
HAL Id: hal-00625033
https://hal.science/hal-00625033v1

Preprint submitted on 20 Sep 2011 (v1), last revised 19 Dec 2011 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Homogenization of high-contrast two-phase
conductivities perturbed by a magnetic field.

Comparison between dimension two and dimension
three.

Marc Briane, Laurent Pater

To cite this version:
Marc Briane, Laurent Pater. Homogenization of high-contrast two-phase conductivities perturbed by
a magnetic field. Comparison between dimension two and dimension three.. 2011. �hal-00625033v1�

https://hal.science/hal-00625033v1
https://hal.archives-ouvertes.fr


Homogenization of high-contrast two-phase conductivities

perturbed by a magnetic field. Comparison between dimension

two and dimension three.

Marc BRIANE Laurent PATER

Institut de Recherche Mathématique de Rennes Institut de Recherche Mathématique de Rennes
Université Européenne de Bretagne Université de Rennes 1

mbriane@insa-rennes.fr laurent.pater@ens-cachan.org

September 20, 2011

mon texte

Abstract

Homogenized laws for sequences of high-contrast two-phase non-symmetric conductivities

perturbed by a magnetic field h are derived in two and three dimensions under the strong field

assumption. In dimension two an extension of the Dykhne transformation to non-periodic high

conductivities permits to prove that the homogenized conductivity depends on a polynomial

of h through some homogenized matrix-valued function obtained in the absence of magnetic

field. This result is improved in the periodic framework thanks to an alternative approach, and

illustrated by a cross-like thin structure. In dimension three a fiber-reinforced medium shows in

contrast a rational dependence on h of the homogenized conductivity due to the high diffusion

along the fibers direction.

Keywords: homogenization, high-contrast conductivity, magneto-transport, strong field, two-phase
composites.

AMS classification: 35B27, 74Q20

1 Introduction

The mathematical theory of homogenization for second-order elliptic partial differential equations
has been widely studied since the pioneer works of Spagnolo on G-convergence [41], of Murat, Tartar
on H-convergence [38, 39], and of Bensoussan, Lions, Papanicolaou on periodic structures [2], in the
framework of uniformly bounded (both from below and above) sequences of conductivity matrix-
valued functions. It is also known since the end of the seventies [25, 32] (see also the extensions
[1, 23, 11, 33]) that the homogenization of the sequence of conductivity problems, in a bounded open
set Ω of R3, {

div (σn∇un) = f in Ω
un = 0 on ∂Ω,

(1.1)

with a uniform boundedness from below but not from above for σn, may induce nonlocal effects.
However, the situation is radically different in dimension two since the nature of problem (1.1) is
shown [10, 13] to be preserved in the homogenization process provided that the sequence σn is
uniformly bounded from below.

H-convergence theory includes the case of non-symmetric conductivities in connection with the
Hall effect [29] in electrodynamics (see, e.g., [34, 40]). Indeed, in the presence of a constant magnetic
field h the conductivity matrix is modified and becomes non-symmetric. Since the seminal work of
Bergman [3] the influence of a low magnetic field in composites has been studied for two-dimensional
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composites [35, 4, 17], and for columnar composites [7, 5, 8, 27, 28]. The case of a strong field, namely
when the symmetric part and the antisymmetric part of the conductivity are of the same order, has
been also investigated [6, 9]. Moreover, dimension three may induce anomalous homogenized Hall
effects [21, 18, 19] which do not appear in dimension two [17].

In the context of high-contrast problems the situation is more delicate when the conductivities
are not symmetric. An extension in dimension two of H-convergence for non-symmetric and non-
uniformly bounded conductivities was obtained in [14] thanks to an appropriate div-curl lemma.
More recently, the Keller, Dykhne [31, 24] two-dimensional duality principle which claims that the
mapping

A 7→ AT

detA
(1.2)

is stable under homogenization, was extended to high-contrast conductivities in [16]. However,
the homogenization of both high-contrast and non-symmetric conductivities has not been precisely
studied in the context of the strong field magneto-transport especially in dimension three. In this
paper we establish an effective perturbation law for a mixture of two high-contrast isotropic phases
in the presence of a magnetic field. The two-dimensional case is performed in a general way for
non-periodic and periodic microstructures. It is then compared to the case of a three-dimensional
fiber-reinforced microstructure.

In dimension two consider a sequence σn(h) of isotropic two-phase matrix-valued conductivities
perturbed by a fixed h ∈ R, constant, and defined by

σn(h) := (1− χn)
(
α1I2 + β1hJ

)
+ χn

(
α2,nI2 + β2,nhJ

)
, J :=

(
0 −1
1 0

)
, (1.3)

where χn is the characteristic function of phase 2, with volume fraction θn → 0, α1 > 0, β1 are the
constants of the low phase 1, and α2,n −→∞, β2,n are real sequences of the hard phase 2 where β2,n
is possibly unbounded. The coefficients α1 and β1, respectively α2,n and β2,n also have the same
order of magnitude according to the strong field assumption. Assuming that the sequence θ−1

n χn

converges weakly-∗ in the sense of the Radon measures to a bounded function, and that θnα2,n,
θnβ2,n converge respectively to constants α2 > 0, β2, we prove (see Theorem 2.1) that the perturbed
conductivity σn(h) converges in an appropriate sense of H-convergence (see Definition 1.1) to the
homogenized matrix-valued function

σ∗(h) = σ0∗
(
α1, α2 + α−1

2 β22 h
2
)
+ β1hJ, (1.4)

for some function σ0∗ which depends uniquely on the microstructure χn in the absence of a mag-
netic field, and is defined for a subsequence of n. The proof of the result is based on a Dykhne
transformation of the type

An 7→
(
(pnAn + qnJ)

−1 + rnJ
)−1

, (1.5)

which permits to change the non-symmetric conductivity σn(h) into a symmetric one. Then, extend-
ing the duality principle (1.2) established in [16], we prove that transformation (1.5) is also stable
under high-contrast conductivity homogenization.

In the periodic case, i.e. when σn(h)(·) = Σn(·/εn) with Σn Y -periodic and εn → 0, we use an
alternative approach based on an extension of Theorem 4.1 of [13] to εnY -periodic but non-symmetric
conductivities (see Theorem 3.1). So, it turns out that the homogenized conductivity σ∗(h) is the
limit as n → ∞ of the constant H-limit (σn)∗ associated with the periodic homogenization (see,
e.g., [2]) of the oscillating sequence Σn(·/ε) as ε → 0 and for a fixed n. Finally, the Dykhne
transformation performed by Milton [35] (see also [36], Chapter 4) applied to the local periodic
conductivity Σn and its effective conductivity (σn)∗, allows us to recover the perturbed homogenized
formula (1.4). An example of a periodic cross-like thin structure provides an explicit computation
of σ∗(h) (see Proposition 3.2).

To make a comparison with dimension three we restrict ourselves to the εnY -periodic fiber-
reinforced structure introduced by Fenchenko, Khruslov [25] to derive a nonlocal effect in homog-
enization. However, in the present context the fibers radius rn is chosen to be super-critical, i.e.
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rn → 0 and ε2n| ln rn| → 0, in order to avoid such an effect. Similarly to (1.3) the perturbed conduc-
tivity is defined for h ∈ R3, by

σn(h) := (1− χn)
(
α1I3 + β1 E (h)

)
+ χn

(
α2,nI3 + β2,n E (h)

)
, E (h) :=

(
0 −h3 h2

h3 0 −h1

−h2 h1 0

)
, (1.6)

where χn is the characteristic function of the fibers which are parallel to direction e3. The isotropy is
partially ensured for orthogonal transformations letting h be invariant. Under the same assumptions
on the conductivity coefficients as in the two-dimensional case, with θn = π r2n, the homogenized
conductivity is, in contrasts with (1.4), given by (see Theorem 4.1)

σ∗(h) = σ0∗

(
α1,

α3
2 + α2β

2
2 |h|2

α2
2 + β22 h

2
3

)
+ β1E (h), where σ0∗(γ1, γ2) := γ1I3 + γ2 (e3 ⊗ e3) . (1.7)

Therefore, the dependence in h is rational while it is polynomial in the two-dimensional case (1.4),
due to the fiber-reinforcement in the direction e3.

The paper is organized as follows. Section 2 and 3 deal with dimension two. In Section 2 we
study the two-dimensional general (non-periodic) case thanks to an appropriate div-curl lemma. In
Section 3 an alternative approach is performed in the periodic framework. Finally, Section 4 is
devoted to the three-dimensional case with the fiber-reinforced structure.

Notations

• Ω denotes a bounded open subset of Rd;

• Id denotes the unit matrix in Rd×d , and J :=
(
0 −1
1 0

)
;

• for any matrix A in Rd×d, AT denotes the transposed of the matrix A, As denotes its symmetric
part;

• for h ∈ R3, E (h) denotes the antisymmetric matrix in R3×3 defined by E (h)x := h × x, for
x ∈ R3;

• for any A,B ∈ Rd×d, A ≤ B means that for any ξ ∈ Rd, Aξ · ξ ≤ Bξ · ξ; we will use the fact
that for any invertible matrix A ∈ Rd×d, A ≥ αId ⇒ A−1 ≤ α−1Id;

• | · | denotes both the euclidean norm in Rd and the subordinate norm in Rd×d;

• for any locally compact subset X of Rd, M(X) denotes the space of the Radon measures
defined on X;

• for any α, β > 0,M(α, β; Ω) is the set of the invertible matrix-valued functions A : Ω→ Rd×d

such that

∀ ξ ∈ Rd, A(x)ξ · ξ ≥ α|ξ|2 and A−1(x)ξ · ξ ≥ β−1|ξ|2 a.e. in Ω; (1.8)

• C denotes a constant which may vary from a line to another one.

In the sequel, we will use the following extension of H-convergence introduced in [16]:

Definition 1.1 Let αn and βn be two sequences of positive numbers such that αn ≤ βn, and let An

be a sequence of matrix-valued functions in M(αn, βn; Ω) (see (1.8)).
The sequence An is said to H(M(Ω)2)-converge to the matrix-valued function A∗ if for any

distribution f in H−1(Ω), the solution un of the problem
{

div (An∇un) = f in Ω
un = 0 on ∂Ω,

3



satisfies the convergences
{

un −⇀ u in H1
0 (Ω)

An∇un −⇀ A∗∇u weakly-∗ in M(Ω)2,

where u is the solution of the problem
{

div (A∗∇u) = f in Ω
u = 0 on ∂Ω.

We now give a notation for H(M(Ω)2)-limits of high-contrast two-phase composites. We consider
the characteristic function χn of the hard phase, and denote ωn := {χn = 1}.

Notation 1.1 A sequence of isotropic two-phase conductivities in the absence of a magnetic field is
denoted by

σ0n(α1,n, α2,n) := (1− χn)α1,nI2 + χnα2,nI2, (1.9)

with
lim
n→∞

α1,n = α1 > 0 and lim
n→∞

|ωn|α2,n = α2 > 0, (1.10)

and its H(M(Ω)2)-limit is denoted by σ0∗(α1, α2).

2 A two-dimensional non-periodic medium

2.1 A div-curl approach

We extend the classical div-curl lemma.

Lemma 2.1 Let Ω be a bounded open subset of R2. Let α > 0, let ā ∈ L∞(Ω) and let An be a
sequence of matrix-valued functions in L∞(Ω)2×2 (not necessarily symmetric) satisfying

An ≥ αI2 a.e. in Ω and
detAn

detAs
n

|As
n|⇀ ā ∈ L∞(Ω) weakly-∗ in M(Ω). (2.1)

Let ξn be a sequence in L2(Ω)2 and vn a sequence in H1(Ω) satisfying the following assumptions:
(i) ξn and vn satisfy the estimate

ˆ

Ω
A−1

n ξn · ξndx+ ||vn||H1(Ω) ≤ C; (2.2)

(ii) ξn satisfies the classical condition

div ξn is compact in H−1(Ω). (2.3)

Then, there exist ξ in L2(Ω)2 and v in H1(Ω) such that the following convergences hold true up to a
subsequence

ξn ⇀ ξ weakly-∗ in M(Ω)2 and ∇vn ⇀ ∇v weakly in L2(Ω)2. (2.4)

Moreover, we have the following convergence in the distribution sense

ξn · ∇vn ⇀ ξ · ∇v weakly in D
′(Ω).
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Proof of Lemma 2.1. The proof consists in considering the "good-divergence" sequence ξn as a
sum of a compact sequence of gradients ∇un and a sequence of divergence-free functions J∇zn. We
then use Lemma 3.1 of [16] to obtain the strong convergence of zn in L2

loc(Ω). Finally, replacing ξn
by ∇un + J∇zn, we conclude owing to integration by parts.

First step: Proof of convergences (2.4).

An easy computation gives ((
A−1

n

)s)−1
=

detAn

detAs
n

As
n. (2.5)

The sequence ξn is bounded in L1(Ω)2 since the Cauchy-Schwarz inequality combined with the
weak-∗ convergence of (2.1), (2.2) and (2.5) yields

(
ˆ

Ω
|ξn| dx

)2

≤
ˆ

Ω

∣∣∣∣
((
A−1

n

)s)−1
∣∣∣∣ dx

ˆ

Ω

(
A−1

n

)s
ξn ·ξn dx =

ˆ

Ω

detAn

detAs
n

|As
n| dx

ˆ

Ω
A−1

n ξn ·ξn dx ≤ C.

Therefore, ξn converges up to a subsequence to some ξ ∈ M(Ω)2 in the weak-∗ sense of the measures.
Let us prove that the vector-valued measure ξ is actually in L2(Ω)2. Again by the Cauchy-Schwarz
inequality combined with (2.1), (2.2) and (2.5) we have, for any Φ ∈ C0(Ω)

2,

∣∣∣∣
ˆ

Ω
ξ(dx) · Φ

∣∣∣∣ = lim
n→∞

∣∣∣∣
ˆ

Ω
ξn · Φ dx

∣∣∣∣

≤ lim sup
n→∞

(
ˆ

Ω

detAn

detAs
n

|As
n| |Φ|2 dx

) 1

2

(
ˆ

Ω
A−1

n ξn · ξn dx

) 1

2

≤ C
(
ˆ

Ω
ā|Φ|2 dx

) 1

2

,

which implies that ξ is absolutely continuous with respect to the Lebesgue measure. Since ā ∈ L∞(Ω),
we also get that ∣∣∣∣

ˆ

Ω
ξ · Φ dx

∣∣∣∣ ≤ ||Φ||L2(Ω)2

hence ξ ∈ L2(Ω)2. Therefore, the first convergence of (2.4) holds true with its limit in L2(Ω)2. The
second one is immediate.

Second step: Introduction of a stream function.

By (2.3), the sequence un in H1
0 (Ω) defined by un := ∆−1 (div ξn) strongly converges in H1

0 (Ω):

un −→ u in H1
0 (Ω). (2.6)

Let ω be a regular simply connected open set such that ω ⊂⊂ Ω. Since by definition ξn −∇un is a
divergence-free function in L2(Ω)2, there exists (see, e.g., [26]) a unique stream function zn ∈ H1(ω)
with zero ω-average such that

ξn = ∇un + J∇zn a.e. in ω. (2.7)

Third step: Convergence of the stream function zn.

Since ∇un is bounded in L2(Ω)2 by the second step, ξn is bounded in L1(Ω)2 by the first step
and zn has a zero ω-average, the Sobolev embedding of W 1,1(ω) into L2(ω) combined with the
Poincaré-Wirtinger inequality in ω implies that zn is bounded in L2(ω) and thus converges, up to a
subsequence still denoted by n, to a function z in L2(ω).
Moreover, let us define

Sn :=
(
J−1(A−1

n )sJ
)−1

.
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The Cauchy-Schwarz inequality gives
ˆ

ω
S−1
n ∇zn · ∇zn dx =

ˆ

ω
J−1(A−1

n )sJ∇zn · ∇zn dx

=

ˆ

ω
(A−1

n )sJ∇zn · J∇zn dx

=

ˆ

ω
(A−1

n )s
[
ξn −∇un

]
·
[
ξn −∇un] dx

≤ 2

ˆ

ω
(A−1

n )sξn · ξn dx+ 2

ˆ

ω
(A−1

n )s∇un · ∇un dx

= 2

ˆ

ω
A−1

n ξn · ξn dx+ 2

ˆ

ω
A−1

n ∇un · ∇un dx.

The first term is bounded by (2.2) and the last term by the inequality A−1
n ≤ α−1I2 and the

convergence (2.6). Therefore, the sequences vn := zn and, by (2.12), Sn satisfy all the assumptions
of Lemma 3.1 of [16] since, by (2.5),

Sn =
detAn

detAs
n

J−1As
nJ.

Then, we obtain the convergence

zn −→ z strongly in L2
loc(ω). (2.8)

Moreover, the convergence (2.6) gives

ξ = ∇u+ J∇z in D
′(ω). (2.9)

Fourth step: Integration by parts and conclusion.

We have, as J∇vn is a divergence-free function,

ξn · ∇vn = (∇un + J∇zn) · ∇vn = ∇un · ∇vn − div (znJ∇vn) . (2.10)

The strong convergence of ∇un in (2.6), the second weak convergence of (2.4) justified in the first
step and (2.8) give

∇un · ∇vn − div (znJ∇vn) −⇀ ∇u · ∇v − div (zJ∇v) in D
′(ω). (2.11)

We conclude, by combining this convergence with (2.10), (2.9) and integrating by parts, to the
convergence

ξn · ∇vn −⇀ ∇u · ∇v − div (zJ∇v) = (∇u+ J∇z) · ∇v = ξ · ∇v weakly in D
′(ω).

for an arbitrary open subset ω of Ω. �

We also need the following result in order to study the H(M(Ω)2)-convergence of non-symmetric
conductivities thanks to a suitable Dykhne transformation.

Proposition 2.1 Let Ω be a bounded open subset of R2 such that |∂Ω| = 0. Let pn, qn and rn,
n ∈ N be sequences of real numbers converging respectively to p > 0, q and 0. Let α > 0, let βn,
n ∈ N be a sequence of real numbers such that βn ≥ α, and let An be a sequence of matrix-valued
functions in M(α, βn; Ω) (not necessarily symmetric) satisfying

rnAn is bounded in L∞(Ω)2×2 and
detAn

detAs
n

|As
n|⇀ ā ∈ L∞(Ω) weakly-∗ in M(Ω), (2.12)
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and that
Bn =

(
(pnAn + qnJ)

−1 + rnJ
)−1

is a sequence of symmetric matrices.

Then, there exist a subsequence of n, still denoted by n, and a matrix-valued function A∗ in
M(α, β; Ω), with β = 2||ā||L∞(Ω), such that

An

H(M(Ω)2)
−⇀ A∗ and

(
(pnAn + qnJ)

−1 + rnJ
)−1 H(M(Ω)2)

−⇀ pA∗ + qJ. (2.13)

Remark 2.1 Proposition 2.1 is a Keller-Dykhne duality result in a high conductivity framework.
This completes Theorem 2.2 of [16] performed with Bn = J−1A−1

n J .

Remark 2.2 The hypothesis of symmetry on Bn is only sufficient but is adapted to the situation
because we want to transform a non-symmetric problem to a symmetric one. It is only useful to

obtain the condition on
detBn

detBs
n

|Bn| to apply the results of [16].

Remark 2.3 The convergence of rn to r = 0 is not necessary but sufficient for our purpose. If r 6= 0,
the different convergences are conserved but leads us to the expression
pA∗ + qJ = B∗

(
(1− qr)I + p rJA∗

)
.

Proof of Proposition 2.1. The proof is divided into two steps. In the first step, we use Lemma
2.1 to show the H(M(Ω)2)-convergence of Ãn := pnAn + qnJ to pA∗ + qJ . In the second step, we
build a matrix Qn which will be used as a corrector for Bn and then use again Lemma 2.1.

First step: Ã∗ = pA∗ + qJ .

First of all, thanks to Theorem 2.2 [16], we already know that, up to a subsequence still denoted
by n, An H(M(Ω)2)-converges to A∗. We consider a corrector Pn associated with An in the sense
of Murat-Tartar (see, e.g., [39]), such that, for λ ∈ R2, Pnλ = ∇wλ

n is defined by
{
div(An∇wλ

n) = div(A∗∇(λ · x)) in Ω

wλ
n = λ · x on ∂Ω

(2.14)

Again with Theorem 2.2 of [16] and Definition 1.1, we know that Pnλ converges weakly in L2(Ω)2

to λ and AnPnλ converges weakly-∗ inM(Ω) to A∗λ.
Since, for any λ, µ ∈ R2,

α||∇wµ
n||2L2(Ω)2 ≤

ˆ

Ω
An∇wµ

n · ∇wµ
n dx =

ˆ

Ω
A∗µ · ∇wµ

n dx ≤ 2||ā||L∞(Ω)|µ| |Ω|1/2||∇wµ
n||L2(Ω)2

and
ˆ

Ω
A−1

n An∇wλ
n · An∇wλ

n dx =

ˆ

Ω
An∇wλ

n · ∇wλ
n dx,

the sequences ξn := An∇wλ
n and vn := wµ

n satisfy (2.2) and (2.3). This combined with (2.12) implies
that we can apply Lemma 2.1 to obtain

∀λ, µ ∈ R, AnPnλ · Pnµ −⇀ A∗λ · µ in D
′(Ω). (2.15)

We denote Ãn := pnAn + qnJ and consider δn such that δnJ := An −As
n. Then, the matrix Ãn

satisfies
Ãnξ · ξ = pnAnξ · ξ ≥ pnα|ξ|2. (2.16)

Moreover,

det Ãn = p2n detA
s
n + (pnδn + qn)

2 ≤ p2n(detAs
n + 2δ2n) + 2q2n ≤ 2p2n detAn + 2q2n ≤ C detAn,
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the last inequality being a consequence of An ≥ αI2. This inequality gives, by (2.12),

det Ãn

det Ãs
n

|Ãs
n| =

det Ãn

p2n detA
s
n

pn|As
n| ≤ C

detAn

detAs
n

|As
n| ≤ C. (2.17)

Then by (2.16), (2.17) and [16] again, up to a subsequence still denoted by n, Ãn H(M(Ω)2)-
converges to Ã∗ and we have, by the classical div-curl lemma of [39] for JPnλ · Pnµ and (2.15),

∀λ, µ ∈ R, (pnAn + qnJ)Pnλ · Pnµ = pnAnPnλ · Pnµ+ qnJPnλ · Pnµ
D ′(Ω)
−⇀ pA∗λ · µ+ qJλ · µ,

that can be rewritten
Ã∗ = pA∗ + qJ.

Second step: B∗ = Ã∗.

Let θ ∈ C 1
c (Ω) and P̃n a corrector associated with Ãn, such that, for λ ∈ R2, P̃nλ = ∇w̃λ

n is
defined by {

div(Ãn∇w̃λ
n) = div

(
Ã∗∇(θλ · x)

)
in Ω

w̃λ
n = 0 on ∂Ω.

(2.18)

By Definition 1.1, we have
{

w̃λ
n −⇀ θλ · x weakly in H1

0 (Ω),

Ãn∇w̃λ
n −⇀ Ã∗∇(θλ · x) weakly-∗ inM(Ω)2.

(2.19)

Let now consider Bn =
(
Ã−1

n + rnJ
)−1

. Bn is symmetric and so is its inverse :

B−1
n = Ã−1

n + rnJ = (Ã−1
n + rnJ)

s = (Ã−1
n )s.

We then have, by a little computation (like in (2.5)) and (2.17),

detBn

detBs
n

|Bs
n| = |Bn| =

∣∣∣∣
((
Ã−1

n

)s)−1
∣∣∣∣ =

det Ãn

det Ãs
n

|Ãs
n| ≤ C. (2.20)

For any ξ ∈ R2, the sequence νn := (I + rnJÃn)
−1ξ satisfies, by (2.12),

|ξ| ≤
(
1 + ||rnÃn||L∞(Ω)2×2

)
|νn| ≤

(
1 + pn||rnAn||L∞(Ω)2×2 + qnrn

)
|νn| ≤ (1 + C)|νn|,

hence

Bnξ ·ξ = Ãnνn ·(I+rnJÃn)νn = Ãnνn ·νn = pnAnνn ·νn ≥ pnα|νn|2 ≥ α
pn

(1 + C)2
|ξ|2 ≥ C|ξ|2 (2.21)

with C > 0. Therefore, with (2.21) and (2.20), again by Theorem 2.2 of [16], up to a subsequence
still denoted by n, Bn H(M(Ω)2)-converges to B∗.

Let ψ ∈ C 1
c (Ω) and Rn be a corrector associated to Bn, such that, for µ ∈ R2, Rnµ = ∇vµn is

defined by {
div (Bn∇vµn) = div

(
B∗∇(ψµ · x)

)
in Ω

vµn = 0 on ∂Ω.
(2.22)

By Definition 1.1, we have the convergences
{

vµn −⇀ ψµ · x weakly in H1
0 (Ω),

Bn∇vµn −⇀ B∗∇(ψµ · x) weakly-∗ inM(Ω)2.
(2.23)
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Let us define the matrix Qn := (I + rnJÃn)P̃n. We have

BnQn = (Ã−1
n + rnJ)

−1(I + rnJÃn)P̃n = (Ã−1
n + rnJ)

−1(Ã−1
n + rnJ)ÃnP̃n = ÃnP̃n. (2.24)

We are going to pass to the limit in D ′(Ω) the equality given by (2.24) and the symmetry of Bn:

ÃnP̃nλ ·Rnµ = BnQnλ · Rnµ = Qnλ ·BnRnµ. (2.25)

On the one hand, Ãn satisfies (2.1) by (2.16) and (2.17). The sequences ξn := ÃnP̃nλ and vn := vµn
satisfy the hypothesis (2.3) by (2.18) and (2.2) because

ˆ

Ω

(
Ãn

)−1
ξn · ξn dx+ ||vn||H1

0
(Ω) =

ˆ

Ω
ÃnP̃nλ · P̃nλ dx+ ||vµn||H1

0
(Ω) dx ≤ C

by (2.18) and the convergences (2.23) and (2.19). The application of Lemma 2.1, (2.19) and (2.23)
give the convergence

ÃnP̃nλ ·Rnµ −⇀ A∗∇(θλ · x) · ∇(ψµ · x) in D
′(Ω). (2.26)

On the other hand, we have the equality

Qnλ · BnRnµ = BnRnµ · P̃nλ+BnRnµ · rnJÃnP̃n. (2.27)

The matrix Bn satisfies (2.1) by (2.21) and (2.20). The sequences ξn := BnRnµ and vn := w̃λ
n satisfy

the hypothesis (2.3) by (2.22) and (2.2) of Lemma 2.1 because
ˆ

Ω

(
Bn

)−1
ξn · ξn dx+ ||vn||H1

0
(Ω) =

ˆ

Ω
BnRnµ ·Rnµ dx+ ||w̃λ

n||H1

0
(Ω) dx ≤ C

by (2.22) and the convergences (2.19) and (2.23). The application of Lemma 2.1, (2.19) and (2.23)
give the convergence

BnRnµ · P̃nλ −⇀ B∗∇(ψµ · x) · ∇(θλ · x) in D
′(Ω). (2.28)

The convergence of the right part of (2.27) is more delicate. The demonstration is the same as
for Lemma 2.1. Let ω be a simply connected open subset of Ω such as ω ⊂⊂ Ω. The function
ÃnP̃nλ− Ã∗∇(θλ · x) is divergence-free and we can introduce a function zλn such as

ÃnP̃nλ = Ã∗∇(θλ · x) + J∇zλn, (2.29)

zλn −→ 0 strongly in L2
loc(ω). (2.30)

The equality

BnRnµ · rnJÃnP̃nλ = rnBnRnµ · JÃ∗∇(θλ · x)− rnBnRnµ · ∇zλn
= rnBnRnµ · JÃ∗∇(θλ · x)− rndiv(zλnBnRnµ) + rnz

λ
n div

(
B∗∇(θλ · x)

)

leads us, by (2.23), (2.30) and the convergence to 0 of rn, like in the demonstration of Lemma 2.1,
to

BnRnµ · rnJÃnP̃n −⇀ 0 in D
′(ω). (2.31)

Finally, by combining (2.25), (2.26), (2.28) and (2.31), we obtain, for any simply connected open
subset ω of Ω such as ω ⊂⊂ Ω,

Ã∗∇(θλ · x) · ∇(ψµ · x) = B∗∇(ψµ · x) · ∇(θλ · x) in D
′(ω).

We conclude, by taking θ = 1 and ψ = 1 on ω and taking into account that B∗ is symmetric and ω,
λ, µ are arbitrary, that:

B∗ = Ã∗ = pA∗ + qJ.

�
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2.2 An application to isotropic two-phase media

In this section, we study the homogenization of a two-phase isotropic medium with high contrast
and non-necessarily symmetric conductivities. The study of the symmetric case in Proposition 2.2
permits to obtain Theorem 2.1 by applying the transformation of Proposition 2.1. We use Notation
1.1.

Proposition 2.2 Let Ω be a bounded open subset of R2 such that |∂Ω| = 0. Let ωn, n in N, be a
sequence of open subsets of Ω with characteristic function χn, satisfying θn := |ωn| < 1, θn converges
to 0, and

χn

θn

H(−−⇀ a ∈ L∞(Ω) weakly-∗ in M(Ω). (2.32)

We assume that there exists α1, α2 > 0 and two positive sequences α1,n, α2,n ≥ a0 > 0 verifying

lim
n→∞

α1,n = α1 and lim
n→∞

θnα2,n = α2, (2.33)

and that the conductivity takes the form

σ0n(α1,n, α2,n) = α1,n(1− χn)I2 + χnα2,nI2.

Then, there exists a subsequence of n, still denoted by n, and a locally Lipschitz function

σ0∗ : (0,∞)2 −→M(a0, 2||a||∞; Ω)

such that

∀ (α1, α2) ∈ (0,∞)2, σ0n(α1,n, α2,n)
H(M(Ω)2)
−⇀ σ0∗(α1, α2). (2.34)

Proof of Proposition 2.2. The proof is divided into two parts. We first prove the theorem for
α1,n = α1, α2,n = θ−1

n α2, and then treat the general case.

First step: The case α1,n = α1, α2,n = θ−1
n α2.

In this step we denote σ0n(α) := σ0n(α1, θ
−1
n α2), for α = (α1, α2) ∈ (0,∞)2. Theorem 2.2 of [16] implies

that for any α ∈ (0,∞)2, there exists a subsequence of n such that σ0n(α) H(M(Ω)2)-converges in
the sense of Definition 1.1 to some matrix-valued function in M(a0, 2||a||∞; Ω).

By a diagonal extraction, there exists a subsequence of n, still denoted by n, such that

∀α ∈ Q2 ∩ (0,∞)2, σ0n(α)
H(M(Ω)2)
−⇀ σ0∗(α). (2.35)

We are going to show that this convergence is true any pair α ∈ (0,∞)2.
We have, by (2.32), for any α ∈ Q2 ∩ (0,∞)2,

|σ0n(α)| = α1(1− χn) + χn
α2

θn

H(−−⇀ α1 + α2 a ∈ L∞(Ω) weakly-∗ inM(Ω) (2.36)

and, since θn ∈ (0, 1),

∀ ξ ∈ R2, σ0n(α)ξ · ξ = α1(1− χn)|ξ|2 + χn
α2

θn
|ξ|2 ≥ min(α1, α2)|ξ|2 a.e. in Ω. (2.37)

By applying Theorem 2.2 of [16] with (2.36), we have the inequality

|σ0∗(α)λ| ≤ 2|λ| (α1 + α2||a||∞) . (2.38)
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For any α ∈ Q2 ∩ (0,∞)2 and λ ∈ R2, consider the corrector wα,λ
n associated with σ0n(α) defined

by 



div
(
σ0n(α)∇wα,λ

n

)
= div

(
σ0∗(α)λ

)
in Ω,

wα,λ
n = λ · x on ∂Ω,

(2.39)

which depends linearly on λ.
Let α ∈ Q2 ∩ (0,∞)2. Let us show that the energies

ˆ

Ω
σ0n(α)∇wα,λ

n · ∇wα,λ
n dx (2.40)

are bounded. We have, by (2.39), (2.38) and the Cauchy-Schwarz inequality
ˆ

Ω
σ0n(α)∇wα,λ

n · ∇wα,λ
n dx

=

ˆ

Ω
σ0∗(α)λ ·

(
∇wα,λ

n − λ
)

dx+

ˆ

Ω
σ0n(α)∇wα,λ

n · λ dx

=

ˆ

Ω
σ0∗(α)λ · ∇wα,λ

n dx−
ˆ

Ω
σ0∗(α)λ · λ︸ ︷︷ ︸

≥0

dx+

ˆ

Ω
σ0n(α)∇wα,λ

n · λ dx

which leads us to
ˆ

Ω
σ0n(α)∇wα,λ

n · ∇wα,λ
n dx ≤

ˆ

Ω
|σ0∗(α)λ · ∇wα,λ

n | dx+

ˆ

Ω
|σ0n(α)∇wα,λ

n · λ| dx. (2.41)

On the one hand, the Cauchy-Schwarz inequality gives

(
ˆ

Ω
|σ0n(α)∇wα,λ

n · λ| dx
)2

≤ |λ|2
ˆ

Ω
|σ0n(α)| dx

ˆ

Ω
σ0n(α)∇wα,λ

n · ∇wα,λ
n dx

that is (
ˆ

Ω
|σ0n(α)∇wα,λ

n · λ| dx
)2

≤ |λ|2|α|
ˆ

Ω
σ0n(α)∇wα,λ

n · ∇wα,λ
n dx. (2.42)

On the other hand, by (2.37) and the Cauchy-Schwarz inequality, we have

ˆ

Ω
|σ0∗(α)λ · ∇wα,λ

n | dx ≤ 2|λ|(α1 + α2||a||∞)

√
ˆ

Ω
|∇wα,λ

n |2 dx

≤ 2|λ|(α1 + α2||a||∞)

√
1

α1
+

1

α2

√
ˆ

Ω
σ0n(α)∇wα,λ

n · ∇wα,λ
n dx

that is
ˆ

Ω
|σ0∗(α)λ · ∇wα,λ

n | dx ≤ C |λ|2 |α|
√

1

α1
+

1

α2

√
ˆ

Ω
σ0n(α)∇wα,λ

n · ∇wα,λ
n dx (2.43)

where C does not depend on n nor α.
By combining (2.41), (2.42) and (2.43), we have

ˆ

Ω
σ0n(α)∇wα,λ

n · ∇wα,λ
n dx ≤ C |λ|2

(
|α|+ |α|2(α1

−1 + α2
−1)︸ ︷︷ ︸

=:M(α)

)
(2.44)

where C does not depend on n nor α.
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Let α′ ∈ Q2 ∩ (0,∞)2. The sequences ξn := σ0n(α)∇wα,λ
n and vn := wα′,λ

n satisfy the assumptions
(2.2) and (2.3) of Lemma 2.1. By symmetry, we have the convergences




σ0n(α)∇wα,λ

n · ∇wα′,λ
n −⇀ σ0∗(α)λ · λ weakly in D ′(Ω),

σ0n(α
′)∇wα′,λ

n · ∇wα,λ
n −⇀ σ0∗(α

′)λ · λ weakly in D ′(Ω).
(2.45)

As the matrices are symmetric, we have

(
σ0n(α) − σ0n(α′)

)
∇wα,λ

n · ∇wα′,λ
n = σ0n(α)∇wα,λ

n · ∇wα′,λ
n − σ0n(α′)∇wα′,λ

n · ∇wα,λ
n ,

hence

(
σ0n(α)− σ0n(α′)

)
∇wα,λ

n · ∇wα′,λ
n −⇀

(
σ0∗(α)− σ0∗(α′)

)
λ · λ weakly in D

′(Ω). (2.46)

Let λ ∈ R2. We have, by the Cauchy-Schwarz inequality, with the Einstein convention
ˆ

Ω

∣∣(σ0n(α)− σ0n(α′)
)
∇wα,λ

n · ∇wα′,λ
n

∣∣ dx

=

ˆ

Ω\ωn

|α1 − α′
1|
∣∣∇wα,λ

n · ∇wα′,λ
n

∣∣ dx+

 

ωn

|α2 − α′
2|
∣∣∇wα,λ

n · ∇wα′,λ
n

∣∣ dx

≤ |α1 − α′
1|
√
ˆ

Ω\ωn

|∇wα,λ
n |2 dx

√
ˆ

Ω\ωn

|∇wα′,λ
n |2 dx

+ |α2 − α′
2|
√
 

ωn

|∇wα,λ
n |2 dx

√
 

ωn

|∇wα′,λ
n |2 dx

≤ |αi − α′
i|
√

1

αi

ˆ

Ω
σ0n(α)∇wα,λ

n · ∇wα,λ
n dx

√
1

α′
i

ˆ

Ω
σ0n(α)∇wα′,λ

n · ∇wα′,λ
n dx.

This combined with (2.44) yields

ˆ

Ω

∣∣(σ0n(α) − σ0n(α′)
)
∇wα,λ

n · ∇wα′,λ
n

∣∣ ≤ C|λ|2 |αi − α′
i|√

|αi||α′
i|
M(α) M(α′)

The sequence of (2.46) is thus bounded in L1(Ω)2 which implies that (2.46) holds weakly-∗ inM(Ω).
Hence, we get, for any ϕ ∈ Cc(Ω), that

ˆ

Ω

∣∣(σ0∗(α)− σ0∗(α′)
)
λ · λ

∣∣ ϕ dx ≤ C |λ|2 |αi − α′
i|√

|αi||α′
i|
M(α) M(α′) ||ϕ||∞. (2.47)

Then, the Riesz representation theorem implies that

∣∣∣∣σ0∗(α)− σ0∗(α′)
∣∣∣∣
L1(Ω)2×2

≤ C |αi − α′
i|√

|αi||α′
i|
M(α) M(α′).

Therefore, by the definition of M in (2.44), for any compact subset K ⊂ (0,∞)2,

∃C > 0, ∀α,α′ ∈ Q2 ∩K,
∣∣∣∣σ0∗(α) − σ0∗(α′)

∣∣∣∣
L1(Ω)2×2 ≤ C |α− α′|. (2.48)

This estimate permits to extend the definition (2.35) of σ0∗ on (0,∞)2 by

∀α ∈ (0,∞)2, σ0∗(α) = lim
α′→α

α′∈Q2∩(0,∞)2

σ0∗(α
′) strongly in L1(Ω)2×2. (2.49)
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Let α ∈ (0,∞)2. Theorem 2.2 of [16] implies that there exists a subsequence of n, denoted by
n′, and a matrix-valued function σ̃∗ ∈ M(a0, 2||a||∞; Ω) such that

σn′(α)
H(M(Ω)2)
−⇀ σ̃∗. (2.50)

Repeating the arguments leading to (2.48), for any positive sequence of rational pair (αq)q∈N con-
verging to α, we have

∃C > 0,
∣∣∣∣σ̃∗ − σ0∗(αq)

∣∣∣∣
L1(Ω)2×2 ≤ C |α− αq|, (2.51)

hence, by (2.49), σ̃∗ = σ0∗(α). Therefore by the uniqueness of the limit in (2.50), we obtain for the
whole sequence satisfying (2.35)

∀α ∈ (0,∞)2, σn(α)
H(M(Ω)2)
−⇀ σ0∗(α). (2.52)

In particular, the function σ0∗ satisfies (2.48) and (2.49), i.e. σ0∗ is a locally Lipschitz function on
(0,∞)2.

Second step: The general case.
We denote αn = (α1,n, α2,n) and σ0n(α

n) = σ0n(α1,n, α2,n). Theorem 2.2 of [16] implies that there

exists a subsequence of n, denoted by n′, such that σ0n′(αn′

) H(M(Ω)2)-converges to some tt
σ̃∗ ∈ M(a0, 2||a||∞; Ω) in the sense of Definition 1.1.

As in the first step, for any αn′ ∈ (0,∞)2 and λ ∈ R2, we can consider the corrector wαn′

,λ
n′

associated with σ0n′(αn′

) defined by





div

(
σ0n′(αn′

)∇wαn′

,λ
n′

)
= div (σ̃∗λ) in Ω,

wαn′

,λ
n′ = λ · x on ∂Ω,

(2.53)

which depends linearly on λ. Proceeding as in the first step, we obtain like in (2.46), with α = (α1, α2)
the limit of αn according to (2.33),

(
σ0n′(α) − σ0n′(αn′

)
)
∇wαn′

,λ
n′ · ∇wα,λ

n′ −⇀
(
σ0∗(α)− σ̃∗

)
λ · λ weakly in D

′(Ω). (2.54)

Moreover, by the energy bound (2.44), which also holds for αn′

, we have, for any ϕ ∈ D(Ω),
ˆ

Ω

(
σ0n′(α) − σ0n′(αn′

)
)
∇wαn′

,λ
n′ · ∇wα,λ

n′ ϕ dx −→
n′→∞

0.

This combined with (2.54), yields
ˆ

Ω

(
σ0∗(α)− σ̃∗

)
λ · λ ϕ dx = 0,

which implies that σ0∗(α) = σ̃∗. We conclude by a uniqueness argument. �

We can now obtain a result for (perturbed) non-symmetric conductivities. Then, we will use
a Dykhne transformation to recover the symmetric case following the Milton approach [36] (pp.
61–65). This will allow us to apply Proposition 2.2.

Theorem 2.1 Let Ω be a bounded open subset of R2 such that |∂Ω| = 0. Let ωn, n ∈ N, be a sequence
of open subsets of Ω and denote by χn their characteristic function. We assume that θn = |ωn| < 1
converges to 0 and

χn

θn

H(−−⇀ a ∈ L∞(Ω) weakly-∗ in M(Ω). (2.55)
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Consider the conductivity defined by

σn(h) = (1− χn)σ1(h) +
χn

θn
σ2(h) (2.56)

where for j = 1, 2, σj(h) = αj + hβjJ ∈ C with α1, α2 > 0 and (β1, β2) 6= (0, 0).
Then, there exists a subsequence of n, still denoted by n, and a locally Lipschitz function

σ0∗ : (0,∞)2 −→M
(
min(α1, α2), 2

(
|σ1|+ |σ2| ||a||∞

)
; Ω
)

such that

σn(h)
H(M(Ω)2)
−⇀ σ0∗

(
α1, α2 + α−1

2 β22h
2
)
+ hβ1J.

Proof of Theorem 2.1. We have

∀ ξ ∈ R2, σn(h)ξ · ξ = (1− χn)α1|ξ|2 +
χn

θn
α2|ξ|2 ≥ min(α1, α2)|ξ|2 a.e. in Ω

and, by (2.55),

|σn(h)| = (1− χn)|σ1(h)| +
χn

θn
|σ2(h)|−⇀ |σ1(h)| + a|σ2(h)| ∈ L∞(Ω) weakly-∗ in M(Ω).

In order to make a Dykhne transformation like in p.62 of [36], we consider two real coefficients
an and bn in such a way that

Bn :=
(
anσn(h) + bnJ

)(
anI2 + Jσn(h)

)−1
=
(
(pnσn(h) + qnJ)

−1 + rnJ
)−1

is symmetric. An easy computation shows that the previous equality holds when

pn :=
a2n

a2n + bn
, qn :=

anbn
a2n + bn

and rn :=
1

an
.

On the one hand, the estimates (3.39) and (3.40) with α2,n = θ−1
n α2, β2,n = θ−1

n β2, yield (note that
they are independent of χn)

pn ∼
n→∞

1, qn −→
n→∞

−hβ1, rn −→
n→∞

0 and ||rnσn(h)||∞ ≤ C
(
|σ1(h)|+ |σ2(h)|

)
. (2.57)

On the other hand, as in Section 3.2, with Notation 1.1 and (3.34), we have

Bn = σ0n
(
α′
1,n(h), α

′
2,n(h)

)
, (2.58)

where

α′
1,n(h) =

an(α1 + ihβ1) + ibn
an + i(α1 + ihβ1)

and α′
2,n(h) =

an(α2/θn + ihβ2/θn) + ibn
an + i(α2/θn + ihβ2/θn)

. (2.59)

Hence, like in (3.41), we have

lim
n→∞

α′
1,n(h) = α1 and lim

n→∞
θnα

′
2,n(h) = α2 + α−1

2 β2
2h2. (2.60)

We can first apply Proposition 2.2 with the conditions (2.58) and (2.60) to have the H(M(Ω)2)-
convergence of Bn. Then, by virtue of Proposition 2.1, with (2.57) we get that

σn(h)
H(M(Ω)2)
−⇀ σ0∗

(
α1, α2 + α−1

2 β22h
2
)
+ hβ1J.

�
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3 A two-dimensional periodic medium

In this section we consider a sequence Σn of matrix valued functions (not necessarily symmetric)
in L∞(R2)2×2, which satisfies the following assumptions:

1 . Σn is Y -periodic, where Y := (0, 1)2, i.e.,

∀n ∈ N,∀κ ∈ Z2, Σn(.+ κ) = Σn(.) a.e. in R2, (3.1)

2 . Σn is equi-coercive in R2, i.e.,

∃α > 0 such that ∀n ∈ N,∀ ξ ∈ R2, Σnξ · ξ ≥ α|ξ|2 a.e. in R2. (3.2)

Let εn be a sequence of positive numbers which tends to 0. From the sequences Σn and εn we
define the highly oscillating sequence of matrix-valued functions σn by

σn(x) = Σn

(
x

εn

)
, a.e. x ∈ R2. (3.3)

By virtue of (3.1) and (3.2), σn is an equi-coercive sequence of εn-periodic matrix-valued functions
in L∞(R2)2×2. For a fixed n ∈ N, let (σn)∗ be the constant matrix defined by

∀λ, µ ∈ R2, (σn)∗λ · µ =

ˆ

Y
Σn∇W λ

n · ∇W µ
n dy, (3.4)

where, for any λ ∈ R2, W λ
n ∈ H1

♯ (Y ), the set of Y -periodic functions belonging to H1
loc(R

2), is the
solution of the auxiliary problem

ˆ

Y

(
W λ

n − λ · y
)

dy = 0 and div
(
Σn∇W λ

n

)
= 0 in D

′(R2) (3.5)

or equivalently 



ˆ

Y
Σn∇W λ

n · ∇ϕ dy = 0, ∀ϕ ∈ H1
♯ (Y )

ˆ

Y

(
W λ

n (y)− λ · y
)
dy = 0.

(3.6)

Set

wλ
n(x) := εnW

λ
n

(
x

εn

)
, for x ∈ Ω, (3.7)

and
wn := (we1

n , w
e2
n ) = (w1

n, w
2
n). (3.8)

3.1 A uniform convergence result

Theorem 3.1 Let Ω be a bounded open subset of R2 with a Lipschitz boundary. Consider a highly
oscillating sequence of matrix-valued functions σn satisfying (3.1), (3.2), (3.3) and the constant
matrix (σn)∗ defined by (3.4). We assume that

(σn)∗ −→ σ∗ in R2×2. (3.9)

Consider, for f ∈ H−1(Ω) ∩W−1,q(Ω) with q > 2, the solution un of the problem

Pn
{
−div(σn∇un) = f in Ω

un = 0 on ∂Ω.
(3.10)
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Then, un converges uniformly to the solution u ∈ H1
0 (Ω) of

P
{
−div(σ∗∇u) = f in Ω

u = 0 on ∂Ω.
(3.11)

Moreover we have the corrector result, with the εnY -periodic sequence wn defined in (3.8):

∇un −
2∑

i=1

∂iu ∇wi
n −→ 0 in L1(Ω)2. (3.12)

Remark 3.1 The first point of Theorem 3.1 is an extension to the non-symmetric case of the results
of [13] and [15]. The uniform convergence of un is a straightforward consequence of Theorem 2.7
of [15] taking into account that in the present case σn ∈ L∞(Ω)2×2 for a fixed n. The fact that
f ∈W−1,q(Ω) with q > 2 ensures the uniform convergence.

Proof of Theorem 3.1.

Derivation of the limit problem P.

We only have to show that u is the solution of P in (3.11). We consider a corrector
Dw̃n : R2 −→ R2×2 associated with σT

n defined by

w̃n(x) := εnW̃n

(
x

εn

)
=

(
εnW̃

1
n

(
x

εn

)
, εnW̃

2
n

(
x

εn

))

where for i = 1, 2, W̃ i
n ∈ H1

♯ (Y ) is the solution of the auxiliary problem

ˆ

Y

(
W̃ i

n − ei · x
)

dx = 0 and div
(
ΣT

n∇W̃ i
n

)
= 0 in D

′(R2). (3.13)

Again, thanks to Theorem 2.7 of [15], w̃n converges uniformly to the identity in Ω by the integral
condition (3.13). Let ϕ ∈ D(Ω). We have, using the Einstein convention, by integrating by parts
and by the Schwarz theorem (∂2i,jϕ = ∂2j,iϕ)

ˆ

Ω
σn∇un · ∇ (ϕ(w̃n)) dx

=

ˆ

Ω
∇un · σTn∇w̃i

n(∂iϕ)(w̃n) dx

=

ˆ

Ω
σTn∇w̃i

n · ∇(un∂iϕ(w̃n)) dx
︸ ︷︷ ︸

=0

−
ˆ

Ω
σTn∇w̃i

n · ∇w̃j
n ∂2i,jϕ(w̃n) un dx

= −
ˆ

Ω
σn∇w̃i

n · ∇w̃i
n ∂2i,iϕ(w̃n) un dx−

ˆ

Ω
σT

n∇w̃2
n · ∇w̃1

n ∂22,1ϕ(w̃n) un dx

espace−
ˆ

Ω
σTn∇w̃1

n · ∇w̃2
n ∂21,2ϕ(w̃n) un dx

= −
ˆ

Ω
σn∇w̃i

n · ∇w̃i
n ∂2i,iϕ(w̃n) un dx−

ˆ

Ω
σn∇w̃1

n · ∇w̃2
n ∂21,2ϕ(w̃n) un dx

espace−
ˆ

Ω
σTn∇w̃1

n · ∇w̃2
n ∂21,2ϕ(w̃n) un dx

= −
ˆ

Ω
σsn∇w̃i

n · ∇w̃i
n ∂2i,iϕ(w̃n) un dx− 2

ˆ

Ω
σsn∇w̃1

n · ∇w̃2
n ∂21,2ϕ(w̃n) un dx.

This leads us to the equality

〈f, ϕ(w̃n)〉H−1(Ω),H1

0
(Ω) =

ˆ

Ω
σn∇un · ∇ (ϕ(w̃n)) dx = −

ˆ

Ω
σsn∇w̃i

n · ∇w̃j
n ∂2i,jϕ(w̃n) un dx. (3.14)
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To study the convergence of the last term of (3.14), we first show that σsn∇w̃i
n · ∇w̃j

n is bounded
in L1(Ω). We have, by periodicity and the Cauchy-Schwarz inequality

ˆ

Ω
|σsn∇w̃i

n · ∇w̃j
n| dx =

ˆ

Ω
|Σs

n∇W̃ i
n · ∇W̃ j

n|
(
x

εn

)
dx

≤ C
ˆ

Y
|Σs

n∇W̃ i
n · ∇W̃ j

n| dx

≤ C
√
ˆ

Y

∣∣Σs
n∇W̃ i

n · ∇W̃ i
n

∣∣ dx

√
ˆ

Y

∣∣Σs
n∇W̃ j

n · ∇W̃ j
n

∣∣ dx

≤ C
√

(σn)∗ei · ei
√

(σn)∗ej · ej

which is bounded by the hypothesis (3.9). Therefore,

σsn∇w̃i
n · ∇w̃j

n is bounded in L1(Ω). (3.15)

Due to the periodicity, we know that for i, j = 1, 2,

2σsn∇w̃i
n · ∇w̃j

n = σT

n∇w̃i
n · ∇w̃j

n + σT

n∇w̃j
n · ∇w̃i

n ⇀ (σ∗)
T ei · ej + (σ∗)

T ej · ei = 2 (σ∗)
s ei · ej

weakly-∗ inM(Ω). Hence, we get that

σsn∇w̃i
n · ∇w̃j

n ⇀ (σ∗)
s ei · ej weakly-∗ inM(Ω). (3.16)

Moreover, ∂2i,jϕ(w̃n) un converges uniformly to ∂2i,jϕ u. Thus, by passing to the limit in (3.14), we
have, again with the Einstein convention

〈f, ϕ〉H−1(Ω),H1

0
(Ω) = −

ˆ

Ω
(σ∗)

s ei · ej ∂2i,jϕ u dx = −
ˆ

Ω
σ∗ : ∇2ϕ u dx.

Therefore, by integrating by parts and using ϕ = 0 on ∂Ω,
ˆ

Ω
σ∗∇u · ∇ϕ dx = 〈f, ϕ〉H−1(Ω),H1

0
(Ω). (3.17)

Proof of the corrector result

First of all, we show that the corrector function wn is bounded in H1(Ω)2. By the definition
(3.8) of wn, the Y -periodicity of W ei

n and the equi-coercivity of Σn, we have, for i = 1, 2,

α ||∇wi
n||2L2(Ω)2 ≤ Cα ||∇W ei

n ||2L2(Y )2 ≤ C
ˆ

Y
Σn∇W i

n · ∇W i
n dx = C (σn)∗ei · ei (3.18)

which is bounded. This inequality combined with the uniform convergence of wn yields to the
boundedness of wn in H1(Ω)2.

Let us consider an approximation uδ ∈ D(Ω) of u such that

||u− uδ||H1

0
(Ω) ≤ δ. (3.19)

On the one hand, we have
ˆ

Ω
σn∇un · ∇

(
un − uδ(wn)

)
dx = 〈f,

(
un − uδ(wn)

)
〉H−1(Ω),H1

0
(Ω).

Since wn converges uniformly to identity on Ω and is bounded in H1(Ω) (see (3.18)), with uδ ∈ D(Ω),
uδ(wn) converges weakly to uδ in H1

0 (Ω). Hence, by the weak convergence of un to u in H1
0 (Ω) and

(3.19), we can pass to the limit the previous inequality and obtain, for any δ > 0,

lim sup
n→∞

∣∣∣∣
ˆ

Ω
σn∇un · ∇

(
un − uδ(wn)

)
dx

∣∣∣∣ =
∣∣∣〈f, u− uδ〉H−1(Ω),H1

0
(Ω)

∣∣∣ ≤ Cδ. (3.20)
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On the other hand, similarly to the proof of the first point (3.14), we are led to the equality
ˆ

Ω
σn∇

(
uδ(wn)

)
· ∇
(
un − uδ(wn)

)
dx = −

ˆ

Ω
σsn∇wi

n · ∇wj
n ∂2i,ju

δ(wn)
(
un − uδ(wn)

)
dx. (3.21)

As in the first point, σsn∇wi
n ·∇wj

n is bounded in L1(Ω) (see (3.15)), un converges uniformly to u
and ∂i,juδ(wn) converges uniformly to ∂i,juδ because uδ is a D(Ω) function. By passing to the limit
in (3.21)

ˆ

Ω
σn∇

(
uδ(wn)

)
· ∇
(
un − uδ(wn)

)
dx −→

n→∞
−
ˆ

Ω
(σ∗)

sei · ej ∂2i,ju
δ
(
u− uδ

)
dx. (3.22)

Moreover, like in (3.17) we have
ˆ

Ω
(σ∗)

sei · ej ∂2i,ju
δ
(
u− uδ

)
dx =

ˆ

Ω
σ∗∇uδ · ∇

(
u− uδ

)
dx. (3.23)

By combining this equality with the convergence (3.22), we obtain the inequality

lim
n→∞

∣∣∣∣
ˆ

Ω
σn∇

(
uδ(wn)

)
· ∇
(
un − uδ(wn)

)
dx

∣∣∣∣ ≤
∣∣∣∣
ˆ

Ω
σ∗∇uδ · ∇

(
u− uδ

)∣∣∣∣ (3.24)

≤ C|σ∗| ||∇uδ||L2(Ω)2 ||∇
(
u− uδ

)
||L2(Ω)2 ≤ Cδ. (3.25)

Thus, by adding (3.20) and (3.25), we have

lim sup
n→∞

ˆ

Ω
σn∇

(
un − uδ(wn)

)
· ∇
(
un − uδ(wn)

)
dx ≤ Cδ

which leads us, by equi-coercivity, to

lim sup
n→∞

α ||∇(un − uδ(wn))||2L2(Ω)2

≤ lim sup
n→∞

∣∣∣∣
ˆ

Ω
σn∇

(
un − uδ(wn)

)
· ∇
(
un − uδ(wn)

)
dx

∣∣∣∣ ≤ Cδ.
(3.26)

Thus, the Cauchy-Schwarz inequality, the boundedness of ∇wi
n in L2(Ω)2 (3.18) and the Einstein

convention give, for any δ > 0,

||∇un −∇wi
n∂iu||L1(Ω)2

≤ ||∇un −∇wi
n∂iu

δ||L1(Ω)2 + ||∇wi
n∂i
(
uδ − u

)
||L1(Ω)2

≤ ||∇un −∇wi
n∂iu

δ||L1(Ω)2 + ||∇wi
n||L2(Ω)2 ||∂i

(
uδ − u

)
||L2(Ω)

≤ ||∇un −∇wi
n∂iu

δ||L1(Ω)2 + Cδ

≤ ||∇un −∇wi
n∂iu

δ(wn)||L1(Ω)2 + ||∇wi
n

(
∂iu

δ − ∂iuδ(wn)
)
||L1(Ω)2 + Cδ

≤ ||∇un −∇wi
n∂iu

δ(wn)||L1(Ω)2 + ||∇wi
n||L2(Ω)2 ||∂iuδ − ∂iuδ(wn)||L2(Ω) + Cδ

≤ ||∇un −∇wi
n∂iu

δ(wn)||L1(Ω)2 + C||∂iuδ − ∂iuδ(wn)||L2(Ω) +Cδ.

Since uδ ∈ D(Ω) and wn converges uniformly to the identity on Ω, the second term of the last
inequality converges to 0. Hence, we get that

lim sup
n→∞

||∇un −∇wi
n∂iu||L1(Ω)2 ≤ lim sup

n→∞
||∇un −∇wi

n∂iu
δ(wn)||L1(Ω)2 + Cδ. (3.27)

Finally, this inequality combined with (3.26) gives, for any δ > 0,

0 ≤ lim sup
n→∞

||∇un −∇wi
n∂iu||L1(Ω)2 ≤ C

√
δ +Cδ,

which implies the corrector result (3.12). �

Remark 3.2 If the solution u is a C 2 function, then the convergence (3.12) holds true in L2
loc
(Ω)

since we may take u = uδ.
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3.2 A two-phase result

Here, we recall a two-phase result due to G.W. Milton (see [36] pp. 61–65) using the Dykhne
transformation.

In order to apply the previous theorem, we reformulate Milton’s calculus in such a way that every
coefficient depends on n. We then consider, for a fixed n, the periodic homogenization of a conduc-
tivity σn(h) to obtain (σn)∗(h) through the link between the homogenization of the transformed
conductivity and (σn)∗(h) given by formula (4.16) in [36]. Finally, we study the limit of (σn)∗(h)
through the asymptotic behavior of the coefficients of the transformation, and apply Theorem 3.1 in
the example Section 3.3.

In this section we consider a two-phase periodic isotropic medium. Let χn be a sequence of
characteristic functions of subsets of Y . We define for any α1 > 0, β1 ∈ R, any sequences α2,n > 0,
β2,n ∈ R and any h ∈ R, a parametrized conductivity Σn(h):

Σn(h) = (1− χn)(α1I2 + hβ1J) + χn(α2,nI2 + hβ2,nJ) in Y. (3.28)

We still denote by Σn(h) the periodic extension to R2 of Σn(h) (which satisfies (3.1)). We assume
that Σn(h) satisfies (3.2), and define σn(h) by (3.3) and (σn)∗(h) by (3.4).

We have the following result based on an analysis of [36] (pp. 61–65).

Proposition 3.1 Let χn be a sequence of characteristic functions of subsets of Y , α1, α2 > 0, a
positive sequence α2,n, β1, β2 ∈ R, and a sequence β2,n such that

lim
n→∞

α2,n =∞, lim inf
n→∞

|β2,n − β1| > 0, and lim
n→∞

β2,n
α2,n

=
β2
α2
. (3.29)

Assume that the effective conductivity in the absence of a magnetic field

(
σ0n
)
∗
(γ1,n, γ2,n) is bounded when lim

n→∞
γ1,n = α1 and lim

n→∞

γ2,n
α2,n

= γ2 > 0. (3.30)

Then, there exist two parametrized positive sequences α′
1,n(h), α

′
2,n(h) such that

lim
n→∞

α′
1,n(h) = α1 and α′

2,n(h) ∼n→∞

α2
2 + h2β22
α2
2

α2,n, (3.31)

and
(σn)∗(h) =

(
σ0n
)
∗

(
α′
1,n(h), α

′
2,n(h)

)
+ hβ1J + o

n→∞
(1) (3.32)

where
(
σ0n
)
∗

(
α′
1,n(h), α

′
2,n(h)

)
is bounded.

Remark 3.3 In view of condition (3.29), the case where β2,n tends to β1 corresponds to perturb the
symmetric conductivity

σsn = (1− χn)α1I2 + χnα2,nI2

by
σsn + β1J + o

n→∞
(1).

Then it is clear that
(σn)∗(h) =

(
σsn
)
∗
+ β1J + o

n→∞
(1).

Proof of Proposition 3.1. The proof is divided into two parts. After applying Milton’s computa-
tion (pp. 61–64 of [36]), we study the asymptotic behavior of the different coefficients.

t
First step: Applying Dykhne’s transformation through Milton’s computations.
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In order to make the Dykhne’s transformation following Milton [36] (pp. 62–64), we consider two
real coefficients an and bn such that

σ′n :=
(
anσn(h) + bnJ

)(
anI2 + Jσn(h)

)−1
= an

(
σn(h) + (an)

−1bnJ
)(
anI2 + Jσn(h)

)−1
(3.33)

is symmetric and, more precisely, according to Notation 1.1, reads as

σ′n = (1− χn)α
′
1,n(h)I2 + χnα

′
2,n(h)I2 = σ0n

(
α′
1,n(h), α

′
2,n(h)

)
. (3.34)

Then, using the complex representation

αI2 + βJ ←→ α+ βi (3.35)

suggested by Tartar in [20], the constants an, bn must satisfy

α′
1,n(h) =

an(α1 + ihβ1) + ibn
an + i(α1 + ihβ1)

∈ R and α′
2,n(h) =

an(α2,n + ihβ2,n) + ibn
an + i(α2,n + ihβ2,n)

∈ R, (3.36)

which implies that

bn =
−a2nhβ1 + an∆1

an − hβ1
=
−a2nhβ2,n + an∆2,n

an − hβ2,n
. (3.37)

Denoting ∆1 := α2
1 + h2β21 and ∆2,n := α2

2,n + h2β22,n (thanks to (3.29), n is considered to be larger
enough such that β2,n − β1 6= 0 and an is real), the equality (3.37) provides two non-zero solutions
for an:

an =
∆2,n −∆1 +

√
(∆2,n −∆1)2 + 4h2(β2,n − β1)(β2,n∆1 − β1∆2,n)

2h(β2,n − β1)
, (3.38)

and

a−n =
∆2,n −∆1 −

√
(∆2,n −∆1)2 + 4h2(β2,n − β1)(β2,n∆1 − β1∆2,n)

2h(β2,n − β1)
.

The value (3.38) is associated with a positive matrix σ′n, while a−n leads us to the negative matrix
σ−n = −J(σ′n)−1J−1 to exclude (see [35] for more details).

t
Second step: asymptotic behavior of the coefficients and the homogenized matrix.

One the one hand, by the equality (3.38) combined with (3.29), we have

lim
n→∞

an
h(β2,n − β1)

α2
2,n

=
α2
2 + h2β22
α2
2

which clearly implies that

an ∼
n→∞

α2
2 + h2β22
α2
2

α2
2,n

h(β2,n − β1)
and an − hβ2,n ∼

n→∞

α2
2,n

h(β2,n − β1)
. (3.39)

On the other hand, (3.29), (3.39) and the first equality of (3.37) give

bn = −anhβ1 +∆1 + o
n→∞

(1). (3.40)

From (3.29), (3.38), (3.39) and (3.40) we deduce the following asymptotic behavior for the mod-
ified phases:

lim
n→∞

α′
1,n(h) = α1 and lim

n→∞

α′
2,n(h)

α2,n
=
α2
2 + h2β22
α2
2

. (3.41)

To consider
(
σ′n
)
∗
, we need to verify that σ′n is equi-coercive. We have, by denoting for any

ξ ∈ R2, νn =
(
anI2 + Jσn(h)

)−1
ξ,

∀ ξ ∈ R2, σ′nξ · ξ =
(
anσn(h) + bnJ

)
νn ·

(
anI2 + Jσn(h)

)
νn = (a2n + bn)σn(h)νn · νn
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and, because a−1
n σn(h) is bounded in L∞(Ω)2×2 by (3.39),

∀ ξ ∈ R2, |ξ| =
∣∣anνn + Jσn(h)νn

∣∣ ≤ an(1 + C)|νn|.
The equi-coercivity of σn(h) gives

∃C > 0, ∀ ξ ∈ R2, σ′nξ · ξ ≥
C

(1 + C)2
a2n + bn
a2n

|ξ|2 (3.42)

that is, for n larger enough, by (3.39) and (3.40), σ′n is equi-coercive.
We can now apply the Keller-Dykhne duality theorem (see, e.g., [31, 24]) to equality (3.33) to

obtain
(σ′n)∗ =

(
an(σn)∗ + bnJ

)(
anI2 + J(σn)∗

)−1
. (3.43)

Moreover, by inverting this transformation, we have

(σn)∗(h) =
(
anI2 − (σ′n)∗J

)−1(
an(σ

′
n)∗ − bnJ

)
.

Considering (3.29), (3.39), (3.40), and the boundedness of (σ′n)∗ (as a consequence of the bound
(3.30)) we get that

(σn)∗(h) = (σ′n)∗ −
bn
an
J + o

n→∞
(1) = (σ′n)∗ + hβ1J + o

n→∞
(1), (3.44)

which concludes the proof taking into account (3.34). �

To derive the limit of
(
σ0n
)
∗
(α′

1,n(h), α
′
2,n(h)), we need more information on the geometry of the

high conductive phase. To this end, we study the following example.

3.3 A cross-like thin structure

We consider a bounded open subset Ω of R2 with a Lipschitz boundary, a real sequence εn
converging to 0, and f ∈ H−1(Ω) ∩W−1,q(Ω) with q > 2. We define, for any h ∈ R, α1, β1 > 0 and
positive sequences tn ∈ (0, 1/2], α2,n, β2,n, a parametrized matrix-valued function Σn(h) from the
unit rectangular cell period Y := (− ℓ

2 ,
ℓ
2)× (−1

2 ,
1
2), with ℓ ≥ 1, to R2×2, by (cf. figure 3.1)

Σn(h) :=

{
α2,nI2 + β2,nhJ in ωn := {(x1, x2) ∈ Y | |x1|, |x2| ≤ tn}
α1I2 + β1hJ in Y \ ωn

(3.45)

Denoting again by Σn(h) its periodic extension to R2, we finally consider the conductivity

σn(h)(x) = Σn(h)

(
x

εn

)
, x ∈ Ω, (3.46)

and the associated homogenization problem:

Pn
{
−div

(
σn(h)∇un

)
= f in Ω

un = 0 on ∂Ω.
(3.47)

By virtue of Theorem 3.1 and Proposition 3.1, we focus on the study of the limit of(
σ0n
)
∗

(
α′
1,n(h), α

′
2,n(h)

)
.

Proposition 3.2 Let σn(h) be the conductivity defined by (3.45) and (3.46) and its homogenization
problem (3.47). We assume that:

2tn(ℓ+ 1)α2,n −→
n→∞

α2 > 0 and 2tn(ℓ+ 1)β2,n −→
n→∞

β2 > 0. (3.48)

Then, the homogenized conductivity is given by

σ∗(h) =



α1 +

α2
2 + β22h

2

(ℓ+ 1)α2
−hβ1

hβ1 α1 +
α2
2 + β22h

2

ℓ(ℓ+ 1)α2


.
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a

α1I + β1hJ

α2,nI + β2,nhJ

2tn

2tn

ℓ

1
x1

x2

Figure 3.1: The period of the cross-like thin structure

Remark 3.4 The previous proposition does not respect exactly the framework defined at the beginning
of this section because the period cell is not the unit square Y = (0, 1)2: we can nevertheless extend
all this section to any type of period cells.

Remark 3.5 The condition (3.48) is a condition of boundedness in L1(Ω)2×2 of σn because

|ωn| = 2tn(ℓ+ 1)− 4t2n ∼ 2tn(ℓ+ 1),

which will ensure the convergence of
(
σ0n
)
∗
.

Proof of Proposition 3.2. In order to apply Proposition 3.1, we consider two positive sequences
α′
1,n(h), α

′
2,n(h) satisfying

lim
n→∞

α′
1,n(h) = α1 and α′

2,n(h) ∼n→∞

α2
2 + h2β22
α2
2

α2,n. (3.49)

We will study the homogenization of σ′n := σ0n
(
α′
1,n(h), α

′
2,n(h)

)
.

To this end, consider a corrector W λ
n = λ · x − Xλ

n in the Murat-Tartar sense (see, e.g., [39])
associated with

Σ′
n :=

{
α′
2,n(h) I2 in ωn = {(x1, x2) ∈ Y | |x1|, |x2| ≤ tn}
α′
1,n(h) I2 in Y \ ωn

(3.50)

and defined by 



div
(
Σ′
n∇Xλ

n

)
= div

(
Σ′
nλ
)

in D ′(R2)

Xλ
n is Y − periodic

ˆ

Y
Xλ

n dy = 0.

(3.51)

On one hand, the extra diagonal coefficients of (σ′n)∗ are equal to 0 because, as Σ′
n is an even

function on Y , we have, for i = 1, 2,
{
yi 7−→W ei

n (y) is an odd function,
yi 7−→W

ej
n (y) is an even function for i 6= j,

which implies that y1 7−→ Σ′
n∇W e1

n ·∇W e2
n is an odd function. Then, by symmetry of Y with respect

to 0,

(σ′n)∗ei · ej =
ˆ

Y
Σ′
n∇W ei

n · ∇W
ej
n dy = 0.
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On the other hand, as Σ′
n is isotropic, for the diagonal coefficients, we use the Voigt-Reuss

inequalities (see, e.g., [30] p.44 or [37]): for any i = 1, 2 and j 6= i,

〈
〈(Σ′

nei · ei)−1〉−1
i

〉
j
≤ (σ′n)∗ei · ei ≤

〈
〈Σ′

nei · ei〉−1
j

〉−1

i
(3.52)

where 〈·〉i denotes the average with respect to yi at a fixed yj for j 6= i.
An easy computation gives, for the direction e1,

(1− 2tn)

(
ℓ− 2tn
ℓα′

1,n(h)
+

2tn
ℓα′

2,n(h)

)−1

+ 2tn

(
ℓ

ℓα′
2,n(h)

)−1

≤ (σ′n)∗e1 · e1

and

(σ′n)∗e1 · e1 ≤ ℓ
(

ℓ− 2tn
(1− 2tn)α′

1,n(h) + 2tnα′
2,n(h)

+
2tn

α′
2,n(h)

)−1

.

By (3.48) and (3.49), we have the convergence

lim
n→∞

(σ′n)∗e1 · e1 = α1 +
α2
2 + β22h

2

(ℓ+ 1)α2
.

A similar computation on the direction e2 gives the asymptotic behavior:

lim
n→∞

(σ′n)∗ = lim
n→∞

(
σ0n
)
∗

(
α′
1,n(h), α

′
2,n(h)

)
=



α1 +

α2
2 + β22h

2

(ℓ+ 1)α2
0

0 α1 +
α2
2 + β22h

2

ℓ(ℓ+ 1)α2


. (3.53)

Moreover, the matrix σn(h) clearly satisfies all the hypothesis of Theorem 3.1. By Theorem 3.1
and (3.53), we have

lim
n→∞

(σn)∗(h) = lim
n→∞

(
σ0n
)
∗

(
α′
1,n(h), α

′
2,n(h)

)
+ β1hJ =



α1 +

α2
2 + β22h

2

(ℓ+ 1)α2
−hβ1

hβ1 α1 +
α2
2 + β22h

2

ℓ(ℓ+ 1)α2


.

We finally apply Theorem 3.1 to get thatσ∗(h) = lim
n→∞

(σn)∗(h). �

4 A three-dimensional fibered microstructure

In this section we study a particular two-phase composite in dimension three. One of the phases
is composed by a periodic set of high conductivity fibers embedded in an isotropic medium (figure
4.1a). The conductivity σn(h) is not symmetric due to the perturbation of a magnetic field.

First, describe the geometry of the microstructure. Let Y :=
(
−1

2 ,
1
2

)3
be the unit cube centered

at the origin of R3. For rn ∈
(
0, 12
)
, consider the closed cylinder ωn parallel to the x3-axis, of radius

rn and centered in Y :
ωn :=

{
y ∈ Y | y21 + y22 ≤ r2n

}
. (4.1)

Let Ω = Ω̃× (0, 1) be an open cylinder of R3, where Ω̃ is a bounded domain of R2 with a Lipschitz
boundary. For εn ∈ (0, 1), consider the closed subset Ωn of Ω defined by the intersection with Ω of
the εnY -periodic network in R3 composed by the closed cylinders parallel to the x3-axis, centered
on the points εnk, k ∈ Z2, in the x1-x2 plane, and of radius εnrn, namely:

Ωn := Ω ∩
⋃

ν∈Z3

εn(ωn + ν). (4.2)
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The period cell of the microstructure is represented in figure 4.1b.

(a) The fibers lattice

εn

εnrn
Ωn ∩ εn(Y + ν)

x1
x2

x3

(b) The period cell

Figure 4.1: The fibered structure in dimension 3

We then define the two-phase conductivity by

σn(h) =

{
α1I3 + β1E (h) in Ω \ Ωn

α2,nI3 + β2,nE (h) in Ωn,
(4.3)

where α1 > 0, β1 ∈ R, α2,n > 0 and β2,n are real sequences, and

E (h) :=




0 −h3 h2
h3 0 −h1
−h2 h1 0


 , for h =



h1
h2
h3


 ∈ R3.

Our aim is to study the homogenization problem

PΩ,n

{
−div(σn(h)∇un) = f in Ω

un = 0 on ∂Ω.
(4.4)

Theorem 4.1 Let α1 > 0, β1 ∈ R, and let εn, rn, α2,n, β2,n, n ∈ N, be real sequences such that
εn, rn > 0 converge to 0, α2,n > 0, and

lim
n→∞

ε2n| ln rn| = 0, lim
n→∞

|ωn|α2,n = α2 > 0, lim
n→∞

|ωn|β2,n = β2 ∈ R. (4.5)

Consider, for h ∈ R3, the conductivity σn(h) defined by (4.3).
Then, there exists a subsequence of n, still denoted by n, such that, for any f ∈ H−1(Ω) and any
h ∈ R3, the solution un of PΩ,n converges weakly in H1

0 (Ω) to the solution u of

PΩ,∗

{
−div(σ∗(h)∇un) = f in Ω

u = 0 on ∂Ω,
(4.6)
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where σ∗(h) is given by

σ∗(h) = α1I3 +

(
α3
2 + α2β

2
2 |h|2

α2
2 + β22h

2
3

)
e3 ⊗ e3 + β1E (h). (4.7)

Remark 4.1 Theorem 4.1 can be actually extended to fibers with a more general cross-section. More
precisely, we can replace the disk rnD of radius rn by the homothetic rnQ of any connected open set Q
included in the unit disk D, such that the present fiber ωn is replaced by the new fiber rnQ×

(
−1

2 ,
1
2

)

in the period cell of the microstructure.
On the one hand, this change allows us to use the same test function vn (4.8) defined in the proof

of Theorem 4.1, since vn remains equal to 1 in the new fibers due to the inclusion Q ⊂ D. On the
other hand, Lemma 4.1 allows us to replace the disk D by the open set Q ⊂ D.

Remark 4.2 We can also extend the result of Theorem 4.1 to an isotropic fibered microstructure
composed by three similar periodic fibers lattices arranged in the three orthogonal directions e1, e2, e3,
namely

ωn :=

3⋃

j=1

{
y ∈ Y |

∑

i 6=j

y2i ≤ r2n
}

and Ωn := Ω ∩
⋃

ν∈Z3

εn(ωn + ν),

as represented in figure 4.2. Then, we derive the following homogenization conductivity:

σ∗(h) = α1I3 +

3∑

i=1

(
α3
2 + α2β

2
2 |h|2

α2
2 + β22h

2
i

)
ei ⊗ ei + β1E (h).

εn

εnrn
Ωn ∩ εn(Y + ν)

x1
x2

x3

Figure 4.2: The period cell of the isotropic fibered structure in dimension 3

Remark 4.3 We can check that when the volume fraction θn = θ and the hard phase of the conduc-
tivity α2,n = αθ and β2,n = βθ are independent of n, the explicit formula of [28] denoted by σ∗(θ, h),
for the classical (since the period cell is now independent of n) periodically homogenized conductivity
(see (3.4)) has a limit as θ → 0 when θαθ and θβθ converge. Indeed, we may replace in the compu-
tations of [28] the optimal Vigdergauz shape by the circular cross-section in the previous asymptotic
regime. Therefore, Theorem 4.1 validates the double process characterized by the homogenization at
a fixed volume fraction θ combined with the limit as θ → 0, by one homogenization process in which
both the period and the volume fraction θn = πr2n of the high conductivity phase tend to 0 as n→∞.

Remark 4.4 The hypothesis on the convergence of ε2n| ln rn| (4.5) allows us to avoid nonlocal effects
in dimension three (see [25, 1]). These effects do not appear in dimension two as shown in [12].
Therefore, we can make a comparison between dimension two and dimension three based on the
strong field perturbation in the absence of nonlocal effects.
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Proof of Theorem 4.1 The proof will be divided into four parts. We first prove the weak-∗
convergence in M(Ω) of σn(h)∇un in Ωn. Then we establish a linear system satisfied by the limits
defined by

1Ωn

|ωn|
∂un
∂xi
−⇀ ξi weakly-∗ in M(Ω).

Moreover, we deduce from Lemma 4.1 that

1Ωn

|ωn|
∂un
∂x3
−⇀ ∂u

∂x3
weakly-∗ in M(Ω).

We finally calculate the homogenized matrix.

We first remark that, classically, the sequence of solutions un of PΩ,n (see (4.4)) is bounded in
H1

0 (Ω) because, since α2,n diverges to ∞ :

||∇un||2L2(Ω)3 ≤ C
ˆ

Ω
(α11Ω\Ωn

I3 + α2,n1Ωn
I3)∇un · ∇un dx =

ˆ

Ω
σn(h)∇un · ∇un dx.

By the Poincaré inequality, the previous inequality and (4.4) lead us to

||un||2H1

0
(Ω) ≤ C||∇un||

2
L2(Ω)3 ≤ C

∣∣〈f, un〉H−1(Ω),H1

0
(Ω)

∣∣ ≤ C||f ||H−1(Ω)||un||H1

0
(Ω)

and then to
||un||H1

0
(Ω) ≤ C||f ||H−1(Ω).

Thus, up to a subsequence still denoted by n, un converges weakly to some function u in H1
0 (Ω).

First step: Weak-∗ convergence inM(Ω) of the conductivity in the fibers 1Ωn

(
α2,nI3+β2,nE (h)

)
∇un.

We proceed as in [23] with a suitable oscillating test function. For R ∈ (0, 1/2), define the Y -periodic

(independent of y3) function Vn by

Vn(y1, y2, y3) =





1 if
√
y21 + y22 ≤ rn

lnR− ln
√
y21 + y22

lnR− ln rn
if rn ≤

√
y21 + y22 ≤ R

0 if
√
y21 + y22 ≥ R,

for y ∈ Y,

and the rescaled function

vn(x) = Vn

(
x

εn

)
, for x ∈ R3. (4.8)

In particular, by using the cylindrical coordinates and the fact that rn converges to 0, this function
satisfies the inequalities

||vn||2L2(Ω) ≤ C||Vn||2L2(Y ) = C

∣∣∣∣ln
R

rn

∣∣∣∣
−2(

πr2n +

ˆ 2π

0

ˆ R

rn

r ln2
R

r
drdθ

)

= C

∣∣∣∣ln
R

rn

∣∣∣∣
−2(

π
R2 − r2n

2
− πr2n ln2

R

rn
− π ln R

rn

)
≤ C

∣∣∣∣ln
R

rn

∣∣∣∣
−2

,

||∇vn||2L2(Ω)3 ≤
C

ε2n
||∇Vn||2L2(Y )3 =

C

ε2n

∣∣∣∣ln
R

rn

∣∣∣∣
−2 ˆ 2π

0

ˆ R

rn

1

r
drdθ ≤ C

ε2n

∣∣∣∣ln
R

rn

∣∣∣∣
−1

and, consequently

||vn||L2(Ω) + εn||∇vn||L2(Ω)3 ≤ C

√∣∣∣∣ln
R

rn

∣∣∣∣
−1

−→
n→∞

0. (4.9)
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Let λ be a vector in R3 perpendicular to the x3-axis. Define the Y -periodic function X̃n by
∇X̃n = λ in ωn, such that X̃n ∈ D(Y ) and is Y -periodic, and the rescaled function Xn by

Xn(x) = εn X̃n

(
x

εn

)
. (4.10)

In particular, Xn satisfies

||Xn||∞ = εn ||X̃n||∞ ≤ Cεn , ||∇Xn||∞ = ||∇X̃n||∞ ≤ C and ∇Xn = λ in Ωn. (4.11)

We have, by (4.11) and (4.9),

||vnXn||H1(Ω) ≤ ||Xn||∞||vn||L2(Ω) + ||Xn||∞||∇vn||L2(Ω)3 + ||∇Xn||∞||vn||L2(Ω)

≤ C
(
||vn||L2(Ω) + εn||∇vn||L2(Ω)3

)
−→
n→∞

0,

which gives
∀ϕ ∈ D(Ω), ϕ vnXn −→

n→∞
0 strongly in H1

0 (Ω). (4.12)

Let ϕ ∈ D(Ω). By the strong convergence (4.12), we have
ˆ

Ω
σn(h)∇un · ∇

(
ϕ vnXn

)
dx = 〈f, ϕ vnXn〉H−1(Ω),H1

0
(Ω) −→n→∞

0. (4.13)

Let us decompose this integral which converges to 0, into the integral on the fibers set Ωn and
the integral on its complementary:

ˆ

Ω
σn(h)∇un · ∇

(
ϕ vnXn

)
dx =

ˆ

Ω\Ωn

(α1I3 + β1E (h))∇un · ∇
(
ϕ vnXn

)
dx (4.14a)

+

ˆ

Ωn

(α2,nI3 + β2,nE (h))∇un · ∇
(
ϕ vnXn

)
dx. (4.14b)

The expression (4.14a) converges to 0 since, by the Cauchy-Schwarz inequality, the boundedness
of un in H1

0 (Ω) and (4.12), we have
∣∣∣∣∣

ˆ

Ω\Ωn

(α1I3 + β1E (h))∇un · ∇
(
ϕ vnXn

)
dx

∣∣∣∣∣ ≤ |α1I3 + β1E (h)| ||∇un||L2(Ω)3 ||ϕ vnXn||H1

0
(Ω) −→n→∞

0.

(4.15)
Consequently, as vn = 1 and ∇Xn = λ on Ωn, by (4.13), (4.14a), (4.14b) and (4.15), we have

ˆ

Ωn

σn(h)∇un · λ ϕ dx+

ˆ

Ωn

σn(h)∇un · ∇ϕ Xn dx −→
n→∞

0. (4.16)

To prove the convergence to 0 of the right term, we now show that 1Ωn

(
α2,nI3 + β2,nE (h)

)
∇un

is bounded in L1(Ω)3. We have, by the Cauchy-Schwarz inequality, (4.5) and the classical equivalent
|Ωn| ∼

n→∞
|Ω| |ωn|,

(
ˆ

Ωn

∣∣(α2,nI3 + β2,nE (h)
)
∇un

∣∣ dx

)2

≤
∣∣I3 + α−1

2,nβ2,nE (h)
∣∣2 |Ωn|α2,n

ˆ

Ωn

α2,n|∇un|2 dx

≤ C
ˆ

Ω
σn(h)∇un · ∇un dx

≤ C ||f ||H−1(Ω) ||un||H1

0
(Ω).

This combined with the boundedness of un in H1
0 (Ω) implies that 1Ωn

(
α2,nI3 + β2,nE (h)

)
∇un is

bounded in L1(Ω)3. This bound and the uniform convergence to 0 of Xn (see (4.11)) imply the
convergence to 0 of the right term of (4.16), hence

ˆ

Ωn

(
α2,nI3 + β2,nE (h)

)
∇un · λ ϕ dx −→

n→∞
0.
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We rewrite this condition as

∀λ ⊥ e3, 1Ωn

(
α2,nI3 + β2,nE (h)

)
∇un · λ −⇀ 0 weakly-∗ in M(Ω). (4.17)

Second step: Linear relations between weak-∗ limits of
1Ωn

|ωn|
∂un
∂xi

.

Thanks to the Cauchy-Schwarz inequality, we have

∣∣∣∣
∣∣∣∣
1Ωn

|ωn|
∂un
∂xi

∣∣∣∣
∣∣∣∣
L1(Ω)

≤ 1

|ωn|

ˆ

Ωn

|∇un| dx ≤
1√

α2,n|ωn|

√
|Ωn|
|ωn|

√
ˆ

Ωn

α2,n|∇un|2 dx

which leads us, by (4.5) and the asymptotic behavior |Ωn| ∼
n→∞

|Ω| |ωn|, to

∣∣∣∣
∣∣∣∣
1Ωn

|ωn|
∂un
∂xi

∣∣∣∣
∣∣∣∣
L1(Ω)

≤ C√
α2,n|ωn|

ˆ

Ω
σn(h)∇un · ∇un dx ≤ C

∣∣∣〈f, un〉H−1(Ω),H1

0
(Ω)

∣∣∣

which is bounded by the boundedness of un in H1
0 (Ω). This allows us to define, up to a subsequence,

the following limits
1Ωn

|ωn|
∂un
∂xi

⇀ ξi weakly-∗ in M(Ω), for i = 1, 2, 3. (4.18)

Then, by (4.17) we have

(
α2,nI3 + β2,nE (h)

)
1Ωn
∇un · λ =

(
α2,n|ωn|I3 + β2,n|ωn|E (h)

)1Ωn

|ωn|
∇un · λ ⇀ 0 weakly-∗ inM(Ω).

Therefore, putting λ = e1, e2 in this limit and using condition (4.5), we obtain the linear system
{
α2ξ1 + β2h2ξ3 − β2h3ξ2 = 0

α2ξ2 + β2h3ξ1 − β2h1ξ3 = 0
inM(Ω),

which is equivalent to 



ξ1 =
β22h1h3 − α2β2h2

α2
2 + β22h

2
3

ξ3

ξ2 =
β22h2h3 + α2β2h1

α2
2 + β22h

2
3

ξ3

inM(Ω). (4.19)

Third step: Proof of ξ3 =
∂u

∂x3
.

We need the following result which is an extension of the estimate (3.13) of [22]. The statement of
this lemma is more general than necessary for our purpose but is linked to Remark 4.1.

Lemma 4.1 Let Q be a non-empty connected open subset of the unit disk D. Then, there exists a
constant C > 0 such that any function U ∈ H1(Y ) satisfies the estimate

∣∣∣∣∣
1

|rnQ|

ˆ

rnQ×(− 1

2
, 1
2
)
U dy −

ˆ

Y
U dy

∣∣∣∣∣ ≤ C
√
| ln rn| ||∇U ||L2(Y )3 . (4.20)
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Proof of Lemma 4.1. Let U ∈ H1(Y ). To prove Lemma 4.1, we compare the average value of U
on rnQ and rnD. Denoting ỹ = (y1, y2), we have, for any y3 ∈

(
−1

2 ,
1
2

)
,

∣∣∣∣
 

rnQ
U(ỹ, y3) dỹ −

 

rnD
U(ỹ, y3) dỹ

∣∣∣∣ =
∣∣∣∣
 

Q
U(rnỹ, y3) dỹ −

 

D
U(rnỹ, y3) dỹ

∣∣∣∣

≤
 

Q

∣∣∣∣U(rnỹ, y3)−
 

D
U(rnỹ, y3) dỹ

∣∣∣∣ dỹ,

and, since Q ⊂ D,
∣∣∣∣
 

rnQ
U(ỹ, y3) dỹ −

 

rnD
U(ỹ, y3) dỹ

∣∣∣∣ ≤
|D|
|Q|

 

D

∣∣∣∣U(rnỹ, y3)−
 

D
U(rnỹ, y3) dỹ

∣∣∣∣ dỹ

≤ C
 

D
rn

(∣∣∣∣
∂U

∂x1

∣∣∣∣+
∣∣∣∣
∂U

∂x2

∣∣∣∣
)
(rnỹ, y3) dỹ

=
C

πrn

ˆ

rnD

(∣∣∣∣
∂U

∂x1

∣∣∣∣+
∣∣∣∣
∂U

∂x2

∣∣∣∣
)
(ỹ, y3) dỹ,

the last inequality being a consequence of the Poincaré-Wirtinger inequality. Hence, integrating the
previous inequality with respect to y3 ∈

(
−1

2 ,
1
2

)
and applying the Cauchy-Schwarz inequality, we

obtain that
∣∣∣∣∣

 

rnQ×(− 1

2
, 1
2
)
U(y) dy −

 

rnD×(− 1

2
, 1
2
)
U(y) dy

∣∣∣∣∣ ≤
C

πrn

ˆ

rnD×(− 1

2
, 1
2
)
|∇U | (y) dy

≤ C
√
ˆ

rnD×(− 1

2
, 1
2
)
|∇U |2(y) dy

≤ C||∇U ||L2(Y )3 .

This combined with the estimate (3.13) of [22], i.e. (4.20) for Q = D, and the fact that
√
| ln rn|

diverges to ∞ give the thesis. �

Let ϕ ∈ D(Ω). A rescaling of (4.20) with Q = D implies the inequality
∣∣∣∣

1

|ωn|

ˆ

Ωn

unϕ dx−
ˆ

Ω
unϕ dx

∣∣∣∣ ≤ Cεn
√
| ln rn| ||∇(unϕ)||L2(Ω)3 .

Combining this estimate and the first condition of (4.5) with

||∇(unϕ)||L2(Ω)3 ≤ ||∇un||L2(Ω)3 ||ϕ||∞ + ||un||L2(Ω) ||∇ϕ||∞ ≤ C,

it follows that
1Ωn

|ωn|
un − un ⇀ 0 in D

′(Ω).

This convergence does not hold true when ε2n| ln rn| converges to some positive constant. Under this
critical regime, non-local effects appear (see Remark 4.4).

Finally, as 1Ωn
does not depend on the x3 variable, we have

1Ωn

|ωn|
∂un
∂x3

=
∂

∂x3

1Ωn

|ωn|
un =

∂

∂x3

(
1Ωn

|ωn|
un − un

)
+
∂un
∂x3

⇀
∂u

∂x3
= ξ3 in D

′(Ω).

Fourth step: Derivation of the homogenized matrix.
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We now study the limit of σn(h)∇un in order to obtain σ∗(h). We have

σn(h)∇un · e1 = 1Ω\Ωn

(
α1
∂un
∂x1
− β1h3

∂un
∂x2

+ β1h2
∂un
∂x3

)

+α2,n|ωn|
1Ωn

|ωn|
∂un
∂x1
− β2,nh3|ωn|

1Ωn

|ωn|
∂un
∂x2

+ β2,nh2|ωn|
1Ωn

|ωn|
∂un
∂x3

.

(4.21)

Hence, passing to the weak-∗ limit in M(Ω) this equality and using the linear system (4.19),
σn(h)∇un · e1 weakly-∗ converges inM(Ω) to

(
α1

∂u

∂x1
− β1h3

∂u

∂x2
+ β1h2

∂u

∂x3

)
+ α2ξ1 − β2h3ξ2 + β2h2ξ3

=
(
α1I3 + β1E (h)

)
∇u · e1 + α2

β22h1h3 − α2β2h2
α2
2 + β22h

2
3

ξ3 − β2h3
β22h2h3 + α2β2h1

α2
2 + β22h

2
3

ξ3 + β2h2ξ3

=
(
α1I3 + β1E (h)

)
∇u · e1

+
α2(β

2
2h1h3 − α2β2h2)− β2h3(β22h2h3 + α2β2h1) + β2h2(α

2
2 + β22h

2
3)

α2
2 + β22h

2
3︸ ︷︷ ︸

=0

ξ3,

that is
σn(h)∇un · e1 −⇀

(
α1I3 + β1E (h)

)
∇u · e1 weakly-∗ inM(Ω). (4.22)

The same calculus leads us to

σn(h)∇un · e2 −⇀
(
α1I3 + β1E (h)

)
∇u · e2 weakly-∗ inM(Ω). (4.23)

We have, for the last direction e3,

σn(h)∇un · e3 ⇀
(
α1

∂u

∂x3
− β1h2

∂u

∂x1
+ β1h1

∂u

∂x2

)
+ α2ξ3 + β2h2ξ1 − β2h1ξ2 weakly-∗ inM(Ω).

Hence, again with the linear system (4.19),
(
α1

∂u

∂x3
− β1h2

∂u

∂x1
+ β1h1

∂u

∂x2

)
+ α2ξ3 − β2h2ξ1 + β2h1ξ2

=
(
α1I3 + β1E (h)

)
∇u · e3 + α2ξ3 − β2h2

β22h1h3 − α2β2h2
α2
2 + β22h

2
3

ξ3 + β2h1
β22h2h3 + α2β2h1

α2
2 + β22h

2
3

ξ3.

Finally, by the previous equality, (4.22) and (4.23), we get that

σ∗(h) = α1I3 +

(
α3
2 + α2β

2
2 |h|2

α2
2 + β22h

2
3

)
e3 ⊗ e3 + β1E (h).

�
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