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Abstract   In the transportation domain, the on-board rotor in bending is subjected 

not only to rotating mass unbalance but also to support movements. The equations 

of motion in bending of the rotating rotor take into account the geometric asym-

metry of disks and/or shaft and consider six types of deterministic support mo-

tions. The application of Lagrange’s equations using the finite element method 

based on the theory of Timoshenko leads to the equations of motion which high-

light periodic parametric terms due to the asymmetry of the rotor and time-varying 

parametric terms due to the rotational base excitations. When the rotor base is sub-

jected to combined rotation and sinusoidal translation, analytical solutions are de-

rived and analyzed by means of Campbell diagrams and steady-state responses. 

Key words:   Dynamics of rotors, on-board rotor dynamics, base excitation, ana-

lytical solution. 

1 Introduction 

Rotordynamics with a fixed support has been extensively predicted [1-3]. Other 

works concentrate on the behavior of a rotor in the seismic excitation cases [4-6]. 

The effect of the flexible foundation on the rotor dynamics has been studied using 

a finite element modeling [7] and an experimental investigation of a rotor [8]. In 

[9], the nonlinear bearing coefficients are considered to be piecewise constant us-

ing the El Centro earthquake data. Certain study focuses on the experimental be-

havior of a rotor under shock base excitation [10]. When the rotor support is in-

duced by a deterministic harmonic motion, the response to this excitation [11], the 

stability chart [12], the comparisons between experimental and numerical orbits 

[13] as well as the active vibration control of the rotor [14] are studied and pre-

sented. In this paper, we present a symmetrical rotating rotor model whose base is 

subjected to a constant angular velocity and a periodic translation. Campbell dia-

grams, mass unbalance responses and responses to translational base excitations 
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are plotted as a function of the base rotations which can drastically change the be-

havior of the rotor.  

2 Dynamical behavior modeling 

The rotor support is supposed to be sufficiently rigid compared to the flexible 

shaft of the rotor. Its motion is described by three rotations and three translations. 

The investigated rotor and the coordinate system attached to the support are pre-

sented in Fig. 1. The derivation of the equations of motion has been established in 

[2,10,12] and is briefly described as follows: 

• The disc is characterized by its kinetic energy because it is considered rigid. 

• The elementary kinetic energy of an elementary shaft volume is considered as a 

generalization of the disc case. Moreover, the strain energy of a shaft finite 

element is calculated using the Timoshenko beam theory.    

• The mass unbalance located on the disc is characterized by its kinetic energy. 

 

Fig. 1. Description of the investigated rotor. 

The nodal displacement vector is defined by qn=<un,wn,θn,ψn>T. The equations 

of motion of the finite element rotor model are obtained after applying the La-

grange’s equations to the energies for the disc, the shaft finite element as well as 

the mass unbalance and assembling the corresponding matrices: 

 ( ) ( ) ( ) ( )t t t t+ + =r r r rM q C q K q Fɺɺ ɺ  (1) 

where Mr (t), Cr (t) and Kr (t) are the parametric matrices of mass, damping and 

stiffness of an asymmetrical rotating rotor on moving base. Fr (t) is the total force 

vector. Now, the shaft and the disc are assumed to be symmetric and the base ex-

citations are assumed to consist of a constant angular velocity ω
x
 (or ω

y
) around 

the Ox axis (or the Oy axis) and a periodic translation along the Oz axis given by 

zO=ZO sin(Ω
z
t). The equations of motion (1) in this case include constant terms and 

may be rewritten in one of the two following forms (Eq. (2) corresponds to ω
x
 and 

Eq. (3) to ω
y
): 
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where Ω is the speed of rotation of the rotor. Vu, Vb and Vu,b are load vectors as-

sociated respectively with the mass unbalance, the force inertia due to base mo-

tions and that due to coupling between both phenomena. The superscript “g” re-

fers to the gyroscopic effect, “re” is the rotational effects due to the base rotation 

and “gse” is the geometric stiffening effects corresponding to the centrifugal stress 

due to the base rotation. In our case, the system of Eq. (1) contains constant matri-

ces (according to Eqs. (2) and (3)) and is transformed into a first-order system: 

 
( )t

       
= +      

− −         
-1-1 -1
r rr r r r

00 Iq q
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ɺ
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 (4) 

The eigenvalues of the above matrix is calculated for finding the natural fre-

quencies f of the rotor. Here only the steady-state responses are calculated. The 

general solution of the equations of motion (4) is not considered and its particular 

solution can be expressed by: 

 ( ) ( ) ( ) ( )cos sin cos sin
z z

t t t t= Ω + Ω + Ω + Ωc s c s
u u b b

q q q q q  (5) 

where c
uq , s

uq , c
b

q  and s
b

q  are unknown displacement amplitude vectors. Use q 

to obtain the velocity and acceleration vectors. Substituting them in Eq. (4) gives: 
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3 Results and Discussion 

The material properties and the geometry of the rotor are given in Table 1.    

Table 1. Main characteristics of the investigated rotor. 

Density of both disc and shaft material 

Radius, thickness and location of the disc 

shaft material (E, ν) 

Radius and length of the shaft 

Mass unbalance 

7800 kg/m
3
 

0.4 m, 0.05 m, 0.4/3 m 

2 × 10
11

 N/m
2
, 0.3 

0.01 m, 0.4 m 

40 g mm, 0° 

 

Figure 2 shows the Campbell diagrams of the rotor subject either to ω
x
 or ω

y
 

angular velocity. The base rotation ω
x
 breaks the symmetry of the rotor behavior; 

see its Campbell diagram presented in Fig. 2(a). The rotational effects due to ω
x
 

decrease the natural frequencies while the centrifugal stiffening relative to ω
x
 in-

creases them especially at the higher speeds of rotation of the rotor. Unlike the 

previous case, the solicitation due to the base rotation ω
y
 does not bring any asym-

metry to the rotor, but shifts the natural frequencies; see its Campbell diagram pre-

sented in Fig. 2(b).     
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Fig. 2. Campbell diagrams for the first four natural frequencies of the rotor during the support ro-

tation: (a) with ω
x
=0 (solid line), 4π rad/s (2 Hz, dotted line), 10π rad/s (5 Hz, dashed line), 20π 

rad/s (10 Hz, dashed-dotted line); or (b) with ω
y
=0, 4π, 10π, 20π rad/s.   
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Figure 3 represents the mass unbalance responses at the middle of the shaft 

subject either to ω
x
 or ω

y
 angular velocity. The rotor has only one critical speed in 

the presence of ω
y
 (see Fig. 3(b)), but three in the presence of ω

x
 (see Fig. 3(a)). 

These responses confirm that the rotor keeps a symmetrical behavior in the case of 

the base rotation around the Oy axis, but has a non-symmetrical behavior in the 

case of the base rotation around the Ox axis. We note that the position of the criti-

cal speed is shifted towards the lower values of the speed of rotation of the rotor 

when the angular velocity ω
y
 increases.    

(a) (b)  

Fig. 3. Mass unbalance responses during the support rotation around: (a) the Ox axis; or (b) the 

Oy axis. 

Figure 4 presents the evolution of the frequency responses at the middle of the 

rotor running at a speed of rotation of 2000 rpm and subject to a harmonic base 

translation of amplitude 2 × 10
-4

 m in the z direction. In the presence of ω
x
 or ω

y
 

angular velocity, the responses exhibit always three critical frequencies (three 

peaks) corresponding to the rotor natural frequencies at 2000 rpm. In the case of 

ω
y
, the harmonic translation along the Oz axis produces a very small peak com-

pared to the other two peaks (see Fig. 4(b)). This is because Eq. (3) presents a 

negative cosine term containing the frequency Ω
z
 of the base translation. 

(a) (b)  

Fig. 4. Dynamical responses to the periodic base translation at 2000 rpm speed of rotation of the 

rotor during the base rotation around: (a) the Ox axis; or (b) the Oy axis. 
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4 Conclusions 

A finite element model is presented for analyzing the dynamical behavior of a 

symmetrical on-board rotor whose support is subjected to combined constant rota-

tion and sinusoidal translation. The rotational effects and the geometric stiffening 

effects relative to the centrifugal stressing due to the support rotation are taken 

into account. It is shown that support rotation not only changes the natural fre-

quencies of the rotor but can also break the symmetry of the dynamical behavior 

in the case of the rotation around a transverse axis. The sinusoidal support transla-

tion does not change the rotor natural frequencies. It has only an influence on the 

rotor responses and the shape of the orbits.            
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