4.5) and the classical equivalent

|Ω n | ∼ n→∞ |Ω| |ω n |, ˆΩn α 2,n I 3 + β 2,n E (h) ∇u n dx 2 ≤ I 3 + α -1 2,n β 2,n E (h) 2 |Ω n | α 2,n ˆΩn α 2,n |∇u n | 2 dx ≤ C ˆΩ σ n (h)∇u n • ∇u n dx ≤ C ||f || H -1 (Ω) ||u n || H 1 0 (Ω) .
This combined with the boundedness of u n in H 1 0 (Ω) implies that 1 Ωn α 2,n I 3 + β 2,n E (h) ∇u n is bounded in L 1 (Ω) 3 . This bound and the uniform convergence to 0 of X n (see (4.11)) imply the convergence to 0 of the right term of (4.16), hence ˆΩn α 2,n I 3 + β 2,n E (h) ∇u n • λ ϕ dx -→ n→∞ 0.

We rewrite this condition as Therefore, putting λ = e 1 , e 2 in this limit and using condition (4.5), we obtain the linear system

∀ λ ⊥ e 3 ,
α 2 ξ 1 + β 2 h 2 ξ 3 -β 2 h 3 ξ 2 = 0 α 2 ξ 2 + β 2 h 3 ξ 1 -β 2 h 1 ξ 3 = 0 in M(Ω), which is equivalent to          ξ 1 = β 2 2 h 1 h 3 -α 2 β 2 h 2 α 2 2 + β 2 2 h 2 3 ξ 3 ξ 2 = β 2 2 h 2 h 3 + α 2 β 2 h 1 α 2 2 + β 2 2 h 2 3 ξ 3 in M(Ω). ( 4 

.19)

Third step: Proof of ξ 3 = ∂u ∂x 3 .

We need the following result which is an extension of the estimate (3.13) of [START_REF] Briane | Semi-strong convergence of sequences satisfying a variational inequality[END_REF]. The statement of this lemma is more general than necessary for our purpose but is linked to Remark 4.1. Combining this estimate and the first condition of (4.5) with

||∇(u n ϕ)|| L 2 (Ω) 3 ≤ ||∇u n || L 2 (Ω) 3 ||ϕ|| ∞ + ||u n || L 2 (Ω) ||∇ϕ|| ∞ ≤ C, it follows that 1 Ωn |ω n | u n -u n ⇀ 0 in D ′ (Ω).
This convergence does not hold true when ε 2 n | ln r n | converges to some positive constant. Under this critical regime, non-local effects appear (see Remark 4.4).

Finally, as 1 Ωn does not depend on the x 3 variable, we have

1 Ωn |ω n | ∂u n ∂x 3 = ∂ ∂x 3 1 Ωn |ω n | u n = ∂ ∂x 3 1 Ωn |ω n | u n -u n + ∂u n ∂x 3 ⇀ ∂u ∂x 3 = ξ 3 in D ′ (Ω).
Fourth step: Derivation of the homogenized matrix.

We now study the limit of σ n (h)∇u n in order to obtain σ * (h). We have 

σ

Proposition 2 . 2

 22 Let Ω be a bounded open subset of R 2 such that |∂Ω| = 0. Let ω n , n in N, be a sequence of open subsets of Ω with characteristic function χ n , satisfying θ n := |ω n | < 1, θ n converges to 0, and

Theorem 2 . 2

 22 Let Ω be a bounded open subset of R 2 such that |∂Ω| = 0. Let ω n , n ∈ N, be a sequence of open subsets of Ω and denote by χ n their characteristic function. We assume that θ n = |ω n | < 1 converges to 0 and χ n θ n H( --⇀ a ∈ L ∞ (Ω) weakly- * in M(Ω).
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 31 Figure 3.1: The period of the cross-like thin structure
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 41 Figure 4.1: The fibered structure in dimension 3

(4. 7 ) 4 . 1 1 2Remark 4 . 2

 741142 Remark Theorem 4.1 can be actually extended to fibers with a more general cross-section. More precisely, we can replace the disk r n D of radius r n by the homothetic r n Q of any connected open set Q included in the unit disk D, such that the present fiber ω n is replaced by the new fiberr n Q × -1 2 ,in the period cell of the microstructure. On the one hand, this change allows us to use the same test function v n (4.8) defined in the proof of Theorem 4.1, since v n remains equal to 1 in the new fibers due to the inclusion Q ⊂ D. On the other hand, Lemma 4.1 allows us to replace the disk D by the open set Q ⊂ D. We can also extend the result of Theorem 4.1 to an isotropic fibered microstructure composed by three similar periodic fibers lattices arranged in the three orthogonal directions e 1 , e 2 , e 3 , namely

Figure 4 . 2 :

 42 Figure 4.2: The period cell of the isotropic fibered structure in dimension 3

Remark 4 . 5 3 0

 453 If h = h 3 e 3 , the homogenized conductivity becomes σ * (h) = α 1 I 3 + α 2 e 3 ⊗ e 3 + β 1 h

Lemma 4 . 1 ≤ 3 .

 413 Let Q be a non-empty connected open subset of the unit disk D. Then, there exists a constant C > 0 such that any function U ∈ H 1 (Y ) satisfies the estimate1 |r n Q| ˆrnQ×(-1 2 , 1 2 ) U dy -ˆY U dy ≤ C | ln r n | ||∇U || L 2 (Y ) 3 . (4.20) Proof of Lemma 4.1. Let U ∈ H 1 (Y ). To prove Lemma 4.1, we compare the average value of U on r n Q and r n D. Denoting y = (y 1 , y 2 ), we have, for any y 3 ∈ -1 2 , 1 2 , rnQ U ( y, y 3 ) d y -rnD U ( y, y 3 ) d y = Q U (r n y, y 3 ) d y -D U (r n y, y 3 ) d y ≤ Q U (r n y, y 3 ) -D U (r n y, y 3 ) d y d y, and, since Q ⊂ D, rnQ U ( y, y 3 ) d y -rnD U ( y, y 3 ) d y ≤ |D| |Q| D U (r n y, y 3 ) -D U (r n y, y 3 ) d y d y y 3 ) d y, the last inequality being a consequence of the Poincaré-Wirtinger inequality. Hence, integrating the previous inequality with respect to y 3 ∈ -1 2 , 1 2 and applying the Cauchy-Schwarz inequality, we obtain that C||∇U || L 2 (Y ) This combined with the estimate (3.13) of [21], i.e. (4.20) for Q = D, and the fact that | ln r n | diverges to ∞ give the thesis. Let ϕ ∈ D(Ω). A rescaling of (4.20) with Q = D implies the inequality 1 |ω n | ˆΩn u n ϕ dx -ˆΩ u n ϕ dx ≤ Cε n | ln r n | ||∇(u n ϕ)|| L 2 (Ω) 3 .

  .37) Finally, by combining (2.31), (2.32), (2.34) and (2.37), we obtain, for any simply connected open subset ω of Ω such as ω ⊂⊂ Ω,

  Let Ω be a bounded open subset of R 2 with a Lipschitz boundary. Consider a highly oscillating sequence of matrix-valued functions σ n satisfying (3.1), (3.2), (3.3) and the constant matrix (σ n ) * defined by(3.4). We assume that
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	Theorem 3.1	
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  Proposition 3.1 Let χ n be a sequence of characteristic functions of subsets of Y , α 1 , α 2 > 0, a positive sequence α 2,n , β 1 , β 2 ∈ R, and a sequence β 2,n such that lim

	n→∞	β 2,n α 2,n	=	β 2 α 2	.	(3.29)

n→∞ α 2,n = ∞, lim inf n→∞ |β 2,n -β 1 | > 0, and lim
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  n (h)∇u n • e 1 = 1 Ω\Ωn α 1 ∂u n ∂x 1 -β 1 h 3 ∂u n ∂x 2 + β 1 h 2 ∂u n ∂x 3 +α 2,n |ω n | 1 Ωn |ω n | ∂u n ∂x 1 -β 2,n h 3 |ω n | 1 Ωn |ω n | ∂u n ∂x 2 + β 2,n h 2 |ω n | 1 Ωn |ω n |Hence, passing to the weak- * limit in M(Ω) this equality and using the linear system (4.[START_REF] Briane | An antisymmetric effective hall matrix[END_REF],σ n (h)∇u n • e 1 weakly- * converges in M(Ω) to + α 2 ξ 1 -β 2 h 3 ξ 2 + β 2 h 2 ξ 3 = α 1 I 3 + β 1 E (h) ∇u • e 1 + α 2 β 2 2 h 1 h 3 -α 2 β 2 h 2 α 2 2 + β 2 2 h 2 3 ξ 3 -β 2 h 3 β 2 2 h 2 h 3 + α 2 β 2 h 1 α 2 2 + β 2 2 h 2 3 ξ 3 + β 2 h 2 ξ 3 = α 1 I 3 + β 1 E (h) ∇u • e 1 + α 2 (β 2 2 h 1 h 3 -α 2 β 2 h 2 ) -β 2 h 3 (β 2 2 h 2 h 3 + α 2 β 2 h 1 ) + β 2 h 2 (α 2 (h)∇u n • e 1 -⇀ α 1 I 3 + β 1 E (h) ∇u • e 1 weakly- * in M(Ω). (4.22)The same calculus leads us toσ n (h)∇u n • e 2 -⇀ α 1 I 3 + β 1 E (h) ∇u • e 2 weakly- * in M(Ω).(4.23)We have, for the last direction e 3 ,σ n (h)∇u n • e 3 ⇀ α 1 ∂u ∂x 3 -β 1 h 2 ∂u ∂x 1 + β 1 h 1 ∂u ∂x 2 + α 2 ξ 3 + β 2 h 2 ξ 1 -β 2 h 1 ξ 2 weakly- * in M(Ω). + α 2 ξ 3 -β 2 h 2 ξ 1 + β 2 h 1 ξ 2 = α 1 I 3 + β 1 E (h) ∇u • e 3 + α 2 ξ 3 -β 2 h 2 β 2 2 h 1 h 3 -α 2 β 2 h 2
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							∂u n ∂x 3	.
	α 1	∂u ∂x 1	-β 1 h 3	∂u ∂x 2	+ β 1 h 2	∂u ∂x 3
							α 2 2 + β 2 2 h 2 3	2 + β 2 2 h 2 3 )	ξ 3 ,
							=0
	that is					
	σ n Hence, again with the linear system (4.19),
	α 1	∂u ∂x 3	-β 1 h 2	∂u ∂x 1	+ β 1 h 1	∂u ∂x 2
							α 2 2 + β 2 2 h 2 3	ξ 3 + β 2 h 1	β 2 2 h 2 h 3 + α 2 β 2 h 1 α 2 2 + β 2 3 2 h 2	ξ 3 .
	Finally, by the previous equality, (4.22) and (4.23), we get that
				σ * (h) = α 1 I 3 +	α 3 2 + α 2 β 2 2 |h| 2 α 2 2 + β 2 2 h 2

3 e 3 ⊗ e 3 + β 1 E (h).
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