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Abstract

Homogenized laws for sequences of high-contrast two-phase non-symmetric conductivities per-
turbed by a parameter h are derived in two and three dimensions. The parameter h characterizes
the antisymmetric part of the conductivity for an idealized model of a conductor in the presence
of a magnetic field. In dimension two an extension of the Dykhne transformation to non-periodic
high conductivities permits to prove that the homogenized conductivity depends on A through
some homogenized matrix-valued function obtained in the absence of a magnetic field. This
result is improved in the periodic framework thanks to an alternative approach, and illustrated
by a cross-like thin structure. Using other tools, a fiber-reinforced medium in dimension three
provides a quite different homogenized conductivity.

Keywords: homogenization, high-contrast conductivity, magneto-transport, strong field, two-phase
composites.

AMS classification: 35B27, 74Q20

1 Introduction

The mathematical theory of homogenization for second-order elliptic partial differential equations
has been widely studied since the pioneer works of Spagnolo on G-convergence [10], of Murat, Tartar
on H-convergence [37, 38|, and of Bensoussan, Lions, Papanicolaou on periodic structures [2], in the
framework of uniformly bounded (both from below and above) sequences of conductivity matrix-
valued functions. It is also known since the end of the seventies [24, 31] (see also the extensions
[1, 22, 11, 32]) that the homogenization of the sequence of conductivity problems, in a bounded open
set Q of R3,

{ div (6,Vu,) = f in Q (1.1)
u, =0 on 012,

with a uniform boundedness from below but not from above for ¢,, may induce nonlocal effects.
However, the situation is radically different in dimension two since the nature of problem (1.1) is
shown [10, 13] to be preserved in the homogenization process provided that the sequence o, is
uniformly bounded from below.

H-convergence theory includes the case of non-symmetric conductivities in connection with the
Hall effect [28] in electrodynamics (see, e.g., [33, 39]). Indeed, in the presence of a constant mag-
netic field the conductivity matrix is modified and becomes non-symmetric. Here, we consider an
idealized model of an isotropic conductivity o(h) depending on a parameter h which characterizes
the antisymmetric part of the conductivity in the following way:



e in dimension two,

o(h) =aly+phJ, J:= (Y73, (1.2)
where o, 3 are scalar an h € R,

e in dimension three,

o(h) = als + p&(h), &(h):= (_;%2 hoff’ —hgl> (1.3)

where «, ( are scalar and h € R3.

Since the seminal work of Bergman [3] the influence of a low magnetic field in composites has been
studied for two-dimensional composites [34, 4, 17|, and for columnar composites [7, 5, 8, 26, 27].
The case of a strong field, namely when the symmetric part and the antisymmetric part of the
conductivity are of the same order, has been also investigated [0, 9]. Moreover, dimension three may
induce anomalous homogenized Hall effects |20, 18, 19] which do not appear in dimension two [17].

In the context of high-contrast problems the situation is more delicate when the conductivities
are not symmetric. An extension in dimension two of H-convergence for non-symmetric and non-

uniformly bounded conductivities was obtained in [I14] thanks to an appropriate div-curl lemma.
More recently, the Keller, Dykhne [30, 23| two-dimensional duality principle which claims that the
mapping
AT
A et A (1.4)
is stable under homogenization, was extended to high-contrast conductivities in [16]. However,

the homogenization of both high-contrast and non-symmetric conductivities has not been precisely
studied in the context of the strong field magneto-transport especially in dimension three. In this
paper we establish an effective perturbation law for a mixture of two high-contrast isotropic phases
in the presence of a magnetic field. The two-dimensional case is performed in a general way for
non-periodic and periodic microstructures. It is then compared to the case of a three-dimensional
fiber-reinforced microstructure.

In dimension two, following the modelization (1.2), consider a sequence o, (h) of isotropic two-
phase matrix-valued conductivities perturbed by a fixed constant h € R, and defined by

O'n(h) = (1 — Xn)(OqIQ + G1h J) + Xn((XQ’nIQ + ﬂgmh J), (1.5)

where x,, is the characteristic function of phase 2, with volume fraction 6,, — 0, ay > 0, §; are
the constants of the low conducting phase 1, and ag, — 00, B2, are real sequences of the highly
conducting phase 2 where (35, is possibly unbounded. The coefficients a; and (1, respectively
g, and By, also have the same order of magnitude according to the strong field assumption.
Assuming that the sequence 6, 'y, converges weakly-* in the sense of the Radon measures to a
bounded function, and that 0,3, 0,32, converge respectively to constants ag > 0, 2, we prove
(see Theorem 2.2) that the perturbed conductivity o, (h) converges in an appropriate sense of H-
convergence (see Definition 1.1) to the homogenized matrix-valued function

oi(h) = 0% (a1, a2 + a3 ' B3 h?) + Bih J, (1.6)

for some matrix-valued function 0¥ which depends uniquely on the microstructure y,, in the absence
of a magnetic field, and is defined for a subsequence of n. The proof of the result is based on a
Dykhne transformation of the type

Ap ((pnAn + QnJ)il + TnJ)_l, (17)

which permits to change the non-symmetric conductivity o,,(h) into a symmetric one. Then, extend-
ing the duality principle (1.4) established in [16], we prove that transformation (1.7) is also stable
under high-contrast conductivity homogenization.



In the periodic case, i.e. when o,(h)(-) = 3,(-/e,) with 3, Y-periodic and €, — 0, we use an
alternative approach based on an extension of Theorem 4.1 of [13] to &, Y-periodic but non-symmetric
conductivities (see Theorem 3.1). So, it turns out that the homogenized conductivity o.(h) is the
limit as n — oo of the constant H-limit (0, ). associated with the periodic homogenization (see,
e.g., [2]) of the oscillating sequence ¥, (-/¢) as ¢ — 0 and for a fixed n. Finally, the Dykhne
transformation performed by Milton [34] (see also [35], Chapter 4) applied to the local periodic
conductivity ¥, and its effective conductivity (o), allows us to recover the perturbed homogenized
formula (1.6). An example of a periodic cross-like thin structure provides an explicit computation
of o,(h) (see Proposition 3.2).

To make a comparison with dimension three we restrict ourselves to the &,Y-periodic fiber-
reinforced structure introduced by Fenchenko, Khruslov [21] to derive a nonlocal effect in homog-
enization. However, in the present context the fiber radius 7, is chosen to be super-critical, i.e.
7, — 0 and €2|In7,| — 0, in order to avoid such an effect. Similarly to (1.5) and following the
modelization (1.3), the perturbed conductivity is defined for h € R3, by

on(h) == (1= xn) (o1 Is + B1 E(R)) + xn (2,03 + B2, E(h)), (1.8)

where x,, is the characteristic function of the fibers which are parallel to the direction eg. The form
of (1.8) ensures the rotational invariance of o, (h) for those orthogonal transformations which leave
h invariant. Under the same assumptions on the conductivity coefficients as in the two-dimensional
case, with 6,, = 7w r2, but using a quite different approach, the homogenized conductivity is given by
(see Theorem 4.1)

Oc% + a9 ,322 ‘h’2
a3 + B3h3
The difference between formulas (1.6) and (1.9) provides a new example of gap between dimension
two and dimension three in the high-contrast homogenization framework. As former examples of
dimensional gap, we refer to the works [17, 20| about the 2d positivity property, versus the 3d non-
positivity, of the effective Hall coefficient, and to the works [13, 24| concerning the 2d lack, versus

the 3d appearance, of nonlocal effects in the homogenization process.

O'*(h) =a1l3 + < > 63®€3+,@1g(h). (1.9)

The paper is organized as follows. Section 2 and 3 deal with dimension two. In Section 2 we
study the two-dimensional general (non-periodic) case thanks to an appropriate div-curl lemma. In
Section 3 an alternative approach is performed in the periodic framework. Finally, Section 4 is
devoted to the three-dimensional case with the fiber-reinforced structure.

Notations

e ) denotes a bounded open subset of R%;
e I; denotes the unit matrix in R%?  and J := ((1) *01);

e for any matrix A in R*? AT denotes the transposed of the matrix A, A® denotes its symmetric
part;

o for h € R?, &(h) denotes the antisymmetric matrix in R3*3 defined by &(h)x := h x , for
r € R3;

e for any A, B € R4 A < B means that for any £ € R? A¢ - ¢ < B¢ - €; we will use the fact
that for any invertible matrix A € R4 A > al; = A~ < a 'y

e | - | denotes both the euclidean norm in R% and the subordinate norm in R?*%;

e for any locally compact subset X of R? M(X) denotes the space of the Radon measures
defined on X;



e for any a, 8 > 0, M(a, §;9Q) is the set of the invertible matrix-valued functions A : Q — R*4
such that

VEeRY, A@)E-€>alf)? and AN z)E-€> 87N ae inQ (1.10)
e ( denotes a constant which may vary from a line to another one.
In the sequel, we will use the following extension of H-convergence and introduced in [16]:

Definition 1.1 Let oy, and B, be two sequences of positive numbers such that oy, < B,, and let Ay,
be a sequence of matriz-valued functions in M(om, Bn; ) (see (1.10)).

The sequence A, is said to H(M(Q)?)-converge to the matriz-valued function A, if for any
distribution f in H—*(Q), the solution u, of the problem

div (ApVuy,) = f in
u, =0 on 09,

satisfies the convergences

Uy — U in HY ()
A Vu, — ANVu wedkly-+ in M(Q)?

where u s the solution of the problem

div(AVu)=f inQ
u=0 on 0.

We now give a notation for H (M (£2)?)-limits of high-contrast two-phase composites. We consider
the characteristic function y,, of the highly conducting phase, and denote w,, := {x, = 1}.

Notation 1.1 A sequence of isotropic two-phase conductivities in the absence of a magnetic field is
denoted by

Jg(al,naaln) = (1 - Xn)al,nI2 + XnOQ,nIQa (111)
with
lim a1, =1 >0 and lim |wy|az, =a >0, (1.12)
n—o0 n—oo

and its H(M(Q)?)-limit is denoted by 0(ay, az).

2 A two-dimensional non-periodic medium

2.1 A div-curl approach

We extend the classical div-curl lemma.

Lemma 2.1 Let Q be a bounded open subset of R%2. Let a > 0, let a € L™(Q) and let A, be a
sequence of matriz-valued functions in L>(Q)**? (not necessarily symmetric) satisfying

det A,
det Ag

Ap > aly ae inQ  and |AY| — a € L™(Q) weakly-+ in M(). (2.1)

Let &, be a sequence in L?()? and v, a sequence in H*(Q) satisfying the following assumptions:
(i) &, and vy, satisfy the estimate

/Q A7, Eude + [[on |y < C- (2.2)

4



(ii) &, satisfies the classical condition
div &, is compact in H™(Q). (2.3)

Then, there exist & in L*(Q)? and v in H'(Q) such that the following convergences hold true up to a
subsequence

£n — & weakly-+ in M(Q)?>  and Vv, = Vo weakly in L*(Q)>. (2.4)
Moreover, we have the following convergence in the distribution sense

&n - Vo, = & Vo weakly in 2' ().

Proof of Lemma 2.1. The proof consists in considering the "good-divergence" sequence &, as a
sum of a compact sequence of gradients Vu,, and a sequence of divergence-free functions JVz,. We
then use Lemma 3.1 of [16] to obtain the strong convergence of z, in L} (). Finally, replacing &,
by Vu, + JVz,, we conclude owing to integration by parts.

First step: Proof of convergences (2.4).

An easy computation gives

—1\S -1 o detAn s
(o) = e, e

The sequence &, is bounded in L!(€2)? since the Cauchy-Schwarz inequality combined with the
weak-* convergence of (2.1), (2.2) and (2.5) yields
det A,

(/Q €0 ] dx)QS/S)‘((Agl)L‘?)l dx/Q(A,:l)sfn'fn dx:/ﬂdetA% |A3 | dx/QAr—llgn.gn doe < C.

Therefore, &, converges up to a subsequence to some ¢ € M(£2)? in the weak-* sense of the measures.
Let us prove that the vector-valued measure ¢ is actually in L?(Q)2. Again by the Cauchy-Schwarz
inequality combined with (2.1), (2.2) and (2.5) we have, for any ® € %,(Q)?,

/fn-q) dx
Q
1 1
4 1 1 1
< lim sup </ det A, |A3||®|? dx) i (/ ATt - & dx) i <C </ a|®|* d:c> : ,
n—oo \Jq det A3 Q Q

which implies that £ is absolutely continuous with respect to the Lebesgue measure. Since a € L™ (),

we also get that
' / &P dx
Q

hence ¢ € L?(Q2)2. Therefore, the first convergence of (2.4) holds true with its limit in L?(2)2. The
second one is immediate.

/Qf(dx) : @‘ = lim

n—o0

< ||®@]|12(0)2

Second step: Introduction of a stream function.
By (2.3), the sequence u,, in HZ(Q) defined by u, := A~ (div &,) strongly converges in Hg(Q):

u, — u in HY(Q). (2.6)

Let w be a regular simply connected open set such that w CC (2. Since by definition &, — Vu, is a
divergence-free function in L2(Q)2, there exists (see, e.g., [25]) a unique stream function 2, € H'(w)
with zero w-average such that

&, = Vu, +JVz, ae. inw. (2.7)



Third step: Convergence of the stream function z,.

Since Vu, is bounded in L?(2)? by the second step, &, is bounded in L'(Q)? by the first step
and 2, has a zero w-average, the Sobolev embedding of Wh!(w) into L?*(w) combined with the
Poincaré-Wirtinger inequality in w implies that z, is bounded in L?(w) and thus converges, up to a
subsequence still denoted by n, to a function z in L?(w).

Moreover, let us define

The Cauchy-Schwarz inequality gives
/ S AVz, - V2, do = / J AN IV 2, - V2, do
= /(Anl)sJVzn - JVz, dx

(Ar_zl)s [gn - Vun] : [ﬁn — Vun] dz

I
e

IN

—

2 [ (A1) - & da + 2/(A;1)Svun -V, dz

w

=2/ Al ¢, dz + 2/ AWy, - Va, dz.

w
The first term is bounded by (2.2) and the last term by the inequality A,;! < a7l and the
convergence (2.6). Therefore, the sequences v, := z, and, by (2.14), S,, satisfy all the assumptions
of Lemma 3.1 of [16] since, by (2.5),

det A,
= Ay
Sn det A3 S A
Then, we obtain the convergence
2y — 2 strongly in L (w). (2.8)
Moreover, the convergence (2.6) gives
§=Vu+JVz in Z'(w). (2.9)

Fourth step: Integration by parts and conclusion.

We have, as JVu, is a divergence-free function,
&n - Vo, = (Vu, + JV2z,) - Vo, = Vuy, - Vo, — div (2, JVy,) . (2.10)

The strong convergence of Vu, in (2.6), the second weak convergence of (2.4) justified in the first
step and (2.8) give

Vu, - Vu, —div (2, JVv,) — Vu- Vv —div (2JVv) in 2'(w). (2.11)

We conclude, by combining this convergence with (2.10), (2.9) and integrating by parts, to the
convergence

&n - Vo, — Vu - Vo —div (2JVv) = (Vu+ JVz) - Vo = £ - Vo weakly in 2'(w).
for an arbitrary open subset w of €. O

For the reader’s convenience, we first recall in Theorem 2.1 below the main result of [16] con-
cerning the Keller duality for high contrast conductivities. Then, Proposition 2.1 is an extension of
this result to a more general transformation.



Theorem 2.1 ([16]) Let Q be a bounded open subset of R? such that |0 = 0. Let o > 0, let
Bn, n € N be a sequence of real numbers such that B, > «, and let A, be a sequence of matriz-
valued functions (not necessarily symmetric) in M(c, B,;Q). Assume that there exists a function

a € L>®(Q) such that
det A,

det A3

Then, there exist a subsequence of m, still demoted by n, and a matriz-valued function A, in

M(a, B;82), with B = 2|[a||p~(q), such that

|AY| — @ weakly-+ in M(Q). (2.12)

H(M(Q)? T  H(M()?2 T
A, (—(\))A* and A, (4())/1*

det A, det A~

(2.13)

Proposition 2.1 Let Q be a bounded open subset of R? such that |0 = 0. Let p,, ¢, and 7y,
n € N be sequences of real numbers converging respectively to p > 0, q and 0. Let a > 0, let 3,
n € N be a sequence of real numbers such that B, > «, and let A, be a sequence of matriz-valued
functions in M(a, Br; Q) (not necessarily symmetric) satisfying

det A,
rnAy is bounded in L°(Q)**?  and dzt I |AS| — a € L™(Q) weakly-x in M(), (2.14)
and that
B, = ((pnAn + g )+ rnJ)fl is a sequence of symmetric matrices. (2.15)

Then, there exist a subsequence of m, still denoted by m, and a matriz-valued function A, in
M(a, 8;92), with B = 2||a||pe~(q), such that

H(M(2)?) _1 HM(Q)?)
A, — A, and ((pnAn—l—an)*l—i—rnJ) RN pA, +qJ. (2.16)

Remark 2.1 Proposition 2.1 completes Theorem 2.1 performed with the transformation
AT
det A
to other Dykhne transformations of type (see [75], Section 4.1):

Ar—s =J A7l (2.17)

A (pA+q)) 1) = (pA+¢J) (1 = rq) Lo+ rpJ A) ™ (2.18)

Remark 2.2 The convergence of r, to v = 0 is not necessary but sufficient for our purpose. If
r # 0, the different convergences are conserved but lead us to the expression

pA, + qJ = B, ((1 —qr)ls+p rJA*). (2.19)

Proof of Proposition 2.1. The proof is divided into two steps. In the first step, we use Lemma
2.1 to show the H(M(Q)?)-convergence of A, := p,A, + ¢.J to pA, + ¢J. In the second step, we
build a matrix ¢),, which will be used as a corrector for B,, and then use again Lemma 2.1.

First step: A, = pAy +qJ.
First of all, thanks to Theorem 2.2 [16], we already know that, up to a subsequence still denoted

by n, A, H(M(Q)?)-converges to A,. We consider a corrector P, associated with A, in the sense
of Murat-Tartar (see, e.g., [35]), such that, for A € R?, P,A = Vw) is defined by

(2.20)

div(A,Vw)) = div(A,V(A-z)) inQ
w) =Xz on 02



Again with Theorem 2.2 of [16] and Definition 1.1, we know that P,\ converges weakly in L%(0)?
to A and A, P,\ converges weakly-* in M(2) to A\,
Since, for any A, u € R?,

o[Vl By < [ AnVut-Vut do = [ AVl do < 2allzeioy il 19029020
Q Q

and
/ AZYA V) - A, V) do = / A, Vw) - V) dz,
Q Q

the sequences &, := A, Vw) and v,, := wh satisfy (2.2) and (2.3). This combined with (2.14) implies
that we can apply Lemma 2.1 to obtain

VA\peR, AP\ Py — A -pin 2'(Q). (2.21)

We denote gn = pnAn + ¢nJ and consider §,, such that 6,J := A, — A;. Then, the matrix ﬁn
satisfies _
Ané - € = pnAng - € > ppal¢. (2.22)

Moreover,
det A, = p2 det A> + (pndp + qn)> < p2(det A + 262) + 24> < 2p> det A, + 2¢2 < C det Ay,
the last inequality being a consequence of A,, > als. This inequality gives, by (2.14),

det Zn det A,,

det A,
" ———— A3 < C
p%detApr‘ nl = det A3

det A3

A3 = Azl <c. (2.23)

Then by (2.22), (2.23) and [10] again, up to a subsequence still denoted by n, A, HM(Q)?)-
converges to A, and we have, by the classical div-curl lemma of [38] for JP,\ - P,p and (2.21),

2'(Q)
V)\,,U,ER, (pnAn+QnJ)Pn)\Pnﬂ:pnAnPn)\PnM+QnJPn)\PnM — pA*)",U'"i_qJ)",U'a

that can be rewritten N
A, =pA, + qJ.

Second step: By, = A,.
Let 6 € €1() and P, a corrector associated with A,, such that, for A € R, P\ = V& is
defined by

{div(Anvwg) = div(A.V(0A-2)) inQ (2.24)

wy =0 on 0f).

By Definition 1.1, we have
wy — O\-x weakly in H{(Q),
(2.25)

ANV@T — A V(O -z)  weakly-* in M(Q)2.
Let us now consider B,, = (ﬁ; Ly J )_1. B,, is symmetric and so is its inverse :

Byt = A o d = (At 4, ) = (A7)0

n

We then have, by a little computation (like in (2.5)) and (2.23),

det B,
det B3

~ s\l det A, ~,
Bl = 18 = | ((A)) | = oA < e (226)



For any & € R?, the sequence v, := (I + rnjfln)—lg satisfies, by (2.14),

€] < <1 + HrngnHLOO(Q)QXQ) n| < (1 +pn"rnAn"L°°(Q)2X2 + Qnrn) lvn| < (1 + O)val,
hence

Bngf = ;{nyn(l"i_rnjgn)yn - gn”n'yn - pnAnVn'Vn 2 pna‘yn‘z Z (0% 9 ‘5’2 2 0’5‘2 (227)

Pn
1+0)
with C' > 0. Therefore, with (2.27) and (2.26), again by Theorem 2.2 of [1(], up to a subsequence
still denoted by n, B,, H(M(Q)?)-converges to Bi.

Let ¢ € €}(Q) and R, be a corrector associated to B, such that, for u € R?, R,u = Vol is
defined by

div (B, V) = div(B.V (Yu - x in
( ) (B:V( ) (2.28)
vh = on 0f).
By Definition 1.1, we have the convergences
vh — Y- x weakly in H}(Q),
o) (2.29)
B,Vuvh — B.V(ypu-x)  weakly-+ in M(Q2)2.

Let us define the matrix @, := (I +r,J Kn)ﬁn We have
BuQn = (A 4+ 1m0 0) M + 1 J AP, = (A +rp ) N (A + 1 ) APy = ApP,. (2.30)
We are going to pass to the limit in 2’(Q) the equality given by (2.30) and the symmetry of B,:
ApPo) - Ryppt = BpQu - Ropt = Qu - By Ry 1. (2.31)

On the one hand, A, satisfies (2.1) by (2.22) and (2.23). The sequences &, := A, P\ and v, := vl
satisfy the hypothesis (2.3) by (2.24) and (2.2) because

o o
[ ) 60 do+ lnlligey = [ DBk Pod do -+ oy do < C

by (2.24) and the convergences (2.29) and (2.25). The application of Lemma 2.1, (2.25) and (2.29)
give the convergence

AP\ Ryp — A*V(OX-z) - V(¢pp-z) in Z'(Q). (2.32)
On the other hand, we have the equality
Qu) - BpRop = BuRuji - Po) + BuRpjt - 1o Ap By, (2.33)

The matrix B, satisfies (2.1) by (2.27) and (2.26). The sequences &, := By, R,u and v, := W, satisfy
the hypothesis (2.3) by (2.28) and (2.2) of Lemma 2.1 because

—1 ~
/Q(Bn) &n - &n dz + [vall g3 (@) Z/QBanu-Rnu dz + [[@]| () dz < C

by (2.28) and the convergences (2.25) and (2.29). The application of Lemma 2.1, (2.25) and (2.29)
give the convergence

BuRpp - PoA — B,V (Yp-z) - V(OA-z) in Z'(). (2.34)



The convergence of the right part of (2.33) is more delicate. The demonstration is the same as
for Lemma 2.1. Let w be a simply connected open subset of {2 such as w CC . The function
AP\ — AV (OX - z) is divergence-free and we can introduce a function z such as

AP\ = ANV(ON-2)+ IV, (2.35)
A~ 0 strongly in L (w). (2.36)

“n

The equality

B Rt -t Ay PaX = 1 BpRupu - JAN (OX - ) — 1y BpRpp - V2
=13, BpRpi - JANV(OX - x) — 1,,div(2) By Ryp) + 12 div(BLV(0X - z))
leads us, by (2.29), (2.36) and the convergence to 0 of 7, like in the demonstration of Lemma 2.1,

to
BpRup rndApP, — 0 in 7' (w). (2.37)

Finally, by combining (2.31), (2.32), (2.34) and (2.37), we obtain, for any simply connected open
subset w of 2 such as w CC €,

ANON-z) - V(pp-z) = B.V@u-z)- V(O -z) in 2'(w).

We conclude, by taking § = 1 and ¥ = 1 on w and taking into account that B, is symmetric and w,
A, p are arbitrary, that: N
B, = A, =pA, +qJ.

2.2 An application to isotropic two-phase media

In this section, we study the homogenization of a two-phase isotropic medium with high contrast
and non-necessarily symmetric conductivities. The study of the symmetric case in Proposition 2.2
permits to obtain Theorem 2.2 by applying the transformation of Proposition 2.1. We use Notation
1.1.

Proposition 2.2 Let Q0 be a bounded open subset of R? such that |02 = 0. Let w,, n in N, be a

sequence of open subsets of Q with characteristic function x,, satisfying 0, := |w,| < 1, 6, converges
to 0, and
% —a € L™®(Q) weakly-« in M(Q). (2.38)
n
We assume that there exists o, an > 0 and two positive sequences oy p, o, > ag > 0 verifying
lim o, =0 and lim fp00, = o, (2.39)
n—oo n—oo

and that the conductivity takes the form
Ug(al,na azn) = (1 = xn)a1nds + xnaznlo.
Then, there exists a subsequence of n, still denoted by n, and a locally Lipschitz function
01 (0,00)” — M(ap, 2||al|0; Q)

such that

. . HM@)?)
V(ag,a2) € (0,00)°, oplap,a2,) —  o,(ar, o). (2.40)
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Proof of Proposition 2.2. The proof is divided into two parts. We first prove the theorem for
a1y = a1, Q2 = 9,71042, and then treat the general case.

First step: The case a1, = aq, gy = Hglozg.
In this step we denote 0 (o) := 0%(ay, 0, tas), for a = (a1, ) € (0,00)%. Theorem 2.2 of [16] implies

that for any a € (0,00)2, there exists a subsequence of n such that o¥(a) H(M()?)-converges in
the sense of Definition 1.1 to some matrix-valued function in M (ag, 2||al|so; ©2).
By a diagonal extraction, there exists a subsequence of n, still denoted by n, such that

H(M(Q)?)
VaeQ?n(0,00)%, o2a) —  o%a). (2.41)

We are going to show that this convergence is true any pair o € (0, 00)2.

We have, by (2.38), for any a € Q%N (0, 00)2,

162 (a)] = (1 = xn)os + Xn% — aj+aza€ L)  weakly-x in M(Q) (2.42)

n

and, since 6,, € (0,1),
VEER? od(a)E-&=ai(l—xn)E)? + Xn%’fF > min(ay, a2)|€]*  ae. in Q. (2.43)
n
By applying Theorem 2.2 of [16] with (2.42), we have the inequality
o2 ()A] < 2[A] (a1 + azlalloc) - (2.44)

For any a € Q2N (0,00)% and A € R2, consider the corrector wi™ associated with o9 (a) defined
by
div (ag(a)wa'{’A) = div(c2(a))) inQ,

(2.45)
wﬁ’)‘ = Az on 0f2,
which depends linearly on A.
Let o € Q2N (0,00)2. Let us show that the energies
/ 0% () Vo - Vw2 dx (2.46)
Q
are bounded. We have, by (2.45), (2.44) and the Cauchy-Schwarz inequality
/ o2 (a)Vud? - Vo do
Q
= / ()X - (wa{’)‘ - ) dz —|—/ o () Vo - X dz
Q Q
= / od(a)\ - Vuwd dz — / o(a)X -\ dx —|—/ o () Vw2 - X d
Q Q> Q
>0
which leads us to
/ o0 () Vw2 - Ve dz < / l62(@)\ - V| dz +/ |62 (a) VA - A| dz. (2.47)
Q Q Q

On the one hand, the Cauchy-Schwarz inequality gives
2
(/ 160 () V™ - Al dx) < |)\|2/ o9 ()] d:c/ o9 (@) Vuw® - Vw2 dz
Q Q Q
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that is
(/ |60 (a) V™ - )| dx) < \? ya\/ )V - Vuwd d. (2.48)

On the other hand, by (2.43) and the Cauchy-Schwarz inequality, we have

/ 109 (@)A - V| dar < 2JA (1 + asl[a]loo) / Vw2 de
Q Q

1 1
< 2{A(o1 + azllalle)y/ — + —\// 09()Vuwd? - Vud™ dz
a1 Q2 Q
0 o, 2 1 1 0 A a,\
los () - Vwp | de < C A\ |a|y/ — + — od(a)Vwy” - Vwyp, " dz (2.49)
Q aq Qa2 Q

where C' does not depend on n nor a.
By combining (2.47), (2.48) and (2.49), we have

that is

/ o2(a)Vuwd - Vo dz < C |\ (laf + |a)* (a1 +a™)) (2.50)
0 )
=:M(x)

where C' does not depend on n nor a.

Let o/ € Q%N (0,00)2. The sequences &, = 00 (a)Vws™ and v, := w? ™ satisfy the assumptions
(2.2) and (2.3) of Lemma 2.1. By symmetry, we have the convergences

o0 () Vuwi™ - Vit — od(a)A -\ weakly in 2'(Q),

/ 2.51
() Vst - Vuwi? — 6%a/)A- A weakly in 2'(Q). (2:51)
As the matrices are symmetric, we have
(Ug(a) s) V- Vud * = 62(a) Vs - Vol — 6% )V A - Vs,
hence
(0%(a) - 02(0/)) Vo - wa{/’)‘ — (Jg(a) —o(@)) XX weakly in Z'(). (2.52)

Let A € R?2. We have, by the Cauchy-Schwarz inequality, with the Einstein convention
/ | ))Vw,‘i‘)‘ . Vw,i‘,’)‘| dx

‘/ o1 — i [Vul - Ve d“][ jaz — as| [V - VA da
N\wn wn

<lay — o / Vwg? dz / Vw2 dz
Nwn
! D a’ X9
+ |ag — s ][ |Vwy, " |? do ][ |Vwy |2 da
wn wn

1 1 , ,
< lai - O‘;‘\/_/ o0 (a) Vi - Vuld? dz \/—,/ o0(a)Vuwd - Vs ™ da.

@i Ja o Ja

This combined with (2.50) yields

/ | (o7 (@) Vit - V| < CIAP2 loi = o] M (o) M()

Vleilleg|
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The sequence of (2.52) is thus bounded in L!(2)? which implies that (2.52) holds weakly-* in M ().
Hence, we get, for any ¢ € 6.(Q2), that

o — o

0 0/ 2 /
[(6%(0) = %) A- A @ de < C |A M(o) M(@) [lplle.  (253)
/Q Vaillag]
Then, the Riesz representation theorem implies that
P
o = il ) nr(ar),

0 0¢./
0. (a) —o.(a) w2 $C ——=
H HLl(Q)2 2 ’OézHOé”
Therefore, by the definition of M in (2.50), for any compact subset K C (0, 00)2,
3C >0, Va,o € Q°NK, Hag(a) - JS(O/)HU(Q)QX2 <Cla—dl. (2.54)
This estimate permits to extend the definition (2.41) of o2 on (0, 0)? by

Vae (0,00)?, o2a)= lim 0¥(a’) strongly in L'(€2)**2, (2.55)
04’6(5{2(?(8[,00)2
Let a € (0,00)2. Theorem 2.2 of [16] implies that there exists a subsequence of n, denoted by
n’, and a matrix-valued function o, € M (ag, 2||al|s0; ) such that

H(M(Q)?) _
o) — O, (2.56)
Repeating the arguments leading to (2.54), for any positive sequence of rational pair (a?)sen con-
verging to a, we have

3C >0, HE* - Jg(aq)HLl(Q)QXQ <Cla—al, (2.57)

hence, by (2.55), . = 09(c). Therefore by the uniqueness of the limit in (2.56), we obtain for the

whole sequence satisfying (2.41)

) HM©)?)
Vae (0,00)%, opla) — o, (a). (2.58)

In particular, the function o¥ satisfies (2.54) and (2.55), i.e. o0 is a locally Lipschitz function on

(0,00)2.

Second step: The general case.
We denote a” = (a1, 02,) and 02(a") = 09 (aypn, a2,). Theorem 2.2 of [16] implies that there

exists a subsequence of n, denoted by n’, such that 02,(@"/) H(M(Q)?)-converges to some
T+« € M(ap,2|]alloo; ) in the sense of Definition 1.1.

As in the first step, for any a" € (0,00)2 and A € R2, we can consider the corrector wz,n A
associated with 02,(04",) defined by

div <02/(a"/)sz,n ’)‘> div (o.\)  in Q,

n,>\
wh, = Az on 0f),

(2.59)

which depends linearly on A. Proceeding as in the first step, we obtain like in (2.52), with a = (aq, a2)
the limit of o™ according to (2.39),

(02,(04) — 02,(04",)) wa:,n A VwZ‘,’A — (02(a) =F) A A weakly in 2'(). (2.60)
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Moreover, by the energy bound (2.50), which also holds for &, we have, for any ¢ € 2(Q),

n ’
n/—o0

/ (00,(04) — 02,(04”,)) wa:,n A VwZ‘,’A o dr — 0.
Q
This combined with (2.60), yields

/ (02(a) =) A A dz =0,
Q
which implies that 0?(a)) = .. We conclude by a uniqueness argument. (]

We can now obtain a result for (perturbed) non-symmetric conductivities. Then, we will use
a Dykhne transformation to recover the symmetric case following the Milton approach [35] (pp.
61-65). This will allow us to apply Proposition 2.2.

Theorem 2.2 Let Q be a bounded open subset of R? such that |0Q)] = 0. Let wp, n € N, be a sequence
of open subsets of Q and denote by x, their characteristic function. We assume that 0,, = |w,| < 1
converges to 0 and

% —a € L™(Q) weakly-+ in M(Q). (2.61)
Consider the conductivity defined by
on(h) = (1 = xn)o1(h) + %@(h) (2.62)

where for j = 1,2, o;(h) = aj + hB;J € R**? with ay,as > 0 and (81, B2) # (0,0).
Then, there exists a subsequence of n, still denoted by n, and a locally Lipschitz function

O'S : (0,00)2 — M(min(al,ag)ﬂ(lal\ + |o2] HaHoo);Q>

such that ,
H(M(Q)?)
on(h)  — 0o, a0 + a3 B3h%) + hpy .

Proof of Theorem 2.2. We have

VEER?  ou(h)E-€= (1 —xn)anlé]? + %a2|£|2 > min(ar, a2) €2 ae. in Q

and, by (2.61),
on(h)| = (1 = xn)lo1(h)] + g—:|02(h)|4 o1(h)| + aloa(h)] € L>(Q)  weakly-+ in M(Q).

In order to make a Dykhne transformation like in p.62 of [35], we consider two real coefficients
an and b, in such a way that

B, = (anan(h) + bn‘]) (anI2 + JUn(h))_l = ((pnan(h) + an)—l + T”J)il

is symmetric. An easy computation shows that the previous equality holds when

2
a;, _apby
Gn ‘=

a%+bn, a%+bn = a

Pn =

On the one hand, the estimates (3.39) and (3.40) with ag,, = 6, *aa, B2, = 0,182, yield (note that
they are independent of x,,)

o~ L g = b e = 0 and [ron()llee < Clor(B)] + loa()]).  (2:63)

n—o0
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On the other hand, as in Section 3.2, with Notation 1.1 and (3.34), we have
By, = oy (a,,(h), ab , (h)), (2.64)

where

an(al + ’Lhﬁl) + an an(ag/ﬂn + Zh,@g/@n) + an

Ln(h) = d ah,(h) = : 2.
) = i gy M T a6, + iha/0,) (26
Hence, like in (3.41), we have
lim o ,(h) =a; and lim Op05,(h) = as + oy 1 Ba?h?. (2.66)

n—oo n—o0

We can first apply Proposition 2.2 with the conditions (2.64) and (2.66) to have the H (M ()?)-
convergence of B,,. Then, by virtue of Proposition 2.1, with (2.63) we get that

HM(2)?)
on(h)  — 0o, a0 + a3 B3h?) + hpy .

3 A two-dimensional periodic medium

In this section we consider a sequence ¥, of matrix valued functions (not necessarily symmetric)
in L>°(R?)2%2, which satisfies the following assumptions:

1 . %, is Y-periodic, where Y := (0,1)?, i.e.,
VneNVreZ? Y, +k)=3,() ae inR? (3.1)
2 . ¥, is equi-coercive in R?, i.e.,

Ja >0 suchthat VneN,VECR? X,6-€>alff ae. in R (3.2)

Let ¢, be a sequence of positive numbers which tends to 0. From the sequences X, and &, we
define the highly oscillating sequence of matrix-valued functions o, by

on(z) =%, (—) , ae xR (3.3)

En

By virtue of (3.1) and (3.2), o, is an equi-coercive sequence of &,-periodic matrix-valued functions
in L>°(R?)2*2, For a fixed n € N, let (0,,)« be the constant matrix defined by

VA eR2  (0p)eh-p= /Y 2, VW2 - VW dy, (3.4)

where, for any A\ € R?, W)} € Htil (Y), the set of Y-periodic functions belonging to HZIOC(R2), is the
solution of the auxiliary problem

/ (W2 =X-y)dy=0 and div(S,VIW)) =0 in 7' (R?) (3.5)
Y
or equivalently
/ S VW Ve dy=0, Ve H(Y)
Y

(3.6)
/Y (W) = A-y) dy = 0.
Set
wx) = e, W <€£> , forxzeQ, (3.7)
and
wn = (Wi, wi?) = (wy, wy). (3.8)
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3.1 A uniform convergence result

Theorem 3.1 Let Q be a bounded open subset of R? with a Lipschitz boundary. Consider a highly
oscillating sequence of matriz-valued functions o, satisfying (3.1), (5.2), (5.3) and the constant
matric (op)s« defined by (3.4). We assume that

(00)x — 0 in RPX2, (3.9)
Consider, for f € H=Y(Q) N W~19(Q) with ¢ > 2, the solution u, of the problem

—div(ep,Vu,) = f inQ
P"{ up, = 0  on 9. (3.10)

Then, uy, converges uniformly to the solution u € H}(Y) of

—div(e,Vu) = f inQ
P { u = 0 on Of). (3.11)
Moreover we have the corrector result, with the £,Y -periodic sequence w, defined in (3.8):
2 .
Yy, — Y 0u Vwl, — 0 in L'(Q)*. (3.12)
i=1

Remark 3.1 The first point of Theorem 3.1 is an extension to the non-symmetric case of the results
of [13] and [15]. The uniform convergence of u, is a straightforward consequence of Theorem 2.7
of [15] taking into account that in the present case o, € L®(Q)**? for a fized n. The fact that
f € Wh4(Q) with g > 2 ensures the uniform convergence.

Proof of Theorem 3.1.
Derivation of the limit problem P.

We only have to show that w is the solution of P in (3.11). We consider a corrector
Dw,, : R? — R?*2 associated with o, defined by

Wy () == Ean <£> = <€nW$ <£> , an§ <£>>
where for i = 1,2, /WZZL € Hﬁ1 (Y) is the solution of the auxiliary problem
/ (/VIZZL —e-x)dz=0 and div (EEV/WZZL) =0 in Z'(R?). (3.13)
Y

Again, thanks to Theorem 2.7 of [15], w,, converges uniformly to the identity in © by the integral
condition (3.13). Let ¢ € 2(2). We have, using the Einstein convention, by integrating by parts

16



and by the Schwarz theorem (OZ P = (3]271.30)

/UnVun-V(go(ﬁn)) dz

Q

= / YV, - oL Vit (0;0) (W) dx
Q

:/UEV@%-V(unaitp(@n)) dx—/oEVfEﬁl-Vﬁfl 02 o (Wy) Uy da
Q Q

=0

= - / onVwy, - VW, 0;0(Wy) Uy da — / op Vg - Vb, 03 10(Wy) uy da
Q Q

— / o Vi - Vs, 07 90 (tWn) Uy da
Q

= —/ o, V', - V!, azigo(ﬁn) u, do —/ 0, V) -V aiﬁp(@n) u, dz
Q Q

- / o Vi - Vs, 090 (Wn) Uy da
Q

= —/ oSVt - Vi, agigo(ﬁn) Uy, do — 2/ oSV, - Vik (9%7230(@,1) Uy, dz.
Q Q

This leads us to the equality

<f7‘10({5n)>H*1(Q),H3(Q) = /Qo'nvun -V (“P(@n)) dz = _/QUZV{E; : V@% 622,.]“)0({‘577/) up, dz. (3'14)

To study the convergence of the last term of (3.14), we first show that o2 V! - V@, is bounded
in L'(Q2). We have, by periodicity and the Cauchy-Schwarz inequality

/w;mgwd dx:/ ISSVWE - VIV <i> da
Q Q €

n

< c/ ISSVW! - VW] da
Y

< C\//Y S5 VWi - V| dx\//y S8 VWi - VWi | d
< C\/(on)sei - ein/(0n)ee; - ¢
which is bounded by the hypothesis (3.9). Therefore,
oSV - V) is bounded in L(Q). (3.15)
Due to the periodicity, we know that for i, 7 = 1,2,
205V W, - VW, = oL V@, - VW, + ol Vad - Vi, = (0.) e -ej + (0.) T ej - e; = 2(0.) ¢; - ¢
weakly-* in M (). Hence, we get that
oSNWh - Vi, — (04)%e; - ej  weakly-* in M(Q). (3.16)

Moreover, 83 jgp(fﬁn) Uy converges uniformly to 82 ;% u. Thus, by passing to the limit in (3.14), we
have, again with the Einstein convention

(fr0)m-1@),m1 Q) = —/Q (0.)°€i-e; 070 ude = —/Qa* 1 V20 u da.
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Therefore, by integrating by parts and using ¢ = 0 on 912,

/QU*VU Vo dz = (f, o) g-1(0),11(0)- (3.17)

Proof of the corrector result

First of all, we show that the corrector function w, is bounded in H'(Q)2. By the definition
(3.8) of wy, the Y-periodicity of W and the equi-coercivity of 3,,, we have, for i = 1,2,

@ 190k ooy < Ca [FWe By <C [ SaVWE- VWi do=C (ouheeives (319
Y

which is bounded. This inequality combined with the uniform convergence of w, yields to the
boundedness of w,, in H(Q)2.
Let us consider an approximation u’ € 2(2) of u such that

= ¥l g ey < 6 (3.19)

On the one hand, we have

/QUnVun -V (uy — u‘s(wn)) dz = (f, (un — ué(wn))>H_1(Q)7Hé(Q).

Since w,, converges uniformly to identity on Q and is bounded in H' () (see (3.18)), with u® € 2(Q),
u’ (wy,) converges weakly to u’ in H{(Q). Hence, by the weak convergence of u,, to u in H}(Q) and
(3.19), we can pass to the limit the previous inequality and obtain, for any 6 > 0,

lim sup
n—oo

/ oV, - V(un — u‘s(wn)) dz
Q

On the other hand, similarly to the proof of the first point (3.14), we are led to the equality

/ UnV(u‘s(wn)) -V (up — u‘s(wn)) dz = —/ oSVw! - Vw! 83ju5(wn) (wn — u‘s(wn)) dz. (3.21)
Q Q

As in the first point, 0% Vwl, - Vi, is bounded in L*() (see (3.15)), u, converges uniformly to u
and 9; ju®(wy) converges uniformly to 9; ju® because v’ is a 2(Q) function. By passing to the limit
in (3.21)

/SzanV(u‘s(wn)) -V (up — u‘s(wn)) de — — [ (04)%€; - ¢ Biju‘s (u— u‘s) dz. (3.22)

n—oo Q

Moreover, like in (3.17) we have
/(0*)sei -€j @%u‘s (u— u‘;) dx = / o .Vl - V(u— u5) dx. (3.23)
Q Q

By combining this equality with the convergence (3.22), we obtain the inequality

< ‘/Qa*vué V(u—1u)

< Clow] ||V 22 IV (1 = u®) || p2(ay2 < C6. (3.25)

lim
n—oo

(3.24)

/QUnV(u‘;(wn)) -V (uy — u‘s(wn)) dz

Thus, by adding (3.20) and (3.25), we have

n—oo

lim sup/ JnV(un — u5(wn)) . V(un — u5(wn)) de < Cé
Q
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which leads us, by equi-coercivity, to

limsup o ||V (u, — ué(wn))"%%ﬂ)?
n—o0

(3.26)

< lim sup
n—oo

/QanV(un — u5(wn)) . V(un — u‘s(wn)) dz| < C6.

Thus, the Cauchy-Schwarz inequality, the boundedness of Vw}, in L?(2)? (3.18) and the Einstein
convention give, for any § > 0,

IVun = Vwpdiul| 1 o)
< |IVun = Vwy, 0’| 1 )2 + [IVwh,ds (u® — u) || 102
< |IVun = Vwy, 0’| 1 )2 + VW) 2 ()2 10: (u” = w) [ L2 (@)
< || Vun — Vw00 11 (02 + C6
< |IVun = Va0 (wn)l | 1 @y + ||V, (95u° — 9y’ (wn)) || 2 + €O
< ||V = V9w’ (w)[| 1@ + (Vg 2@ 10 = 010’ (wy)|| 2 () + C8
< || Vup — Vi’ (wn)[| 1 @2 + Cl0iu’ — 8w (wy)|| 2() + C6.

Since u® € 2(Q) and w, converges uniformly to the identity on €, the second term of the last
inequality converges to 0. Hence, we get that

lim sup || Vu, — VwﬁﬁiuHD(Qy < limsup ||Vu,, — Vw%@iué(wn)\]p(ﬂ)g + C4. (3.27)
n— oo

n—oo

Finally, this inequality combined with (3.26) gives, for any § > 0,

0 < limsup ||Vu, — walaiuHU(Q)z < CV§ 4+ O,

n—oo

which implies the corrector result (3.12). O

Remark 3.2 If the solution u is a € function, then the convergence (3.12) holds true in L% ()

since we may take u = u’.

3.2 A two-phase result

Here, we recall a two-phase result due to G.W. Milton (see [35] pp. 61-65) using the Dykhne
transformation.

In order to apply the previous theorem, we reformulate Milton’s calculus in such a way that every
coefficient depends on n. We then consider, for a fixed n, the periodic homogenization of a conduc-
tivity o, (h) to obtain (0,)«(h) through the link between the homogenization of the transformed
conductivity and (oy,)«(h) given by formula (4.16) in [35]. Finally, we study the limit of (o,,).(h)
through the asymptotic behavior of the coefficients of the transformation, and apply Theorem 3.1 in
the example Section 3.3.

In this section we consider a two-phase periodic isotropic medium. Let x, be a sequence of
characteristic functions of subsets of Y. We define for any oy > 0, 81 € R, any sequences o, > 0,
B2, € R and any h € R, a parametrized conductivity ¥, (h):

En(h) = (1 — Xn)(OqIQ + hﬂlJ) + Xn(aszz + h,@gmj) inY. (3.28)

We still denote by ¥,,(h) the periodic extension to R? of ¥,,(h) (which satisfies (3.1)). We assume
that X, (h) satisfies (3.2), and define o, (h) by (3.3) and (0y,)«(h) by (3.4).

We have the following result based on an analysis of [35] (pp. 61-65).
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Proposition 3.1 Let x,, be a sequence of characteristic functions of subsets of Y, a1, a9 > 0, a
positive sequence oy, 51,82 € R, and a sequence B2, such that

. /82,n_/82
m ==t - =

lim app =00, lminf|fy, —fF1] >0, and li . (3.29)
n—o00 n—o00 n—o00 Qg a9
Assume that the effective conductivity in the absence of a magnetic field
0 : . . . 2n
(O'n)* (Yin>V2,n)  is bounded when nh_)rrgo Vi = a1 and nh_)rrgo o =2 > 0. (3.30)
Then, there exist two parametrized positive sequences o/Ln(h), a'27n(h) such that
2 242
. ! / ) +h /82
nh_{{.lo ajp(h) =a1 and ay,(h) o T a2,n, (3.31)
and
()2 (1) = (03), (0 (), (1)) +BB1T + 0 (1) (3.32)

where (o)), (] ,,(h), b, (h)) is bounded.

n

Remark 3.3 In view of condition (3.29), the case where B3, tends to B1 corresponds to perturb the
symmetric conductivity
oy = (1 = xn)arls + xna2nl2
by
oy +6/J+ o (1).
n—oo

Then it is clear that
(on)«(h) = (0’2)* + G1J + n_omo(l).

Proof of Proposition 3.1. The proof is divided into two parts. After applying Milton’s computa-
tion (pp. 61-64 of [35]), we study the asymptotic behavior of the different coefficients.

First step: Applying Dykhne’s transformation through Milton’s computations.
In order to make the Dykhne’s transformation following Milton [35] (pp. 62-64), we consider two
real coefficients a,, and b,, such that

-1 _ -1
o), = (anon(h) + bpd) (anls + Jon(h)) " = ayn(on(h) + (an) " '0nJ) (anls + Jou(h)) (3.33)
is symmetric and, more precisely, according to Notation 1.1, reads as
0ty = (1= Xn)ah () Iz + Xl ()5 = 02 (), 0 (1) (3.34)
Then, using the complex representation
aly + pJ «— a+ fi (3.35)
suggested by Tartar [11], the constants a,,, b, must satisfy
/ an(al + Zhﬁl) + an / an(OQ n+ ZhﬁQ n) + ’Lbn
« = - - eR and ay,(h) = = = € R, 3.36
1n(R) an + i(oq +ihp1) 2n(h) an + i(o2,n + thBa2y) (3:36)
which implies that
b, = —aZhfi 4+ anAy  —aihBon + anAZ,n. (3.37)

ap — hﬂl B Qp — hﬂQ,n
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Denoting A; := a? + h?47 and Ag,, = a;n + h2ﬁ227n (thanks to (3.29), n is considered to be larger
enough such that £, — 81 # 0 and a, is real), the equality (3.37) provides two non-zero solutions
for a,:

Aoy — A1+ /(Do — D12+ 402 (Bay — B1)(Ban A1 — Bi1lay)

ap, = 2hBam — B) , (3.38)
and
- Agp — A1 — /(Agp — A1)2 + 402 (Bon — B1)(Bon A1 — B1A2)
" 2h(B2,n — B1) '
The value (3.38) is associated with a positive matrix o,, while a,, leads us to the negative matrix
o, = —J(0o!)"tJ7! to exclude (see [34] for more details).

Second step: asymptotic behavior of the coefficients and the homogenized matrix.
One the one hand, by the equality (3.38) combined with (3.29), we have

h(Ben — B1) _ of + h*B3

lim a,

n=o0 S0 03
which clearly implies that
2, 12432 o a2
an a3 J; g P s n?vi N and an —hBon ~ —h(ﬁz,nzi Al (3.39)
On the other hand, (3.29), (3.39) and the first equality of (3.37) give
bn = —a,hB1 + A1 + ngoo(l). (3.40)

From (3.29), (3.38), (3.39) and (3.40) we deduce the following asymptotic behavior for the mod-
ified phases:

/
b (h) ol 8
lim o} ,(h) =a; and lim 2n (1) = 2 5 52.
n—o0o ? n—o00 a?,n a2

(3.41)

/
n

5 € RZ’ Vp = (anIQ + JUn(h))_léa

To consider (0 )*, we need to verify that o/, is equi-coercive. We have, by denoting for any

V £ e R?, &&= (anan(h) + an)Vn . (anIQ + JO'n(h))l/n = (ai + bp)on(h) vy - vy
and, because a,,'o,(h) is bounded in L>()%*2 by (3.39),
VEeR? ¢ = lanvn + Jop(R)vy| < an(1+ C)|val.

The equi-coercivity of o, (h) gives

C a2+b,
1€l

3C>0, VEeR?: op¢-€> 3.42
L VECRY o662 ren (3.42)
that is, for n larger enough, by (3.39) and (3.40), o/, is equi-coercive.
We can now apply the Keller-Dykhne duality theorem (see, e.g., [30, 23]) to equality (3.33) to
obtain 1
(U;z)* = (an(o'n)* + an) (anI2 + J(Un)*)_ . (3.43)

Moreover, by inverting this transformation, we have

(00)u(h) = (anTs — (04)d) " (an(0h)s — bulT).
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O aqls + B1hJ
042,71[2 + 62,th

Figure 3.1: The period of the cross-like thin structure

Considering (3.29), (3.39), (3.40), and the boundedness of (o7,). (as a consequence of the bound
(3.30)) we get that

b
_ (0N 9 (]
(o)1) = (01, = 220+ g ()= (). + BT+ o (1) (3.4
which concludes the proof taking into account (3.34). O

To derive the limit of (o)), (o n(h), . (h)), we need more information on the geometry of the
high conductive phase. To this end, we study the following example.

3.3 A cross-like thin structure

We consider a bounded open subset Q of R? with a Lipschitz boundary, a real sequence &,
converging to 0, and f € H~1(Q) N W~=14(Q) with ¢ > 2. We define, for any h € R, oy, 31 > 0 and
positive sequences t, € (0,1/2], as,, f2,n, a parametrized matrix-valued function ¥, (h) from the
unit rectangular cell period Y := (=%, £) x (=3, 3), with £ > 1, to R?*2, by (cf. figure 3.1)

 Jasnla+ Pophd  inwy = {(z1,22) €Y | |x1], |z2| < tn}
En(h) T { 041[2 + ,Bth inY \ Wn, (3.45)
Denoting again by 3,,(h) its periodic extension to R?, we finally consider the conductivity
o (h)(z) = Sp(h) <€ﬁ> . zeQ, (3.46)
n

and the associated homogenization problem:

—div(n(h)Vu,) = f inQ
P"{ u, = 0  on 9N. (3.47)

By virtue of Theorem 3.1 and Proposition 3.1, we focus on the study of the limit of
(on), (@i n(h) 0p, (h)).

Proposition 3.2 Let 0, (h) be the conductivity defined by (3.45) and (3.46) and its homogenization
problem (3.47). We assume that:

Qtn(€ + 1)042771 nﬁo as >0 and Qtn(g + 1),82771 n;)O Bo > 0. (3.48)
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Then, the homogenized conductivity is given by

BB
' a3 + f3h?
Y T e

Remark 3.4 The previous proposition does not respect exactly the framework defined at the beginning
of this section because the period cell is not the unit square Y = (0,1)?: we can nevertheless extend
all this section to any type of period cells.

Remark 3.5 The condition (3.48) is a condition of boundedness in L'(2)?*2 of o, because
|wn| = 2t (£ 4 1) — 412 ~ 2t, (L + 1),

which will ensure the convergence of (02)*.

Proof of Proposition 3.2. In order to apply Proposition 3.1, we consider two positive sequences
O/Ln(h), O/Z,n(h) satisfying
2 232
a5+ h
lim o), (h) =1 and o, (h) ~ Lﬁ agp. (3.49)

n—00 n—00 Q;

We will study the homogenization of o}, := oy, (a} ,,(h), & ,, (h)).
To this end, consider a corrector W} = X -z — X} in the Murat-Tartar sense (see, e.g., [3])

associated with

, .
p o Jag,(h) L inw, ={(z1,22) €Y | |z1], 22| < tn}
X = {o/lm(h) I, imY\w, (3.50)
and defined by
div(E, VX)) = div(Z,\) in Z2'(R?)
X)) is Y — periodic (3.51)

/X,i‘dy:O.
Y

On one hand, the extra diagonal coefficients of (a7,). are equal to 0 because, as X/ is an even
function on Y, we have, for i = 1,2,

yi — Wri(y) 1is an odd function,
yi — Wy (y) is an even function for i # j,

which implies that y; — 3/, VW - VIVE2 is an odd function. Then, by symmetry of Y with respect
to 0,

(oh)s€i - €j :/ Y VWE VW, dy = 0.
Y

n

On the other hand, as X/, is isotropic, for the diagonal coefficients, we use the Voigt-Reuss
inequalities (see, e.g., [29] p.44 or [30]): for any ¢ = 1,2 and j # i,
T 11
(Znei-e)™ih), < (on)wei-ei < ((Sheie)j ), (3.52)

where (-); denotes the average with respect to y; at a fixed y; for j # 1.

23



An easy computation gives, for the direction eq,

—1 —1
{—2t 2t 14
1—2t, " = 2 | ——— < (o})«€1 -
( )<ea/ <h>+mg,n<h>> * (fag,nm)) s (o

1n

and

-1
(-2t 2t
/ L1 - </ - n .
(Fh)ser-e1 < <<1 20, ) + 2ty ) a’zvn“”)

By (3.48) and (3.49), we have the convergence

2 212
: / o a3 + Byh
L (s

A similar computation on the direction ey gives the asymptotic behavior:

2 21,2
a1-+-%%%i?é%%§— 0
. . 0
Jim (7). = lim (07,), (0,(h), a0 (R)) = ; 2 oz | (3.53)
YT Das

Moreover, the matrix o, (h) clearly satisfies all the hypothesis of Theorem 3.1. By Theorem 3.1
and (3.53), we have

2, ;3272
lim (0).(h) = Tim (09), (0}, (1), @b, () + Brh] = (E+1)az 2 oo
n— 00 n—00 13 ar + ag + ,82
! 00+ Dasy
We finally apply Theorem 3.1 to get that o.(h) = lim (0,,).(h). O

n—o0

4 A three-dimensional fibered microstructure

In this section we study a particular two-phase composite in dimension three. One of the phases
is composed by a periodic set of high conductivity fibers embedded in an isotropic medium (figure
4.1a). The conductivity o, (h) is not symmetric due to the perturbation of a magnetic field.

First, describe the geometry of the microstructure. Let Y := (—%, %)3 be the unit cube centered
at the origin of R3. For r, € (0, %), consider the closed cylinder w,, parallel to the x3-axis, of radius
r, and centered in Y:

wp={yeY [yi+yi<ri}. (4.1)

Let Q = Q x (0,1) be an open cylinder of R3, where Q is a bounded domain of R? with a Lipschitz
boundary. For ¢, € (0,1), consider the closed subset €, of 2 defined by the intersection with € of
the e,Y-periodic network in R? composed by the closed cylinders parallel to the xs-axis, centered
on the points e,k, k € Z?, in the x1-xo plane, and of radius &,7,, namely:

Q=0 | en(wn +). (4.2)
veZ3

The period cell of the microstructure is represented in figure 4.1b.
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EnTn
\H: O, Ne (Y +v)
=
z3
En
v
- T

(b) The period cell

Figure 4.1: The fibered structure in dimension 3

We then define the two-phase conductivity by

. allg—i—ﬁl(f(h) in Q\Qn
onlh) = {oe,nfg  Bonb(h)  in O, (43)
where a1 > 0, f1 € R, as,, > 0 and fBa, are real sequences, and
0 ——h3 h2 hl
EMh)y:==| hs 0 —hi|, forh=|hy| €R3
—hy M 0 hs
Our aim is to study the homogenization problem
—div(op(h)Vu,) = f inQ
Pan { u, = 0  on ON. (4.4)

Theorem 4.1 Let oy > 0, p1 € R, and let €,,7n, 2, P20, n € N, be real sequences such that
€n,Tn > 0 converge to 0, asp, > 0, and

lim £2|Inr,| =0, lim |wp| azy, =az >0, lim |wy|B2, = P2 € R. (4.5)

n—00 n—00 n—oo
Consider, for h € R3, the conductivity o, (h) defined by (/.3).
Then, there exists a subsequence of n, still denoted by n, such that, for any f € H™1(Q) and any
h € R3, the solution u, of Pan converges weakly in H}(SY) to the solution u of

P {—div(a*(h)Vun) = f inQ (4.6)

)

u = 0 on 0,
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where o, (h) is given by

a3 + o ff3|h|?

«(h) = a1l
o) =t + (L

>€3®63+ﬁ15(h)- (4.7)

Remark 4.1 Theorem 4.1 can be actually extended to fibers with a more general cross-section. More
precisely, we can replace the disk r, D of radius r,, by the homothetic r,Q of any connected open set Q)
included in the unit disk D, such that the present fiber wy, is replaced by the new fiber r,Q) X (—%, %)
in the period cell of the microstructure.

On the one hand, this change allows us to use the same test function v, (4.8) defined in the proof
of Theorem /.1, since v, remains equal to 1 in the new fibers due to the inclusion Q C D. On the
other hand, Lemma 4.1 allows us to replace the disk D by the open set Q C D.

Remark 4.2 We can also extend the result of Theorem 4.1 to an isotropic fibered microstructure
composed by three similar periodic fibers lattices arranged in the three orthogonal directions eq,es,es,
namely

3
wn::U{yGY’ nygri} and §}, == QN UEn(wn+V)7
j=1 itj vezd

as represented in figure 4.2. Then, we derive the following homogenization conductivity:

as + o3| h?
—041[3—1—Z< 2a —}—ZBBZQJLZ‘ )62‘@62“}'/8160(}0'
2 2

EnTn

B O, Ne (Y +v)

« | G

[ OT

aE

- X1

Lo —

Figure 4.2: The period cell of the isotropic fibered structure in dimension 3

Remark 4.3 We can check that when the volume fraction 0, = 0 and the highly conducting phase
of the conductwvity o, = oy and P2, = Py are independent of n, the explicit formula of [27]
denoted by o.(0,h), for the classical (since the period cell is now independent of n) periodically
homogenized conductivity (see (3.4)) has a limit as @ — 0 when Oay and 05y converge. Indeed, we may
replace in the computations of [27] the optimal Vigdergauz shape by the circular cross-section in the
previous asymptotic regime. Therefore, Theorem 4.1 validates the double process characterized by the
homogenization at a fived volume fraction 8 combined with the limit as @ — 0, by one homogenization
process in which both the period and the volume fraction 0, = 7r2 of the high conductivity phase tend
to 0 as n — oo.

Remark 4.4 The hypothesis on the convergence of €2|Inr,| (4.5) allows us to avoid nonlocal effects
in dimension three (see [2/, 1]). These effects do not appear in dimension two as shown in [12].
Therefore, we can make a comparison between dimension two and dimension three based on the
strong field perturbation in the absence of nonlocal effects.
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Remark 4.5 If h = hges, the homogenized conductivity becomes
0-10
o«(h) = a1ls + ases @ es + Prhs (é 0 8)

which reduces to the simplified two-dimensional case when the symmetric part of the conductivity is

0

independent of hs (i.e. o, in (2.40) does not depend on its second argument).

Proof of Theorem 4.1 The proof will be divided into four parts. We first prove the weak-x
convergence in M(Q) of o, (h)Vuy, in ©,. Then we establish a linear system satisfied by the limits
defined by

1q, Ou,

|wn| O;

— & weakly-*x in M(Q).
Moreover, we deduce from Lemma 4.1 that

Lo, Oup  Ou
|wn | 8x3 Ox3

weakly-* in M(Q).
We finally calculate the homogenized matrix.

We first remark that, classically, the sequence of solutions u,, of Pq ., (see (4.4)) is bounded in
H{ () because, since as, diverges to oo :

||Vun||%2(ﬂ)3 S C/Q(al]}-Q\QnIB + Oég,n]lQnLg)Vun . Vun dz = /Qan(h)Vun . Vun dzx.

By the Poincaré inequality, the previous inequality and (4.4) lead us to
||un||§{é(g) < OlIVunllZ2 (s < Ol un) g1y mie| < Cl a1 @llunl o)
and then to
unll g2 @) < ClIf a1
Thus, up to a subsequence still denoted by n, u, converges weakly to some function u in H&(Q)

First step: Weak-* convergence in M(2) of the conductivity in the fibers Lo, (a2nl3482.,& (h)) V.
We proceed as in [22] with a suitable oscillating test function. For R € (0,1/2), define the Y-periodic

(independent of y3) function V;, by

1 if \/y?+y2 <m,
InR—In+/y? 2
Va(y1,92,y3) = - VYt Yy if m < Vi +us <R for y €Y,

InR—Inr,

0 if Vyi+y5 >R,

and the rescaled function
z

vp(z) =V, <—> , forz € R3. (4.8)

En

In particular, by using the cylindrical coordinates and the fact that r, converges to 0, this function
satisfies the inequalities

9 : _ E -2 ) 2r R ) E
lonll72(0) < ClIVallf2y = C In " ry + rln drdf
n 0 Tn
_9 2
:Clnﬁ (wR 2T"—7T7“ In? wln—) ,
Tn
C 2o C| R|”
vanH%Q(Q)?’ < 6_QHVV7ZH%2(Y)3 hl_ / / ~ drdd < ) hlr_
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and, consequently
-1

In —
Tn

— 0. (4.9)

n—oo

lonllL2(0) + €nllVon| 2@ < C

_Let A be a vector in R‘(i perpendicular to the zs-axis. Define the Y-periodic function X, by
VX, = X in wy, such that X,, € Z2(Y) and is Y-periodic, and the rescaled function X,, by

Xo(2) = en Xn <£> . (4.10)
En
In particular, X,, satisfies
1 Xnlloo = &n [ Xnlloo < Cen 5 [IVXnlloo = |[VXnlloo <C and VX, =X in€Q, (4.11)

We have, by (4.11) and (4.9),

HUanHHl(Q) < HXnHOOHUnHLQ(Q) + HXnHOOHVUnHLQ(Q)?’ + HvXnHOOHUnHLQ(Q)
< C(|[vallz2(@) + 2l Vonl 12(ay5) — 0.

which gives

Vo€ 2(Q), puv,X, — 0 strongly in H}(Q). (4.12)
n—o0
Let ¢ € 2(Q). By the strong convergence (4.12), we have
/an(h)vun V(e vaXn) dz = (f, ¢ vaXn) g-1(0), 11 (0) —2 0 (4.13)

Let us decompose this integral which converges to 0, into the integral on the fibers set €2,, and
the integral on its complementary:

/ on(h)Vuy, - V(gp Uan) dr = / (a1Il3+ B1&(h))Vuy, - V(gp Uan) dx (4.14a)
Q A\
+ / (a2 ls + B2n&(h))Vuy - V(e v, Xy) da. (4.14b)
Qn

The expression (4.14a) converges to 0 since, by the Cauchy-Schwarz inequality, the boundedness
of u,, in H}(Q) and (4.12), we have

< laads + B1& (M) [|Vuall 293 ¢ vaXallgie) — 0

/(041[3 + Bloﬁ(h))Vun . V((,O Uan) dx

[9AN 97 n—o00
(4.15)
Consequently, as v, =1 and VX, = X on Q,, by (4.13), (4.14a), (4.14b) and (4.15), we have
/ on(h)Vuy, - X ¢ dz +/ on(h)Vuy, - Ve X, dz — 0. (4.16)
Qn " n—oo

To prove the convergence to 0 of the right term, we now show that 1q, (agmlg + ﬁ27ng(h))Vun
is bounded in L!(Q)3. We have, by the Cauchy-Schwarz inequality, (4.5) and the classical equivalent
]~ 10 lwal,

2
(/Q ‘(agmfg +Bg,n(aﬁ(h))Vun| dac) < |Ig —i—ozz_ﬂllﬂg,né"(hﬂ2 |2y, ] Oég’n/s; 0427”]Vun]2 dx

< C’/ on(h)Vuy, - Vu, dz
Q

< Cll -1 Nunll g1 0)-
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This combined with the boundedness of u,, in H&(Q) implies that 1q, (agmlg + ﬁgmé"(h))Vun is
bounded in L'(€2)3. This bound and the uniform convergence to 0 of X,, (see (4.11)) imply the
convergence to 0 of the right term of (4.16), hence

n—oo

/ (062,nfg + Bg,né"(h))Vun “Apdr — 0.

We rewrite this condition as

VA Les, 1q, (a2nls+ Boné(h))Vu, - A — 0 weakly-x in M(Q). (4.17)
1g, 0
Second step: Linear relations between weak-x limits of ~Gn Tlin
lwn| Ox;

Thanks to the Cauchy-Schwarz inequality, we have

1 / 1 2| /
< — |Vu,| de < a2.n|Vu,|? da
@ lwnl Ja, NN \/|Wn| Qn

which leads us, by (4.5) and the asymptotic behavior |Q,| ~ [Q] |wy|, to
n—o0

‘ 1q, Ou,
|wn| Ox;

' ‘ 1q, Ou,
|lwn| Ox;

o)

< ———= [ on(h)Vu, - Vu, dz <C ‘(f, Un) H-1(Q) H1(Q

LY(Q) a2 plwn| Jo () Ho ()

which is bounded by the boundedness of u,, in H&(Q) This allows us to define, up to a subsequence,

the following limits
]IQn Bun

— & weakly-* in M(Q2), fori=1,2,3. (4.18)

|lwn| Ox;

Then, by (4.17) we have

1
(2nls + Bon& (M), Vi, - A = (o n|wn|I3 + Bonlwn|E(R)) gy, - A — 0 weakly-* in M(Q).

|wn|

Therefore, putting A = e, €2 in this limit and using condition (4.5), we obtain the linear system

+ Bahas — Bahzéa =0
281 + P2hols — Bahséo 0 M(Q),
@282 + P2hs&y — Pohi&s = 0
which is equivalent to
£ = B3h1hs — asfahy &
- 2 | 52,2
| 02 Aol in M(Q). (4.19)
€ — Brhahs + a2ﬂ2h1£3
o3 + B3h3
Third step: Proof of &3 = (9_u
83:3
We need the following result which is an extension of the estimate (3.13) of [21]. The statement of

this lemma is more general than necessary for our purpose but is linked to Remark 4.1.

Lemma 4.1 Let Q be a non-empty connected open subset of the unit disk D. Then, there exists a
constant C > 0 such that any function U € H*(Y') satisfies the estimate

1
Udy—/Udy
3) Y

. < e/ [[VU] 2y (4.20)
‘T’nQ‘ rnQX(—

1
2
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Proof of Lemma 4.1. Let U € H'(Y). To prove Lemma 4.1, we compare the average value of U
on r,@ and r, D. Denoting y = (y1,y2), we have, for any ys € (—%, %),

]iQ Uy, y3) dy — ]an U(y,ys) di]‘ = ‘][QU(rnﬂ, y3) dyj — ]iU(T"g’ ys) dg‘

gék%@w@—ﬁvm@ww@d@

and, since Q C D,

y y— | | Ty — Ty d~' dy
]an U(y,y3) dy ]{nD U, y3) dy' 1l U( n¥sY3) ]é)U( 20, y3) dy| dy

<Cf (] +

el oU
- TTTrp, rnD

8561
the last inequality being a consequence of the Poincaré-Wirtinger inequality. Hence, integrating the
previous inequality with respect to y3 € ( ;, 5
obtain that

oU - -
92s > (rny,y3) dy

ou
8562

) (¥,y3) dy,

) and applying the Cauchy-Schwarz inequality, we

7€an( ) Uly) dy — ]iDX(_%’%) Uly) dy

< C||VU||L2(Y)3

This combined with the estimate (3.13) of [21], i.e. (4.20) for @ = D, and the fact that /|Inr,|
diverges to oo give the thesis. O

Let ¢ € 2(). A rescaling of (4.20) with @ = D implies the inequality

Upp do — / Upp do| < Cey, V Hn rn’ Hv(un@)“LQ(Q):”
Q

‘wn’ Qn

Combining this estimate and the first condition of (4.5) with

IV (unp)l| 202 < [[Vunllp2 (s [I@lloo + [[unl 20 Velloo < C
@) @) @)

it follows that

1
Oy — up — 0 in 7'(Q).

|wn|
This convergence does not hold true when £2|Inr,| converges to some positive constant. Under this
critical regime, non-local effects appear (see Remark 4.4).
Finally, as 1q, does not depend on the x3 variable, we have

1q Ou, 0 1gq, 0 1g, Ouy, ou . ,
n _ il AN Q).
(\wnl u”) Ox3 Ox3 & in 7(0)

|wn| Oxs  Oxs ]wn\ 3—363

Fourth step: Derivation of the homogenized matrix.
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We now study the limit of o, (h)Vu,, in order to obtain o.(h). We have

ouy, ouy, ouy,
Jn(h)Vun e = ]]'Q\Qn <a1 8 - ﬁlhg ﬁlhz 3>
(4.21)
n|%n — n nh n
Foaalenl g | on] By | Prnhizlenl T

Hence, passing to the weak-+ limit in M(Q) this equality and using the linear system (4.19),
on(h)Vu, - €1 weakly-x converges in M(2) to

(Oqa—u - 51h3 Ou + ﬁ1h2 Ou > + oy — Bah3&a + Bahaés

15)
B2h1hs — aafBahs B2hahs + afBahy

= (aul3 +515(h))vu €1+ az o2 + B3 §3 — Pahs o2 + BBh2 &3+ P2haés
= (Oélfg + ﬁléa(h))Vu -e1
a2(B3h1hs — aafaha) — Bahs(B3hahs + aafahy) + Baha(aj + B3h3) &
o3 + B33 ’
=0
that is
on(R)Vuy - ey — (a1ls + 516 (h))Vu - €1 weakly-+ in M(€). (4.22)
The same calculus leads us to
on(R)Vuy -eg — (a1l + 516 (h))Vu - e weakly-+ in M(S). (4.23)
We have, for the last direction eg,
ou ou ou .
on(h)Vuy, - e3 — a1 = ,Blhg —|— B1h1 + @283 + Bohaly — Bahi&y weakly-* in M(Q).

Hence, again with the linear system (4.19),

<041% - 51h2 Ou + 51h1 Ou ) + €3 — Paho&y + Fahi&a

0
B2h1hg — aaBahs
2 32,2
a; + Byh;

B2hahs + aafBahy

= I &(h))Vu - — Boh
(o1 I3+ B ()) u-e3+ a3z — Baho o2+ B3

§3 + Bahy

£3.

Finally, by the previous equality, (4.22) and (4.23), we get that

Oc% + az,@%‘hP

«(h) = a1l
) =+ (S

) e3 ® ez + ,Blg(h).
|
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