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Abstract. Conditional random fields are among the state-of-the art
approaches to structured output prediction, and the model has been
adopted for various real-world problems. The supervised classification is
expensive, since it is usually expensive to produce labelled data. Unla-
beled data are relatively cheap, but how to use it? Unlabeled data can
be used to estimate marginal probability of observations, and we exploit
this idea in our work.
Introduction of unlabeled data and of probability of observations into a
purely discriminative model is a challenging task.
We consider an extrapolation of a recently proposed semi-supervised cri-
terion to the model of conditional random fields, and show its drawbacks.
We discuss alternative usage of the marginal probability and propose a
pool-based active learning approach based on quota sampling. We carry
out experiments on synthetic as well as on standard natural language
data sets, and we show that the proposed quota sampling active learning
method is efficient.

Key words: conditional random fields, probability of observations, active learn-
ing, semi-supervised learning

1 Introduction

In real-world applications (text, image, audio data processing) unlabeled data are
plentiful and cheap. Labeled data, on the contrary, are usually rather expensive
to gather. The problem how to exploit unlabeled instances is not recent and many
proposals have been already made. Another problem is how to select training
data. How to choose instances of high training utility is the active learning
problem.

Intuitively, the information one can get from unlabeled data is the marginal
probability of observations. In the asymptotic case, when we dispose infinitely
many unlabeled instances, we can estimate the true marginal probability of
observations. In real-world problems this is not feasible, since the number of
observations is always limited. However, the probability of observations can be
approximated.
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Attention of the machine learning and data mining communities has been
drawn to semi-supervised approaches (see [4] for an overview), especially by
probabilistic semi-supervised classifiers. Logistic regression is a simple efficient
discriminant model widely used for various applications. However, a number of
real-world applications has sequential structure, e.g., natural language and bio-
logical applications. Conditional random fields [11] are a generalization of logis-
tic regression, and therefore, a discriminative approach, which models sequential
dependencies and allows to take a rich set of features into account.

Probabilistic generative models fare easily with unlabeled data, usually via
the expectation-maximization algorithm [6,22]. Discriminative probabilistic mod-
els are reported to perform better than probabilistic generative models [17]. The
introduction of unlabeled instances into discriminative models is much more
challenging, since it is not straightforward how to integrate marginal probability
of observations into a discriminative model.

Among the state-of-the art semi-supervised methods are combinations of
generative and discriminative approaches in order to profit from both aspects, a
better generalization error of a discriminative model and information extracted
from unlabeled data, integrated into a generative model. A convex combination
of a discriminative model and a generative model is considered e.g. by [2] and
[9]. A Bayesian point of view for the hybrid approaches has been explored by [16]
and [12]. The proposed hybrid method is based on the fact that parameters of a
discriminative and of a generative models are related via their Bayesian distri-
bution. However, the number of parameters to be estimated is usually doubled
in the hybrid approaches, since the number of models increases.

The criterion of Bengio-Grandvalet [8] was probably the first attempt to
introduce unlabeled data into a discriminant classifier. The criterion implements
the idea that the classes have to be well-separated; conditional entropy over
unlabeled instances is taken as a measure of overlap of classes. Among significant
disadvantages of the criterion are its non-convexity and instability in cases where
the number of labeled points is small.

In this paper, we discuss ideas how to introduce the marginal probability
of observations into a purely discriminative model, into the model of condi-
tional random fields (CRFs). It has been shown that the recently proposed semi-
supervised discriminative criterion [26] is efficient under model misspecification
and covariate shift scenarios for “simple” (i.e. without underlying structure) out-
put tasks. We apply the semi-supervised approach to the criterion of conditional
random fields and carry out experiments on structured output problems. We
discuss the limits and drawbacks of the criterion.

We propose to integrate the marginal probability of observations into an
active learning framework for the structured output prediction. We demonstrate
on the standard natural language processing data sets that the proposed pool-
based active learning approach based on quota sampling is efficient.

The paper is organized as follows: in Section 2 we consider the asymptoti-
cally optimal semi-supervised criterion [26], Section 3 introduces the model of
conditional random fields [11], widely used for structured output prediction. In
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Section 4 we discuss the application of the semi-supervised criterion to the model
of conditional random fields. Section 5 discusses the limits of the semi-supervised
discriminative criterion applied to the CRFs and introduces our approach of
pool-based active learning based on quota sampling. Section 6 illustrates our ex-
periments on synthetic as well as real-world applications. We discuss the state-
of-the art approaches and related work in Section 7. Concluding remarks and
perspectives close the paper.

2 Semi-Supervised Discriminant Estimator

To start with, let us place in a context of classification without taking any
structure into consideration. Let the observation variable X take its values in a
finite set X ; Y is the class variable which takes its values in Y. We suppose Y
to be a finite set, and {Xi, Yi}n

i=1 are observations and their labels available for
the training.

Let g(y|x; θ) be the conditional probability function, parameterized by θ.
Then the standard conditional maximum likelihood estimator is defined by

θ̂n = arg min
θ∈Θ

1

n

n
∑

i=1

ℓ(Yi|Xi; θ), (1)

where ℓ(y|x; θ) = − log g(y|x; θ) denotes the negated conditional log-likelihood
function.

The asymptotically optimal semi-supervised estimator θ̂s
n proposed by [26] is

defined by

θ̂s
n = arg min

θ∈Θ

n
∑

i=1

q(Xi)
∑n

j=1 ✶{Xj = Xi}
ℓ(Yi|Xi; θ), (2)

where q(x) is the marginal probability of observations and can be considered as
some prior knowledge. We suppose that infinitely many observations are avail-
able, and that the true value q(x) can be estimated. The semi-supervised estima-
tor presented as eq. (2) is a weighted version of the usual conditional maximum
likelihood estimator.

The semi-supervised estimator is shown to be asymptotically optimal and to
be particularly efficient for the misspecified cases, that is if g(y|x; θ⋆) 6= η(y|x),
where η(y|x) is the true conditional probability that generated the data; in the
following, π(y, x) = η(y|x)q(x).

To be precise, the essential properties of the standard and weighted (semi-
supervised) estimators consist in the following:

√
n

(

θ̂n − θ⋆

)

L−→N
(

0, J−1(θ⋆)I(θ⋆)J
−1(θ⋆)

)

, (3)

√
n

(

θ̂s
n − θ⋆

)

L−→N
(

0, J−1(θ⋆)H(θ⋆)J
−1(θ⋆)

)

, (4)
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where

H(θ⋆) = Eq (Vη [∇θℓ(Y |X; θ⋆)|X]) , (5)

I(θ⋆) = Eπ

[

∇θℓ(Y |X; θ⋆) {∇θℓ(Y |X; θ⋆)}T
]

, (6)

J(θ⋆) = Eπ [∇θT∇θℓ(Y |X; θ⋆)] . (7)

The case of a covariate shift (observation variables are sometimes called ex-
planatory variables or covariates) is a rather frequent situation in real-world
applications. The covariate shift arises if q0(x) 6= q1(x), where q0(x) is deter-
mined by the sampling scheme and q1(x) is determined by the population.

In the absence of covariate shift:

lim
n→∞

q1(xi)

n−1
∑n

j=1 ✶{xj = xi}
−→ 1. (8)

With a covariate shift, we have:

lim
n→∞

q1(xi)

n−1
∑n

j=1 ✶{xj = xi}
−→ q1(xi)

q0(xi)
. (9)

The weighting scheme by the importance ratio is considered in [24].
The semi-supervised estimator of eq. (2) is shown to be asymptotically op-

timal under the covariate shift [25]. The advantage of the semi-supervised ap-
proach can be observed only when considering the scaled excess logarithmic risk

n(Eπ[ℓ(Y |X; θ̂n)] − Eπ[ℓ(Y |X; θ⋆)]) (10)

or the scaled squared error
n‖θ̂n − θ⋆‖2. (11)

The true marginal probability of observations have to be provided to compute
both the scaled excess logarithmic risk and the scaled squared error. However,
as we have already mentioned, this is not possible for real-world applications.

3 Conditional Random Fields

Conditional random fields (CRF) [11,27] are a discriminative model based on
the following probabilistic distribution

pθ(y|x) =
1

Zθ(x)
exp

{

T
∑

t=1

K
∑

k=1

θkfk(yt−1, yt, xt)

}

, (12)

where x = (x1, . . . , xT ) denotes the sequence of observations (input) and y =
(y1, . . . , yT ) is the sequence of labels (output); {fk}1≤k≤K is an arbitrary set
of feature functions and {θk}1≤k≤K are the associated real-valued parameter
values. By convention, y0 refers to a particular (always observed) label which
indicates the beginning of the sequence.
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The CRF form presented as eq. (12) is usually referred to as linear-chain
CRF, although yt and xt could be composed not only of the individual sequence
tokens, but of sub-sequences (n-grams) of some fixed length or other localized
characteristics.

We will denote by Y, X , respectively, the sets in which yt and xt take their
values. The normalization factor in eq. (12) is defined by

Zθ(x) =
∑

y∈Y T

exp

{

T
∑

t=1

K
∑

k=1

θkfk(yt−1, yt, xt)

}

. (13)

One of the possible ways to define features is the combination of bigram
λy′,y,x and unigram µy,x features

K
∑

k=1

θkfk(yt−1, yt, xt) =
∑

y∈Y,x∈X

µy,x✶{yt = y, xt = x}+
∑

y′,y∈Y 2,x∈X

λy′,y,x✶{yy−1 = y′, yt = y, xt = x}, (14)

where ✶(test) = 1, if the variables are observed jointly and 0 otherwise. We
can rewrite equation (14) as µyt,xt

+ λyt−1,yt,xt
, and we use this more compact

representation in the following. We use this feature combination, unigram and
bigram templates, in our experiments in Section 6.

Given N independent labeled sequences {x(i),y(i)}N
i=1, the conditional max-

imum likelihood estimation is based on the minimization, with respect to θ, of
the negated log-likelihood

ℓ(D; θ) = −
N

∑

i=1

log pθ(y
(i)|x(i))

=

N
∑

i=1

{

log Zθ(x
(i)) −

Ti
∑

t=1

K
∑

k=1

θkfk(y
(i)
t−1, y

(i)
t , x

(i)
t )

}

, (15)

where Ti is the length of an observation x(i).
Although ℓ(D; θ) is a smooth convex function, it has to be optimized numer-

ically, and standard gradient-based methods, such as a quasi-Newton approach,
can be applied directly.

The gradient of ℓ(D; θ) is given by

∂ℓ(θ)

∂θk

=
N

∑

i=1

Ti
∑

t=1

Epθ(y|x(i)) fk(yt−1, yt, x
(i)
t ) −

N
∑

i=1

Ti
∑

t=1

fk(y
(i)
t−1, y

(i)
t , x

(i)
t ), (16)

where Epθ(y|x(i)) fk(yt−1, yt, x
(i)
t ) denotes the conditional expectation.

In our experiments, the log-likelihood is penalized by the L2 norm to avoid
overfitting.



6 Nataliya Sokolovska

4 Semi-Supervised Conditional Random Fields

The semi-supervised criterion presented as eq. (2) applied to the conditional
random fields criterion, referred later to as weighted CRFs, takes the form:

C(θ) =
∑

x∈X

−q(x)
1

Nx

log pθ(y|x), (17)

where pθ(y|x) is defined by eq. (12), and Nx is the number of times a sequence
x has been observed in the training corpus.

The marginal probability of observations q(x) has to be provided or approx-
imated and introduced into the model of conditional random fields. In our case,
the observations are sequences, what makes the task even more difficult.

If our data are artificial, generated by a hidden Markov model of the first
order, then estimation of the probability of the observation sequences is straight-
forward. Following the standard notations [20], let A be the state transition
probabilities, B be the observation probability matrix, p(y) be the initial state
distribution, x = (x1, x2, . . . , xT ) be an observation sequence of the length T .
The probability of a series of observations, i.e., of a sequence is given by

q(x) =
∑

Y

p(x,y)

=
∑

Y

p(y1)by1(x1)ax1,x2by2(x2) . . . axT−1,xT
byT

(xT ). (18)

Usually in real-world problems, the structure of observations is unknown. It
is not possible to compute the marginal probability of observations exactly, and
it has to be estimated empirically.

Note, that Nx equals 1 in a number of real-world applications, since each
sequence is observed usually only once in a training corpus.

5 Motivation for Pool-Based Active Learning

The application of the semi-supervised discriminative estimator to real-world
data sets does not always ameliorate the performance.

There are several reasons, why the performance of the criterion does not
dominate the performance of the standard approach. The semi-supervised cri-
terion performs better in the case of a misspecified model (the more a model
is misspecified, the more efficient is the semi-supervised criterion compared to
the standard, not weighted approach) and under a covariate shift. Usually, both
scenarios are typical for a real data set. However, carrying out experiments on
simulated data, we have noticed that the advantage of the semi-supervised ap-
proach is observed only when considering the scaled excess logarithmic risk,
eq. (10), and the squared error, eq. (11). To compute these values, the true
distribution of the observations has to be provided. In any real-world task the
distribution is not available. From a number of experiments on the real data we
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made a conclusion that although the marginal probability of observations can be
efficiently approximated, the approximation is still not good enough to be used
in the semi-supervised estimator instead of the true one.

However, we guess that even an approximation of the marginal distribution
can be informative. We propose to use the probability of observations to sam-
ple a pre-defined pool of training instances (of a small size n) to achieve the
best possible generalization error. Our idea is close, in some sense, to [32], who
considered an active learning approach based on self-training.

In the discriminative semi-supervised criterion presented as eq. (2), train-
ing instances with high probability can be automatically considered to be more
important than those with low probability. In this sense, the discriminative semi-
supervised approach is associated with stratified sampling. However, one of natu-
ral language phenomena consists in that rare events are as important as frequent
events, and can therefore not be neglected.

We propose to apply the non-probabilistic quota sampling to select training
sequences efficiently. In the method we propose, candidates for training instances
are sorted according to their marginal probabilities and are divided into n groups,
where n is the number of observations we use for the training procedure. We
choose (randomly) one training instance from each group. Under quota sampling
we mean here that we sample (uniformly) data instances from each frequency
group. Therefore, we guarantee that we train our model taking frequent as well
as rare dependencies into consideration.

We illustrate on standard natural language processing problems, in Sec-
tions 6.3 and 6.4 that the quota sampling (QS) pool-based active learning ap-
proach outperforms training procedures which choose their training instances
randomly. In Section 6.2 we show that the proposed method outperforms a
state-of-the art approach FuSAL.

6 Experiments on Artificial and Real Data Sets

In this section, we describe our experiments and provide our results on synthetic
and two standard natural language processing problems, namely on NetTalk
Phonetisation Task and on CoNLL 2003 challenge.

Section 6.1 illustrates limits of the semi-supervised criterion, even for an
artificial data set. We demonstrate on real data that the proposed QS pool-based
active learning is an efficient approach (Sections 6.3 and 6.4), in particular in
case where the number of observations n is small.

The state-of-the art performance (mostly in the context of fully supervised
learning) of the considered real data sets can been found, for instance, in [25].

We would like to underline that we are especially interested in cases where
n, the number of observed instances, is small.

6.1 Weighted Conditional Random Fields Experiments

The synthetic sequential data are simulated with hidden Markov models of the
first order. The observation alphabet contains 5 symbols, the size of the labels
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alphabet is 6. All simulated sequences are of the same length which equals 5. The
minimal achievable error is about 6%. The value of Bayes error is approximated
by a percentage of errors obtained by decoding using the true values of the state
transition and observation probability matrices.

Since we know the distribution which generates the data and the true pa-
rameters are available, we use the forward algorithm and eq. (18) to compute
the marginal probability of observations q(x).

The results of our experiments with the synthetic sequential data are illus-
trated by Figure 1. The size of the training corpus varies from 10 to 200 training
instances. The percentage of error is always estimated on test data (test data
contains 10000 instances). The number of Monte-Carlo replications in the exper-
iment is 150. The boxplotted difference, which is shown on Figure 1, is positive, if
the weighted CRFs performs better, i.e. has a lower error rate than the standard
approach.

10 20 50 80 100 200
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0

1

2

3

e
rr
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rr
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Fig. 1. Simulated data. Difference of error rates of standard and weighted con-
ditional random fields by marginal probability.

The difference in performance of the standard and the semi-supervised CRFs
is significant only for n = 10, 20, and not significant for larger n, even in the
ideal situation, where we know the exact marginal probability of observations.

As to the real-world data experiments, where we dispose only the approx-
imated values of the probability of observations, we consider the difference in
performance to be not significant.

6.2 Fully Supervised Active Learning Approach (FuSAL)

We compare the performance of the proposed pool-based active learning to the
one of a state-of-the art method called FuSAL (Fully Supervised Active Learn-
ing) introduced in [32]. Algorithm 1 describes the approach. A utility function
we use in our experiments is the same as in [32]

uθ(x) = 1 − pθ(ŷ|x), (19)
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where ŷ is computed using the decoding Viterbi algorithm, and θ corresponds
to the current model. The intuition behind the utility function is to consider
sequences for which the current model is least confident to be more important
than other observations.

Algorithm 1 General Active Learning Framework

m – number of examples selected within one loop
Dl – set of labeled instances
Du – set of unlabeled instances
uθ(x) – utility function

while stopping criterion is not met do

train model M using Dl

estimate uθ(xi) ∀xi ∈ Du

choose m examples whose uθ(x) is maximal
get labels for the m chosen instances
move the m labeled examples from Du to Dl

end while

In our experiments, we add instances which are to be labeled one by one
(m = 1). The first instance is chosen randomly from the training corpus. The
stopping criterion is the number n of observed sequences. If the cardinality of
Dl is equal to n, the stopping criterion is met.

6.3 Active Learning Experiments on Nettalk Phonetisation Task

The original Nettalk corpus has been introduced in [23]. The Nettalk corpus
we use in our experiments has been suggested for the Pascal Letter-to-Phoneme
Conversion Challenge1. The English data set contains 16280 words aligned with
their phonetical transcriptions. The alphabet of observation symbols includes 26
letters, and the number of phonemes, i.e., the number of labels, is 53 including the
alignment symbol. The corpus is split into 10 parts. Each part includes 1628 se-
quences of observations and corresponding labels. One part, i.e., 1628 sequences,
is used to test the performance. We use all available observation sequences of
the corpus to estimate empirically the probability of observations q(x).

To approximate q(x), we follow the idea of n-gram linguistic models [7]. We
let q(x) = q(x1, . . . , xT ) =

∏

t p(xt|xt−1, xt−2, xt−3), where

p(xt|xt−1, xt−2, xt−3) ≈
C(xt, xt−1, xt−2, xt−3)/C(xt−1, xt−2, xt−3), (20)

C(·) means counts estimated on all available observations.
The estimated q(x) are sorted into n frequency groups, and we sample one

training instance from each frequency group. The training is performed with two

1 http://pascallin.ecs.soton.ac.uk/Challenges/PRONALSYL/
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types of features, bigram and unigram, as shown by eq. (14). The regularization
parameter ρ of the penalty term ρ‖θ‖2 is the same for all tested approaches, QS
active learning, random sampling, and FuSAL, and is fixed to ρ = 0.1 (the value
is chosen by cross validation).

Figure 2 illustrates the performance of the FuSAL method on the Nettalk
data sets (50 Monte-Carlo replications). One of its obvious disadvantages and
hence causes of its poor performance is that the method is not suitable for cases
where n is small. To train the initial model, the method requires a number of
labeled sequences, and if these sequences are not selected carefully, the training
results in a model whose error rate on the testing set is large. It is not reasonable
to compute the utility function, and therefore perform active learning based on
a model which is not efficient.
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Fig. 2. FuSAL performance (error rates). Nettalk corpus, n =
30, 100.
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Fig. 3. Nettalk corpus. Comparison of error rates for n = 30 and n = 100. The
pool-based active learning based on quota sampling (QS) is more efficient than
random choice of training sequences.

Figure 3 illustrates our results of the pool-based active learning approach
compared to random sampling. We performed 50 Monte-Carlo replications. For
a small number of observations, n = 30 and n = 100, we noticed that the test
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error and its variance are smaller if observations are chosen according to the
proposed pool-based active learning method and not randomly.

It is easy to see that the QS approach approach outperforms the random
sampling and FuSAL.

For the qualitative analysis of sequences selected by the proposed quota sam-
pling method and the standard approach presented as Algorithm 1, see Tables 1
and 2 respectively. Note that applying the utility function, eq. (19), we tend to
select sequences of similar morphological structure.

Table 1. Nettalk corpus. Sequences chosen by QS, n = 30

ail inconceivably neat superlative chase
sworn interstate strain unnaturally fresco
secret invertebrate comrade ennoble haughtily
dribble meditate parasite woodwork meteoric

shoemaker unstained simpleton soberly snake
chloroform aspire babe cheese rise

Table 2. Nettalk corpus. Sequences chosen by FuSAL (Algotihm 1), n = 30,
m = 1

hogshead shepherdess aggressiveness
misrepresentation representation representative
misapprehension interdependence superintendence
superintendent misunderstanding experimentation
standardization interpretation transcontinental

undenominational unconstitutional counterrevolution
indiscriminately characteristically internationally
characterization instantaneously enthusiastically
constitutional conscientiously incomprehensible
intermittently instrumentality correspondingly

6.4 Active Learning Experiments on CoNLL 2003 Corpus

Named entity recognition consists in extracting groups of syntagmas that cor-
respond to named entities (e.g., names of persons, organizations, places, etc.).
The data used for our experiments are taken from the CoNLL 2003 challenge
[31] and imply four distinct types of named entities. Labels have the form B-X
or I-X, where B means “begin” and I means “inside” of a named entity X (note
that the label B-PER is not present in the corpus). Words that are not included
in any named entity, are labeled with O (outside). Overall, there are 8 labels.

At each position in the text, the input consists of three separate components,
so we have three types of observations: a word (with 30290 distinct words in the
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corpus), its part-of-speech (44), and syntactic (18) tags. The training set includes
about 15000 sequences (phrases). Development set (Test A) and test set (Test
B) include about 3500 sequences each.

We use all available sequences to estimate q(x). We apply the same approach
as for the Nettalk corpus, described in the previous section. However, for the
CoNLL 2003 data set we use the Markovian dependency of the second, and not
of the third, order. Since the data set has three types of observations, we have to
take into consideration marginal probabilities of each type of observation. The
probability q(x) is approximated by the product of marginal probabilities of its
components p(xword)p(xPOS tag)p(xsynt. tag).

The training is carried out with two dependencies, unigram and bigram,
extracted for each type of observation, i.e. our feature choice is as follows:

µyt,xword,t
+ µyt,xPOS tag,t

+ µyt,xsynt. tag,t

+λyt,xword,t
+ λyt,xPOS tag,t

+ λyt,xsynt. tag,t
. (21)

The regularization parameter ρ of the penalty term ρ‖θ‖2 is chosen by cross
validation and is the same for all tested sampling methods, ρ = 0.5.

Figure 4 illustrates the results of our experiments with FuSAL. Figure 5
shows the results for random sampling and QS. We carried out 50 Monte-Carlo
replications for all methods. For a small number of observations, n = 10 and
n = 50, as illustrated on the figure, it is obvious that the error rate on the
test data (both test A and test B sets) is much smaller while using the quota
sampling active learning than choosing training instances arbitrary. FuSAL is
less efficient as well.

Our experiments show that FuSAL is an acceptable active learning method
if some initial, not very small, Dl is provided and if a reasonable initial model
M can be created.

7 Related Work

Many proposals of semi-supervised methods have been recently made to sequence
labeling. As to active learning for structured output prediction, there are much
less published ideas.

A maximum margin semi-supervised learning approaches for structured out-
put prediction are described in [1] and [3]; [10], [15], and [13] discuss semi-
supervised learning for conditional random fields.

The minimum entropy regularization approach of Grandvalet and Bengio [8]
has been applied to conditional random fields by [10] :

−
|Dl|
∑

i=1

log pθ(y
(i)|x(i)) +

||θ||2
2σ2

−

ρ

|Dl|+|Du|
∑

i=|Dl|+1

∑

y

pθ(y|x(i)) log pθ(y|x(i)), (22)
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Fig. 4. FuSAL performance (error rates). CoNLL 2003, for test A
and test B sets, n = 10, 50.
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Fig. 5. CoNLL 2003 data set. Comparison of error rates (for test A and test B
sets) while training on n = 10 and n = 50 sequences. Active learning based on
marginal probability (QS on the boxplots) is much more efficient than arbitrary
choice of observations for training.

where Dl are labeled data and Du are unlabeled instances; σ2 and ρ are parame-
ters fixed usually by cross validation. The direct computation of the gradient of
the entropy term of the criterion requires O(T 2|Y |3) operations in comparison
to O(T |Y |2) of a standard forward-backward procedure. [13] proposed an effi-
cient way (complexity of a standard forward-backward algorithm) to compute
the gradient of the criterion presented in (22).

A hybrid semi-supervised model is proposed in [28]. The model combines
discriminative and generative models, the parameters Γ = {{γi}I

i=1, {γj}I+J
j=I+1}

are associated with I generative and J discriminative models. Unlabeled data
are introduced into the generative models. The following criterion

p(y|x, Λ,Θ, Γ ) ∝
∏

i

pD
i (y|x, λi)

γi

∏

j

pG
j (x,y, θj)

γj (23)

contains three sets of parameters to be estimated, Γ , Λ, and Θ. The values of
Λ are estimated on labeled data. An iterative optimization procedure runs until
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convergence is used to adjust Γ (parameters of hybrid models) and parameters
Θ associated with discriminative components.

Recently [29] introduced a semi-supervised approach that is simpler than the
one proposed in [28], since there are only two parameter vectors to be estimated.
The parameter vector Λ is estimated on labeled data using a discriminative
model, and Θ on unlabeled data, using a generative approach. However, the
number of parameters to be estimated is quite large.

The approach discussed in [28] was called a great step forward in hybrid mod-
els [5], since it combines models that take the underlying structure into account,
namely hidden Markov models and conditional random fields. The approach of
[29] has been recently applied to parsing problems by [30].

One of the recent works on semi-supervised learning applied to natural lan-
guage processing is a trial to add incomplete annotations [33]. Ambiguous an-
notations are considered as candidate labels, and parameters are estimated by
marginalizing out the unknown labels. The method is a particular case of hidden
conditional random fields, introduced in [19].

The idea to introduce the knowledge of labels proportions, the method called
“expectation regularization”, proposed in [14] for maximum entropy models,
has been generalized in [15] for structured output prediction, using linear-chain
CRFs. The approach was called generalized expectation. It was supposed that
not only fully labeled instances can be used but labeled features as well.

Recently [32] proposed an approach that combines semi-supervised and active
learning. The semi-supervised active learning method [32] which is actually self-
training active learning approach, selects instances of high utility to be labeled
and to be used for training. Estimation of utility of a given sequence is a problem
in itself, since it can be done in many different ways.

It is discussed in [32] whether it is more reasonable to label manually only
subsequences (e.g., features) of high utility instead of labeling entire sequences.
A similar idea, an efficient learning of features from unlabeled data is considered
in [18].

8 Conclusion

In this contribution, we addressed two problems, semi-supervised learning and
active learning in discriminative models, more specifically, in conditional random
fields. We demonstrated on the artificial data set that the considered discrim-
inative semi-supervised method can be applied to conditional random fields.
However, its application to real tasks is still an open problem, since an efficient
approximation of the probability of observations, whose structure is complex and
unknown, is still a challenge.

The proposed pool-based active learning method is based on the intuition
that rare observations are not less important than frequent observations. In
particularly, this is the case in the domain of natural language processing. We
have shown that selecting training instances using quota sampling is much more
efficient in terms of error rates on test data than choosing them randomly. The
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proposed approach is also more efficient than FuSAL, a state-of-the art method.
Most of state-of-the art active learning methods (e.g., FuSAL) are based on the
idea that there already exists a set of labeled instances, and are therefore not
suitable for cases where the number of labeled points is very limited.

An important advantage of the proposed quota sampling approach is simplic-
ity of implementation. The open issue is the theoretical analysis of the proposed
quota sampling pool-based active learning approach, which is quite efficient on
the real-world data sets.
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