

Optimal Control of a Multi-Energy District Boiler: a Case Study

Julien Eynard¹, Stéphane Grieu² & Monique Polit³

¹Ph.D. student (2007-2010), PROMES (ELIAUS) laboratory, UPVD, France Post-doc (2010-2011), Automatic Control Department, Supélec, France

²Assistant professor, PROMES (ELIAUS) laboratory, UPVD, France

³Professor, PROMES (ELIAUS) laboratory, UPVD, France

IFAC WC, 28 August - 2 September 2011, Milano, Italy

K ロ ▶ K 何 ▶ K 로 ▶ K 로 ▶ 그리는 K) Q (^

Outline

- ² [Opti-EnR project](#page-6-0)
- ³ [Modeling and identification](#page-15-0)
- [Thermal storage tank model](#page-21-0)
- ⁵ [Forecasting exogenous variables](#page-33-0)
- ⁶ [Control and optimization](#page-45-0)

4 0 F

 Ω

[High energy potential sector](#page-3-0)

Outline

- [Opti-EnR project](#page-6-0)
- [Modeling and identification](#page-15-0)
- [Thermal storage tank model](#page-21-0)
- ⁵ [Forecasting exogenous](#page-33-0) [variables](#page-33-0)

• [High energy potential sector](#page-3-0)

4 0 8

 Ω

ヨメスヨ

[High energy potential sector](#page-5-0)

Building heating

- Building sector: the most energy-consuming in France (69 Mtoe) en 2008
- Heating: 1^{st} energy-consuming in the building sector (70 %)
- Main energy used for building heating: gas (33%) and oil (21%)

×.

 209

[High energy potential sector](#page-5-0)

Building heating

- Building sector: the most energy-consuming in France (69 Mtoe) en 2008
- \bullet Heating: 1st energy-consuming in the building sector (70 %)
- Main energy used for building heating: gas (33%) and oil (21%)

 Ω

[High energy potential sector](#page-3-0)

Building heating

- Building sector: the most energy-consuming in France (69 Mtoe) en 2008
- \bullet Heating: 1st energy-consuming in the building sector (70 %)
- Main energy used for building heating: gas (33%) and oil (21%)

4 **D** F

14

つへへ

[Steps of the project](#page-9-0)

Outline

- [Opti-EnR project](#page-6-0)
- [Modeling and identification](#page-15-0)
- [Thermal storage tank model](#page-21-0)
- ⁵ [Forecasting exogenous](#page-33-0) [variables](#page-33-0)

[District boiler of La Rochelle](#page-7-0) • [Steps of the project](#page-9-0)

4 0 8

 Ω

医头尾菌

[District boiler of La Rochelle](#page-7-0) [Steps of the project](#page-9-0)

Characteristics of the district boiler

Main elements of the plant managed by the french company Cofely GDF-SUEZ

- Wood boiler: 4,5 MW
- Gas and fuel oil boiler: 7 MW
- Cogeneration plant: 2,5 MW
- \bullet Hot water district network: 3000 m³
- Building heating: 2700 accommodations
- Domestic hot water: 800 accommodations

4 0 F

 209

[District boiler of La Rochelle](#page-7-0) [Steps of the project](#page-9-0)

Synoptic of the plant

重性 つへぐ

 $\,$ $\,$

[Steps of the project](#page-14-0)

Description of the different steps

• Modeling of the plant

- Identification of parameters
- Development of a hot water storage model \bullet
- Insertion of the thermal storage model in the plant
- Short term forecasting of exogenous variables
- Development of a predictive controller

 209

[Steps of the project](#page-14-0)

Description of the different steps

- Modeling of the plant
- Identification of parameters
- Development of a hot water storage model
- Insertion of the thermal storage model in the plant
- Short term forecasting of exogenous variables
- Development of a predictive controller

 Ω

[Steps of the project](#page-14-0)

Description of the different steps

- Modeling of the plant
- Identification of parameters
- Development of a hot water storage model \bullet
- Insertion of the thermal storage model in the plant
- Short term forecasting of exogenous variables
- Development of a predictive controller

J. Eynard, S. Grieu & M. Polit [Optimal Control of a Multi-Energy District Boiler: a Case Study](#page-0-0) IFAC WC 2011 8 / 31

[Steps of the project](#page-14-0)

Description of the different steps

- Modeling of the plant
- Identification of parameters
- Development of a hot water storage model \bullet
- Insertion of the thermal storage model in the plant \bullet
- Short term forecasting of exogenous variables
- Development of a predictive controller

[Steps of the project](#page-14-0)

Description of the different steps

- Modeling of the plant
- Identification of parameters
- Development of a hot water storage model
- Insertion of the thermal storage model in the plant
- Short term forecasting of exogenous variables
- Development of a predictive controller

[Steps of the project](#page-9-0)

Description of the different steps

- Modeling of the plant
- Identification of parameters
- Development of a hot water storage model
- Insertion of the thermal storage model in the plant
- Short term forecasting of exogenous variables
- Development of a predictive controller

[Modeling the district boiler](#page-20-0)

Outline

- **[Energetic context](#page-2-0)**
- [Opti-EnR project](#page-6-0)
- ³ [Modeling and identification](#page-15-0)
- [Thermal storage tank model](#page-21-0)
- ⁵ [Forecasting exogenous](#page-33-0) [variables](#page-33-0)

- **•** [Procedure](#page-16-0)
- [Modeling the district boiler](#page-20-0)

4 0 8

 Ω

ヨメスヨ

[Procedure](#page-19-0) [Modeling the district boiler](#page-20-0)

General methodology

• Modeling

- White boxes (knowledge models)
- Grey boxes (parametric models)
- Black boxes (Hammerstein-Wiener models)
- $\bullet \Rightarrow$ About 50 physical variables grouped in 7 models (boilers, hydraulic network. . .)
- **•** Iterative identification using experimental data
	- Sampling time: 5 minutes
	- Nonlinear least squares with trust-region reflective Newton method
- Comparison of modeled and experimental signals
	- Computing FIT, MRE and MAE

 Ω

イロト イ押ト イヨト イヨト

[Procedure](#page-19-0) [Modeling the district boiler](#page-20-0)

General methodology

• Modeling

- White boxes (knowledge models)
- Grey boxes (parametric models)
- Black boxes (Hammerstein-Wiener models)
- ⇒ About 50 physical variables grouped in 7 models (boilers, hydraulic network. . .)
- **•** Iterative identification using experimental data
	- Sampling time: 5 minutes
	- Nonlinear least squares with trust-region reflective Newton method
- Comparison of modeled and experimental signals
	- Computing FIT, MRE and MAE

 Ω

イロト イ押ト イヨト イヨト

[Procedure](#page-19-0) [Modeling the district boiler](#page-20-0)

General methodology

• Modeling

- White boxes (knowledge models)
- Grey boxes (parametric models)
- Black boxes (Hammerstein-Wiener models)
- ⇒ About 50 physical variables grouped in 7 models (boilers, hydraulic network. . .)
- Iterative identification using experimental data
	- Sampling time: 5 minutes
	- Nonlinear least squares with trust-region reflective Newton method

4 D F

- Comparison of modeled and experimental signals
	- Computing FIT, MRE and MAE

ミドメミド

 Ω

[Procedure](#page-16-0) [Modeling the district boiler](#page-20-0)

General methodology

• Modeling

- White boxes (knowledge models)
- Grey boxes (parametric models)
- Black boxes (Hammerstein-Wiener models)
- $\bullet \Rightarrow$ About 50 physical variables grouped in 7 models (boilers, hydraulic network. . .)
- Iterative identification using experimental data
	- Sampling time: 5 minutes
	- Nonlinear least squares with trust-region reflective Newton method

4 0 F

- Comparison of modeled and experimental signals
	- Computing FIT, MRE and MAE

 Ω

B X X B

[Modeling the district boiler](#page-20-0)

Overall district boiler model¹

 1 J. Evnard. S. Grieu & M. Polit (2011) Modular approach for modelling a multi-energy district boiler. Applied Mathematical Modelling. 35(8), Aug[ust](#page-19-0), [39](#page-21-0)[2](#page-19-0)6-[39](#page-21-0)[5](#page-19-0)[7](#page-20-0) **KEY EL MAN**

J. Eynard, S. Grieu & M. Polit **[Optimal Control of a Multi-Energy District Boiler: a Case Study](#page-0-0)** IFAC WC 2011 11/31

[Modeling of the storage tank](#page-29-0) [Integration of the storage tank in the plant](#page-30-0)

Outline

- [Opti-EnR project](#page-6-0)
- [Modeling and identification](#page-15-0)
- [Thermal storage tank model](#page-21-0)
- ⁵ [Forecasting exogenous](#page-33-0) [variables](#page-33-0)

⁶ [Control and optimization](#page-45-0)

- **•** [Hypothesis](#page-22-0)
- [Modeling of the storage tank](#page-29-0)
- [Integration of the storage](#page-30-0) 0 [tank in the plant](#page-30-0)

4 D F

 Ω

ヨメ イヨ

[Hypothesis](#page-28-0) [Modeling of the storage tank](#page-29-0) [Integration of the storage tank in the plant](#page-30-0)

4 0 F

Hot-water tank characteristics

- Stored energy: 80 MWh
- Capacity: $V_{tot} = 2000 \text{ m}^3$
- Top-down temperature gap: 35 °C
- Vertical cylindrical shape: $V_{tot} = h \cdot \pi \cdot r^2$, $P = 2 \cdot \pi \cdot r^2$
- Minimization of the external surface: $\min_{r} (S_{tot}) = \min_{r} \left(\frac{2 \cdot V_{tot}}{r} \right)$ $(r \frac{V_{tot}}{r} + 2 \cdot \pi \cdot r^2) \Rightarrow r = 6.8 \text{ m}, h = 13.7 \text{ m}$
- Subsoil position: (*Tamb* ≈ 10 °C)
- Polypropylène insulation: 10 cm

14 B K 4 B

 209

[Hypothesis](#page-28-0) [Modeling of the storage tank](#page-29-0) [Integration of the storage tank in the plant](#page-30-0)

4 D F

Hot-water tank characteristics

- Stored energy: 80 MWh
- Capacity: $V_{tot} = 2000 \text{ m}^3$
- Top-down temperature gap: 35 °C
- Vertical cylindrical shape: $V_{tot} = h \cdot \pi \cdot r^2$, $P = 2 \cdot \pi \cdot r^2$
- Minimization of the external surface: $\min_{r} (S_{tot}) = \min_{r} \left(\frac{2 \cdot V_{tot}}{r} \right)$ $(r \frac{V_{tot}}{r} + 2 \cdot \pi \cdot r^2) \Rightarrow r = 6.8 \text{ m}, h = 13.7 \text{ m}$
- Subsoil position: (*Tamb* ≈ 10 °C)
- Polypropylène insulation: 10 cm

14 B K 4 B

 Ω

[Hypothesis](#page-28-0) [Modeling of the storage tank](#page-29-0) [Integration of the storage tank in the plant](#page-30-0)

4 D F

Hot-water tank characteristics

- Stored energy: 80 MWh
- Capacity: V_{tot} = 2000 m³
- Top-down temperature gap: 35 °C
- Vertical cylindrical shape: $V_{tot} = h \cdot \pi \cdot r^2$, $P = 2 \cdot \pi \cdot r^2$
- Minimization of the external surface: $\min_{r} (S_{tot}) = \min_{r} \left(\frac{2 \cdot V_{tot}}{r} \right)$ $(r \frac{V_{tot}}{r} + 2 \cdot \pi \cdot r^2) \Rightarrow r = 6.8 \text{ m}, h = 13.7 \text{ m}$
- Subsoil position: (*Tamb* ≈ 10 °C)
- Polypropylène insulation: 10 cm

IK ENK E

 Ω

[Hypothesis](#page-28-0) [Modeling of the storage tank](#page-29-0) [Integration of the storage tank in the plant](#page-30-0)

4 D F

Hot-water tank characteristics

- Stored energy: 80 MWh
- Capacity: V_{tot} = 2000 m³
- Top-down temperature gap: 35 °C
- Vertical cylindrical shape: $V_{tot} = h \cdot \pi \cdot r^2$, $P = 2 \cdot \pi \cdot r^2$
- Minimization of the external surface: $\min_{r} (S_{tot}) = \min_{r} \left(\frac{2 \cdot V_{tot}}{r} \right)$ $(r \frac{V_{tot}}{r} + 2 \cdot \pi \cdot r^2) \Rightarrow r = 6.8 \text{ m}, h = 13.7 \text{ m}$
- Subsoil position: (*Tamb* ≈ 10 °C)
- Polypropylène insulation: 10 cm

-4 B > 4 B >

[Hypothesis](#page-28-0) [Modeling of the storage tank](#page-29-0) [Integration of the storage tank in the plant](#page-30-0)

4 0 8

Hot-water tank characteristics

- Stored energy: 80 MWh
- Capacity: $V_{tot} = 2000 \text{ m}^3$
- Top-down temperature gap: 35 °C
- Vertical cylindrical shape: $V_{tot} = h \cdot \pi \cdot r^2$, $P = 2 \cdot \pi \cdot r^2$
- Minimization of the external surface: $\min_{r} (S_{tot}) = \min_{r} \left(\frac{2 \cdot V_{tot}}{r} \right)$ $\frac{V_{tot}}{r}$ + 2 · π · r^2 \Rightarrow $r = 6.8$ m, $h = 13.7$ m
- Subsoil position: (*Tamb* ≈ 10 °C)
- Polypropylène insulation: 10 cm

 Ω

- 4 重 8 3 重 8

[Hypothesis](#page-28-0) [Modeling of the storage tank](#page-29-0) [Integration of the storage tank in the plant](#page-30-0)

4 D F

Hot-water tank characteristics

- Stored energy: 80 MWh
- Capacity: $V_{tot} = 2000 \text{ m}^3$
- Top-down temperature gap: 35 °C
- Vertical cylindrical shape: $V_{tot} = h \cdot \pi \cdot r^2$, $P = 2 \cdot \pi \cdot r^2$
- Minimization of the external surface: $\min_{r} (S_{tot}) = \min_{r} \left(\frac{2 \cdot V_{tot}}{r} \right)$ $\frac{V_{tot}}{r}$ + 2 · π · r^2 \Rightarrow $r = 6.8$ m, $h = 13.7$ m
- Subsoil position: (*Tamb* ≈ 10 °C)
- Polypropylène insulation: 10 cm

 Ω

IK ENK E

[Hypothesis](#page-22-0) [Modeling of the storage tank](#page-29-0) [Integration of the storage tank in the plant](#page-30-0)

4 D F

Hot-water tank characteristics

- Stored energy: 80 MWh
- Capacity: $V_{tot} = 2000 \text{ m}^3$
- Top-down temperature gap: 35 °C
- Vertical cylindrical shape: $V_{tot} = h \cdot \pi \cdot r^2$, $P = 2 \cdot \pi \cdot r^2$
- Minimization of the external surface: $\min_{r} (S_{tot}) = \min_{r} \left(\frac{2 \cdot V_{tot}}{r} \right)$ $\frac{V_{tot}}{r}$ + 2 · π · r^2 \Rightarrow $r = 6.8$ m, $h = 13.7$ m
- Subsoil position: (*Tamb* ≈ 10 °C)
- Polypropylène insulation: 10 cm

ELIAUS

[Energetic context](#page-2-0) [Opti-EnR project](#page-6-0) [Modeling and identification](#page-15-0) [Thermal storage tank model](#page-21-0) [Forecasting exogenous variables](#page-33-0) [Control and optimization](#page-45-0)

[Modeling of the storage tank](#page-29-0) [Integration of the storage tank in the plant](#page-30-0)

Model adapted from the "Turbulent Mixing-Model"¹

• Parameters

k: number of layers (20),
$$
i \in [\![1, k]\!]
$$

\n*m*: influence of inlet fluid (2 layers)
\n
$$
V = V_{tot}/k
$$
\n
$$
\alpha_{2(i)} = [U_L \cdot P/(C_{P(i)} \cdot \rho_{(i)})] \cdot \Delta \cdot \Delta z
$$
\n
$$
\alpha_i = V + \alpha_{2(i)}
$$

• Loading thermal energy

 $\begin{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} & \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} & \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} & \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} & \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} & \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} & \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} & \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} & \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix$ \langle $\begin{bmatrix} \frac{1}{2} & \frac{1}{2$

$$
\left\{ \begin{array}{ll} T_{(i,n)} = & \left\{ \left[V - (\Delta V/m)\right] \cdot T_{(i,n-1)} + (\Delta V/m) \cdot T_{in} + \alpha_{2(i)} \cdot T_{ext} \right\} / \alpha_{(i)}, & (i > k - m) \\\ T_{(i,n)} = & \left\{ \left[V - \Delta V\right] \cdot T_{(i,n-1)} + \Delta V \cdot T_{(i+1,n-1)} + \alpha_{2(i)} \cdot T_{amb} \right\} / \alpha_{(i)}, & (i \leq k - m) \end{array} \right.
$$

• Unloading thermal energy

$$
\begin{cases}\nT_{(i,n)} = \{ [V - (\Delta V/m)] \cdot T_{(i,n-1)} + (\Delta V/m) \cdot T_{in} + \alpha_{2(i)} \cdot T_{ext} \} / \alpha_{(i)}, & (i \le m) \\
T_{(i,n)} = \{ [V - \Delta V] \cdot T_{(i,n-1)} + \Delta V \cdot T_{(i-1,n-1)} + \alpha_{2(i)} \cdot T_{amb} \} / \alpha_{(i)}, & (i > m)\n\end{cases}
$$

¹S. Alizadeh. An experimental and numerical study of thermal stratification in a horizontal cylindrical solar storage tank. Solar Energy. 66 [\(19](#page-28-0)9[9\)](#page-30-0) [4](#page-28-0)[09](#page-29-0)[-2](#page-30-0)[1](#page-28-0)[.](#page-29-0)

[Modeling of the storage tank](#page-29-0) [Integration of the storage tank in the plant](#page-30-0)

> **◆ ロ ▶ → 何** \mathbf{p}

General scheme

重性 つへぐ

 $\,$ $\,$

化重新润滑

[Modeling of the storage tank](#page-29-0) [Integration of the storage tank in the plant](#page-30-0)

Loading energy

 2980

 $\,$ $\,$

 $A \equiv \mathbf{1} \times \mathbf{1} \equiv \mathbf{1}$

◆ ロ ▶ → 何 \mathbf{p}

[Modeling of the storage tank](#page-29-0) [Integration of the storage tank in the plant](#page-30-0)

← ロ ▶ → イ 同

D.

Unloading energy

 \rightarrow

 2980

化重新润滑

[Forecasting results](#page-43-0)

Outline

- **[Energetic context](#page-2-0)**
- [Opti-EnR project](#page-6-0)
- [Modeling and identification](#page-15-0)
- [Thermal storage tank model](#page-21-0)
- ⁵ [Forecasting exogenous](#page-33-0) [variables](#page-33-0)

- [Forecasting methodology](#page-34-0)
- [Forecasting results](#page-43-0)

4 0 8

ミャメミ

 Ω

[Forecasting methodology](#page-36-0) [Forecasting results](#page-43-0)

Forecasting model using time series¹

- **•** Forecasting of outdoor temperature et heating power consumed by the district network
- Using M past sequences (4h30 long) for model inputs, completed with :
	- \bullet the day of the year,
	- the minute of the day.
	- $\bullet \Rightarrow$ Interest : help the model to place himself in the time
- Model output :
	- one forecast sequence (4h30)

¹ J. Eynard, S. Grieu & M. Polit (2011) Wavelet-based multi-resolution analysis and artificial neural networks for forecasting temperature and thermal power consumption. Engineering Applications of Artificial Intelligence. 24(3), A[pril](#page-33-0) [201](#page-35-0)[1](#page-42-0)[,](#page-34-0) [5](#page-36-0)[0](#page-37-0)[1-](#page-33-0)[5](#page-34-0)1[6.](#page-43-0)

[Forecasting methodology](#page-36-0) [Forecasting results](#page-43-0)

Forecasting model using time series¹

- **•** Forecasting of outdoor temperature et heating power consumed by the district network
- Using M past sequences (4h30 long) for model inputs, completed with :
	- \bullet the day of the year,
	- the minute of the day.
	- $\bullet \Rightarrow$ Interest : help the model to place himself in the time

• Model output :

• one forecast sequence (4h30)

¹ J. Eynard, S. Grieu & M. Polit (2011) Wavelet-based multi-resolution analysis and artificial neural networks for forecasting temperature and thermal power consumption. Engineering Applications of Artificial Intelligence. 24(3), A[pril](#page-34-0) [201](#page-36-0)[1](#page-42-0)[,](#page-34-0) [5](#page-36-0)[0](#page-37-0)[1-](#page-33-0)[5](#page-34-0)1[6.](#page-43-0)

J. Eynard, S. Grieu & M. Polit [Optimal Control of a Multi-Energy District Boiler: a Case Study](#page-0-0) IFAC WC 2011 19 / 31

[Forecasting methodology](#page-34-0) [Forecasting results](#page-43-0)

Forecasting model using time series¹

- **•** Forecasting of outdoor temperature et heating power consumed by the district network
- Using M past sequences (4h30 long) for model inputs, completed with :
	- \bullet the day of the year,
	- the minute of the day.
	- $\bullet \Rightarrow$ Interest : help the model to place himself in the time
- Model output :
	- one forecast sequence (4h30)

¹ J. Eynard, S. Grieu & M. Polit (2011) Wavelet-based multi-resolution analysis and artificial neural networks for forecasting temperature and thermal power consumption. Engineering Applications of Artificial Intelligence. 24(3), A[pril](#page-35-0) [201](#page-37-0)[1](#page-42-0)[,](#page-34-0) [5](#page-36-0)[0](#page-37-0)[1-](#page-33-0)[5](#page-34-0)1[6.](#page-43-0)

[Forecasting methodology](#page-34-0) [Forecasting results](#page-43-0)

Wavelet decomposition

- Low frequency components (approximation coefficients)
	- **•** Seasonal trends
	- daily pseudo-periodic trends
- High frequency components (detail coefficients)
	- Random weather perturbations

∢ □ ▶ ∢ [⊖]

 209

ヨメ イヨ

[Forecasting methodology](#page-34-0) [Forecasting results](#page-43-0)

Wavelet decomposition

- Low frequency components (approximation coefficients)
	- **•** Seasonal trends
	- daily pseudo-periodic trends
- High frequency components (detail coefficients)
	- Random weather perturbations

4 0 F

∋ x e ∋

 209

[Forecasting methodology](#page-34-0) [Forecasting results](#page-43-0)

Forecasting and wavelet recomposition

- **•** Forecasting using multi-layer perceptrons
- Using N+1 MLP for a N-level wavelet decomposition
- Adding all the forecast sub-signals
- ⇒ One forecast sequence

イロト イ押ト イヨト イヨト

 Ω ÷.

[Forecasting methodology](#page-34-0) [Forecasting results](#page-43-0)

Forecasting and wavelet recomposition

- **•** Forecasting using multi-layer perceptrons
- Using N+1 MLP for a N-level wavelet decomposition
- Adding all the forecast sub-signals
- ⇒ One forecast sequence

÷.

 Ω

医毛囊 医牙骨下的

[Forecasting methodology](#page-34-0) [Forecasting results](#page-43-0)

Forecasting and wavelet recomposition

- **•** Forecasting using multi-layer perceptrons
- Using N+1 MLP for a N-level wavelet decomposition
- Adding all the forecast sub-signals
- $\bullet \Rightarrow$ One forecast sequence

 Ω

化重新润滑

[Forecasting methodology](#page-34-0) [Forecasting results](#page-43-0)

Forecasting and wavelet recomposition

- **•** Forecasting using multi-layer perceptrons
- Using N+1 MLP for a N-level wavelet decomposition
- Adding all the forecast sub-signals
- ⇒ One forecast sequence

∢ □ ▶ ∢ [⊖]

 Ω

ヨメ イヨ

[Forecasting results](#page-44-0)

Optimization of parameters

● Best configuration for *T*_{*out*} et *P*_{*DN*}

• Forecasting results

← ロ ▶ → 市

 \blacktriangleright \blacktriangleleft

 Ω

[Forecasting results](#page-43-0)

Optimization of parameters

● Best configuration for *T*_{*out*} et *P*_{*DN*}

• Forecasting results

4 0 8

∢ n

 \prec

 Ω

[Model Predictive Controller \(MPC\)](#page-55-0)

Outline

- [Opti-EnR project](#page-6-0)
- [Modeling and identification](#page-15-0)
- [Thermal storage tank model](#page-21-0)
- ⁵ [Forecasting exogenous](#page-33-0) [variables](#page-33-0)

• [Optimization criteria](#page-46-0)

4 0 8

- **[Model Predictive Controller](#page-55-0)** [\(MPC\)](#page-55-0)
- **•** [Results](#page-57-0)

 Ω

化重新润滑

[Optimization criteria](#page-48-0) [Model Predictive Controller \(MPC\)](#page-55-0)

Fuel characteristics

重性 ゆすび

医毛囊 医牙骨下的

(□) () (

[Optimization criteria](#page-48-0) [Model Predictive Controller \(MPC\)](#page-55-0)

◆ ロ ▶ → 何

 \sim \sim

Fuel characteristics

重性 ゆすび

ヨメ イヨメ

[Optimization criteria](#page-46-0) [Model Predictive Controller \(MPC\)](#page-55-0)

◆ ロ ▶ → 何

 \sim \sim

Fuel characteristics

重性 ゆすび

ヨメ イヨメ

[Optimization criteria](#page-46-0) [Model Predictive Controller \(MPC\)](#page-55-0) [Results](#page-57-0)

Definition of criteria

• Economical criterion : production cost

 $J_1 = UC_{wood} \times N_{tappet} + UC_{gas} \times V_{gas} + UC_{fuel} \times V_{fuel}$

Technical criterion : error on hot water temperature

$$
J_2 = \frac{1}{2 \cdot N} \cdot \sum_{k=1}^{N} (|T_{DN}^{sp}(k) - T_{DN}(k)| - (T_{DN}(k) - T_{DN}^{sp}(k)))
$$

• Energetic criterion A : total energy consumed

 $J_3 = ULHV_{wood} \times N_{taopet} + ULHV_{gas} \times V_{gas} + ULHV_{fuel} \times V_{fuel}$

● Energetic criterion **B** : fossil energy cover rater

$$
J_4 = \frac{ULHV_{gas} \times V_{gas} + ULHV_{fuel} \times V_{fuel}}{ULHV_{wood} \times N_{tappet} + ULHV_{gas} \times V_{gas} + ULHV_{fuel} \times V_{fuel}}
$$

• Environmental criterion : $CO₂$ emissions

$$
J_5 = ULCA_{wood} \times N_{tappet} + ULCA_{gas} \times V_{gas} + ULCA_{fuel} \times V_{fuel}
$$

• Mixed criterion

[Optimization criteria](#page-46-0) [Model Predictive Controller \(MPC\)](#page-55-0) **[Results](#page-57-0)**

Definition of criteria

• Economical criterion : production cost

 $J_1 = UC_{wood} \times N_{tappet} + UC_{gas} \times V_{gas} + UC_{fuel} \times V_{fuel}$

• Technical criterion : error on hot water temperature

$$
J_2 = \frac{1}{2 \cdot N} \cdot \sum_{k=1}^{N} (|T_{DN}^{sp}(k) - T_{DN}(k)| - (T_{DN}(k) - T_{DN}^{sp}(k)))
$$

• Energetic criterion A : total energy consumed

 $J_3 = ULHV_{wood} \times N_{taooet} + ULHV_{gas} \times V_{gas} + ULHV_{fuel} \times V_{fuel}$

● Energetic criterion B : fossil energy cover rater

*J*⁴ = *ULHVgas*×*Vgas*+*ULHVfuel* ×*Vfuel ULHVwood* ×*Ntappet* +*ULHVgas*×*Vgas*+*ULHVfuel* ×*Vfuel*

• Environmental criterion : $CO₂$ emissions

*J*⁵ = *ULCAwood* × *Ntappet* + *ULCAgas* × *Vgas* + *ULCAfuel* × *Vfuel*

• Mixed criterion

[Optimization criteria](#page-46-0) [Model Predictive Controller \(MPC\)](#page-55-0) **[Results](#page-57-0)**

Definition of criteria

• Economical criterion : production cost

 $J_1 = UC_{wood} \times N_{tappet} + UC_{gas} \times V_{gas} + UC_{fuel} \times V_{fuel}$

• Technical criterion : error on hot water temperature

$$
J_2 = \frac{1}{2 \cdot N} \cdot \sum_{k=1}^{N} (|T_{DN}^{sp}(k) - T_{DN}(k)| - (T_{DN}(k) - T_{DN}^{sp}(k)))
$$

• Energetic criterion A : total energy consumed

 $J_3 = ULHV_{wood} \times N_{taooet} + ULHV_{gas} \times V_{gas} + ULHV_{fuel} \times V_{fuel}$

● Energetic criterion B : fossil energy cover rater

*J*⁴ = *ULHVgas*×*Vgas*+*ULHVfuel* ×*Vfuel ULHVwood* ×*Ntappet* +*ULHVgas*×*Vgas*+*ULHVfuel* ×*Vfuel*

• Environmental criterion : $CO₂$ emissions

*J*⁵ = *ULCAwood* × *Ntappet* + *ULCAgas* × *Vgas* + *ULCAfuel* × *Vfuel*

• Mixed criterion

[Optimization criteria](#page-46-0) [Model Predictive Controller \(MPC\)](#page-55-0) **[Results](#page-57-0)**

Definition of criteria

• Economical criterion : production cost

 $J_1 = UC_{wood} \times N_{tappet} + UC_{gas} \times V_{gas} + UC_{fuel} \times V_{fuel}$

• Technical criterion : error on hot water temperature

$$
J_2 = \frac{1}{2 \cdot N} \cdot \sum_{k=1}^{N} (|T_{DN}^{sp}(k) - T_{DN}(k)| - (T_{DN}(k) - T_{DN}^{sp}(k)))
$$

• Energetic criterion A : total energy consumed

$$
J_3 = ULHV_{wood} \times N_{tappet} + ULHV_{gas} \times V_{gas} + ULHV_{fuel} \times V_{fuel}
$$

• Energetic criterion B : fossil energy cover rater

$$
J_4 = \frac{ULHV_{gas} \times V_{gas} + ULHV_{fuel} \times V_{fuel}}{ULHV_{wood} \times N_{tapped} + ULHV_{gas} \times V_{gas} + ULHV_{fuel} \times V_{fuel}}
$$

• Environmental criterion : $CO₂$ emissions

$$
J_5 = ULCA_{wood} \times N_{tappet} + ULCA_{gas} \times V_{gas} + ULCA_{fuel} \times V_{tue}
$$

• Mixed criterion

[Optimization criteria](#page-46-0) [Model Predictive Controller \(MPC\)](#page-55-0) [Results](#page-57-0)

Definition of criteria

• Economical criterion : production cost

$$
J_1 = \textit{UC}_{wood} \times \textit{N}_{tappet} + \textit{UC}_{gas} \times \textit{V}_{gas} + \textit{UC}_{fuel} \times \textit{V}_{fuel}
$$

• Technical criterion : error on hot water temperature

$$
J_2 = \frac{1}{2 \cdot N} \cdot \sum_{k=1}^{N} (|T_{DN}^{sp}(k) - T_{DN}(k)| - (T_{DN}(k) - T_{DN}^{sp}(k)))
$$

• Energetic criterion A : total energy consumed

$$
J_3 = ULHV_{wood} \times N_{tappet} + ULHV_{gas} \times V_{gas} + ULHV_{fuel} \times V_{fuel}
$$

• Energetic criterion B : fossil energy cover rater

$$
J_4 = \frac{ULHV_{gas} \times V_{gas} + ULHV_{fuel} \times V_{fuel}}{ULHV_{wood} \times N_{tappet} + ULHV_{gas} \times V_{gas} + ULHV_{fuel} \times V_{fuel}}
$$

• Environmental criterion : $CO₂$ emissions

$$
J_5 = \textit{ULCA}_{wood} \times N_{tappet} + \textit{ULCA}_{gas} \times V_{gas} + \textit{ULCA}_{fuel} \times V_{tuel}
$$

• Mixed criterion

$$
J_6 = \frac{1}{5} \times \sum_{n=1}^{5} 100 \times \frac{J_n(\text{with thermal storage})}{J_n(\text{without thermal storage})}
$$

ELIAUS

[Energetic context](#page-2-0) [Opti-EnR project](#page-6-0) [Modeling and identification](#page-15-0) [Thermal storage tank model](#page-21-0) [Forecasting exogenous variables](#page-33-0) [Control and optimization](#page-45-0)

[Optimization criteria](#page-46-0) [Model Predictive Controller \(MPC\)](#page-55-0) [Results](#page-57-0)

Definition of criteria

• Economical criterion : production cost

$$
J_1 = \textit{UC}_{wood} \times \textit{N}_{tappet} + \textit{UC}_{gas} \times \textit{V}_{gas} + \textit{UC}_{fuel} \times \textit{V}_{fuel}
$$

• Technical criterion : error on hot water temperature

$$
J_2 = \frac{1}{2 \cdot N} \cdot \sum_{k=1}^{N} (|T_{DN}^{sp}(k) - T_{DN}(k)| - (T_{DN}(k) - T_{DN}^{sp}(k)))
$$

• Energetic criterion A : total energy consumed

$$
J_3 = ULHV_{wood} \times N_{tappet} + ULHV_{gas} \times V_{gas} + ULHV_{fuel} \times V_{fuel}
$$

• Energetic criterion B : fossil energy cover rater

$$
J_4 = \frac{ULHV_{gas} \times V_{gas} + ULHV_{fuel} \times V_{fuel}}{ULHV_{wood} \times N_{tappet} + ULHV_{gas} \times V_{gas} + ULHV_{fuel} \times V_{fuel}}
$$

• Environmental criterion : $CO₂$ emissions

$$
J_5 = \textit{ULCA}_{wood} \times N_{\textit{tappet}} + \textit{ULCA}_{gas} \times V_{gas} + \textit{ULCA}_{\textit{fuel}} \times V_{\textit{fuel}}
$$

• Mixed criterion

$$
J_6 = \frac{1}{5} \times \sum_{n=1}^{5} 100 \times \frac{J_n(\text{with thermal storage})}{J_n(\text{without thermal storage})}
$$

[Model Predictive Controller \(MPC\)](#page-55-0)

Functioning synoptic

重性 つへぐ

[Optimization criteria](#page-46-0) [Model Predictive Controller \(MPC\)](#page-55-0) [Results](#page-57-0)

Optimization problem

• Objective function

 $min (J_1 = PU_{wood} \times N_{tangent} + PU_{gas} \times V_{gas} + PU_{DEO} \times V_{DEO})$

• Optimization variables (controlled variables)

 $\begin{pmatrix} \Delta Q_{TS}(k/k), \ldots, \Delta Q_{TS}(k+c-1/k) \\ \Delta T^{SP}(k/k) & \Delta T^{SP}(k+c-1/k) \end{pmatrix}$ $\Delta T_{WB}^{SP}(k/k), \ldots, \Delta T_{WB}^{SP}(k+c-1/k)$

• Constraints

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

 \Rightarrow *Q_{TS}*(*k* + *i*/*k*) ≤ 0 ∀*i* ∈ [0, . . . , *p* − 1]
90 °C ≤ *T*^{SP}_{*WB*} ≤ 97 °C ∀*i* ∈ [0, . . . , *p* − 1] Plant model with T_{out}^{4h30} et P_{DN}^{4h30} as inputs 0 ≤ $Q_{TS}(k + i/k)$ ≤ Q_{TS-max} = Q_{DN} - 10 ∀*i* ∈ [[0, ..., *p* − 1]
(*Eng_{GB}*(*k* + *i*/*k*) = 1) ∨ ($T_{BPB}^{opt}(k + i/k)$ ≤ $T_{TS}^{up}(k + i/k)$) $\Delta Q_{TS}(k+h) = 0 \ \forall h \in [c, \dots, p-1]$ ∆*T SP WB*(*^k* ⁺ *^h*) ⁼ ⁰ [∀]*^h* [∈] ^J*c*, . . . , *^p* [−] ¹^K *p* = 54 : predictive horizon = 4h30 $c = 36$: control horizon = 3h

K ロ ▶ K 何 ▶ K ヨ ▶ K ヨ ▶ 『 ヨ ヨ イロ ▶

[Model Predictive Controller \(MPC\)](#page-55-0) [Results](#page-57-0)

Remarkable results

Time: from 16 January to 2 March, 2009

Conclusion and future work

• Conclusion

- Modeling of the district boiler using experimental data
- Adding an energetic storage model
- Forecasting exogenous variables
- Optimization of the plant with a predictive controller

• Future work

- Using other storage system
- Developing other control schemes \bullet
- Generalizing this methodology for other plants
- Implementing the controller in-situ

4 0 8

 Ω

ヨメ イヨ

Conclusion and future work

• Conclusion

- Modeling of the district boiler using experimental data
- Adding an energetic storage model
- Forecasting exogenous variables
- Optimization of the plant with a predictive controller

• Future work

- Using other storage system
- Developing other control schemes
- Generalizing this methodology for other plants
- Implementing the controller in-situ

4 **D** F

 Ω

∋ x e ∋

[Appendix](#page-60-0)
End

[Publications](#page-60-0)

Related publications

Julien Eynard, Stéphane Grieu & Monique Polit.

Wavelet-based multi-resolution analysis and artificial neural networks for forecasting temperature and thermal power consumption *Engineering Applications of Artificial Intelligence*, 24(3), April 2011, 501–516,

ISSN 0952-1976, DOI : 10.1016/j.engappai.2010.09.003

Julien Eynard, Stéphane Grieu & Monique Polit.

Modular approach for modelling a multi-energy district boiler *Applied Mathematical Modeling*, 35(8), August, 3926–3957 ISSN 0307-904X, DOI : 10.1016/j.apm.2011.02.006

4 **D** F

つへへ

[Appendix](#page-60-0) [End](#page-61-0)

Thank you for your attention

J. Eynard, S. Grieu & M. Polit [Optimal Control of a Multi-Energy District Boiler: a Case Study](#page-0-0) IFAC WC 2011 31 / 31

 \leftarrow

 209