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Abstract: The present paper deals with the optimization of a multi-energy district boiler (La
Rochelle, France) which supplies domestic hot water and heats residential and public buildings,
using renewable and fossil resources. First, a combination of white, grey and black boxes was
used to model the plant, thanks to a modular approach. Next, a stratified thermal storage
tank was modelled and completed the just-mentioned plant model. Using these models and
forecasted sequences about outdoor temperature and thermal power consumption, a model
predictive controller allows optimizing the use of both the tank and the wood boiler. As a
result, fossil energy consumption and CO2 emissions are minimized. Energy is stored during
low-demand periods and used when demand is high, instead of consuming gas and fuel oil.

Keywords: Modelling, Identification, Prediction, Neural networks, Predictive control, Boiler,
Energy storage, Renewable energy systems.

1. INTRODUCTION

By the end of the first commitment period of the Kyoto
Protocol in 2012, the European Union has decided for
2020 to promote renewable energy (EU (2009b)) (20 %), to
reduce GreenHouse Gases (GHG) emissions (EU (2009a))
(−20 %) and to increase energy efficiency (+20 %). As part
of the OptiEnR research project (Eynard (2010)), the
present paper deals with optimizing a multi-energy district
boiler, situated at La Rochelle (west coast of France) and
managed by Cofely GDF-Suez. The plant supplies domes-
tic hot water and heats residential and public buildings. It
is described in section 2 and uses renewable (wood) and
fossil energies (gas and fuel oil). The main objective of the
project was optimizing the district boiler functioning while
minimizing the consumption of fossil energy. This has been
completed according to 4 successive tasks (Fig. 1). The
first task (section 3) was to model the district boiler.
Because of both the complexity of the plant as a whole and
the strong interactions between the sub-systems, a modu-
lar approach was proposed. To carry out that task, mea-
surements campaigns results as well as several modelling
approaches, such as black-box, parametric or knowledge
modelling approaches, were considered. Because energy
storage is a way to optimize the performance of a district
boiler, we studied the impact of adding a stratified hot
water tank to the plant of La Rochelle (section 4). Next,
a Model-based Predictive Controller (MPC) was designed
to optimize both the flow of the water passing through the
tank and the wood boiler set-point temperature (section
6) minimizing a cost function based on fuel oil consump-
tion. The controller uses the developed overall model and
forecasted outdoor temperature and thermal power con-
sumption sequences (section 5). Section 6 focuses on the
way the MPC was tuned and on simulation results. One
⋆ Industrial partner: Cofely GDF-Suez

Fig. 1. The OptiEnR research project

can highlight a significant decrease of the fossil energy con-
sumed, leading to a reduction in costs and CO2 emissions.

2. DISTRICT BOILER OF LA ROCHELLE

The district boiler of La Rochelle is a complex plant
(Fig. 2). The collecting hydraulic circuit connects the wood
(4.5 MWh) and the gas-fuel oil (7 MWh) boilers, using two
feed pumps (FpWB and FpGFB). Due to the low price of
wood, the wood boiler functions all the time while the
gas-fuel oil boiler is used during very cold periods only,
when the wood boiler fails to respond to the hot water
demand. First, the gas-fuel oil boiler is fed using gas. When
the 6000 m3 of gas allowed every day to Cofely GDF-Suez
are consumed and if the boiler must continue to run, fuel
oil is used until the end of the day (in this case, gas is
much more expensive than fuel oil). The primary hydraulic
circuit (3000 m3) supplies hot water to heat residential
and public buildings, for a total of 2700 accommodations.
Domestic hot water is also produced, for a total of 3500
accomodations. The circuit is composed of a hot water
distribution network, a feed pump (FpDN ) used to control
the network differential pressure, and a cogeneration plant
which produces electricity. A part of the cold water coming
back from the distribution network is warmed up by
the cogeneration plant. Using measurements of both the



Fig. 2. Synopsys of the district boiler with the proposed
modifications (in red, green, blue and purple)

outdoor temperature and the temperature of the water
entering the distribution network, a monitoring system
allows tracking the functioning of the two boilers. Finally,
the breaking pressure bottle pulls apart the two just-
mentioned hydraulic circuits, because of the difference
between their respective flows.

3. DISTRICT BOILER MODELLING

3.1 Overall approach

Taking a look at the state of the art about the mod-
elling of district boilers, one can highlight some interest-
ing works. First, Curti et al. (2000) proposed an enviro-
nomic approach for modelling and optimizing a district
heating network. Dias and Balestieri (2004) modelled a
wood boiler using a detailed energy and exergy analysis,
allowing quantifying the types, causes, and locations of
losses. Physical principles and artificial neural networks
can be used together as it has been shown by Lu and
Hogg (2000) for the development of a nonlinear power
plant model. Finally, Ghaffari et al. (2007) presented a soft
computing approach to model electrical power generating
plants and to characterize the essential dynamic behavior
of the plant sub-systems. Their approach consisted of fuzzy
logic, artificial neural networks and genetic algorithms. As
previously mentioned and because of both the complexity
of the district boiler of La Rochelle as a whole and the
strong interactions between the sub-systems, a modular
approach was proposed to model the plant (Eynard et al.
(2011a)). According to the availability of information (as a
result of measurement campaigns or taking into consider-
ation expert knowledge about the sub-systems functioning
and the boilers control systems), a combination of white,
grey and black boxes was used to keep the modeling pro-
cess on track. With white boxes which can be used when
one can easily describe the interactions between physical
parameters, experimental data serve only to validate the
models. Both grey boxes (Sjöberg et al. (1995)) (in this
case, one needs to find appropriate model inputs and out-
puts, thanks to physical considerations and/or analyzing
the process dynamic properties, while experimental data

Fig. 3. Modular approach to model the district boiler

are used to optimize both the model topology and param-
eters (Ljung and Ljung (1987)) as well as validation data)
and black boxes (in this case, no physical considerations
are taken into account, a standard topology is used and,
as when using grey boxes, one needs to find appropriate
model inputs and outputs and to optimize, with experi-
mental data, the model parameters) are used in case of
missing information about physical behaviours.

3.2 Modelling process

First, a data processing phase allowed eliminating abnor-
mal data and upsampling data with a too-high sampling
rate, considering a desired sampling rate of 5 minutes.
Let us also note that some relevant but not-measured
parameters were estimated thanks to appropriate infor-
mation. Next, for each parameter to be modelled, both
the model topology (a differential, algebraic or logical
equation) and inputs were defined. A first iterative process
of optimisation was performed to identify the coefficents
of the models. We used the trust-region reflective New-
ton method (Coleman and Li (1994)) for nonlinear least-
squares (Kelley (1999)) to solve the minimization problem.
Analyzing the results allows validating the chosen topolo-
gies (if a result is not satisfactory, one needs to think about
another model topology and of course to find the right
equation coefficients again). With the boiler parameters
correctly described, using optimized differential, algebraic
or logical equations, sub-models were defined. It can be
noticed that the black-box methodology used for the mod-
elling of the wood boiler was based on the Hammerstein-
Wiener theory (Zhu (2002)). A second iterative process
of optimisation was carried out to adjust the sub-models
coefficients. Finally, when the sub-models accuracy was
as good as possible, these models were combined to obtain
the overall district boiler model. Fig. 3 depicts the modular
approach, leading to very good results.

4. ENERGY STORAGE MODELLING

4.1 Hypothesis

Adding to the district boiler of La Rochelle an energy
storage unit allows using, when demand is high, the excess
of energy produced by the wood boiler during low-demand
periods, instead of consuming gas and fuel oil. As a
result, the coverage rate of the fossil energy used can



be significantly reduced thanks to a better exploitation
of the available renewable resources. Many options about
the materials one can use to store energy were considered
but due to technical reasons, their cost, the constraints
related to their integration into the district boiler, their
toxicity, their flammability or their relative low power,
phase change materials were not used. So, we decided for
a hot water tank. Some hypothesis about its shape, size
and position were made. We proposed a vertical cylindrical
tank whose diameter is equal to its height with the aim
of minimizing its surface and, as a consequence, thermal
losses. For the same reason, we supposed the tank, whose
thermal insulation is insured by 10 cm of polypropylene,
to be buried in the ground, where ambiant temperature
(T amb) is about 10℃. The inlet fluid temperature (T in)
affects the first layers of water in the tank only, because of
a grid used to protect its thermal stratification.

4.2 Modelling results

After taking a look at the review of Han et al. (2009)
dedicated to the modelling of one-dimension hot water
tanks, i.e. with vertical thermal stratification, we devel-
oped a discrete space model. The model is adapted from
the model proposed by Alizadeh (1999) and defined by
equations (1) and (2) for energy storage and destocking.
Ti,k is the temperature of the ith layer of water at time
index k, g is the number of layers, e is the number of
layers directly affected by the inlet fluid temperature, V is
the volume of one layer of water while ∆V is the volume of
fluid passing through the tank during one sampling time.
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4.3 Integration of the storage unit into the district boiler

The characteristics of the thermal storage unit being
defined, one may think about the way the tank would
be integrated into the district boiler. That is why we
proposed an hydraulic modification of the plant, as shown
in red on Fig. 2. We decided to place the tank between the
breaking pressure bottle and the hot water distribution
network, before the feed pump of the distribution network
and after the cogeneration plant. A new pump (FpTS)
is used to control the flow of the water passing through
the tank. To reflect the impact of the thermal storage
unit on the district boiler, some subsidiary models were
developed, as shown by Fig. 4. Indeed, some flows between
the breaking pressure bottle and the thermal storage tank
changed while some temperatures were affected by the
tank functioning.

5. EXOGENOUS VARIABLES FORECASTING

5.1 Materials and methods

Both the outdoor temperature (Tout) and the thermal
power consumption of the hot water distribution network

Fig. 4. Integration of the model of the thermal storage unit

(WDN ) are the district boiler model inputs. One needs,
using the model, forecasted sequences about these two
exogenous parameters to optimize on-line the use of the
thermal storage tank. During the last years, schemes for
temperature forecasting were mainly developed in the
context of load forecasting and power utilities manage-
ment. The complex and nonlinear nature of temperature
variations as well as the abundance of historical data
suggest that computational intelligence data-based mod-
eling techniques would be good candidates to forecast
temperature (Neto and Fiorelli (2008)). The proposed
methodology, adapted from the methodology developed by
Tran et al. (2008), deals with the concept of time series,
even if not only past values are considered for estimating
future values, and uses a wavelet-based Multi-Resolution
Analysis (MRA) and Artificial Neural Networks (ANN).
One could speak of “MRA-ANN” methodology, described
in detail in Eynard et al. (2011b). The discrete wavelet
transform allowed decomposing M sequences of past data
(of l points) in subsequences, according to different fre-
quency domains. We used a filter bank, composed of low-
pass and high-pass filters, to obtain approximation (i.e.
low frequency components) and detail (i.e. high frequency
components) coefficients, according to a decomposition
level (N) and a wavelet order (R) (Fig. 5). From these
coefficients, Multi-Layer Perceptrons (MLP) were used
to estimate future subsequences of 4h30. As depicted by
Fig. 6, N + 1 neural networks were used to estimate the
N details and the approximation of level N of a target
sequence P (the sequence to be forecasted). Future values
of outdoor temperature or thermal power consumption
were then obtained by simply summing up the estimated
coefficients (Fig. 6). Substituting the prediction task of an
original time series of high variability by the prediction,
using MLP neural networks, of its wavelet coefficients on
different levels of lower variability, is the main idea of the
methodology. The wavelet-based multi-resolution analysis
allowed isolating the global trend and the 24-hour pseudo-
period characterizing the considered time series from the
variability caused by climatic phenomena. To place the
model in time, the sequences of past data were completed,
for each of their components, by the minute of the day and
the day of the year. According to the respective values of
M , l and of the sub-sampling time TSST (set initially to 30
minutes; forecasted sequences were then upsampled to be
in agreement with the sampling time of all the parameters
measured at the district boiler), the results can be more or
less accurate. Indeed, the further the forecasting horizon
(set to 4h30, as requested by the boiler operators; this
leads to l=9), the more inaccurate it can be. Inaccuracy



Fig. 5. Wavelet-based multi-resolution analysis

Fig. 6. Forecasting of future sequences using ANN

can also be the result of a lack of usable information
provided by past sequences and/or a too low number M
of considered past sequences (examples to be learned and
used to forecast future values of the considered param-
eters). The proposed neural model was developed using
half of the available sequences and validated thanks to the
remaining sequences. The particularities of the proposed
MRA-ANN methodology lies in the use of sequences, in
the addition of temporal information allowing a better
understanding of how the considered parameters (Tout and
WDN ) evolve in time, and in the use of a specific neural
network for estimating one of the wavelet coefficients of
the future values we want to forecast.

5.2 Tout and WDN forecasting results

Table 1 depicts the optimal configuration used to fore-
cast Tout and WDN (the parameters are inversely propor-
tionnal), according to the wavelet order (R), the wavelet
decomposition level (N), the common topology of the net-
works used (F ), the number of considered past sequences
(M) and, finally, the sub-sampling time used (TSST ). Ta-
ble 2 (lines 1 and 2) specifies, for the considered period
(from February 15, 2009 to March 02, 2009), the Mean Rel-
ative Error (MRE), the Mean Absolute Error (MAE) and
the curve fitting (FIT) observed when forecasting Tout and
WDN , using the MRA-ANN methodology. Table 2 (line
3) also presents the results obtained when using Tout to
forecast WDN , via a simple linear curve fitting. Finally, a
hybrid approach, combining the MRA-ANN methodology
and linear curve fitting (Table 2 (line 4)), was used to fore-

cast WDN . Although the proposed methodology provided
better results than linear curve fitting, it underestimated
sometimes peaks of consumption. Both approaches are
valid but have different characteristics. That is why they
were used in tandem to improve the forecasts accuracy.

Table 1. Optimal configuration

Parameter Symbol Optimal value

Wavelet order R 4
Wavelet decomposition level N 5

Common number of hidden neurons F 5
Number of past sequences M 4

Sub-sampling time TSST 30 mn

Table 2. Tout and WDN forecasting results

Variable FIT MRE MAE

T 4H30
out 60.6 % 4.14 % 1.15℃

W 4H30
DN 44.7 % 6.07 % 663.6 kW

W
T4H30
out

DN 38.4 % 6.94 % 758.3 kW

Whyb
DN 46.9 % 5.85 % 639.1 kW

6. OPTIMAL CONTROL OF THE DISTRICT BOILER

6.1 Control strategies

First, some criteria to be minimized were developed and
used to optimize the performance of the district boiler.
Equations (3-8) define J1 as the cost related with fuel
oil consumption, J2 as the positive difference between
the temperature of the water entering the distribution
network (TEDN ) and the temperature setpoint (TSDN ),
J3 as the energy consumed (in LHV), J4 as the fossil
energy coverage rate, J5 as the level of CO2 emissions
and J6 as the overall performance of the district boiler
with a controlled thermal storage unit compared with
its performance without energy storage. Table 3 presents
the Unitary Cost (UC), the Unitary Low Heating Value
(ULHV ) and the Unitary CO2 emissions in Life-Cycle
Assessment (ULCA) for each of the fuels used (ADEME
(2007)). Let us note that we used for wood the number of
tappet strokes per five minutes (the mean weight of the
wood introduced into the boiler by the tappet is about
37 kg).

J1 = UCwood ⋅Ntappet +UCgas ⋅ Vgas
+ UCfuel−oil ⋅ Vfuel−oil

(3)

J2 =
1

2 ⋅N
⋅
N

∑
k=1

(
∣TSDN(k) − TEDN(k)∣

− (TEDN(k) − TSDN(k))
) (4)

J3 = ULHVwood ⋅Ntappet +ULHVgas ⋅ Vgas
+ ULHVfuel−oil ⋅ Vfuel−oil

(5)

J4 =
ULHVgas ⋅ Vgas +ULHVfuel−oil ⋅ Vfuel−oil

J3
(6)

J5 = ULCAwood ⋅Ntappet +ULCAgas ⋅ Vgas
+ ULCAfuel−oil ⋅ Vfuel−oil

(7)

J6 =
1

5
⋅

5

∑
n=1

(100 ⋅
Jn(with thermal storage)

Jn(without thermal storage)
) (8)



Minimizing one of the just-mentioned criteria defines the
control strategy used for optimizing the district boiler
performance. According to economic, technical, environ-
mental or related-to-energy-efficiency considerations, one
can choose one of the first five criteria we proposed. With
the criterion J6, one can optimize the district boiler per-
formance in an unspecific way, according to all the just-
mentioned considerations.

6.2 Model-based optimal predictive controller

The model predictive controller developed to optimize the
district boiler performance uses the models of both the
plant and the thermal storage unit as well as forecasted se-
quences of Tout (the outdoor temperature) and WDN (the
thermal power consumption of the hot water distribution
network). It computes optimal command sequences to be
applied to the considered process over a prediction hori-
zon, according to an objective function to be minimzed.
Taking a look at the literature, one can note that through
MPC is not inherently more or less robust than classical
feedback, it can be adjusted more easily for robustness
(Garćıa et al. (1989)). Moreover, it has good properties of
stability (Mayne and Schroeder (1997)) and can be used
to control nonlinear systems (Kambhampati et al. (2000)),
hybrid systems (Olaru et al. (2008)) or even fast systems
(Pannocchia et al. (2007)). Such a controller is commonly
used to control industrial processes in real-time (Qin and
Badgwell (2003)). The wood boiler set-point temperature
(TSWB) and the flow of the water passing through the
hot water tank (QTS) are the two controlled parameters
(Fig. 2). Let us note that information related to measured
data is given to the MPC by the previously-implemented
control schemes. Equation (9) shows the command vec-
tors to be applied to the process and to be optimized
thanks to the minimization of the chosen criterion J1.
Equation (10) defines the path constraints, with p and
c the prediction and control horizons, respectively. The
thermal storage unit can not store hot water when the
gas-fuel oil boiler is engaged (EngGFB = 1) while thermal
stratification must always be ensured. As a consequence,
the temperature of the water leaving the breaking pressure
bottle (TLBPB) has to be higher than the temperature of
the upper layer of the tank (Tsup−TS). The resolution of
the nonlinear optimization problem was carried out using
a pattern search algorithm (Sherif and Boice (1994)). Such
a global optimization method is well adapted for nonlinear
problems with unknown gradient fonctions. It is commonly
used for the resolution of complex industrial problems, for
example a constrained optimization problem in a way that
insures a secure-economic system operation (Al-Othman
and El-Naggar (2008)).

[
QTS(k/k), . . . ,QTS(k + c − 1/k)

TSWB(k/k), . . . , TSWB(k + c − 1/k)
] (9)

Table 3. Characteristics of the fuels used

Wood [−] Gas [m3] Fuel oil [l]
UC [e] 1.8648 0.378 0.40
ULHV [kW⋅h] 133.2 10.5 9.76
ULCA [kgCO2] 1.7316 2.283 84 2.928

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Overall district boiler with thermal storage

model whose inputs are T 4h30
out and Whyb

DN
∣QTS ∣ ≤ QDN − 10
(EngGFB = 1) ∨ (TLBPB ≤ Tsup−TS)⇒ QTS ≤ 0
90℃ ≤ TSWB ≤ 97℃
∆QTS(k + h) = 0 ∀h ∈ Jc;p − 1K
∆TSWB(k + h) = 0 ∀h ∈ Jc;p − 1K
(p, c) = (54,36)

(10)

6.3 Optimal predictive control results

The proposed controller was tested in simulation during
45 days, from mid-January to early March. We focused on
the impact of the hot water tank volume (Vtot), ranging
between 500 m3 and 4000 m3. Table 4 highlights three
remarkable configurations for the proposed control scheme
(MPC1, MPC2 and MPC3 defined according to three
different tank volumes and allowing minimizing J1), taking
as a reference the modelled functionning of the district
boiler without thermal storage unit and MPC controller.

Table 4. Remarkable configurations

Criteria Configurations

Name Unit Reference MPC1 MPC2 MPC3

Vtot m3 0 1000 1500 4000
Ntappet - 24 635 21 260 21 203 21 482
Vgas m3 38 001 17 553 17 533 17 207
Vfuel l 3287 2043 2244 2436
J1 ke 61.62 47.10 47.07 47.54
J2 ℃ 0.56 0.247 0.252 0.272
J3 MW⋅h 3712 3036 3030 3066
J4 % 11.6 6.73 6.80 6.67
J5 tCO2 139.1 82.9 83.3 83.6
J6 % 100 64.0 64.3 65.2

Taking a look at Table 4, one can note that configuration
MPC1 reduces the fuel oil consumption by 37 % (−1244 l),
the set-point tracking error (J2) by 55 % (−0.313℃),
the CO2 emissions (J5) by 40 % (−56.2 tCO2), and the
performance criterion J6 by 36 %. With configuration
MPC2, the wood consumption, the economic cost (J1)
and the primary energy used are reduced by 14 %, 24 %
(−14.55 ke) and 18 % (−682 MW⋅h), respectively. Finally,
configuration MPC3 minimizes the gas consumption by
55 % (−20 794 m3) as well as the fossil energy coverage rate
(J4) by 42.5 % (−4.93 points).

7. CONCLUSION

The present paper deals with optimizing the performance
of a multi-energy district boiler which supplies hot water
via a distribution network. First, black, grey and white
boxes were used to model the considered process, ac-
cording to a modular approach. Such an approach was
the consequence of both the complexity of the plant as
a whole and the strong interactions between the sub-
systems. Next, a stratified hot water tank, connected to the
primary circuit, was modelled and completed the district
boiler model. Because one needs, using the overall model
proposed, forecasted sequences of both the outdoor tem-
perature and the thermal power consumption of the dis-
tribution network (both parameters are the overall model
inputs) to optimize the use of the tank on-line, a prediction
tool was also developed. It is based on a multi-resolution



analysis and artificial neural networks. Finally, a model
predictive controller was developed to optimize, over a
prediction horizon, the use of both the thermal storage
unit and the wood boiler. It uses the overall model and
the just-mentioned forecasted sequences. One can high-
light that the proposed control scheme allows reducing the
fossil energy consumption significantly and, as a result,
functioning costs and CO2 emissions. Future work will
focus on improving both the district boiler model and the
storage process, using phase change materials as well as
another way to implement the hot water tank. One can
also think about alternative control schemes, such as fuzzy
or neural control schemes, before implementing in-situ the
developed tools.
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