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Abstract

Taking into account the multimodality of urban transportation networks for com-
puting the itinerary of an individual passenger introduces a number of additional
constraints such as mode restrictions and various objective functions. In this paper,
constraints on modes are gathered under the concept of viable path, modeled by a
non deterministic finite state automaton (NFA). The goal is to find the nondominated
viable shortest paths considering the minimization of the travel time and of the num-
ber of modal transfers. We show that the problem, initially considered by Lozano
and Storchi [15], is a polynomially-solvable bi-objective variant of the mono-objective
regular language-constrained shortest path problem [2, 8].

We propose several label setting algorithms for solving the problem: a topological
label-setting algorithm improving on algorithms proposed by Pallottino and Scutellà
[23] and Lozano and Storchi [15], a multi-label algorithm using buckets and its bidirec-
tional variant, as well as dedicated goal oriented techniques. Furthermore, we propose
a new NFA state-based dominance rule. The computational experiments, carried-out
on a realistic urban network, show that the state-based dominance rule associated
with bidirectional search yields significant average speed-ups. On an expanded graph
comprising 1 859 350 nodes, we obtain on average 3.5 nondominated shortest paths
in less than 180 ms.

keywords: bi-objective regular language-constrained shortest path problem, mul-
timodal transportation, finite state automaton, label-setting algorithms, state-based
dominance rule, bidirectional search, state-based estimated travel times.

1 Introduction

Computing shortest paths in the context of monomodal passenger transportation, where
a single transportation mode (e.g. private vehicle, bus, subway) is used during the pas-
senger’s itinerary, has been the subject to extensive research since the publication of
Dijkstra’s algorithm in the 1950s. Among the considered extensions of the basic shortest
path problem, the case where travel times (or costs) are time-dependent, allowing to take
into account public transportation timetables or traffic congestion hours, has also been
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widely studied. Nowadays, thanks to powerful acceleration and/or preprocessing tech-
niques (such as bidirectional search, A∗ search, landmarks, contraction hierarchies, etc.),
computing shortest-paths very fast in large-scale network, either in a time-independent or
in a time-dependent context, is not a challenge anymore for labeling algorithms [6, 7, 19].

The case of multimodal passenger transportation, which lies in the transportation of
one or several passengers with different modes during the same itinerary, has been much
less addressed. However, multimodal transportation is subject to a growing interest in the
research community, as multimodality is now widely accepted for urban transportation as
a necessary alternative to the exclusive use of private vehicles.

In this paper, we consider a bi-objective shortest path problem in a multimodal urban
transportation network: the minimum travel time/minimum number of transfers regular
language-constrained shortest-path problem, initially considered by Lozano and Sorchi
[15], and denoted by BI-RegL-CSPP by analogy to its mono-objective variant: the
regular language (or label)-constrained shortest path problem RegL-CSPP defined by
Barett [2] and recently considered in [1, 8, 22]1.

The problem can be briefly stated as follows. Given a network G(V,E) in which each
node i ∈ V is “colored” by a mode mi (e.g. bus, walk, car, subway) and each arc from
i ∈ V is weighted by a travel time distance which corresponds to a travel time in mode
m if mi = mj = m or to a transfer time if mi 6= mj . Furthermore, there are so-called
path viability constraints. More precisely, the sequence of modes induced by a path is
constrained in such a way that the string obtained by concatenating the path modes
(considered as elements of an alphabet) must belong to a formal language described by
a non-deterministic finite state automaton (NFA). Considering an origin node O and a
destination node D, the goal is to find an O−D path for each of the nondominated points
in the space of two min sum objectives: the minimum total travel time and the minimum
number of transfers (mode changes along the path). As in [15], we restrict ourselves to
a time-independent version of the problem (travel times are constant) but we will briefly
describe an extension scheme of the proposed algorithms to FIFO networks in Section 7.

Lozano and Sorchi [15] implicitely assume (without mentioning it) that the problem
can be solved in polynomial or pseudo-polynomial time. They proposed a label correcting
algorithm to solve the problem, based on a topological labeling algorithm proposed by
Pallottino and Scutellà in [23].

In this paper we first prove the problem can actually be solved in polynomial time.
We propose a label setting extension of the Pallottino and Scutellà algorithm and sev-
eral improvements to the Lozano and Sorchi approach, among which a new state-based
dominance rule. We also propose a multi-label approach based on buckets, from which
we derive a bidirectional label setting algorithm. Goal-oriented techniques with state-
dependent estimated travel times are finally presented. We consider an application to the
urban area of Toulouse (France), the purpose of which being to evaluate the tractability
of the considered problem on a real-life network, as no computational experiments were
reported in [15]. On this practical network, we compare the different algorithms. In par-
ticular we study the impact of the dominance rules and the impact of the size and nature
of the NFA on the CPU time and on the number of touched nodes.

Section 2 briefly recalls the existing literature on the multimodal shortest path problem,
so as to introduce our motivations for the present study. Section 3 formally defines the
problem. The proposed algorithms are presented in Section 5. Their performance on the

1Lozano and Storchi [15] referred to the problem as the multimodal viable shortest-path problem
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considered real network are compared in Section 6. Further extensions and concluding
remarks are presented in Section 7.

2 Literature review

Multimodal transportation raises network modeling issues [5, 14]. A simple way of model-
ing the network, used by many authors [18, 15, 4], lies in assuming that the set of nodes is
partitioned according to the modes. An arc linking two nodes of different subsets is called
a transfer arc. Equivalently, nodes and/or arcs are labeled according to the associated
mode [2]. Once such a network is defined, one typically seeks to model the fact that some
sequences of modes constituting a path can be infeasible in practice. A first (relaxed) way
of taking account of such mode restrictions for shortest path computations was proposed
by Modesti and Sciomachen [18], as an extension of Dijkstra’s algorithm to minimize a
(single) global utility function defined by a weighted sum of modal characteristics of a path
(time spent on the private car, time spent on the bus or subway, walking time, waiting
time,...). For shortest path computation including hard modal constraints, (possibly infi-
nite) mode-dependent travel times were used by Ziliaskopoulos and Wardell [27], together
with an arc representation, allowing to design mode constraints involving three nodes. A
more general way of modeling the multimodal constraints (among other applications) was
proposed by Barett et al. [2]. Each mode being viewed as an element of an alphabet, each
arc of the network being labeled by a mode, the mode restrictions can be described by a
regular language over the alphabet. The multimodal shortest path problem then amounts
to a regular language-constrained shortest path problem (RegL-CSPP). As a regular
language can be represented by a non-deterministic finite state automaton (NFA), Barett
et al. [2] proved that the problem is polynomial in the number of states of the automaton.
In [1, 8, 22, 26, 25], practical implementation issues of this method have been discussed.
Barett et al. [1], proposed A∗ and bidirectional accelerations while Delling et al. [8] and
Pajor [22] proposed, in addition, core-based and access node-based speed-up techniques
and also considered time-dependent networks. With these techniques, they obtain a CPU
time of 2.3 milliseconds on average for computing the O − D shortest path on a large
intercontinental network with 50 700 647 nodes, 125 939 503 edges, a 3 state-automaton.
Considering deterministic finite-state automaton (DFA) as input, Sherali et al. [25] extend
the problem to time-dependence and propose a strongly polynomial algorithm for FIFO
graphs. Sherali and Jeenanunta [26] further extend the problem to approach-dependent
travel times and propose a label-setting algorithm which consistently outperforms a label
correcting algorithm designed for the same problem.

The main drawback of the approaches based on the RegL-CSPP are that they all
consider only a single objective. However, when several modes are available, a user may
want to select her/his itinerary among a set of alternatives, taking account of several
objectives. To that purpose, two general classes of multi-objective multimodal shortest
path problems have already been considered in the literature: namely, (pseudo-)polynomial
problems and NP-hard problems.

Pallottino and Scutellà considered in [23] the Bi-RegL-CSPP problem without the
viability constraints (any O−D path is feasible) but with the constraint that the number
of transfers does not exceed a maximum number kmax. Although the general bi-objective
shortest path problem with min-sum objective is NP-hard, they showed that, in this case,
the problem can be solved in pseudo-polynomial time (in n, the number of nodes in the
network, and kmax), as it belongs to the category of bi-objective shortest path problems
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for which one of the two objectives takes its values in a discrete and finite set. They
proposed a topological labeling approach where a label (i, k) represents an O− i path with
k transfers.

In [15], Lozano and Storchi directly extended this problem and the topological algo-
rithm, so as to integrate mode restrictions using a NFA in a time-independent network,
defining the Bi-RegL-CSPP considered in the present paper. Note they performed this
extension without formally proving that the problem is (pseudo-)polynomial. We will
prove in the sequel that the problem can actually be solved in polynomial time in n and
|S|, the number of states of the NFA.

Bielli et al [4] considered a simplified version of the NFA model but include time-
dependent arcs and time penalties for turning movements. Their objective is to compute
the K− shortest paths under an upper bound of the maximum allowed number of trans-
fers. The method can also be defined as an extension of the topological Pallottino and
Scutellà [23] algorithm, with labels on arcs. Experimentations are limited to small net-
works. The largest one, presented in [4], involves 1000 nodes and 2830 arcs and the
K-shortest path algorithm runs in 6.5s on a Pentium II with 64 MB RAM. To our knowl-
edge, no realistic computational experiments were carried out for the Bi-RegL-CSPP.
Besides providing new algorithms and acceleration techniques, our main purpose in this
paper is consequently to study the tractability of solving this bi-objective problems on a
real network in reasonable computational time.

A more general class of approaches considers several different objective functions and,
mostly, proposes extensions to multimodality of the (NP-hard) bi-objective shortest path
problem. Although we focus in this paper on the polynomial Bi-RegL-CSPP, we men-
tion the recent experimental study carried out by Gräbener et al. [10] for a more general
problem since the number of transfers and minimum time objectives were also considered
among other objectives in their study. They present an extension of Martin’s algorithm [17]
to deal with the multimodal, multiobjective shortest path problem, considering only ba-
sic mode restrictions (the finite state automaton formalism is not used). When only the
minimum number of transfers and minimum time objectives are considered, the method
shows very fast computational times. For three modes (cycling, walking and public trans-
portation), in a time-dependent context, the pareto-optimal paths are computed in 71.9
milliseconds in average for a network of 36694 nodes and 171443 edges. However the num-
ber of nondominated paths is on average equal to 1.2. Actually, since the cycling mode can
be taken from the origin to the destination (or left anywhere in the network), it generally
dominates the other modes. This recent study partially answered our question in the sense
that they showed that the bi-objective multimodal problem is actually tractable when no
complex mode restrictions are defined and when one of the modes tends to dominate the
others.

In this paper we propose specific algorithms for the Bi-RegL-CSPP and we evaluate
the practical tractability of real instances admitting significantly more nondominated so-
lutions and where complex mode restrictions are represented by a finite state automaton.
Furthermore, we evaluate the efficiency of a new NFA state-based dominance rule and of
a new bidirectional label-setting algorithm based on buckets.
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3 Problem statement

3.1 Definition

Let M denotes the set of modes. The multimodal transportation network is modeled by
a multi-layered network G(V,E) with |V | = n such that each layer corresponds to a mode
m ∈ M . Hence, a mode mi ∈ M is defined for each node i ∈ V while a travel time dij is
associated to each arc (i, j) ∈ E. An arc (i, j) such that mi 6= mj is called a transfer arc.

In terms of multimodal characteristics, each path in G yields a sequence (or string) of
modes. Among all strings of modes, only a subset of strings are acceptable according to
the feasibility constraints (or to passenger’s preferences). The acceptable mode sequences
are represented via a non-deterministic finite state automaton (NFA), possibly issued from
a user-defined regular expression [2]. This NFA is given by a 5-uple A = (S,M, δ, s0, F )
where S = {1, . . . , |S|} is the set of states, s0 is the initial state, F is the set of final states
and δ : M ×M × S → 2S is the transition function such that δ(m,m′, s) gives the set of
states obtained when traversing, from state s, an arc (i, j) with mi = m and mj = m′.
We assume that δ(m,m′, s) = ∅ denotes the case where the transition is infeasible. Note
that the case were δ(m,m′, s) is either the empty set or a singleton yields a deterministic
finite state automaton (DFA).

A viable path is a path in G from an origin node O to the destination node D satisfying
the constraints represented by the NFA. A path is viable if it starts with O (in state s0)
and reaches D in a final state s ∈ F .

We consider both the “minimum time” and “minimum number of transfers” objectives.
We first recall definitions on multi-objective optimization [9] applied to our problem. Let
time(p) denote the travel time along a path p. Let ntr(p) denote the number of transfers
along p. An efficient (or Pareto-optimal) solution is a feasible O-D path p such that
there is no other path p′ verifying either time(p′) ≤ time(p) and ntr(p′) < nbtr(p), or
time(p′) < time(p) and ntr(p′) ≤ nbtr(p). In the objective space, a nondominated point is
a pair (t, k) such that there exists an efficient path p verifying time(p) = t and ntr(p) = k.

Considering the bi-objective “minimum time” and “minimum number of transfers”
O-D viable path problem, the goal is to find all nondominated points, and, for each of
them, a single efficient path.

3.2 NFA scenarios

For our experimental evaluation on a real network, we consider 4 modes {w, b, c, s} (walk-
ing, bus, private car, subway) and 3 different mode configuration scenarios: M1 = {w, b}
(walk and bus only), M2 = {w, b, s} (walk, bus and subway only) and M3 = {w, b, c, s}
(all modes).

For mode M3, we consider the constraint scenario used in [15]. The private car can be
taken only from O and, once left, cannot be taken again. For the subway, we assume that
it can be taken at any time but, once left, cannot be taken again, which corresponds to a
user preference.

These viability constraints are modeled by a NFA2 proposed by Lozano and Storchi
[15] with |S| = 5 represented in Figure 1. Transition arcs between states are labeled by a
mode m ∈M where M = {w, b, c, s}∪{mO}, mO being a fictitious mode labeling only the
origin O. A transition from state s to state s′ labeled by m ∈M describes the transition

2The original NFA included a transition from s0 to s4 that we omitted since for our experiments, the
origin nodes are never located in the subway
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function of a traversed arc (i, j) in such a way that s′ ∈ δ(mi,mj , s) with mj = m. If a
mode m does not appear as a possible transition of a given state s, any transition towards
this mode is forbidden.

s0start

s1

s2

s3

s4 s5

w, b

c

w, b

s

c

w

w, b

s

w

s w, b

Figure 1: Original NFA for mode set M3 = {w, b, c, s}

The state at origin is denoted s0 and other states have the following meaning:

• s1: private car was not taken at the origin O and, so, mode c is forbidden for the
remaining of the travel, while subway has not been taken yet;

• s2: private car was taken at the origin O and has not been left yet;

• s3 private car cannot be taken anymore since it has already been taken and left while
subway mode has not been taken yet;

• s4: subway has been taken but not left;

• s5: subway has been left.

We consider that the acceptable final states are reduced to F = {s1, s3, s5} (displayed
in double circle in Figure 1). Indeed, state s4 models the presence of the user in the
subway, so she/he must leave the subway to reach her/his destination. State s2 means
the private car is currently being used and must be left in a parking area to reach the
destination. For mode set M2, as the car is not considered anymore, states s2 and s3
are removed and only 3 states remain in the NFA (see Figure 2(b)). For mode set M1,
as there are no constrained modes anymore, the NFA is empty. Note that all considered
input NFAs are also DFAs.

3.3 Example of Bi-RegL-CSPP

Figure 2(a) shows an (unrealistic) multi-modal network with 7 nodes corresponding to
mode set M2 = {w, b, s}. Nodes x2 and x3 are bus (b) nodes; nodes x1, x4 and x5 are walk
(w) nodes; nodes x6 and x7 are subway (s) modes. Dashed arcs correspond to transfer
arcs. The NFA corresponding to M2 is displayed in Figure 2(b).
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x1 x4 x5

x6 x7

x2 x3

4 4

5

3

1 1 1 1

1 1 1 1

(a) Multi-modal network

s0

s1

s2

s

w, b

s

w, b

w, b

(b) NFA for mode set M2 =
{w, b, s}

Figure 2: a Bi-RegL-CSPP with 7 nodes, 12 arcs, 3 modes and a 3 state-NFA

There are three non dominated solutions to the Bi-RegL-CSPP from x1 to x5: the
first solution (x1, x4, x5) with 0 transfer and a travel time equals to 8, the second solution
(x1, x6, x7, x5) with to 2 transfers and a travel time of 5 and the third one (x1, x2, x4, x3, x5)
leads to 4 transfers and a travel time equals to 4. Note the path x1, x6, x4, x7, x5 of cost 4
is infeasible as the automaton, initially in state s0, is set to s1 taking transfer arc (x1, x6)
and then to s2, through transfer arc (x6, x4) from which it is not possible to take the
subway anymore.

4 Complexity

In this section we establish the complexity status of the Bi-RegL-CSPP which was not
stated in [15] although it was implicitly considered that the problem is pseudo-polynomial
in n and kmax (the maximum number of transfers). This seems intuitively correct. Indeed,
Barett [2] proved that the mono-objective RegL-CSPP is polynomially solvable, while
Pallottino and Scutellà showed that the bi-objective minimum time/minimum number
of transfers multimodal shortest path problem (without viability constraints) is pseudo-
polynomially solvable under a threshold kmax on the number of transfers.

Theorem 4.1. The Bi-RegL-CSPP can be solved in a time polynomial in n|S|.

Proof. Suppose in a first step that the number of transfers must not exceed a threshold
kmax. We build an expanded graph by creating a node per tuple (i, s, k) for i ∈ V ,
s ∈ S, k ∈ {0, 1, . . . , kmax} and an arc from node (i, s, k) to (j, s′, k′) valuated by dij where
(i, j) ∈ E, s′ ∈ δ(mi,mj , s) and k′ = k if mi = mj and k′ = k + 1 if mi 6= mj . By solving
the single-source, multi-destination mono-objective shortest path problem in this graph
from node (0, s0, 0) (e.g. with Dijkstra’s algorithm) we obtain all nondominated solutions,
simply by scanning the shortest paths ends (D, s, k) for s ∈ F and k ∈ {0, 1, . . . , kmax}.
This statement is a straightforward extension of the proof proposed by Barett [2] for the
RegL-CSPP.

As the number of nodes in the expanded graph is equal to n|S|kmax, we just showed
that the problem is pseudo-polynomially solvable. Consider now a nondominated O −D

path in G(V,E). We claim that the number of times this path visits a given node i is not
larger than |S|, the number of states of the NFA. Indeed, suppose the path visits twice a
node i in state s, i.e from node (i, s, k) to node (i, s, k′) of the expanded graph. then the
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subpath (i, s, k), . . . , (i, s, k′) can obviously be removed without increasing the number of
transfers and the travel time nor violating the viability constraints, which contradicts the
assumption that the path is nondominated. It follows that kmax cannot be larger than
n|S| and so the above-described algorithm is polynomial in n and |S|.

Note that setting kmax to a number lower than n|S| accelerates the search and corre-
sponds to a reasonable restriction in most applications.

5 Algorithms

In this section, we propose several algorithms and a new state-based dominance rule to
solve the Bi-RegL-CSPP. All algorithms are based on a label setting principle which is
described in Section 5.1. The dominance rules are presented in Section 5.2. The first al-
gorithm (TLS), a label-setting version of the topological label algorithm proposed by [15]
with additional corrections and improvements, is given in Section 5.3. The second algo-
rithm (MQLS), described in Section 5.4, is a new label setting algorithm based on buckets.
Section 5.5 presents the third algorithm (FB-MQLS), a bidirectional (Forward-Backward)
adaptation of MQLS. Finally, Section 5.6 presents state-based goal oriented (A*) tech-
niques for the unidirectional algorithms.

5.1 Label setting principle

The proposed algorithms use labels to represent paths. Let (i, s, k) denote a label repre-
senting a path from the origin to node i in state s and using k transfers. Each label has two
attributes: tkis which denotes the arrival time on i and pkis which denotes the predecessor
label of (i, s, k) on the path. Note that no algorithm needs to store more than one label
(i, s, k) for given i, s and k.

All the proposed algorithms implement differently the following basic principles. Ini-
tially, a label (O, s0, 0) is generated with t0Os0

= 0 and p0Os0
= (O, s0, 0). The label is

stored in a convenient data structure Q. The label setting process is then applied until
Q becomes empty. At each iteration, the label (i, s, k) with minimum tkis is removed from
Q and marked-up, as tkis is the shortest time from O to i in state s with k transfers. Let
Markkis ∈ {true, false} denote the mark indicator and let M denote the set of marked
nodes. Then, the direct successors of node i are scanned. For each successor j, viability of
the arc (i, j) is checked according to multimodal restrictions and obtained labels (j, s′, k′)
are considered for all s′ ∈ δ(mi,mj , s), k

′ = k if mi = mj or k′ = k + 1 if mi 6= mj . If one
of the three following conditions, i.e.

(i) label (j, s′, k′) was never visited;

(ii) the Bellman condition does not hold (tk
′

js′ > tkis + dij);

(iii) dominance rules do not apply (see Section 5.2),

the time and predecessor of (j, s′, k′) are updated with tk
′

js′ ← tkis + dij and pk
′

js′ ← (i, s, k)

and the label is inserted in Q or, if it is already present, Q is updated according to tk
′

js′

decrease. Otherwise the label is discarded.
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5.2 Dominance rules and state reduction

In this section we give dominance rules allowing to discard labels. During the extension
process, a label can be discarded if it can be proven that he cannot be extended to a better
solution than another already generated label .

A first dominance rule, the basic dominance rule, is linked to the bi-objective optimiza-
tion. It was used by Pallottino and Scutellà in [23] to solve the bi-objective multimodal
shortest path without viability constraints.

Proposition 5.1 (Basic dominance rule). Consider two distinct labels (i, s, k) and (i, s, k′).
If k ≤ k′ and tkis ≤ tk

′

is , label (i, s, k
′) can be discarded (because it is dominated by the label

(i, s, k)).

Enforcing this dominance rule yields only different solutions: if there are two solutions
with same travel times and same numbers of transfers, only one of them is kept. This first
dominance rule compares, for a given node, only labels having the same state.

The second dominance rule allows to go further by comparing, for the same node i,
labels having different states. For that, we consider a binary relation � on the states such
that s � s′ means that s yields more extension possibilities than s′. More precisely,

Definition 5.1. State s dominates state s′ (s � s′) if any input mode string accepted by
s′ is also accepted by s.

Lozano and Storchi already proposed such a dominance rule in [15] (Preference theo-
rem). Unfortunately, we show that their rule applies to the NFA they consider (displayed
in Figure 1) but does not hold in general. We recall below the Lozano and Storchi Theo-
rem3.

Theorem 5.1 ([15]). State su is preferred to state sl, su � sl, if the following sentences
are valid:

(a) the constrained modes used in state su path, are a subset of the set of constrained
modes used in state sl path;

(b) if state sl path is using a constrained mode, then state su path is using this mode or
has never used it.

To clarify their theorem, we give the following reasonable interpretation of some am-
biguous terms. A ”constrained mode” is a mode which is subject to constraints, i.e. private
car (c) and subway (s) in Figure 1 NFA. A “state s path” is the O − i path represented
by a label (i, s, k). “A mode m has been used” by a state s path” means that at least one
node j with mj = m is in the O − i corresponding to label (i, s, k). A “state s path is
using mode m” means that for label (i, s, k), mi = m.

We now point out the following issues linked to the Lozano and Storchi preference
theorem. We refer to the NFA displayed in Figure 1.

• The set of ”constrained modes” used by each label is not fully determined by the label
state. Even if, for state s1, the set of used constrained modes is necessarily empty
and if, for state s3, the set of used constrained mode is necessarily singleton {c}, the
set of constrained modes used by a label in state s4 can be one of the sets {s} or

3We replace notation R, used in the original theorem, by notation �
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{s, b}. Consequently, to apply dominance rule of Theorem 5.1 for two labels (i, su, k)
and (i, sl, k

′), one should either build the partial path by a recursively accessing the
predecessor labels pkisu and pk

′

isl
or, better, one may store, for each label, the set

of visited constrained modes. However, both solutions could raise computational
issues.

• The application of the dominance rule to discard a label (i, s, k) in the Lozano and
Storchi algorithm (see Appendix A in [15]) is unusual. A label is discarded only if for
all preferred states s′ according to relation � (and–implicitely due to the algorithm
topological structure–at least one k′ ≤ k), it holds that tkis ≥ tk

′

is′ . Usually, finding a
single dominated label is sufficient to discard a given label.

• Consider a label (i, s1, k) (node i in state s1 with number of transfers k) and a
label (i, s3, k) (node i in state s3 with number of transfers k′) in the NFA of Figure
Figure 1. The set of constrained modes (∅) used by (i, s1, k) is actually a subset
of the set of constrained modes ({c}) used by (i, s3, k) and (i, s3, k) is currently
using no constrained mode as the car has been left and the subway not taken. So
the preference theorem holds and s1 � s3. Furthermore s1 is the only state that
dominates state s3 according to the theorem. Indeed, a candidate would be s2 but
any label in state s2 is still using the car while any label in state s3 has already used
the car but is not using it anymore. Consider now the NFA obtained by removing
the subway-labeled transition between s1 and s4. This strictly does not change the
application of Theorem 5.1 and, so, s1 is still the only state dominating s3. However,
suppose that a nondominated solution uses the subway, it is easy to build an instance
for which the corresponding label (i, s3, k) could have been mistakenly discarded by
a label (i, s1, k

′) which cannot by extended towards the subway network. Hence, the
dominance rule of Theorem 5.1 is invalid for this (slightly) modified NFA.

We address all these issues by proposing a more restrictive state-based dominance rules
which is valid for any NFA. More precisely we define binary relation � as follows.

Definition 5.2. s � s′ if for any mode pair (m,m′) ∈M , such that m is a feasible mode
for state s, one of the following conditions holds:











δ(m,m′, s′) = ∅
δ(m,m′, s′) = δ(m,m′, s)
δ(m,m′, s) = s and δ(m,m′, s′) = s′

Note � is reflexive (s � s) and transitive, so � is a preorder on the set of states.

Example. In the NFA presented in Figure 1, we have s1 � s5. When m ∈ {c, s},
δ(m,m′, s1) = ∅ and δ(m,m′, s5) = ∅, ∀m

′ ∈M . When m ∈ {wa, bu},
δ(m,w, s1) = s1 and δ(m,w, s5) = s5
δ(m, b, s1) = s1 and δ(m, b, s5) = s5
δ(m, s, s1) = s4 and δ(m, s, s5) = ∅
δ(m,w, s1) = ∅ and δ(m,w, s5) = ∅

As a preliminary remark we can use preorder � to reduce the number of states of the
automaton.

Proposition 5.2. If s � s′ and s′ � s, s and s′ can be merged into a single state without
modifying the viability constraints.
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Proof. This condition is just a particular case of standard NFA reduction rules [13].

This state merging condition can be used to reduce the initial automaton presented in
Figure 1. After the reduction � is also antisymmetric and defines a partial order on the
set of states. In this figure, states s1 and s3 verify the above-described condition and we
can build the reduced automaton of Figure 3.

s0start

s1

s2 s3 s4

w, b

c

w, b

s

c

w
w

s w, b

Figure 3: Reduced NFA for mode set M3 = {w, b, c, s}

Such a reduction is beneficial for the computational requirements as the previous sec-
tion and computational experiments show that the complexity of the algorithms depends
on the number of states of the NFA. We now propose the following state-based dominance
rule.

Theorem 5.2 (State-based dominance rule). Consider two labels (i, s, k) and (i, s′, k′)
with k ≤ k′, s � s′ and tkis ≤ tk

′

is′. Label (i, s, k) dominates (i, s′, k′), which can be discarded.

Proof. From the definition of relation �, we know that any transition from s′ yields the
same state as any transition from s. So label (i, s, k) has at least the same extension
possibilities as label (i, s′, k′). The remaining conditions (k ≤ k′ and tkis ≤ tk

′

is′) show that
any extension of (i, s′, k′) is dominated by an extension of (i, s, k).

In the reduced automaton for mode setM3 = {w, b, c, s} (Figure 3), we see that s1 � s4
is the only dominance relation. The automaton for mode set M2 = {w, b, s} of Figure 2(b)
cannot be reduced and dominance relation s0 � s2 holds.

Note that if transitions are represented by a matrix, all dominance relations can be
established during preprocessing in O(|M |2|S|2) time.

In the algorithms described in the subsequent sections, different definitions of set Ds

can be used to parametrize the use of dominance rules:

• Ds = ∅ corresponds to no dominance checking (except the Bellman condition).

• Ds = {s} corresponds to basic dominance checking.

• Ds = {s
′ ∈ S|s′ � s} corresponds to state-based dominance checking.
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5.3 Topological label-setting (TLS) algorithm

5.3.1 Description

The topological Pallottino and Scutellà [23] algorithm was extended by Lozano and Storchi
algorithm [15] to path viability modeled by a NFA. We describe below a label-setting
variant named TLS (the original algorithm of [15] being described as a label-correcting
algorithm) with additional improvements and corrections.

This algorithm (pseudo-code is given in Algorithm 1 of Appendix A) iterates on the
number of transfers from 0 to kmax. At each iteration k, it searches for the shortest path
with exactly k transfers. For that, the data structure Q for storing labels, is made of two
priority queues Qnow and Qnext, where Qnow contains labels with k transfers and Qnext

contains labels with k + 1 transfers. Initially, Qnow contains only label (O, s0, 0) while
Qnext is empty.

At a typical iteration, the minimum time label (i, s, k) is taken from Qnow and the label
extension principle (see Algorithm 2 of Appendix A) is applied with some modifications
regarding the general label setting algorithm. To check the dominance rules, a variable,
denoted by BestV aluej,s′ , stores all algong the search the shortest travel time found so far
to reach node j in state s′ (i.e. with at most k transfers). The variable is used to have an
O(1) basic dominance checking (instead of enumerating all tk

′′

js′ such that k′′ < k′.) and a
O(|Ds′ |) state-based dominance checking (see Section 5.3.2). If the dominance condition
holds, the label is discarded. Otherwise, if k = k′, BestV aluej,s′ is updated and the new
label (j, s′, k′) is inserted in Qnow. If k′ = k + 1; the label is inserted in Qnext.

Back to the TLS main procedure (Algorithm 1), as soon as the destination D is de-
queued from Qnow or if Qnow becomes empty, Qnow is set to Qnext and Qnext is emptied.
The algorithm stops when Qnext is empty, meaning that no nondominated labels with k+1
transfers could be found, or when the maximum number of transfers kmax is reached.

To summarize, this version of TLS algorithm presents some improvments to the Lozano
and Storchi algorithm [15]:

• A label-setting algorithm is proposed in place a label-correcting algorithm, following
the recommendations of [26].

• At each iteration, when travel time of a new label is computed, the best travel time
of previous solutions, denoted by BestLastSol is also used to prune labels (in addition
to BestV alue).

• In [15], a single label tis is used per node-state pair (i, s) for both extensions in Qnow

with k transfers and in Qnext with k+1 transfers. However, a path with k transfers
may not be extended because it has a longer time than a path with k + 1 transfers.
We correct this problem by defining two labels tkis and tk+1

iq .

• We use the state-based dominance rule proposed in Section 5.2 instead of the one
proposed in [15] (see Section 5.2 for justifications).

With TLS algorithm, solutions are obtained with increasing number of transfers and de-
creasing travel times. In appendix B, the algorithm is applied to the instance described
in Figure 2 with the state-based dominance rule. 12 labels are marked and 18 labels are
reached.
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5.3.2 Complexity

Complexity of dominance rule checks.

The basic dominance rule on label (j, s′, k′) can be performed in O(1). Indeed, for a
given label (j, s′, k′), we have only to keep track of the shortest time found so far to
reach (j, s′, k′′) with k′′ ≤ k′, denoted BestV aluejs′ . A label (j, s′, k′) is dominated if
tk

′

js′ ≥BestV aluejs′ , as the previously encountered label cannot have more transfers.
The complexity of the state-based dominance rule is in O(|S|): a given label (j, s′, k′)
obtain by extension of a label (i, s, k) is dominated if BestV aluej,s′′ > tkis + dij for all states
s′′ such that s′′ � s′.

Complexity of TLS We now establish the complexity of our implementation of TLS
using binary heaps for Qnow and Qnext. Let kmax denotes the maximum allowed number
of transfers. Note kmax is bounded from above by n|S|. For a given number of transfers
k, at most n|S| labels (i, s, k) are selected as minimum time labels in Qnow.
For each of them, there are two operations: (a) deletion from Qnow and (b) successor
scan and insertion in Qnow or Qnext. Deletion from the binary heap can be done in
O(log(n|S|)). Successor scan with the basic dominance rule (inO(1)) and possible insertion
(in O(log(n|S|)) has a worst-case complexity in O(|FSi| log(n|S|)) where FSi is the set of
direct successors of i. The complexity of operation (a) is ignored (neglected) since it is lower
than the complexity of operation (b). It follows that the worst-case time complexity of TLS
with the basic dominance rule and binary heap implementation is O(kmax|S||E| log(n|S|)).
Running the state-based dominance rule takes in addition |S| operations for each successor
so we obtain in this case a worst-case complexity of O(kmax|S||E|(|S|+ log(n|S|))).

5.4 Multi-queue label-setting (MQLS) algorithm

5.4.1 Description

We propose an alternative algorithm that computes the shortest paths in increasing order
of the time criterion values and in decreasing order of the number of transfers. Instead of
considering two queues Qnow and Qnext, we build incrementally a list Q = {Q0, Q1, . . .}
of buckets (priority queues) such that each bucket Qk ∈ Q contains labels representing
paths with k transfers. More precisely, Q0 is initialized with label (O, s0, 0), all other Qk

being empty. The number of buckets K is set to kmax. At each iteration, the label (i, s, k)
with minimum travel time is taken among all non-empty priority queues. If a destination
label (D, s, k∗) is dequeued, priority queues Qk′ with k′ > k∗ are discarded and K is set to
k∗−1, as the shortest path with k∗ transfers toD is found. Otherwise, nondominated labels
(j, s′, k′) such that k′ ≤ K issued from (i, s, k) are inserted in the corresponding priority
queue Qk′ by the label extension procedure. The algorithm stops when the shortest path
with 0 transfer is found or when all queues are empty. The algorithm pseudo code is given
in Algorithm 3 of Appendix A. The Label Extension subroutine is given in Algorithm 4
of Appendix A. In appendix B, the algorithm is also applied to the instance described in
Figure 2. 12 labels are marked and 16 labels are reached by the search.

We show the equivalence of TLS and MQLS in the sense they both have the nice
feature described by the following property. As in the standard Dijkstra algorithm, a
label is “marked” as soon as it is dequeued from Q.

Proposition 5.3. The set of labels (i, s, k) marked by TLS or MQLS for a given (i, s)
maps the set of all nondominated points for the bi-objective O− i viable path problem with
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s as final state.

In particular, setting i = D and s ∈ F , we see that TLS and MQLS generates one and
only one path for each nondominated point.

5.4.2 Complexity

We determine the algorithm complexity, using binary heaps for each Qk ∈ Q. In Q at
most kmaxn|S| labels are stored and dequeued (marked). For each iteration, there are three
operations: (a) search of the minimum time value in the kmax queues; (b) deletion of the
corresponding label in O(log(n|S|)); and (c) for each scanned successor, a dominance check
is possibly followed by an insertion operation in the appropriate queue in O(log(n|S|)).
The basic dominance check can be made here in at most kmax operations as all labels
(j, s′, k′′) with k′′ ≤ k′ must be checked. So, with this dominance rule, the operation (c)
has an O(|FSi|(kmax+ log(n|S|)) worst-case time complexity. The state-based dominance
rule can be applied in O(kmax|S|), then the operation (c) as a worst-case time complexity
of O(|FSi|(kmax|S|+ log(n|S|)).

Taking account of (a) and (b) operations, with the basic dominance rule, we obtain a
worst-case complexity of

O(kmax|S| (nkmax + n log(n|S|) + |E|kmax + |E| log(n|S|)) = O(kmax|S||E| (kmax + log(n|S|)) .

and, with the state-based dominance rule, this worst-case complexity is

O(kmax|S| (nkmax + n log(n|S|) + |E|kmax|S|+ |E| log(n|S|)) = O(kmax|S||E| (kmax|S|+ log(n|S|)) .

The worst-case time complexity is increased compared to the TLS algorithm by a kmax

factor.

5.5 Bidirectional Multi-Queue Label Setting Algorithm (FB-MQLS)

We propose a bidirectional adaptation of MQLS, taking advantage of the multi-queue
characteristics. There are two main issues in designing a bidirectional algorithm for the
considered multimodal problem. The first issue consists in modeling backward path via-
bility. The second issue lies in exploiting the connection between a forward and backward
label in the bi-objective context. The multi-queue structure will be here fully exploited
as several label queues will be discarded when a given connection condition is reached.
These issues are addressed in Section 5.5.1 and the algorithm FB-MQLS is described in
Section 5.5.2.

5.5.1 General Principles

The proposed bidirectional algorithm (FB-MQLS) maintains, in a similar way as in MQLS
algorithm, two priority queue lists FQ for the forward search and BQ for the backward
search such that FQk contains forward labels ftki,s representing paths reaching i in state

s with k transfers and BQk contains backward labels btki,s representing paths originating
from i with k transfers in state s.

Modeling backward path viability

We exhibit below three different possibilities to model backward path viability. Let
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FA = (SF ,M, δF , sF
0 , F

F ) denotes the automaton for the forward search and BA = (SB,

M, δB, sB
0 , F

B) the automaton for the backward search. To obtain BA from FA, the first
possibility is simply to reverse the arcs of FA as done in [22]. In our case, for mode
set M3, although the forward automaton is a DFA, the obtained state automaton be-
comes non-deterministic (see left part of Figure 4). In this figure, the initial state (at
destination) is sD. Final states are s1 (departure by walk or bus) and s2 (departure by
private car). Transition function δB(mi,mj , s) gives a set of possible states. For example
δB(mD, w, sD) = {s1, s4} (where mD denotes the mode at the destination). This means
what when arriving by walk at the destination, it could be that the subway was taken
(state s4) or was not taken (state s1). In practice, each time a label extension uses an arc
that yields several possible successor states (in the backward path), all the corresponding
labels are generated. Note that such an indeterminism may yield pairs (i, s) that may
never reach the origin, inducing useless computations.

The second possibility is to use a deterministic finite state automaton for the backward
search. This is always possible as there exist algorithms that transform a non-deterministic
finite state automaton equivalent to any deterministic one, however it can be that for a
given non-deterministic automaton with |S| states, the equivalent deterministic automaton
has less than 2|S| states. An issue then is to generate the deterministic automaton with
a minimal number of states. Note that this issue also applies to the forward automaton
which can be non-deterministic if it is obtained from a regular expression.

A third possibility is to obtain a (ǫ-free) NFA through the reverse regular expression,
which can be done in polynomial time [24]. For example, the forward regular expres-
sion corresponds to c*(w, b)*s*(w, b)* and the reverse regular expression corresponds to
(w, b)*s*(w, b)*c*.

Comparing the different ways of obtaining the backward NFA for general forward NFA
would be an interesting follow-up to the present study. In particular the speed-up obtained
by optimizing the NFAs would have to be balanced with the CPU time needed to perform
the NFA reductions and/or conversion to a minimum-state DFA. Nevertheless, to illustrate
the potential gain of optimizing the (backward) NFA, we display, in right part of Figure 4,
a possible deterministic finite state automaton for BA that can we have obtained manually
from the reverse regular expression.

The state-based dominance rule applies also for the backward automaton. For the non-
deterministic automaton of Figure 4(b), there is no dominance relation between states
in the sense of Theorem 5.2. For the deterministic automaton of Figure 4(c), we have
e1 � e4. The set of states that dominate a given forward (backward) state s is denoted
DF (s) (DB(s)), respectively.
Connection and queue discarding rule

The second issue for designing a bidirectional algorithm for the considered problem is
linked to connection consequences between a forward label and a backward label in terms
of number of transfers. In case the backward automaton is simply obtained by a reversal
of the forward arcs, a forward label (if , kf , sf ) connects to a backward label (ib, kb, sb) if
if = ib and sf = sb since the backward NFA has the same states as the forward NFA.

In case the backward automaton has been reduced, a correspondence must be es-
tablished between the forward and the backward states. Let CSBA→FA(s) (respectively
CSFA→BA(s)) denote the set of FA (resp. BA) states compatible with a given state s of
BA (resp. FA). A forward label (if , kf , sf ) connects to a backward label (ib, kb, sb) if
if = ib and sf ∈ CSBA→FA(sb) or, equivalently, sb ∈ CSFA→BA(sf ).

With the deterministic backward automaton case of Figure 4(c) and the forward au-
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Figure 4: Automata for the backward search

tomaton of Figure 3, CSFA→BA(s1) = {e1, e4} CSFA→BA(s2) = {e2}, CSFA→BA(s3) = {e3}
and CSFA→BA(s4) = {e1}.

We show now that, even if we use the reversed forward automaton for backward search,
additional state compatibilities can be automatically established between forward and
backward states, so as to have earlier connections without using a manually optimized
backward automaton. We first define formally state compatibility:

Definition 5.3. Forward state sfx and backward state sby are compatible if, for any mode

m the concatenation of any m-terminated mode string accepted by sfx with any reversed
m-terminated input string accepted by sby is a valid string.

We now establish the forward/backward compatibility theorem (sufficient condition).

Theorem 5.3 (Forward/backward state compatibility). Forward state sfx and backward
state sby are compatible if sfx � sfy in the forward automaton or if sby � sbx in the backward
automaton.

Proof. If one of the dominance relation holds, the concatenation of any m-terminated
mode string accepted by sfx with any reversed m-terminated input string accepted by sby
is a valid string, yielding the desired compatibility.

In our example, there are no state-based dominance in the backward automaton but
dominance sf1 � s

f
4 holds in the forward one. Hence, since any input string accepted by s

f
4
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is accepted by s
f
1 , it follows that s

b
1 and s

f
4 are compatible states, on which a connection

can be established.
Note that if dominance relations are represented by a |S| × |S| boolean matrix, all

compatibility relations can be precomputed in O(|S|2) time.
In case of a connection, the interest of the multi-queue implementation appears. In-

deed, when a connection is made between a label (if , h, sf ) and a label (ib, q, sb) such that
the state sf of FA is compatible with state sb of BA and

fthi,sf + bt
q

i,sb
≤ min

(i′,s′,k′)∈FQ
ftk

′

i′,s′ + min
(i′,s′,k′)∈BQ

btk
′

i′,s′

holds, all priority queues FQk′ and BQk′ with k′ ≥ h+ q can be discarded since the right
hand side is a lower bound of the shortest path with at least h+ q transfers

5.5.2 Algorithm description

Algorithm FB-MQLS pseudo-code is given in Appendix A (Algorithm 5). FQ is initalized
to a single priority queue FQ0 with a single label (O, s0, 0) and BQ is initialized to a single
priority queue BQ0 with a labels (D, sD, 0). The upper bound of the number of transfers
K is set to kmax. BestCurrentSolk stores the best known solution with k transfers and k∗

corresponds to the number of transfers of the current best known solution.
The main loop computes the minimum time forward label (if , sf , kf ) and the minimum

time backward label (ib, sb, kb). The search proceeds from the minimum time label among
them, denoted by (i, s, k). The minimum time label (i, s, k) is then removed from its
priority queue (FQk or BQk) and the forward or backward label extension principle is
performed in a similar way as the MQLS Label extension.

The main difference is that (for instance in the forward extension), for each new non-
dominated label (j, s′, k′), a connection with the opposite direction search is searched by
scanning all labels (j, sb, k′′) with k′+k′′ ≤ K and sb ∈ CSFA→BA(s′) which possibly yields
an O−D path of less than K transfers. If such a connection is established, its path time
(ftk

′

j,s′+btk
′′

j,sb
) is compared against the best O−D path already found with k′+k′′ transfers

whose time is stored as BestCurrentSolk′+k′′ , to possibly update it. Moreover, if the given
forward label (j, s′, k′) is connected with a marked-up backward label with 0 transfer then
label (j, s′, k′) can be discarded as all nondominated shortest paths from D to i have been
found. The forward label extension algorithm is given in Algorithm 6. The backward label
extension algorithm is symmetrical and not given in the paper.

After the forward or backward label extension, the queue discarding rule compares
the minimum time BestCurrentSolk∗ obtained among already established connections, with
the lower bound given by the sum of the minimum forward and backward label times
(ftk

f

if ,sf
+ btk

b

ib,sb
). If the test is affirmative, BestCurrentSolk∗ is the best path time for k∗

transfers and priority queues FQ
k̃
and BQ

k̃
with k̃ ≥ k∗ can be discarded.

We show in Apendix B the execution of this algorithm for the example of Figure 2.
The algorithms marks 8 labels and reaches 22 labels.

5.5.3 Complexity

Compared to MQLS, there is a computational overhead (only at label extension) induced
by connection search (step 14 of Algorithm 6). Let us examine first this overhead in
terms of complexity for the forward extension. With the basic dominance rule, recall
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the complexity of label extension is O(|FSi|(kmax + log(n|S|)) for MQLS. For a back-
ward deterministic automaton, connection search introduces an additive term equal to
kmax to search for all labels (j, sb, k′′) as there is a single compatible state. For the non-
deterministic backward automaton, the additive term can be bounded from above by
s̃.kmax where s̃ = maxs∈SF |CSFA→BA(s)| ≤ |SB|. Hence for the basic dominance rule,
the complexity of the forward extension (Algorithm 6)) is O(|FSi|(kmax + log(n|SF |))
for the deterministic backward automaton and O(|FSi|(kmaxs̃ + log(n|SF |)) for the non-
deterministic backward automaton. For the state based dominance rule, the complexity
of forward extension is O(|FSi|(kmax|S

F |+ log(n|SF |)) for the deterministic bakward au-
tomaton and O(|FSi|(kmax(|S

F | + s̃) + log(n|SF |)) for the non-deterministic backward
automaton. If the forward automaton is assumed to be deterministic, the complexity
of the backward extension is always equal to O(|BSi|(kmax + log(n|SB|)) for the basic
dominance rule and to O(|FSi|(kmax(|S

B|) + log(n|SB|)) for the state-based dominance
rule.

5.6 Goal-oriented techniques with state-dependent estimated travel times

Extension of algorithms TLS and MQLS using the A∗ principle (goal oriented search) is
straightforward. An interesting possibility is to use a state-dependent heuristic. More
precisely, for each label (i, s, k), a modified travel cost denoted by t̃kis is given by tkis + hkis
where tkis is the travel time from the origin O to i and hkis is an estimation of the total
travel time from i to the destination D, starting in state s with a number of performed
transfers equal to k. t̃kis represents an estimation of the shortest path form a given origin
to a given destination throught node i and in the algorithms the search of a label with
the minimum travel time is replaced by the search of a label the minimum estimate total
travel time.
We consider here that hkis correspond to the euclidian distance from i to D over the
maximal speed of the modes that can still be taken according to current state s and
number of transfers k. Then hkis is a lower bound of the minimum travel time from (i, s, k)
to any label (D, s′, k′) in the expanded graph, which insure the optimality of the A∗ search.
Algorithms TLS and MQLS can be directly extended to A∗ principle by using t̃kis instead
of tkis.

An example of state-dependent heuristic can be to take the maximum average car speed
in state s2 to compte estimated travel times while in state s1, the times are computed
according to the maximum average bus speed which is slower due to frequent stops.

6 Computational Experiments

The experimental comparisons were carried out on a network covering a part of the urban
area of Toulouse (France). Considered modes are {w, b, c, s} (walking, bus, private car,
subway) and we evaluate three different mode configurations as previously stated: M1 =
{w, b} (walk and bus only), M2 = {w, b, s} (walk, bus and subway only) and M3 =
{w, b, c, s} (all modes).

Viability constraints are modeled by the automaton of Figure 3. Table 1 details the dif-
ferent layers of the transportation network in terms of modes, nodes and arcs. Timetables
for buses and subway are approximate by an average travel time for each corresponding
arc in the network.
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Table 1: Network data

Modes Nodes Arcs

Bus 3 085 6 646
subway 38 72
Street 59 896 146 280

Transfer - 6 370
Parking 29 -

Total 63 048 159 368

All algorithms have been implemented in C++ and run on an 2.67 GHz Intel Xeon
quad core processor W3520 with 4GB RAM under Linux Fedora 11. Experiments concern
100 randomly generated origin-destination pairs. Origin and destination are both choosen
only in the street subnetwork and around the ”center” of the city to avoid border effects.
The minimum euclidian distance between them is set to 5 km. The maximum number of
transfers is set to kmax = 10.

6.1 Results

In Appendix C, Tables 3-8 present the impact of the dominance rules and of the different
algorithms on the average CPU time and number of touched nodes needed to solve each
of the 100 instances, with the three different NFA configurations. Figure 6 synthesizes
the results in terms of average CPU time while Figure 7 concentrates on the number of
touched nodes. We first give the characteristics of the obtained solutions and, next, we
analyze the performance of the algorithms.

Found solutions

Table 2 presents the average results obtained by all algorithms on the three configurations
in terms of average number of solutions, average and maximum number of transfers,
minimum and maximum travel times.

Table 2: Solution characteristics

Modes Nb. Sol. nb Transf. av nb Transf. max Travel t. min Travel t. max
M3 = {w, b, c, s} 3.49 2.7 5.02 48 273
M2 = {w, b, s} 4.24 3.59 6.72 62 273
M1 = {w, b} 4.23 3.64 6.6 69 273

We obtain from 2 to 6 non dominated solutions per instance with the smallest average
value for the most complex automaton. The average number of transfers follows the same
trend, so the possibility of using car in the itineraries reduces the number of nondominated
solutions and transfers.

We obtain much more efficient solutions in average than Gräbener et al. in [10] for the
same objectives, even when the car is used. Although networks are different, we explain
this difference by the fact that we do not have a dominant mode, since the private car
can only be left at a limited number of nodes (parkings) and we have viability constraints.

19



The minimum travel times are in average rather large to ensure a sufficiently large search
space end exhibit differences between the algorithms. The larger itineraries correspond
to full-walking paths which are always nondominated as they are the only solutions that
induce no transfers (origin and destination being set on the walking street network). The
minimum number of transfers is consequently always 0. The average maximal number of
transfers may seem large, but a transfer denotes a mode change including walking between
stations, so for example a typical bus-subway path yields string wbwsw which involves 4
transfers while the user takes only two modes besides unavoidable walking parts.

Performance of algorithms and dominance rules without viability constraints

We first analyse the results of the different algorithms (TLS, MQLS, their goal oriented
variants TLS-A*/MQLS-A* and FB-MQLS) with and without the basic dominance rule on
the configuration involving mode setM1 = {w, b} and no viability constraints. As there are
no DFA, the maximal number of labels (nodes in the expanded graph) is (nb+nw)kmax =
629 810. Detailed results are given in Tables 3-4 and on top of Figures 6-7 (Appendix
C). Table 3 displays the running time of each combination algorithm/dominance rule in
ms while Table 4 gives the number of touched nodes for each combination. In addition,
Table 3 and 4 give in row “∆ b. d.” the average speed-up and touched node-decrease
obtained when using the basic dominance rule compared to the simple Bellman condition,
respectively. Row “∆ FB” provides the average speed-up (touched node-decrease) of the
bidirectional algorithm compared with other algorithms, using the basic dominance rule.

In this configuration, the problem is precisely the bi-objective problem studied by Pal-
lottino and Scutellà [23]. The TLS algorithm with the basic dominance rule combination
can be considered as the reference algorithm, as it resorts to the method proposed by Pal-
lottino and Scutellà [23]. It solves the instances in 132ms on average with 150 162 touched
labels. The basic dominance rule is very efficient as it generates speed-ups from 36% (on
TLS) to 45% (on FB-MQLS). The bidirectionnal search is at least 24% faster than the
unidirectional algorithms, including the A* variants. The speed-up brought by A* search
on unidirectional search is significant but remains modest (12% speed-up for TLS). Note
that the speed-ups brought by A* and the state-based dominance rule closely follow the
percentage of decrease nodes (15% on average for A* and 37% on average for the basic
dominance rule). In the bidirectional search, the need to manage the set of priority queues
and to establish connections between several labels having different numbers of transfers
induces a computational overhead which explains that the drastic reduction of touched
nodes (52% on average) is not fully reflected by the obtained speed-up (41% on average).
For the same reasons, the MQLS algorithm has a lower number of touched nodes than the
TLS algorithm while it is 11% slower.

In conclusion, the proposed bidirectional FB-MQLS algorithm, used in conjunction
with the basic-dominance rule, improves significantly the reference TLS algorithm (45%
speed-up yielding an average running time of 89ms with 64 362 reached labels).

Performance of algorithms and dominance rules with the 3-state NFA

We consider now the mode set M2 (walk, bus and subway) with the 3-state NFA (Tables
5-6 and middle of Figures 6-7). The potential number of labels (i, s, k) now reaches
(ns + 2(nb + nw))kmax = 1, 260 000. In addition to TLS, MQLS, and their A* variant,
we consider two versions of the FB-MQLS algorithm: FB-MQLS-ND denotes the FB-
MQLS algorithm with the non deterministic backward automaton presented in Figure

20



4(b) while FB-MQLS-D denotes the variant with the deterministic bachward automaton
presented in Figure 4(c). In Tables 5 (6), we give in row “∆ s. d.” the average speed-up
(touched node-decrease) obtained when using the state-based dominance rule compared
to the basic dominance condition. Row “∆ FB-ND (b. d.)” the average speed-up or
slowdown (touched node-decrease or increase) of the bidirectional algorithm with the basic
dominance rule compared with other algorithms (also using the basic dominance rule)
while row “∆ FB-ND (s. d.)” give the same value using the state-based dominance rule.

We observe, independently of the considered dominance rule, that rank FB-MQLS <

TLS-A* <MQLS-A*< TLS <MQLS (in terms of increasing running times) is conserved.
As expected, a general slowdown is observed for all combinations algorithm/dominance
rule. The TLS algorithm with the basic dominance rule now solves the instances in
200ms in average (34% slower than for the preceding configuration) with a number of
touched nodes equal to 218; 233. Globally, switching from the basic to the state based
dominance rule yields speed-ups for all algorithms from 5% (on FB-MQLS-ND) to 23%
(on MQLS). The larger improvement is for the mono-directional algorithms (always more
than 20% speed-up) while the bidirectional search is less positively impacted (max 11%
speed-up). The speed-up brought by the bidirectional search is also important : it runs
from 24% to 41% faster than the unidirectional algorithms. The fastest algorithm if the
FB-MQLS-D which in-turn yields an additional speed-up of 25% to FB-MQLS-ND, when
used with the state-based dominance rule. Hence, despite the additional forward/backward
state compatibilities and dominance rules, optimizing the automaton still yields significant
improvements. We also have to underline the leveling effect of the state based dominance
rule on the speed-up brought by the bidirectional algorithm. Last, the A* search improves
the unidirectional algorithms more than for the previous configuration, with an average
speed-up of 19%.

In terms of the number of touched nodes, we observe the same phenomenon as for
the previous configuration: MQLS(-A*) obtains a lower number of touched nodes than
TLS(A-*) but the computational overhead is not compensated by the node reduction. For
the state-based dominance rule, the reduction of the number of nodes (19% on average for
the unidirectionality algorithms) yields the equivalent speed-up (21% on average). As also
observed in the previous configuration, FB-MQLS-ND with the basic dominance rule yields
an important average touched node decrease compared to the unidirectional algorithms of
52% while it yields “only” a 38% average speed-up.

In conclusion, the proposed bidirectional algorithm (without optimization of the back-
ward automaton) in conjunction with the new state-based-dominance rule improves signif-
icantly the reference TLS algorithm with the basic dominance rule (41% speed-up, running
time 117ms, 87 175 reached labels). The speed-up reaches 53% with the optimized back-
ward automaton which reaches an average running time of 94ms with only 62 936 touched
labels.

Performance of algorithms and dominance rules with the 4-state NFA

Tables 7-8 and the bottom part of Figures 6-7) show the results on the 4-state NFA and
full mode set M3. The potential number of labels (i, s, k) is equal to (nm + nc + 2(nw +
nb))kmax = 1859 250. All the combinations algorithms/dominance rules of the previous
configuration are tested with two variants of the A* algorithms. TLS-A* and MQLS-
A* denote the variant where the estimated travel time for a node i to destination D is
a constant (as for the previous configurations), whereas TLS-SD-A* and MQLS-SD-A*
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denote the variant where the estimated travel time for a node i to destination D is state-
dependent (see Section 5.6). Our reference algorithm, TLS with basic dominance rule,
solves all instances in 215ms in average with 239 499 touched labels which corresponds
to a very moderate slowdown compared to the 3-state automaton. Globally the efficiency
of the state-based dominance rule decreases even if the speed-ups are still significant
for unidirectional algorithms (always more than 8.5%). However the efficiency of the
bidirectional search is reduced. The speed-up compared to TLS and MQLS with the
basic dominance rule is significant (17% and 26%, respectively). However, the A* search
variants and the bidirectional search are ,ow very close. The state-dependent version of
the A* search with the state-based dominance rule is even slightly faster than FB-MQLS.
The leveling effect of the state-based dominance rule is also important since speed-ups
compared to TLS never exceed 10%. We observe a positive but modest effect of the
state-based A* search on CPU time compare to state-independent variants.

In conclusion, for the more complex automaton, the leveling effect of the basic and,
to a lower extent, state-based dominance rules has to be underlined. The reference TLS
algorithm with the basic dominance rule is still 17% slower than the bidirectional algorithm
(without optimization of the backward automaton) with the state-based dominance rule
which obtains a running time of 177ms with 133 210 touched nodes. The improvement
reaches 20% with the optimized backward automaton (160ms and 114 370 touched nodes).

Although these times could be certainly reduced with further acceleration mechanisms,
our experiments allow to answer positively to the question whether the BI-RegL-CSPP

can be solved efficiently on a real urban network.

7 Concluding remarks and further extensions

We have proposed several algorithms to solve the single-source, single-destination bi-
objective multimodal viable shortest path problem where path viability constraints are
modeled by a finite state automaton. The considered objectives were the number of trans-
fers and the total travel time. The proposed algorithms are all polynomial in the number of
arcs and nodes of the transportation network and in the number of states of the finite state
automaton. For each problem instance, the set of nondominated solutions was found by all
algorithms in an short CPU time, allowing their use inside an end-user application which
is currently being developped by MobiGIS. On the largest configuration (an expanded
graph of 1 859 250 nodes), we obtain a significant number of nondominated shortest paths
(3.5 on average) with average running times lower than 180 ms. The proposed state-based
dominance rules allowed to reduce significantly both the CPU times and the number of
visited labels for all algorithms. We also observed that the basic and the state-based dom-
inance rule have a positive leveling effect on the algorithm performance. The proposed
bidirectional algorithm yields significant speed-ups for most configurations. This speed-up
is sensitive to the complexity of the backward automaton. It results that benefits could
be obtained by optimizing both forward and backward NFA. A goal-oriented version (A*)
of the unidirectional algorithms has been developed, allowing better improvements when
a state-based estimated travel time function is used.

A first extension would be to consider time-dependent travel times. A (fast) extension
of bidirectional search to time-dependent shortest path (in monomodal networks) has
been recently proposed by Nannicini et al. [19]. The concepts used in their study can be
transposed without difficulty in our context under the FIFO assumption. For the forward
or mono-directional search, we may simply replace t+ dij by a function aij(t) which gives
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the arrival time at j when departing from i at t. For the backward search, Let bij(t) denote
the function giving the departure time at i if arrival time at j is t for an arc (i, j) and t a
possible arrival time at j given by the transportation timetables. As the arrival time at
D is not fixed, we cannot use bij(t). Instead we define the travel time dij such that t− dij
is an upper bound of bij(t). dij can be simply set to the minimal duration to traverse
arc (i, j) given the timetable associated with (i, j). By using the timetables aij(.) for the
forward search and the lower bounds on the travel times dij for the backward search,
the time computed for a path issued from a connection is a lower bound of the actual
duration. To apply the queue discarding rule, the actual travel time can be computed for
each encountered connection by a traversal of the backward path given the arrival time at
the connection node.

A second extension would be to design an efficient goal oriented scheme for the bidi-
rectional search but a difficulty is to design an efficient queue discarding rule.

For futher research, more experimental studies have to be carried out to evaluate the
influence of the finite state automaton structure on the efficiency of the algorithms and
stronger dominance rules could be exhibited, for other special cases of the state automaton.
Moreover, experiments on larger transportation networks have to be realized and further
acceleration techniques (ALT, contraction hierarchies) can be implemented. As such a
follow-up of our work, a promising preliminary study was presented in [11]. As suggested
by a referee, it is possible that implementation of the ideas presented in this paper with
a label-correcting version with an appropriate data structure (perhaps partitioning or
double-ended queue) could also yield improvements.

Other multi-objective problems in the multimodal context are of interest and will be
the subject of further research, although the complexity of the problem could increase.
The case where public transportation does not have a fixed schedule and probability distri-
butions may be associated to arrival of passengers and transportation lines at each node
is also of practical interest. Finding an “optimal” strategy for a user (that minimizes
expected travel times), has been tackled via the the hypergraph model and the shortest
hyperpath problem, introduced by Nguyen and Pallottino in [20] for a single public trans-
portation mode. This approach has been extended to the bi-objective “expected travel
time”/“number of transfers” multimodal viable networks in [16] but no computational
experiments where reported. Adapting our algorithms to the hypergraph model is also a
promising research direction.
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Appendix A: Algorithm pseudo-code

Topological label setting algorithm (TLS)

Algorithm 1 Topological label-setting algorithm (TLS)
Require: Graph: G(V,E), NFA: A, Origin: O, Destination: D, Max. transfers: kmax

{Initialization}
1: Qnow ← {(O, s0, 0)}, t0O,s0

← 0, p0
O,sO

← (O, s0, 0), Qnext ← ∅

2: tkis ←∞, ∀i ∈ V \ {O}, ∀s ∈ S, ∀k = 0, . . . , kmax

3: k ← 0
{Search shortest path from 0 to kmax transfers}

4: while Qnow 6= ∅ and k ≤ kmax do

5: repeat

6: (i, s, k)← argmin{tk
js′
|(j, s′, k) ∈ Qnow} and Qnow ← Qnow \ {(i, s, k)}

7: if (i 6= D or s 6∈ F ) and tkis <BestLastSol then

8: LabelExtensionTLS((i, s, k), Qnow, Qnext)
9: end if

10: until Qnow = ∅ or (i = D and s ∈ F )
11: if i = D and s ∈ F and tkis <BestLastSol then

12: BestLastSol ← tkis
13: store tk

Ds
and pk

Ds
(shortest path with k transfers).

14: end if

15: k ← k + 1, Qnow ← Qnext and Qnext ← ∅
16: end while

Algorithm 2 LabelExtensionTLS((i, s, k), Qnow, Qnext)

1: Markkis ← true

2: for j ∈ FS(i) do

3: for s′ ∈ δ(mi,mj , s) do

4: if mi = mj then

5: k′ ← k

6: else

7: k′ ← k + 1
8: end if

9: if not Markk
′

js′
then {Scan unmarked successor (j, s′, k′)}

10: if tkis + dij < tk
′

js′
then {Bellman condition is not satisfied}

11: tk
′

js′
← tkis + dij , p

k′

js′
← (i, s, k)

12: if k′ = k then

13: BestV aluejs′ ← tk
′

js′

14: end if

15: if ∀s′′ ∈ Ds′ , t
k
is + dij < BestV aluejs′′ then {Dominance rule does not apply}

16: if k′ = k then

17: Qnow ← Qnow ∪ {(j, s′, k′)}
18: else

19: Qnext ← Qnext ∪ {(j, s′, k′)}
20: end if

21: end if

22: end if

23: end if

24: end for

25: end for
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Multi-queue label setting algorithm (MQLS)

Algorithm 3 Multi-queue label setting algorithm (MQLS)

Require: Graph: G(V,E), NFA: A, Origin: O, Destination: D, Max. transfers: kmax

1: Q = {Q0 ← {(O, s0, 0)}}, t
0

0,s0
← 0, p0O,s0

← (O, s0, 0)

2: t0i,s ←∞, ∀i ∈ V \ {O}, ∀s ∈ S

3: K ← kmax

4: repeat

5: (i, s, k)← argmin{tk
′

i′,s′ |(i
′, s′, k′) ∈ Q} and Qk ← Qk \ {(i, s, k)}

6: if i = D and s ∈ F then

7: store tki,s and pki,s as the shortest path with k transfers.
8: Discard all Qk′ with k′ ≥ k.
9: set K ← k − 1

10: else

11: LabelExtensionMQLS((i, s, k), Q)
12: end if

13: until K < 0 or Q = ∅

Algorithm 4 LabelExtensionMQLS((i, s, k),Q)

1: Markkis ← true

2: for j ∈ FS(i) do
3: for s′ ∈ δ(mi,mj , s) do
4: if mi = mj then

5: k′ ← k

6: else

7: k′ ← k + 1
8: end if

9: if not Markk
′

js′ then

10: if tkis + dij < tk
′

js′ then {Bellman condition does not hold}

11: if ∀s′′ ∈ Ds′ , ∀k
′′ ≤ k′, tkis + dij < tk

′′

js′′ then {Dominance rule does not apply}

12: tk
′

js′ ← tkis + dij , p
k′

js′ ← (i, s, k)
13: Qk′ ← Qk′ ∪ {(j, s′, k′)}
14: end if

15: end if

16: end if

17: end for

18: end for
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Bidirectionnal multi-queue label setting algorithm (FB-MQLS)

Algorithm 5 Bidirectional multi-queue label setting algorithm (FB-MQLS)

Require: Graph G(V,E), NFA: FA, BA, Origin: O, Destination: D, Max. transfers: kmax

{Initial forward and backward labels}
1: FQ ← {FQ0 ← {(O, s0, 0)}}, ft

0

O,s0
← 0, fp0O,s0

← (0, s0, 0)

2: ft0i,s ←∞, ∀i ∈ V , ∀s ∈ SF , (i, s) 6= (O, s0)

3: BQ ← {BQ0 ← {(D, sD, 0)}}, bt0D,sD
← 0, fp0D,sD

← (D, sD, 0)

4: bt0i,s ←∞, ∀i ∈ V , ∀s ∈ SB, (i, s) 6= (D, sD)
{Initial minimal connection}

5: K ← kmax, BestCurrentSolk ←∞, ∀k, 0 ≤ k ≤ kmax, k
∗ ← −1

{Main Loop: start by getting minimum time label among all priority queues}
6: repeat

7: (if , sf , kf )← argmin{ftk
′

i′,s′ |(i
′, s′, k′) ∈ FQ}

8: (ib, sb, kb)← argmin{btk
′

i′,s′ |(i
′, s′, k′) ∈ BQ}

{Direction setting}

9: if ftk
f

if ,sf
≤ btk

b

ib,sb
then

10: (i, s, k)← (if , sf , kf ), FQk ← FQk \ {(i
f , sf , kf )}

11: if i = D and s ∈ F F then

12: BestCurrentSolk ← ftkis, k
∗ ← k

13: else

14: ForwardLabelExtension((i, s, k),FQ,BQ, k∗,BestCurrentSol)
15: end if

16: else

17: (i, s, k)← (ib, sb, kb), BQk ← BQk \ {(i
b, sb, kb)}

18: if i = O and s ∈ FB then

19: BestCurrentSolk ← btkis, k
∗ ← k

20: else

21: BackwardLabelExtension((i, s, k),FQ,BQ, k∗,BestCurrentSol)
22: end if

23: end if

{queue discarding test}
24: (if , sf , kf )← argmin{ftk

′

i′,s′ |(i
′, s′, k′) ∈ FQ}

25: (ib, sb, kb)← argmin{btk
′

i′,s′ |(i
′, s′, k′) ∈ BQ}

26: if k∗ 6= −1 and BestCurrentSolk∗≤ ftk
f

if ,sf
+ btk

b

ib,sb
then

27: store BestCurrentSolk∗ as the shortest path with k∗ transfers.
28: Discard all FQk and BQk with k ≥ k∗.
29: K ← k∗ − 1, k∗ ← argmink∈{0,...,K}BestCurrentSolk

30: end if

31: until K < 0 or FQ = BQ = ∅
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Algorithm 6 ForwardLabelExtension((i, s, k),FQ,BQ, k∗,BestCurrentSol)

1: ForwardMarkkis ← true

2: for j ∈ FS(i) do
3: for s′ ∈ δ(mi,mj , s) do
4: if mi = mj then

5: k′ ← k

6: else

7: k′ ← k + 1
8: end if

9: if not ForwardMarkk
′

js′ then

10: if ftkis + dij < ftk
′

js′ then {Bellman condition does not hold}

11: if ∀s′′ ∈ DF
s′ , ∀k

′′ ≤ k′, ftkis + dij < ftk
′′

js′′ then {Dominance rule does not apply}

12: ftk
′

js′ ← ftkis + dij , fp
k′

js′ ← (i, s, k)
{Checking connections with backward labels}

13: insertheap← true

14: for (j, sb, k′′) ∈ BQ ∪M, k′ + k′′ ≤ K, sb ∈ CSFA→BA(s′) do
15: if BestCurrentSolk′+k′′ > ftk

′

j,s′ + btk
′′

j,sb
then

16: BestCurrentSolk′+k′′ ← ftk
′

j,s′ + btk
′′

j,sb

17: if k∗ = −1 or BestCurrentSolk′+k′′ <BestCurrentSolk∗ then

18: k∗ ← k′ + k′′

19: end if

20: if k′′ = 0 and BackwardMarkk
′′

j,sb
= true then

21: insertheap← false {Connection with marked backward with 0 transfer}
22: end if

23: end if

24: end for

25: if insertheap then

26: Insert((j, s′, k′), FQk′)
27: end if

28: end if

29: end if

30: end if

31: end for

32: end for

Appendix B: Algorithm illustration

7.1 Topological Label Setting (TLS)

Initialization: k = 0, Qnow = {(x1, s0, 0)}, t01s0 = 0, Qnext = ∅, kmax = 5

Iteration 1: k = 0 // Search solution with 0 transfer

fixed label ; travel time reached label travel time Dom. rule Insert
(x1, s0, 0); t01s0 = 0 (x4, s0, 0) 4 - Qnow

(x2, s0, 1) 1 - Qnext

(x6, s1, 1) 1 - Qnext

(x4, s0, 0); t04s0 = 4 (x5, s0, 0) 8 - Qnow

(x3, s0, 1) 5 - Qnext

(x7, s1, 1) 5 - Qnext

(x5, s0, 0); t05s0 = 8 Destination is reached

Qnow = {(x2, s0, 1), (x6, s1, 1), (x3, s0, 1), (x7, s1, 1)}, t12s0 = 1, t1
6s1

= 1, t1
3s0

= 5, t1
7s1

= 5, Qnext = ∅

29



Iteration 2: k = 1 // Search solution with 1 transfer

fixed label ; travel time reached label travel time Dom. rule Insert
(x2, s0, 1); t12s0 = 1 (x3, s0, 1) 6 already in Qnow

(x4, s0, 2) 2 - Qnext

(x6, s1, 1); t16s1 = 1 (x4, s2, 2) 6 state -

(x7, s1, 1) 4 already in Qnow

(x7, s1, 1); t17s1 = 4 (x5, s2, 2) 5 Qnext

(x3, s0, 1); t13s0 = 5 (x5, s0, 2) 6 Qnext

Qnow is empty : no solution with 1 transfer.

Qnow = {(x4, s0, 2), (x5, s2, 2), (x5, s0, 2)}, t24s0 = 2, t2
5s2

= 5, t2
5s0

= 6, Qnext = ∅

Iteration 3: k = 2 // Search solution with 2 transfers

fixed label ; travel time reached label travel time Dom. rule Insert
(x4, s0, 2); t24s0 = 2 (x5, s0, 2) 6 already in Qnow

(x3, s0, 3) 3 Qnext

(x7, s1, 3) 3 Qnext

(x5, s2, 2); t25s2 = 5 Destination is reached

Qnow = {(x3, s0, 3), (x7, s1, 3)}, t33s0 = 3, t3
7s1

= 3, Qnext = ∅

Iteration 4: k = 3 // Search solution with 3 transfers

fixed label ; travel time reached label travel time Dom. rule Insert
(x3, s0, 3); t33s0 = 3 (x5, s0, 4) 3 Qnext

(x7, s1, 3); t37s1 = 3 (x5, s2, 4) 4 state -

Qnow is empty : no solution with 3 transfers.

Qnow = {(x5, s0, 4)}, t45s0 = 4, Qnext = ∅

Iteration 5: k = 4 // Search solution with 4 transfers

fixed label ; travel time reached label travel time Dom. rule Insert
(x5, s0, 4); t45s0 = 4 Destination is reached

The algorithm stops because there is no more label in Qnow even if the limit on the maximal number of transfers

is not reached.

Multi-queue label setting algorithm (MQLS)

Initialization: k = 0, Q0 = {(x1, s0, 0)}, t01s0 = 0, kmax = 5

fixed label ; travel time reached label travel time Dom. rule Insert
(x1, s0, 0); t01s0 = 0 (x4, s0, 0) 4 - Q0

(x2, s0, 1) 1 - Q1

(x6, s1, 1) 1 - Q1

(x2, s0, 1); t12s0 = 1 (x3, s0, 1) 6 - Q1

(x4, s0, 2) 2 - Q2

(x6, s1, 1); t16s1 = 1 (x7, s1, 1) 4 - Q1

(x4, s2, 2) 2 state -
(x4, s0, 2); t22s0 = 2 (x5, s0, 2) 6 - Q2

(x3, s0, 3) 3 - Q3

(x7, s1, 3) 3 - Q3

(x3, s0, 3); t33s0 = 3 (x5, s0, 4) 4 - Q4

(x7, s1, 3); t37s1 = 3 (x5, s2, 4) 4 state -

(x5, s0, 4); t45s0 = 4 Destination is reached. Suppress Q4

(x7, s1, 1); t17s1 = 4 (x5, s2, 2) 5 - Q2

(x4, s0, 0); t04s0 = 4 (x5, s0, 0) 8 Q0

(x3, s0, 1) 5 basic -
(x3, s0, 1); t13s0 = 5 (x5, s0, 2) 6 basic -

(x5, s2, 2); t25s2 = 5 Destination is reached. Suppress Q2 and Q3

(x5, s0, 0); t05s0 = 8 Destination is reached. Suppress Q0 and Q1

The algorithm stops as the solution with 0 transfer has been obtained.
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Bidirectional Multi-queue label setting algorithm (FB-MQLS)

For the proposed bidirectional algorithm, we consider the NFA given in Figure 5. Compatible states correspond

s0

s1

s2

s

w, b

s

w, b

w, b

(a)

e0

e1

e2

w, b

s

w, b

w, b

s

(b)

Figure 5: NFA for forward and backward steps

to CSFA→BA(s0) = {e0, e2}, CSFA→BA(s0) = {e1} and CSFA→BA(s2) = {e2}. For the forward NFA, there is a
dominance relation : s0 � s2 and for the backward one, e2 � e0.

Initialization: k∗ = −1, FQ0 = {(x1, s0, 0)}, ft01s0 = 0, BQ0 = {(x5, e2, 0)}, bt05e2 = 0, kmax = 5. To simplify
the following tables, variable BestCurrentSolk is denoted by Bestk.

Direction (F/B); fixed label ; travel time reached label travel time Dom. rule Connection Insert
F; (x1, s0, 0); ft01s0 = 0 (x4, s0, 0) 4 - - FQ0

(x2, s0, 1) 1 - - FQ1

(x6, s1, 1) 1 - - FQ1

Queue Dicarding test: Not applicable

(F/B); fixed label ; travel time reached label travel time Dom. rule Connection Insert
B; (x5, e2, 0); bt05e2 = 0 (x4, e2, 0) 4 - (x4, s0, 0), Best0=8, k∗ = 0 BQ0

(x3, e2, 1) 1 - - BQ1

(x7, e1, 1) 1 - - BQ1

Queue Dicarding test: Best0=8≤1+0 : No

(F/B); fixed label ; travel time reached label travel time Dom. rule Connection Insert
F; (x2, s0, 1); ft12s0 = 1 (x3, s0, 1) 6 - (x3, e2, 1), Best2=7, k∗ = 2 FQ1

(x4, s0, 2) 2 - (x4, e2, 0), Best2=6, k∗ = 2 FQ2

Queue Dicarding test: Best2=6≤1+1 : No

(F/B); fixed label ; travel time reached label travel time Dom. rule Connection Insert
F; (x6, s1, 1); ft16s1 = 1 (x7, s1, 1) 4 - (x7, e1, 1), Best2=5, k∗ = 2 FQ1

(x4, s2, 2) 2 State -
Queue Dicarding test: Best2=5≤2+1 : No

(F/B); fixed label ; travel time reached label travel time Dom. rule Connection Insert
B; (x3, e2, 1); bt13e2 = 1 (x2, e2, 1) 6 - (x2, s0, 1), no improvement FQ1

(x4, e2, 2) 2 - (x4, s0, 0), no improvement
(x4, s0, 0), Best4=4, k∗ = 4 FQ1

Queue Dicarding test: Best4=4≤2+1 : No

(F/B); fixed label ; travel time reached label travel time Dom. rule Connection Insert
B; (x7, e1, 1); bt17e1 = 1 (x6, e1, 1) 4 - (x6, s1, 1), no improvement BQ1

(x4, e0, 2) 2 State - -
Queue Dicarding test: BestCurrentSol4=4≤2+2 : Yes. Shortest path with 4 transfers
Suppress FQ4 and BQ4. k∗ = 2
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(F/B); fixed label ; travel time reached label travel time Dom. rule Connection Insert
F; (x4, s0, 2); ft24s0 = 2 (x5, s0, 2) 6 - (x5, e2, 0), no improvement - (mark-up label)

(x3, s0, 3) 3 - (x3, e2, 1), too many transfer FQ3

(x7, s1, 3) 3 - (x7, e1, 1), too many transfer FQ3

Queue Dicarding test: Best2=5≤4+2 : Yes. Shortest path with 2 transfers
Suppress FQ2, FQ3, BQ2 and BQ3. k∗ = 0

(F/B); fixed label ; travel time reached label travel time Dom. rule Connection Insert
F; (x4, s0, 0); ft04s0 = 4 (x5, s0, 0) 8 - (x5, e2, 0), no improvement - (mark-up label)

(x3, s0, 1) 5 - (x3, e2, 1), too many transfer FQ1

(x7, s1, 1) 5 - (x7, e1, 1), too many transfer FQ1

Queue Dicarding test: Best0=8≤6+4 : Yes. Shortest path with 0 transfers
Suppress FQ0, FQ1, BQ0 and BQ1. k∗ = −1

The algorithm stops as the solution with 0 transfer has been obtained.

Appendix C: detailed computational results

Table 3: Impact of dominance rule and algorithms on CPU time (ms) - no NFA

FB-MQLS TLS MQLS TLS MQLS
(A*) (A*)

Bell. cond. 160 183 197 206 236
Basic dom. 87 116 124 132 149
∆b. d. -45% -37% -37% -36% -37%
∆ FB 0% -24% -29% -34% -41%

Table 4: Impact of dominance rule and algorithms on touched nodes- no NFA

FB-MQLS MQLS TLS MQLS TLS
(A*) (A*)

Bell. cond 114660 188605 207423 220818 229972
Basic dom 64362 120828 132664 141762 150162
∆b. d. -44% -36% -36% -36% -35%
∆ FB 0% -47% -51% -55% -57%

Table 5: Impact of dominance rules and algorithms on CPU time (ms) - 3 states

FB-MQLS FB-MQLS TLS MQLS TLS MQLS
(Det) (Non Det) (A*) (A*)

Bell. cond 180 215 272 297 312 379
Basic dom 106 123 169 190 200 243
State dom 94 117 134 150 157 186
∆s. d. -11% -5% -20% -21% -21% -23%

∆ FB-ND (b. d.) 16% 0% -27% -35% -39% -50%
∆ FB-ND (s. d.) 25% 0% -13% -22% -25% -37%
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Table 6: Impact of dominance rules and algorithms on touched nodes - 3 states

FB-MQLS FB-MQLS MQLS TLS MQLS TLS
(Det) (Non Det) (A*) (A*)

Bell. cond 120475 155711 259103 293863 318538 331905
Basic dom 70862 91940 167473 187768 206055 218233
State dom 62936 87175 137457 152955 166399 176261
∆s. d. -11% -5% -18% -19% -19% -19%

∆ FB-ND (b. d.) 30% 0% -45% -51% -55% -58%
∆ FB-ND (s. d.) 39% 0% -37% -43% -48% -51%

Table 7: Impact of dominance rules and algorithms on CPU time (ms) - 4 states

FB-MQLS FB-MQLS TLS MQLS TLS MQLS TLS MQLS
(Det) (Non Det) (sd-A*) (sd-A*) (A*) (A*)

Bell. cond 220 244 309 318 334 339 352 410
Basic dom 162 178 186 195 201 208 215 241
State dom 160 177 170 180 184 191 194 218
∆s. d. -1% -1% -9% -8% -9% -8% -10% -10%

∆ FB-ND (b. d.) 10% 0% -4% -9% -12% -14% -17% -26%
∆ FB-ND (s. d.) 10% 0% 4% -2% -4% -7% -9% -19%

Table 8: Impact of dominance rules and algorithms on touched nodes - 4 states

FB-MQLS FB-MQLS MQLS TLS MQLS TLS MQLS TLS
(Det) (Non Det) (sd-A*) (sd-A*) (A*) (A*)

Bell. cond 154829 180813 294543 305298 340893 346405 362986 374727
Basic dom 117908 136458 194345 199614 213322 217390 228648 239499
State dom 114370 133210 180266 184742 196596 200105 209325 218997
∆s. d. -3% -2% -7% -7% -8% -8% -8% -9%

∆ FB-ND (b. d.) 16% 0% -30% -32% -36% -37% -40% -43%
∆ FB-ND (s. d.) 16% 0% -26% -28% -32% -33% -36% -39%

33
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Figure 6: Impact of dominance rules and algorithms on CPU time (ms) for different NFAs
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Mode set M1 = {w, b}, no NFA
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Figure 7: Impact of dominance rules and algorithms on touched nodes for different NFAs
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