
Q-Learning with Double Progressive Widening :

Application to Robotics

Nataliya Sokolovska, Olivier Teytaud, and Mario Milone

INRIA Saclay, CNRS UMR 8623 & LRI, Université Paris Sud, Orsay, France

Abstract. Discretization of state and action spaces is a critical issue in
Q-Learning. In our contribution, we propose a real-time adaptation of the
discretization by the progressive widening technique which has been al-
ready used in bandit-based methods. Results are consistently converging
to the optimum of the problem, without changing the parametrization
for each new problem.

Key words: Q-Learning, discretization, applications

1 Introduction

In a large number of real world applications it is intractable to estimate a model.
Q-Learning is a well known model-free reinforcement learning algorithm, where
Q-values – which estimate the expected reward for taking a particular action
in a given state – are learnt. However, in the approach it is assumed that the
domain is discrete, or discretized. If the state and/or action spaces are continu-
ous, the application of the Q-Learning is not straightforward. If the state/action
domains are continuous (or very large), it becomes hardly possible to keep (and
to update) a look-up table which contains Q-values for each state-action pair.
Besides discretization approaches [1,2,3], including adaptive techniques, there
exist a number of techniques applied to the reinforcement learning which allow
to work with continuous values. To discretize a continuous state and action space
is a challenge, since if a discretization is too rough, it will be impossible to find
the optimal policy; if a grid is too fine, the generalization will be lost.

Among the state-of-the art approaches are the following discretizing (and
often feature and model selecting) approaches. A historical but still actively ex-
ploited approach is CMAC (Cerebellar Model Arithmetic Computer) that has
been introduced for robotics [4,5]. In CMAC Q-Learning the state space is par-
titioned into tiles, which are binary features. A parameter (or weight) θ is as-
sociated with each tile, and Q-values are not kept in a look-up table but are
represented by a parametric family of functions, parametrized by the vector Θ.
CMAC Q-Learning is similar to a neural network. Overall, the introduction of
neural networks into Q-Learning to process continuous states has been actively
studied, see e.g., [6]. If the number of tiles is quite large, the computational
complexity of such parametric approaches can be high.



2 Nataliya Sokolovska, Olivier Teytaud, and Mario Milone

Vector Quantization Q-Learning (VQQL) [7,8] produces a compact represen-
tation of the state domain via clustering of simulated states. The drawback of
the method is that a refinement of the grid is not foreseen.

Recently in [9] the Two Steps Reinforcement Learning (2SRL) has been in-
troduced, where decision (and regression) trees are used to perform the state
space discretization. The algorithm is based on two alternating steps; in the
first phase some discretization of the state domain is produced, in the second
one a current policy is improved. The reported drawback of the method is the
requirement for the discrete reward function.

The important problem is to refine the discretization grid of states (and
actions) adaptively, especially around the areas of interest, e.g., around the goal.
If the initial grid is rather coarse, and if all vertices of the grid are far enough
from the goal, it is possible that an agent never reaches a goal. An adaptive
approach to refine the initial grid has been recently proposed by [10]. The idea
is to provide pseudo-goals which lie on the vertices of the initial grid. It has been
shown that the method is efficient, however, its serious disadvantage is that the
knowledge of a location of a goal is required. The initialization of the grid with
the pseudo-goals, which are in a proximity to the true goal, is not obvious.

In this contribution, we propose a technique, inspired by methodologies devel-
oped in Monte-Carlo Tree Search, for directly working in the continuous setting.
To the best of our knowledge, this is the first dynamic discretization approach
handling both continuous states and continuous actions - which is critical for
many important applications.

The paper is organized as follows. Section 2 presents progressive widening Q-
Learning. Section 3 provides the results of our experiments on both a synthetic
reinforcement learning task and on a realistic problem of a robot navigation
is a 3-dimensional partially observable environment. Concluding remarks and
perspectives close the paper.

2 Progressive Widening Q-Learning

In this section, we describe briefly the Q-Learning approach. We discuss its
limits with respect to continuous problems, and introduce progressive widening
Q-Learning procedure.

2.1 Q-Learning Approach

To solve a goal-planning task means to find an optimal policy, i.e. a policy
π⋆ that is equal or better (in terms of cumulated expected reward) than any
other policy π. It is known [11] that optimal policies share the same optimal
action-value function Q⋆. Given a set of states S and a set of actions A, optimal



Q-Learning with Progressive Widening : Application to Robotics 3

action-value function is defined as

Q⋆(s, a) = max
π

Qπ(s, a)

= E{rt+1 + γ max
a′

Q⋆(st+1, a
′)|st = s, at = a}

=
∑

s′

Pa

ss′

(

Ra

ss′ + γ max
a′

Q⋆(s′, a′)
)

, (1)

where Pa

ss′ = p(s′|s, a), R is the reward, s, s′ ∈ S, and a, a′ ∈ A. In other words,
the action-value function Q : S × A −→ R defines the quality of each (state,
action) pair.

Q-Learning is a general term for approaches which compute the expected
reward given an action a in a given state s, and allow to choose an action
maximizing the reward value. The strength of Q-Learning methods is that they
do not require any knowledge of a model of environment Pa

ss′ , which is not
available in a number of real-world applications.

An example of a policy is the greedy policy, given by

π(s) = arg max
a

Qπ(s, a), (2)

which we use in the following.
One-step Q-Learning is proposed by [12]. The approach is based on the fol-

lowing update rule:

Q(s, a) = Q(s, a) + α
(

r + γ max
a′

Q(s′, a′) − Q(s, a)
)

, (3)

where α is usually called learning rate, α ∈]0; 1], and γ – discount factor, γ ∈
[0; 1[. The complete reinforcement learning procedure is drafted as Algorithm 1.

Algorithm 1 One-step Q-Learning

Initialize Q(s, a)
for each episode do

Initialize s
for each step of episode do

Choose a (ǫ-greedy policy derived from Q)
Take action a, observe r and s′

Q(s, a) = Q(s, a) + α
“

r + γ maxa′ Q(s′, a′) − Q(s, a)
”

s = s′

end for

end for

2.2 Applying Double Progressive Widening to Q-Learning

Since we can not enumerate all possible states and all possible actions, we exploit
the idea to use a table of Q values which is not static. We explore and add states



4 Nataliya Sokolovska, Olivier Teytaud, and Mario Milone

and actions to the Q-table progressively. Under double progressive widening we
mean that we increase the number of explored states and actions.

We can naturally apply the double progressive widening procedure to the
Q-Learning framework. Since our state and action spaces both are continuous,
some discretization has to be done, if we want to apply the Q-Learning directly.
At the same time, both the state and action spaces should be well explored
to achieve some reasonable cumulated reward. For this, we slowly increase the
number of states and actions, by the progressive widening technique successfully
used in bandit-based algorithms [13,14,15]. When a state is sufficiently highly
visited, compared to the number of times the previous action has been tried in
the previous state, then it is added in the discretization of states; and when the
number of visits of a state is sufficiently large, compared to the pool of actions
already considered, then a new action is added. The discretization of states and
actions is carried out based on the Euclidean distance. A newly observed state
(action) gets the same discrete value as its closest state (action) in the already
explored set of states S (set of actions A).

The approach we use is drafted as Algorithm 2; λ is the progressive widening
parameter associated with states exploration, and λ′ – with exploration of deci-
sions. Both parameters are equal in our experiments, so that we do not introduce
a bias by a highly tuned parameterization; interestingly, we will see that some
values of λ = λ′ are good for all our tests.

Algorithm 2 Progressive Widening Q-Learning

Initialize S – set of explored states
Initialize A – set of explored actions, specific for states
Initialize Q(s, a) – Q-values
Initialize parameters C > 0, λ ∈]0, 1[, α ∈]0; 1], γ ∈ [0; 1[
for each episode do

Initialize s
for each step of episode do

nbV isits(s) = nbV isits(s) + 1
k = ⌈CnbV isits(s)λ⌉
Choose action a from {a1, . . . , ak} associated with s using Eq. (2)
Update the number of visits nbV isits(s, a) = nbV isits(s, a) + 1
Take action a, observe s′ and r

if

“

⌈CnbV isits(s, a)λ
′

⌉ > #S
”

&
“

s′ /∈ S
”

then

S = S ∪ s′

end if

Update Q(s, a), using Eq. (3)
s = arg mins′′∈S ‖s′′ − s′‖

end for

end for



Q-Learning with Progressive Widening : Application to Robotics 5

3 Experiments

In this section, we illustrate efficiency of the proposed progressive widening Q-
Learning on a synthetic problem called Treasure Hunt, and on a realistic – robot
navigation – task.

3.1 Treasure Hunt Problem

The problem considered in this section is an artificial problem which allows us
to demonstrate clearly that the double progressive widening Q-Learning is a
powerful approach. Treasure Hunt is a two-dimensional problem, i.e., an agent
moves in a two-dimensional environment, with the dimensions 15× 15. The aim
of the agent is to discover the treasure. Both the agent and the treasure are
always initialized in the same coordinates (the agent is initialized in the lower
left corner of the 15 × 15 room, and the treasure is located in the upper right
corner). The agent knows his position at each time step. The reward equals 1000
when the treasure is reached, otherwise the instantaneous reward equals −1.

To consider different scenarios, we make use of three variations of the Trea-
sure Hunt framework:

1. Treasure Hunt as described above
2. An obstacle is added, i.e. a hole is added in the center of the two-dimensional

space. If the agent falls into the hole, the reward is −500.
3. Uniform noise (on states) is added

The difficulty is the fact that both states (positions of the agent) and actions
(or decisions of the agent) are continuous. In our experiments, we compare the
standard Q-Learning without progressive widening with the method proposed
above. To perform experiments with the standard Q-Learning we discretize the
state and action spaces using some grid of a constant size. The progressive widen-
ing parameter λ controls how many and how fast new states and actions are
added to the table, which contains states × actions Q-values. In our experi-
ments, we apply the same progressive widening parameter value to states and
actions, i.e., λ = λ′. Note, that when λ = 0, neither new states, nor new actions
are added, and therefore, the results are equivalent to ones of the standard Q-
Learning. We can start the progressive widening procedure from empty sets for
states and actions. In the experiments, we have considered two cases: we start the
learning procedures (Q-Learning and progressive widening Q-Learning) from 1
pre-simulated state and action; and from 5 pre-simulated states and actions. We
use the following Q-Learning parameters is our experiments: α = 0.15, γ = 0.85.

The following figures illustrate our results – the mean of the cumulated
reward – on different scenarios of the Treasure Hunt problem and for differ-
ence progressive widening (PW in the legend) parameter values. The number of
Monte-Carol simulations on the plots is 500. Figure 1 is the basic case, where
there are no any obstacles and the transitions are completely deterministic (no
noise). Figure 2 demonstrates the case with the noise. Figure 3 is the variation



6 Nataliya Sokolovska, Olivier Teytaud, and Mario Milone

with the hole in the center of the 2-dimensional search space, and Figure 4 is the
scenario with the obstacle and with the noise. We can conclude that the stan-
dard Q-Learning with 1 pre-simulated state and action copes quite bad with
the task. The Q-Learning which disposes 5 states and 5 actions ameliorates the
performance when the number of the Learning episodes increases. It is obvious
that the double progressive widening Q-Learning is much more efficient. Note,
that the progressive widening parameter plays a significant role, λ = 0.5 allows
to add more states and actions than λ = 0.25, and hence makes the discretiza-
tion of the state and action spaces more adapted. Overall, the problem is rather
simple and can be discretized in a small number of states and actions.

1 10 100 2000 5000
0

100

200

300

400

500

600

700

800

900

1000

M
e
a
n
 r

e
w

a
rd

Episodes

 

 

PW = 0

PW = 0.001

PW = 0.25

PW = 0.5

1 10 100 2000 5000
0

100

200

300

400

500

600

700

800

900

1000

M
e
a
n
 r

e
w

a
rd

Episodes

 

 

PW = 0

PW = 0.001

PW = 0.25

PW = 0.5

Fig. 1. Treasure Hunt task. Without noise and without obstacles; left: starting
with 1 state and 1 action; right: starting with 5 states and 5 actions. Note that
while applying the parameter 0, the double progressive widening boils down to
a non-adaptive discretization.

3.2 Robot Navigation in a 3D Partially Observable Environment

Autonomous robot navigation is a challenging task, especially in an environment
which is partially observable. The values of the Q-Learning parameters and the
number of simulations are the same as in the previous section.

The 3D simulator we use in our experiments has been developed at IDIAP1.
The simulator models the 3D environment which resembles one designed for
computer video games. An agent is placed in a virtual room, and the goal is
to teach it to touch the red flag. In every training (and testing) episode, the
robot and the flag are placed randomly. The described task is a typical problem
which can be solved by reinforcement learning. If the robot touches the walls,
the instantaneous reward equals −1, if the red flag is reached the reward is +10,
otherwise the reward is 0 at each time step.

1 http://www.idiap.ch/



Q-Learning with Progressive Widening : Application to Robotics 7

1 10 100 2000 5000
0

100

200

300

400

500

600

700

800

900

1000

M
e
a
n
 r

e
w

a
rd

Episodes

 

 

PW = 0

PW = 0.001

PW = 0.25

PW = 0.5

1 10 100 2000 5000
0

100

200

300

400

500

600

700

800

900

1000

M
e
a
n
 r

e
w

a
rd

Episodes

 

 

PW = 0

PW = 0.001

PW = 0.25

PW = 0.5

Fig. 2. Treasure Hunt task. With noise and without obstacles; left: starting with
1 state and 1 action; right: starting with 5 states and 5 actions. Note that while
applying the parameter 0, the double progressive widening boils down to a non-
adaptive discretization.

1 10 100 2000 5000
0

100

200

300

400

500

600

700

800

900

1000

M
e
a
n
 r

e
w

a
rd

Episodes

 

 

PW = 0

PW = 0.001

PW = 0.25

PW = 0.5

1 10 100 2000 5000
0

100

200

300

400

500

600

700

800

900

1000

M
e
a
n
 r

e
w

a
rd

Episodes

 

 

PW = 0

PW = 0.001

PW = 0.25

PW = 0.5

Fig. 3. Treasure Hunt task. Without noise and with obstacles; left: starting with
1 state and 1 action; right: starting with 5 states and 5 actions. Note that while
applying the parameter 0, the double progressive widening boils down to a non-
adaptive discretization.

The difficulty of the task is that the environment is not fully observable, it
is partially observable. The robot does not know its position. The agent has to
deduce where it is and what it has to do (i.e., which action should be taken)
based on video images it gets on each time step. Figure 5 illustrates two typical
observations of an agent (on the left: the robot does not observe the goal, on the
right: the robot sees the flag).

On each time step, the agent gets a video image. Using the a priori knowledge
that the flag, the robot is looking for, is red, we apply the image processing
technique to extract the information, whether the agent sees the flag, whether
the flag is observed on the right/left/in front of the robot. We have introduced



8 Nataliya Sokolovska, Olivier Teytaud, and Mario Milone

1 10 100 2000 5000
0

100

200

300

400

500

600

700

800

900

1000

M
e
a
n
 r

e
w

a
rd

Episodes

 

 

PW = 0

PW = 0.001

PW = 0.25

PW = 0.5

1 10 100 2000 5000
0

100

200

300

400

500

600

700

800

900

1000

M
e
a
n
 r

e
w

a
rd

Episodes

 

 

PW = 0

PW = 0.001

PW = 0.25

PW = 0.5

Fig. 4. Treasure Hunt task. With noise and with obstacles; left: starting with 1
state and 1 action; right: starting with 5 states and 5 actions. Note that while
applying the parameter 0, the double progressive widening boils down to a non-
adaptive discretization.

Fig. 5. 3D environment designed by the simulator. On the left: the robot does
not observe the goal, on the right: the robot sees the flag.

an additional reward for the training phase only. If the flag is observed on the
right or on the left, the supplementary reward is +2.5, if the robot can observe
the goal just in front of it, the supplementary reward equals +5. Figure 6 shows
the dependence of the cumulated reward (test phase) on the learning time.

In the Appendix we provide video images of a typical exploitation trajectory
of the agent. The robot and the goal are initialized and placed randomly, and
the agent is approaching the the red flag.

4 Conclusion

We proposed, to the best of our knowledge, the first approach for handling,
without fixed discretization, both a continuous state space and a continuous
action space. While we have no consistency proof, we believe that results as



Q-Learning with Progressive Widening : Application to Robotics 9

10 60 300 18000
−2

−1

0

1

2

3

4

5

Learning time (seconds)

C
u
m

u
la

te
d
 r

e
w

a
rd

Fig. 6. Navigation of the robot in a 3D environment: cumulated reward (testing
phase); λ = 0.5

in [16] can be used for proving the consistency of our approach. Experimental
results suggest that the algorithm efficiently adapts the discretization where it is
needed, and that the “widening” principle, consisting in extending an edge when
it is simulated more than nλ times where n is the number of visits to the parent
situation, is a stable methodology with coefficient λ around 1

3
(interestingly,

nearly the same constant as in [17] and [16] in different contexts).

Acknowledgements

We are grateful to the FP7 program (European project MASH – Massive Sets
of Heuristics) for support.

References

1. Davies, S.: Multidimensional Triangulation and Interpolation for Reinforcement
Learning. In: Advances in Neural Information Processing Systems (1997)

2. Munos, R., Moore, A.: Variable Resolution Discretization in Optimal Control.
Technical report, Robotics Institute, CMU (1999)

3. Munos, R., Moore, A.W.: Variable Resolution Discretization for High-accuracy
Solutions of Optimal Control Problems. In: IJCAI, pp. 1348–1355 (1999)

4. Albus, J.S.: A New Approach to Manipulator Control: the Cerebellar Model Ar-
ticulation Controller. Journal of Dynamic Systems, Measurement, and Control 97,
220–227 (1975)

5. Burgin, G.: Using Cerebellar Arithmetic Computers. In: AI Expert 7 (1992)
6. Gaskett, C., Wettergreen, D., Zelinsky, A.: Q-learning in Continuous State and

Action Spaces. In: Australian Joint Conference on Artificial Intelligence, Springer-
Verlag, pp. 417–428 (1999)

7. Gersho, A., Gray, R.M.: Vector Quantization and Signal Compression. Kluwer
Academic Publishers (1991)

8. Stone, P., Sutton, R.S., Kuhlmann, G.: Reinforcement Learning for Robocup-
soccer Keepaway. Adaptive Behavior 3, 165–188 (2005)



10 Nataliya Sokolovska, Olivier Teytaud, and Mario Milone

9. Fernández, F., Borrajo, D.: Two Steps Reinforcement Learning. International
Journal of Intelligent Systems 2, 213–245 (2008)

10. Lampton, A., Valasek, J.: Multiresolution State-Space Discretization Method for
Q-Learning. In: American Control Conference (2009)

11. Sutton, R.S., Barto, A.G.: Reinforcement Learning: an Introduction. MIT Press
(1998)

12. Watkings, C.J.C.H.: Learning from Delayed Rewards. PhD thesis, Cambridge
University (1989)

13. Couëtoux, A., Hoock, J.B., Sokolovska, N., Teytaud, O., Bonnard, N.: Continuous
Upper Confidence Trees. In: International Conference on Learning and Intelligent
Optimization (2011)

14. Coulom, R.: Monte-Carlo Tree Search in Crazy Stone. In: Game Programming
Workshop (2007)

15. Rolet, P., Sebag, M., Teytaud, O.: Boosting Active Learning to Optimality: a
Tractable Monte-Carlo, Billiard-based Algorithm. In: European Conference on
Machine Learning (2009)

16. Wang, Y., Audibert, J.Y., Munos, R.: Algorithms for Infinitely Many-armed Ban-
dits. In: Advances in Neural Information Processing Systems (2008)

17. Coulom, R.: Efficient Selectivity and Backup Operators in Monte-Carlo Tree
Search. In P. Ciancarini and H. J. van den Herik, editors, Proceedings of the
5th International Conference on Computers and Games, Turin, Italy (2006)

5 Appendix: Exploitation Trajectory of the Agent


	Q-Learning with Double Progressive Widening : Application to Robotics
	Nataliya Sokolovska, Olivier Teytaud, and Mario Milone

