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Estimation of limiting conditional distributions for the heavy

tailed long memory stochastic volatility process

Rafa l Kulik∗ Philippe Soulier†

Abstract

We consider Stochastic Volatility processes with heavy tails and possible long memory
in volatility. We study the limiting conditional distribution of future events given that
some present or past event was extreme (i.e. above a level which tends to infinity). Even
though extremes of stochastic volatility processes are asymptotically independent (in the
sense of extreme value theory), these limiting conditional distributions differ from the
i.i.d. case. We introduce estimators of these limiting conditional distributions and study
their asymptotic properties. If volatility has long memory, then the rate of convergence
and the limiting distribution of the centered estimators can depend on the long memory
parameter (Hurst index).

1 Introduction

One of the empirical features of financial data is that log-returns are uncorrelated, but their
squares, or absolute values, are dependent, possibly with long memory. Another important
feature is that log-returns are heavy-tailed. There are two common classes of processes to
model such behaviour: the generalized autoregressive conditional heteroscedastic (GARCH)
process and the stochastic volatility (SV) process; the latter introduced by Breidt et al. (1998)
and Harvey (1998). The former class of models rules out long memory in the squares, while
the latter allows for it. We will therefore concentrate in this paper on the class of SV processes,
which we define now.

Throughout the paper, we will assume that the observed process {Yj, j ∈ Z} can be ex-
pressed as

Yj = σ(Xj)Zj (1)

where σ is some (possibly unknown) positive function, {Zj , j ∈ Z} is an i.i.d. sequence and
{Xj , j ∈ Z} is a stationary Gaussian process with mean zero, unit variance, autocovariance
function {γn}, and independent from the i.i.d. sequence. The sequence {σ(Xj), j ∈ Z} can be
seen as a proxy for the volatility. We will assume that either {Xj , j ∈ Z} is weakly dependent
in the sense that

∞
∑

n=1

|γn| < ∞ , (2)
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†Université de Paris-Ouest

1



or that it has long memory with Hurst index H ∈ (1/2, 1), i.e.

γn = cov(X0,Xn) = n2H−2ℓ(n) (3)

where ℓ is a slowly varying function.

It will also always be assumed that the marginal distribution FZ of the i.i.d. sequence {Zj}
has a regularly varying tail with index α > 0:

lim
x→∞

P(Z > x)

x−αL(x)
= β , lim

x→∞

P(Z < −x)

x−αL(x)
= (1 − β) , (4)

where L(·) is slowly varying at infinity and β ∈ [0, 1]. Examples of heavy tailed distributions
include the stable distributions with index α ∈ (0, 2), the t distribution with α degrees of
freedom, and the Pareto distribution with index α.

By Breiman’s lemma Breiman (1965); Resnick (2007), if

E[σα+ǫ(X)] < ∞ (5)

for some ǫ > 0, then the marginal distribution of {Yj} also has a regularly varying right tail
with index α and

lim
x→∞

P(Y > xy)

P(Z > x)
= E[σα(X)]y−α , (6)

where X, Y and Z denote random variables with the same joint distribution as X0, Y0

and Z0. This one-dimensional result can be extended to a multivariate setting. The finite
dimensional marginal distributions of the SV process are multivariate regularly varying with
spectral measure concentrated on the axes; see Proposition 1 for details.

Estimation and test of the possible long memory of such processes has been studied by
Hurvich et al. (2005). Estimation of the tail of the marginal distribution by the Hill estimator
has been studied in Kulik and Soulier (2011).

In this paper we are concerned with certain extremal properties of the finite dimensional
joint distributions of the process {Yj} when Z is heavy tailed and the Gaussian process {Xj}
possibly has long memory.

From the extreme value point of view, there is a significant distinction between GARCH and
SV models. In the first one, exceedances over a large threshold are asymptotically dependent
and extremes do cluster. In the SV model, it follows from the multivariate regular variation
result (Proposition 1) that exceedances are asymptotically independent. More precisely, for
any positive integer m, and positive real numbers x, y,

lim
t→∞

tP(Y0 > a(t)x , Ym > a(t)y) = 0 , (7)

where a(t) = F←Z (1 − 1/t) and F←Z is the left continuous inverse of FZ .

The above observations may lead to the incorrect conclusion that, for the SV process, there
is no spillover from past extreme observations onto future values and from the extremal
behaviour point of view we can treat the SV process as an i.i.d. sequence. However, under
the assumptions stated previously, it holds that

lim
t→∞

P(Ym ≤ y | Y0 > t) =
E[σα(X0)FZ(y/σ(Xm))]

E[σα(X0)]
. (8)
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See Lemma 11 in Section 4 for a proof. Therefore, the limiting conditional distribution is
influenced by the dependence structure of the time series. To illustrate this, we show in
Figure 1 estimates of the standard distribution function and of the conditional distribution
for a simulated SV process. Clearly, the two estimated distributions are different, as suggested
by (8). For a comparison, we also plot the corresponding estimates for i.i.d. data. Other kind

0.0 0.2 0.4 0.6

0.0
0.2

0.4
0.6

0.8
1.0

IID data

0.0 0.2 0.4 0.6

0.0
0.2

0.4
0.6

0.8
1.0

SV data

Figure 1: Empirical Conditional Distribution (points) and Empirical Distribution (solid line)
for SV model (right panel) and i.i.d. data (left panel)

of extremal events can be considered, for instance, we may be interested in the conditional
distribution of some future values given that a linear combination (portfolio) of past values
is extremely large, or that two consecutive values are large. As in Equation (8), in each of
these cases, a proper limiting distribution can be obtained. To give a general framework
for these conditional distributions, we introduce a modified version of the extremogram of
Davis and Mikosch (2009). For fixed positive integers h < m and h′ ≥ 0, Borel sets A ⊂ R

h

and B ⊂ R
h′+1, we are interested in the limit denoted by ρ(A,B,m), if it exists:

ρ(A,B,m) = lim
t→∞

P((Ym, . . . , Ym+h′) ∈ B | (Y1, . . . , Yh) ∈ tA) . (9)

The set A represents the type of events considered. For instance, if we choose A = {(x, y, z) ∈
[0,∞)3 | x + y + z > 1}, then for large t, {(Y−2, Y−1, Y0) ∈ tA} is the event that the sum of
last three observations was extremely large. The set B represents the type of future events
of interest.

In the original definition of the extremogram of Davis and Mikosch (2009), the set B is also
dilated by t. This is well suited to the context of asymptotic dependence, as arises in GARCH
processes. But in the context of asymptotic independence, this would yield a degenerate limit:
if h < m, then for most sets A and B,

lim
t→∞

P((Ym, . . . , Ym+h′) ∈ tB | (Y1, . . . , Yh) ∈ tA) = 0 .
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The general aim of this paper is to investigate the existence of these limiting conditional
distributions appearing in (9) and their statistical estimation. The paper is the first step
towards understanding conditional laws for stochastic volatility models. Although we provide
theoretical properties of estimators, their practical use should be investigated in conjunction
with resampling techniques. This is a topic of the authors’ current research.

The paper is structured as follows. In Section 2, we present a general framework that enables
to treat various examples in a unified way. In Section 3 we present the estimation procedure
with appropriate limiting results. The proofs are given in Section 4. In the Appendix we
collect relevant results on second order regular variation, (long memory) Gaussian processes,
and criteria for tightness.

1.1 Notation

We conclude this introduction by gathering some notation that will be used throughout the
paper. We denote convergence in probability by →P , weak convergences of sequences of
random variables or vectors by →d and weak convergence in the Skorokhod space D(Rq) of
cadlag functions defined on R

q endowed with the J1 topology by ⇒.

Boldface letters denote vectors. Product of vectors and inequalities between vectors are taken
componentwise: u · v = (u1v1, . . . , udvd); x ≤ y if and only if xi ≤ yi for all i = 1, . . . , d. The
(multivariate) interval (−∞,y] is defined accordingly: (−∞,y] =

∏d
i=1(−∞, yi].

For any univariate process {ξj} and any integers h ≤ h′, let ξh,h′ denote the (h′ − h + 1)-
dimensional vector (ξh, . . . , ξh′).

If ξh,h′ = (ξh, . . . , ξh′) is a random vector and σ : R → R is a deterministic function , then
σ(ξ) denotes a vector

σ(ξh,h′) = (σ(ξh), . . . , σ(ξh′)).

For A ⊂ R
d and u ∈ (0,∞)d, u−1 ·A = {x ∈ R

d | u · x ∈ A}.

If X is a random vector, we denote by Lp(X) the set of measurable functions f such that
E[|f(X)|p] < ∞.

The σ-field generated by the process {Xj} is denoted by X .

2 Regular variation on subcones

In this section, we will present our general framework. A crucial property of the SV processes
is that the finite dimensional marginal distributions are multivariate regularly varying and
are asymptotically independent (in the sense of extreme value theory). For the sake of com-
pleteness, we state and prove this fact formally. Recall that a measure ν on the Borel sets
of R

h \ {0} is said to be a Radon measure if ν(A) < ∞ for each relatively compact set A,
i.e. for each set A bounded away from 0. A sequence of Radon measures νn on R

h is said to
converge vaguely to a Radon measure ν, which will be denoted by νn →v ν if νn(A) → ν(A)
for all relatively compact set A of Rk \ {0}. Recall that a(t) = F←Z (1 − 1/t).
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Proposition 1. The finite dimensional distributions of the process {Yj , j ∈ Z} are multivari-
ate regularly varying and for each fixed integer h

lim
t→∞

tP((Y1, . . . , Yh) ∈ a(t)·) →v E[σα(X1)]ν(·) (10)

where the measure ν is characterized by

ν([x,y]c) = (1 − β)

h
∑

i=1

(−xi)
−α + β

h
∑

i=1

y−αi ,

for x = (x1, . . . , xh) ∈ [−∞, 0)h and y = (y1, . . . , yk) ∈ (0,∞]h, and β is defined in (4).

The special form of the measure ν which is concentrated on the axes is due to the asymptotic
independence (in the sense of extreme value theory) of the bivariate distributions of the
process {Yj , j ∈ Z}, regardless of the memory of the volatility process {σ(Xj), j ∈ Z}. In
fact, as will be clear from the proof in Section 4, a particular structure for the volatility
process is not needed.

Let us now describe the conditional distributions we will consider. Since we consider dilated
sets tA = {tx : x ∈ A}, where A ⊂ R

h for some integer h > 0 and t > 0 , it is natural to
consider cones, that is subsets C of [0,∞]h such that tx ∈ C for all x ∈ C and t > 0. Hence,
our discussion in this section is related to the concept of regular variation on cones or hidden
regular variation (see Resnick (2008), Das and Resnick (2011), Mitra and Resnick (2011)).
We endow R

h with the topology induced by any norm and [0,∞]h is the compactification
of [0,∞)h. A subset A of [0,∞]h \ {0} is relatively compact if its closure is compact. See
(Resnick, 2007, Chapter 6) for more details.

We are interested in cones C such that there exists an integer βC and a Radon measure νC on
C such that, for all relatively compact subsets A of C with νC(∂A) = 0,

lim
t→∞

P((Z1, . . . , Zh) ∈ tA)

(F̄Z(t))βC
= νC(A) . (11)

Intuitively, the number βC corresponds to the number of components of a point of a relatively
compact subset A of the cone C that must be separated from zero. For the simplicity and
clarity of exposition, we will restrict our considerations to the following type of cones. Let
k ≥ 1 and P1, . . . , Pk be nonempty subsets of {1, . . . , h} such that Pi 6⊂ Pj for any pair i, j,
though it is not assumed that Pu ∩ Pv = ∅ for u, v ≥ 1. To avoid trivialities, we also assume
that h ∈ ∪k

u=1Pu. Let then C be the cone defined by

C =

{

z ∈ [0,∞]h |
k
∏

u=1

(

∑

i∈Pu

zi

)

> 0

}

. (12)

In words, a vector z = (z1, . . . , zh) belongs to C if in each set Pu, 1 ≤ u ≤ k, we can find at least
one index i ∈ Pu such that zi > 0. This class of cones is of interest for several reasons. First,
it will allow to deal with practical examples. From a theoretical point of view, it is noteworthy
that this class is stable by intersection, and relative compactness in such a cone C is easily
characterized: a subset A is relatively compact in C if and only if there exists η > 0 such that
∑

i∈Pu
zi > η for all u = 1, . . . , k. Examples of such cones are C1 = {z1 > 0, z2 > 0, z3+z4 > 0}
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in [0,∞]4 and C2 = {z1 + z2 > 0, z2 + z3 > 0, z3 + z4 > 0, z4 + z5 > 0} in [0,∞]5; for a, b, c > 0,
{z1 > a, z2 > b, z3 > c} is relatively compact in C1 and {z2 > a, z4 > b} is relatively compact
in C2. More detailed examples will be given in Section 2.1.

Proposition 2. Assume that there exists ǫ > 0 such that

E[σ2hα+ǫ(X0)] < ∞ . (13)

Let C be one of the cones defined in (12). Then there exists an integer βC and a Radon measure
νC on C such that (11) holds and for all relatively compact sets A ⊂ C with νC(∂A) = 0, for
m > h and h′ ≥ 0, and for any Borel measurable set B ⊂ R

h′+1, we have

lim
t→∞

P(Y1,h ∈ tA ,Ym,m+h′ ∈ B)

(F̄Z(t))βC
= E

[

νC(σ(X1,h)−1 ·A)P(Ym,m+h′ ∈ B | X )
]

. (14)

Furthermore, for r = 1, . . . , h, there exist functions Lr such that for all s, s′ ≥ 1, u,v ∈
(0,∞)h,

lim
t→∞

P(u · Z1,h ∈ tsA,v · Zr,r+h−1 ∈ ts′A)

(F̄Z(t))βC
= Lr(A,u,v, s, s

′) . (15)

Some comments are in order. Note first that we assume that h < m. Otherwise, if m < h,
then vectors Ym,m+h′ and Y1,h may be asymptotically dependent. For example, if {Zj} is
i.i.d with the tail distribution as in (4), then P(Z2 + Z3 > t | Z1 + Z2 > t) → 1/2. We
do not think that this is of particular interest, since one is primary interested in estimating
distribution of future vector Ym,m+h′ based on the past observations Y1,h. It is easily seen
that the coefficient βC is the smallest integer ℓ for which there exists i1, . . . , iℓ ∈ {1, . . . , h}
such that zi1 > 0, . . . , ziℓ > 0 implies

∏k
u=1(

∑

i∈Pu
zi) > 0. The measure νC is cumbersome to

write precisely in general, but is easily obtained in each example. See Eq. (33) in the proof
of Proposition 2. The condition (13) obviously holds if σ(x) = ex or if σ is a polynomial. For
B = R

h′+1, (14) specializes to

lim
t→∞

P(σ(X1,h) · Z1,h ∈ tA)

(F̄Z(t))βC
= E[νC(σ(X1,h)−1 · A)] .

If νC(A) > 0, then E[νC(σ(X1,h)−1 · A)] > 0 and (14) implies that the extremogram defined
in (9) can be expressed as

ρ(A,B,m) =
E
[

νC(σ(X1,h)−1A)P(Ym,m+h′ ∈ B | X )
]

E[νC(σ(X1,h)−1 · A)]
. (16)

It may happen that Lr(A, ·) ≡ 0 for r = 2, . . . , h. Intuitively, this happens if u · Z1,h and
v·Zk,k+h−1 belonging simultaneously to tA implies that at least βC+1 coordinates of Z1,h+k−1

are large. This is the case for instance in Examples 1, 2 and 4. Otherwise, Lr may have quite
a complicated form, as in Example 3.

Let us finally note an important fact. In practice, the conditioning set A is given, not the
cone C. So it is important to know if the choice of the cone has any effect on the quantities
that will appear in the inference theory. The following Lemma shows that fortunately this is
not the case.

Lemma 3. Let A be a subset of [0,∞]h\{0}. If there exists two cones C and C′ such that (11)
hold, A is relatively compact in both C and C′, νC(A) > 0 and νC′(A) > 0, then βC = βC′ and
for all u ∈ (0,∞]h, νC(u ·A) = νC′(u ·A).
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2.1 Examples

Example 1. Fix some positive integer h and consider the cone C = (0,∞]h. Then βC = h and
the measure νC is defined by

νC(dz1, . . . ,dzh) = αh
h
∏

i=1

z−α−1i dzi .

Consider the set A defined by A = {(z1, . . . , zh) ∈ R
h
+ | z1 > 1, . . . , zh > 1}. If (13) holds,

then for m > h, and B ∈ R
h′+1, Proposition 2 yields

lim
t→∞

P(Ym,m+h′ ∈ B | Y1 > t, . . . , Yh > t) =
E

[

∏h
i=1 σ

α(Xi)P(Ym,m+h′ ∈ B | X )
]

E

[

∏h
i=1 σ

α(Xi)
] .

In particular, setting B = (−∞, y] and h′ = 0, the limiting conditional distribution of Ym

given that Y1, . . . , Yh are simultaneously large is given by

Ψh(y) = lim
t→∞

P(Ym ≤ y | Y1 > t, . . . , Yh > t) =
E

[

∏h
i=1 σ

α(Xi)FZ(y/σ(Xm))
]

E

[

∏h
i=1 σ

α(Xi)
] . (17)

Finally, note that the function Lr defined in (15) vanish for r = 2, . . . , h.

Example 2. Consider now C = (0,∞]. Another quantity of interest is the limiting distribution
of the sum of h′ consecutive values, given that past values are extreme. To keep notation
simple, consider h′ = 1 and, for m > 1,

Ψ∗(y) = lim
t→∞

P(Ym + Ym+1 ≤ y | Y1 > t) =
E[σα(X1)P(Ym + Ym+1 ≤ y | X )]

E[σα(X1)]
.

Estimating this distribution yields for instance empirical quantiles of the sum of future returns,
given the present one is large.

Example 3. Consider C = [0,∞] × [0,∞] \ {0}. Then βC = 1 and the measure νC is defined
by

νC(dz) = α{z−α−11 d1δ0(dz2) + δ0(dz1)z
−α−1
2 dz2} ,

where δ0 is the Dirac point mass at 0. Consider the set A defined by A = {(z1, z2) ∈ R
2
+ |

z1 + z2 > 1}. If E[σα+ǫ(X1)] < ∞ for some ǫ > 0, then Proposition 2 yields

lim
t→∞

P(Ym,m+h′ ∈ B | Y1 + Y2 > t) =
E
[

P(Ym,m+h′ ∈ B | X )(σα(X1) + σα(X2))
]

E[σα(X1)] + E[σα(X2)]
.

In particular, take B = (−∞, y] and h′ = 0. The limiting conditional distribution of Ym given
Y1 + Y2 is large is defined by

Λ(y) = lim
t→∞

P(Ym ≤ y | Y1 + Y2 > t) =
E[{σα(X1) + σα(X2)}FZ(y/σ(Xm)]

E[σα(X1) + σα(X2)]
.

Finally, the function L2 equals

L2(A, u1, u2, v1, v2, s, s
′) =

(

1 + s

u2
∨ 1 + s′

v1

)−α

.
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Example 4. Consider the cone C = ([0,∞]2 \{0})× ([0,∞]2 \{0})× (0,∞]. Then βC = 2 and

νC(dz) = α3{z−α−11 dz1δ0(dz2) + δ0(dz1)z−α−12 dz2)}
× {z−α−13 dz3δ0(dz4) + δ0(dz3)z−α−14 dz4}z−α−15 dz5 .

Consider A = {(z1, z2, z3, z4, z5) ∈ R
5
+|z1 +z2 > 1, z3 +z4 > 1, z5 > 0}. and If E[σ3α+ǫ(X0)] <

∞ for some ǫ > 0, then we obtain, for m > 3,

lim
t→∞

P(Ym,m+h′ ∈ B | Y1 + Y2 > t, Y3 + Y4 > t, Y5 > t)

=
E
[

P(Ym,m+h′ ∈ B | X ){σα(X1) + σα(X2)}{σα(X3) + σα(X4)}σα(X5)
]

E[{σα(x1) + σα(X2)}{σα(X3) + σα(X4)}σα(X5)]
.

Here the functions Lr vanish for r ≥ 2.

Example 5. In this example, we illustrate Lemma 3. Let h = 4 and A = {z1 > a , z3+z4 > b}.
Then A is relatively compact in C1 = ([0,∞]2\{0})×([0,∞]2\{0}), C2 = (0,∞]×([0,∞]3\{0})
and C3 = [0,∞]4 \ {0}. Then it is easily seen that βC1 = βC2 = 2 and βC2 = 1, and for all
u ∈ [(0,∞]4, νC1(u−1 ·A) = νC2(u−1 ·A) = uα1 (uα3 + uα4 )a−αb−α and νC3(A) = 0.

3 Estimation

Let C be a cone defined in (12) and let A be a relatively compact subset of C such that
νC(A) > 0. To simplify the notation, assume that we observe Y1, . . . , Yn+m+h′ . An estimator
ρ̂n(A,B,m) is naturally defined by

ρ̂n(A,B,m) =

∑n
r=1 1{Yr,r+h−1∈Y(n:n−k)A}1{Yr+m,r+m+h′∈B}

∑n
r=1 1{Yr,r+h−1∈Y(n:n−k)A}

,

where k is a user chosen threshold and Y(n:1) ≤ · · · ≤ Y(n:n) are the increasing order statistics
of the observations Y1, . . . , Yn. We will also consider the case B = (−∞,y], i.e. the case of
the limiting conditional distribution of Ym,m+h′ given Y1,h ∈ tA, that means

ΨA,m,h′(y) = lim
t→∞

P(Ym,m+h′ ≤ y | Y1,h ∈ tA)

= ρ(A, (∞,y],m) =
E[νC(σ(X1,h)−1 · A)

∏h′

i=1 F (yi/σ(Xm+i))]

E[νC(σ(X1,h)−1 ·A)]
. (18)

An estimator Ψ̂n,A,m,h′ of ΨA,m,h′ is defined on R
h′+1 by

Ψ̂n,A,m,h′(y) =

∑n
r=1 1{Yr,r+h−1∈Y(n:n−k)A}1{Yr+m,r+m+h′≤y}

∑n
r=1 1{Yr,r+h−1∈Y(n:n−k)A}

. (19)

As usual, the bias of the estimators will be bounded by a second order type condition. Let
k be a non decreasing sequence of integers, let FY denote the distribution of Y and let
un = (1/F̄Y )←(n/k). Consider the measure defined on C by

µC(A) =
E[νC(σ(X1,h)−1 ·A)]

(E[σα(X)])βC
. (20)
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We introduce a rate of convergence:

vn(A) = E

[

sup
s≥1

∣

∣

∣

∣

P(Y1,h ∈ unsA | X )

(k/n)βC
− s−αβCµC(A)

∣

∣

∣

∣

]

. (21)

Lemma 4. If (4) and (13) hold, then limn→∞ vn(A) = 0.

We need also the following quantities, which are well defined when (13) holds. For r = 2, . . . , h
and measurable subsets B,B′ of Rh′+1, define

Rr(A,B,B′)

=
E
[

L(A,σ(X1,h),σ(Xk,k+h−1), 1, 1) × P(Ym,m+h′ ∈ B,Ym+k−1,m+h′+k−1 ∈ B′ | X )
]

µC(A)

+
E
[

L(A,σ(X1,h),σ(Xk,k+h−1), 1, 1) × P(Ym,m+h′ ∈ B′,Ym+k−1,m+h′+k−1 ∈ B | X )
]

µC(A)
.

(22)

For brevity, denote Rr(A,B) = Rr(A,B,B).

3.1 General result: weak dependence

We can now state our main result in the weak dependence setting, i.e. when absolute summa-
bility (2) of the autocovariance function of the process {Xj} holds. In order to simplify the
proof, and without loss of meaningful generality we will hereafter assume that the set A is
itself a cone. This assumptions is satisfied by all reasonable examples.

Theorem 5. Let (2), (4), (13) hold. Assume moreover that A is a relatively compact subcone
of C such that µC(A) > 0, that k/n → 0, n(k/n)βC → ∞ and

lim
n→∞

n(k/n)βC vn(A) = 0 . (23)

Then
√

n(k/n)βCµC(A){ρ̂n(A,B,m) − ρ(A,B,m)}
converges weakly to a centered Gaussian distribution with variance

ρ(A,B,m){1 − ρ(A,B,m)}

+

h∧(m−h)
∑

r=2

{

Rr(A,B) − 2ρ(A,B,m)Rr(A,B,Rh′+1) + ρ2(A,B,m)Rr(A,Rh′+1)
}

. (24)

If h = 1 or if the functions Lr defined in (15) are identically zero for r ≥ 2, then the limiting
covariance in (24) is simply ρ(A,B,m){1− ρ(A,B,m)}. Otherwise, the additional terms can
be canceled by modifying the estimator of ρ̂n(A,B,m). Assuming we have nh + m + h′ + 1
observations, we can define

ρ̃n(A,B,m) =

∑n
r=1 1{Y(r−1)h+1,rh∈Y(n:n−k)A}1{Y(r−1)h+m,(r−1)h+m+h′∈B}

∑n
r=1 1{Y(r−1)h+1,rh∈Y(n:n−k)A}

9



Noting that the events {Yr,r+h−1 ∈ A} are h-dependent conditionally on X , the proof of The-

orem 5 can be easily adapted to show that the limiting variance of
√

n(k/n)βC{ρ̃n(A,B,m)−
ρ(A,B,m)} is the same as in the case where Lr ≡ 0 for r = 2, . . . , h. But this is of course at
the cost of an increase of the asymptotic variance, due to a different sample size.

We can also obtain the functional convergence of the estimator Ψ̂n,A,m,h′ of the limiting
conditional distribution function ΨA,m,h′ , defined respectively in (19) and (18).

Corollary 6. Under the Assumptions of Theorem 5, and if moreover the distribution ΨA,m,h′

is continuous, then
√

n(k/n)βCµC(A){Ψ̂n,A,m,h′ − ΨA,m,h′}

converges in D(Rh′+1) to a Gaussian process. If h = 1 or if the functions Lr are identically
zero for r = 2, . . . , h, then the limiting process can be expressed as B ◦ΨA,m,h′, where B is the
standard Brownian bridge.

Note that a sufficient condition for ΨA,m,h′ to be continuous is that FZ is continuous.

3.2 General result: long memory

We now state our results in the framework of long memory. This requires several additional
notions, such as multivariate Hermite expansion and Hermite ranks which are recalled in
Appendix B.

Define the functions Gn and G for (x,x′) ∈ R
h × R

h′+1 and s ≥ 1 by

Gn(A,B, s,x,x′) =
P(σ(x) · Z1,h ∈ unsA)

(k/n)βC
P(σ(x′) · Zm,m+h′ ∈ B) (25)

G(A,B,x,x′) = lim
n→∞

Gn(A,B, 1,x,x′) =
νC(σ(x)−1 ·A)

E[σα(X1)])βC
P(σ(x′) · Zm,m+h′ ∈ B) . (26)

Let τn(A,B, s) and τ(A,B) be the Hermite ranks with respect to (X1,h,Xm,m+h′) of the
functions Gn(A,B, s, ·, ·) and G(A,B, ·, ·), respectively. Define τ(A) = τ(A,Rd).

Assumption 1. For large n, infs τn(A,B, s) = τ(A,B) and τ(A,B) ≤ τ(A).

This assumption is fulfilled for example when σ(x) = exp(x), in which case all the considered
Hermite ranks are equal to one, or if σ is an even function with Hermite rank 2 (such as
σ(x) = x2), in which case they are equal to two. The modification of Theorem 5 reads as
follows.

Theorem 7. Assume that {Xj} is the long memory Gaussian sequence with covariance given
by (3). Assume that A is a relatively compact subcone of C such that νC(A) > 0. Let Assump-
tion 1 and (13) hold, and k/n → 0, n(k/n)βC → ∞ and

lim
n→∞

{

n(k/n)βC ∧ γ−τ(A,B)/2
n

}

vn(A) = 0 . (27)

10



1. If n(k/n)βCγ
τ(A,B)
n → 0, then

√

n(k/n)βCµC(A){ρ̂n(A,B,m) − ρ(A,B,m)}

converges to a centered Gaussian distribution with variance given in (24)

2. If n(k/n)βCγ
τ(A,B)
n → ∞, then γ

−τ(A,B)/2
n {ρ̂n(A,B,m) − ρ(A,B,m)} converges weakly

to a distribution which is non-Gaussian except if τ(A,B) = 1.

The exact definition of the limiting distribution will be given in Section 4. It suffices to
mention here that this distribution depends on H and τ(A,B). The meaning of the above
result is the following. In the long memory setting, it is still possible to obtain the same limit
as in the weakly dependent case, if k (i.e., the number of high order statistics used in the
definition of the estimators) is not too large, so that both the bias and the long memory effect
are canceled.

Define a new Hermite rank τ∗(A) = infy∈Rh′+1 τ(A, (∞,y]).

Corollary 8. Under the Assumptions of Theorem 7, if the distribution function ΨA,m,h′ is
continuous and if τ∗(A) ≤ τ(A), then

• If n(k/n)βCγ
τ∗(A)
n → 0, then

√

n(k/n)βCµC(A){Ψ̂n,A,m,h′ − ΨA,m,h′}

converges in D((−∞,+∞)h
′+1 to a Gaussian process. If h = 1 or if the functions Lr are

identically zero for r = 2, . . . , h, then the limiting process can be expressed as B◦ΨA,m,h′,
where B is the standard Brownian bridge.

• If n(k/n)βCγ
τ∗(A)
n → ∞, then γ

−τ∗(A)/2
n {Ψ̂n,A,m,h′−ΨA,m,h′} converges in D((−∞,+∞)h

′+1

to a process which can be expressed as JA,m,h′ ·ℵ where JA,m,h′ is a deterministic function
and ℵ is a random variable, which is non Gaussian except if τ∗(A) = 1.

The exact definition of the function JA,m,h′ and of the random variable ℵ will be given in
Section 4. Anyhow, they are not of much practical interest. In practice, the main goal will
be to choose the number k of order statistics used in the estimation procedure so that both
the bias and the long memory effect are canceled, and the limiting distribution of the weakly
dependent case can be used in the inference.

3.3 Examples

We now discuss the Examples introduced in Section 2.1. In order to evaluate the rate of
convergence (21), it is necessary to introduce a second order regular variation condition. We
follow here Drees (1998). This assumption is referred to as second order regular variation (SO).

Assumption 2 (SO). There exists a bounded non increasing function η∗ on [0,∞), regularly
varying at infinity with index −αζ for some ζ ≥ 0, and such that limt→∞ η∗(t) = 0 and there

11



exists a measurable function η such that for z > 0,

P(Z > z) = cz−α exp

(
∫ z

1

η(s)

s
ds

)

,

∃C > 0 , ∀s ≥ 0 , |η(s)| ≤ Cη∗(s) .

On account of Breiman’s lemma, if the tail of Z is regularly varying with index −α, then
the same holds for Y = σ(X)Z, as long as X and Z are independent, and E[σα(X)] < ∞.
Also, (SO) property is transferred from the tail of Z to Y ; See (Kulik and Soulier, 2011,
Proposition 2.1).

For the sake of simplicity and clarity of exposition, we will make in this section the usual
assumption that σ(x) = exp(x), so that the Hermite rank of σ is 1 and Assumption 1 is fulfilled
with the Hermite rank equal to one. This will avoid to define many auxiliary functions and
Hermite ranks. But the examples can of course be treated in a more general framework.
For the exponential function, (13) obviously holds for any h. Also, we will only state the
convergence results under the conditions which imply that the limiting distribution is the
same as in the weak dependence case, since this is the case of practical interest. We only treat
Examples 1 and 3 since they exhibit the two different possibility for the limiting distributions.
The computations for the other examples are straightforward.

3.3.1 Example 1 continued

Fix integers h ≥ 1 and m > h. Recall the formula (17) for the conditional distribution of Ym

given that Y1, . . . , Yh are simultaneously large. Its estimator Ψ̂n,h is defined by

Ψ̂n,h(y) =

∑n
r=1 1{Yr>Y(n:n−k),...,Yr+h−1>Y(n:n−k),Yr+m≤y}
∑n

r=1 1{Yr>Y(n:n−k),...,Yr+h−1>Y(n:n−k)}

with a user chosen k.

In this case, if (13) holds, then the functions Lr(A, ·) vanish for r = 2, . . . , h. Assumption 2
and (Kulik and Soulier, 2011, Proposition 2.8) imply that a bound for vn(A) is then given by

vn(A) = O(η∗(un)) . (28)

Corollary 9. Assume that σ(x) = exp(x). Let Assumption 2 hold. Let k be such that
k/n → 0, n(k/n)h → ∞, and

lim
n→∞

(n(k/n)h)1/2η∗(un) = 0 . (29)

In the weakly dependent case (2) or in the long memory case (3) if moreover n(k/n)hγn → 0,
then

√

n(k/n)h(Ψ̂n,h − Ψh) ⇒
(

E[σα(X1) · · · σα(Xh)]

Eh[σα(X1)]

)−1/2

B ◦ Ψh

weakly in D((−∞,∞)), where B is the standard Brownian bridge.
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3.3.2 Example 3 continued

Consider the estimation of

Λ(y) = lim
t→∞

P(Ym ≤ y | Y1 + Y2 > t) =
E[{σα(X1) + σα(X2)}FZ(y/σ(Xm))]

E[σα(X1) + σα(X2)]
.

An estimator if defined by

Λ̂n(y) =

∑n
r=1 1{Yr+Yr+1>Y(n:n−k)}1{Yr+m≤y}
∑n

r=1 1{Yr+Yr+1>Y(n:n−k)}
.

As argued before, if (13) holds, then the function L2 is equal to

L2(A, u1, u2, v1, v2, s, s
′) =

(

1 + s

u2
∨ 1 + s′

v1

)−α

.

Applying Lemma A.1, we obtain a bound for vn(A):

vn(A) = O

(

η∗(un) + u−1n

∫ un

0
F̄Z(s) ds

)

. (30)

Corollary 10. Assume that σ(x) = exp(x). Let Assumption 2 and holds. Let k be such that
k → ∞, k/n → 0 and

lim
n→∞

k1/2
(

η∗(un) + u−1n

∫ un

0
F̄Z(s) ds

)

= 0 .

In the weakly dependent case (2) or in the long memory case (3) if moreover kγn → 0, then

k1/2(Λ̂n − Λ) ⇒
(

E[σα(X1) + σα(X2)]

E[σα(X1)]

)−1/2

W

weakly in D((−∞,∞)), where W is a Gaussian process with covariance

cov(W(y),W(y′)) = Λ(y ∧ y′) − 2Λ(y)Λ(y′)

+
E[σα(X2){FZ(y/σ(Xm))FZ(y′/σ(Xm+1)) + FZ(y/σ(Xm))FZ(y′/σ(Xm+1))}]

E[σα(X1) + σα(X2)]
.

Remark. If the estimator if modified by taking only every other observation,

Λ̃n(y) =

∑n
r=1 1{Y2(r−1)+1+Y2r>Y(n:n−k)}1{Yr+m≤y}
∑n

r=1 1{Y2(r−1)++Y2r>Y(n:n−k)}
.

then
√
k(Λ̃n−Λ) converges weakly to 2B◦Λ where B is the standard Brownian bridge. Indeed,

random vectors {Y1, Y2}, {Y3, Y4}, . . . are conditionally independent given X but the price to
be paid is the bigger variance.
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4 Proofs

We start by proving the limiting behaviour of the conditional distribution (8)

Lemma 11. Suppose that assumptions of Proposition 1 are fulfilled. Then

lim
t→∞

P(Ym ≤ y | Y0 > t) =
E[σα(X0)FZ(y/σ(Xm))]

E[σα(X0)]
. (31)

Proof. Conditioning on the sigma-field X yields

P(Ym ≤ y, Y0 > t) = E[P(σ0Z0 ≤ y, σmZm > t)|X ] = E[P(σ0Z0 ≤ y|X )P(σmZm > t|X )]

= E[FZ(y/σ0)F̄ (t/σ0)]

Applying Potter’s bound (see (Bingham et al., 1989, Theorem 1.5.6)), yields, for some con-
stant C and ǫ > 0

FZ(y/σ0)F̄ (t/σ0)

F̄ (t)
≤ C(σ0 ∨ 1)α+ǫ .

Thus, the assumption E[σα+ǫ(Xm)] < ∞ and the bounded convergence theorem imply that

lim
t→∞

P(Ym ≤ y, Y0 > t)

F̄ (t)
= E

[

lim
t→∞

F (y/σm)F̄ (t/σ0)

F̄ (t)

]

= E[σα(X0)FZ(y/σ(Xm))] .

Finally, noting that by (6) we have P(Y0 > t) ∼ E[σα(X0)]F̄ (t) as t → ∞ yields (8).

Proof of Proposition 1. Since the random variables Z1, . . . , Zh are i.i.d., for each (u1, . . . , uh) ∈
[0,∞]h, x ∈ [−∞, 0)h and y ∈ (0,∞]h, it holds that

lim
t→∞

tP(a−1(t)(u1Z1, . . . , uhZh) ∈ [x,y]c)

= (1 − β)

h
∑

i=1

uαi |xi|−α + β

h
∑

i=1

uαi y
−α
i =

h
∑

i=1

uαi να,β([xi, yi]
c) ,

where να,β is the Radon measure on [−∞,∞] \ {0} defined by

να,β(dx) = α{(1 − β)(−x)−α−11{x<0} + βx−α−11{x>0}}dx .

Moreover, by Potter’s bound, for any ǫ > 0, there exists a constant C (which also depends
on x and y) such that

tP(a−1(t)(u1Z1, . . . , ukZk) ∈ [x,y]c) ≤ C

k
∑

i=1

(ui ∨ 1)α+ǫ . (32)

Thus, we can apply the bounded convergence Theorem and obtain

lim
t→∞

tP(a−1(t)(σ(X1)Z1, . . . , σ(Xk)Zk) ∈ [x,y]c)

= E[ lim
t→∞

tP(a−1(t)(σ(x1)Z1, . . . , σ(Xk)Zk) ∈ [x,y]c | X )] = E[σα(X0)]

k
∑

i=1

να,β([xi, yi]
c) .
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Proof of Proposition 2. Let C be a cone of type (12) and let βC be the smallest integer ℓ
for which there exists i1 < · · · < iℓ ∈ {1, . . . , h} such that zi1 > 0, . . . , ziℓ > 0 implies
∏u

i=1(
∑

i∈Pu
zi) > 0. Such an integer exists since obviously zi > 0 for all i ∈ {1, . . . , h} implies

that
∏u

i=1(
∑

i∈Pu
zi) > 0. Moreover, since βC is the smallest such integer, then it clearly

holds conversely that
∏u

i=1(
∑

i∈Pu
zi) > 0 implies that at least βC among zi, i = 1, . . . , h, are

positive. Let P ∗ be the sets of βC-tuples i = (i1, . . . , iβC
) ∈ {1, . . . , h}βC such that ziq > 0 for

q = 1, . . . , βC implies that z ∈ C. We now prove (11). It suffices to prove it for sets A of the
form A = {z ∈ [0,∞]h |∑i∈Pu

zi ≥ au, u = 1, . . . , k}, where au > 0, u = 1, . . . , k. By relative
compactness, there exist η > 0 and i = (i1, . . . , iβC

) ∈ P ∗ such that zij > η, 1 ≤ j ≤ βC .
Moreover, by independence, asymptotically there is only one such i ∈ P ∗, i.e.

P(Z1,h ∈ tA)

(F̄Z(t))βC
∼
∑

i∈P ∗

P(Z1,h ∈ tA ,Zi1 > tη, . . . , ZiβC
> tη)

(F̄Z(t))βC
,

since by independence it holds that for i 6= i′ ∈ P ∗,

lim
t→∞

P(Zi1 > tη, . . . , ZiβC
> tη , Zi′1

> tη, . . . , Zi′βC
> tη)

(F̄Z(t))βC
= 0 .

Let us now consider one arbitrary i ∈ P ∗, and for clarity assume that i = (1, . . . , βC). For
any ǫ > 0, again by independence, it holds that

P(Z1,h ∈ tA ,Z1 > tη, . . . , ZβC
> tη)

(F̄Z(t))βC

∼ P(Z1,h ∈ tA , Z1 > tη, . . . , ZβC
> tη,ZβC+1 ≤ tǫ, . . . , Zh ≤ tǫ)

(F̄Z(t))βC
.

Fix some arbitrary ζ > 0, ζ < infku=1 au. Then ǫ can be chosen small enough, so that the last
term is less than P((Z1, . . . , ZβC

) ∈ Aζ) where

Aζ = {z1, . . . , zβC
|

∑

i∈Pu∩{1,...,βC}

zi ≥ au − ζ, u = 1, . . . , k} .

Thus, we obtain

lim sup
t→∞

P(Z1,h ∈ tA ,Z1 > tη, . . . , ZβC
> tη)

(F̄Z(t))βC

≤ lim sup
t→∞

P((Z1, . . . , ZβC
) ∈ tAζ)

(F̄Z(t))βC
= αβC

∫

Aζ

βC
∏

i=1

z−α−1i dzi .

Moreover, limζ→0

∫

Aζ

∏βC

i=1 z
−α−1
i dzi =

∫

A0

∏βC

i=1 z
−α−1
i dzi, thus it actually holds that

lim sup
t→∞

P(Z1,h ∈ tA ,Z1 > tη, . . . , ZβC
> tη)

(F̄Z(t))βC
≤ αβC

∫

A0

βC
∏

i=1

z−α−1i dzi .

Conversely, for the lower bound, it obviously holds that

P(Z1,h ∈ tA ,Z1 > tη, . . . , ZβC
> tη)

(F̄Z(t))βC
≥ P((Z1, . . . , ZβC

) ∈ tA0)

(F̄Z(t))βC
→ αβC

∫

A0

βC
∏

i=1

z−α−1i dzi .
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Comparing the lower bound and the upper bound and summing over i ∈ P ∗ yields

lim
t→∞

P(Z1,h ∈ tA)

(F̄Z(t))βC
= αβC

∑

i∈P ∗

∫

A0(i)

βC
∏

q=1

z−α−1iq
dziq ,

where i = (i1, . . . , iβC
), A0(i) = {(zi1 , . . . , ziβC ) |∑i∈Pu∩{i1,...,iβC}

zi ≥ au, u = 1, . . . , k}. This

proves that the measure νC has the following expression

νC(dz) = αβC

∑

i∈P ∗

βC
∏

q=1

z−α−1iq
dziq

∏

i/∈{i1,...,iβC}

δ0(dzi) . (33)

where δ0 denotes the Dirac point measure at 0.

We now prove (14). By the characterization of relatively compact sets given above, if A is
relatively compact in C, then for u ∈ (0,∞)h, u−1 · A is also relatively compact in C. Thus
(11) implies that

lim
t→∞

P(u · Z1,h ∈ tA)

(F̄Z(t))βC
= νC(u

−1 ·A) . (34)

It follows from Potter’s bound and the characterization of a relatively compact set A of C,
that for any ǫ > 0, there exists a constant C (which depends on A and ǫ) such that, for all
u ∈ (0,∞)h, all t ≥ 1,

P(u · Z1,h ∈ tA)
(

F̄Z(t)
)βC

≤ P(∃i1, . . . , iβC
∈ {1, . . . , h} , uijZij > η)
(

F̄Z(t)
)βC

≤ C
∑

1≤i1<···<iβC≤h

βC
∏

q=1

(uiq ∨ 1)α+ǫ .

Thus, denoting M(u) =
∏h

i=1(ui ∨ 1)αǫ, we obtain that there exists a constant C (which
depends on A and ǫ) such that

sup
t≥1

P(u · Z1,h ∈ tA)

(F̄Z(t))βC
≤ CM(u) . (35)

Assumption (13) implies that E[M(σ(X1,h))] < ∞. Then (34), (35) and bounded convergence
yield (14). We now prove (15). For r ≥ 2, let Cr be the subcone of [0,∞]h+r−1 defined by

(z1, . . . , zh+r−1) ∈ Cr ⇐⇒ (z1, . . . , zh) ∈ C , (zr, . . . , zh+r−1) ∈ C .

For u = 0, . . . , k, define P r
u = r−1+Pu, i.e. i ∈ P r

u if and only if i− r+1 ∈ Pu (which implies
that i ≥ r). Then

(z1, . . . , zh+r−1) ∈ Cr ⇐⇒
k
∏

u=1

(

∑

i∈Pu

zi

)

k
∏

u=1





∑

i∈P r
u

zi



 > 0 .

The sum over the sets P r
u which include one of the sets Pv can be removed from the second

product, and thus we see that Cr is of the form (12) and (11) holds. Necessarily, it holds
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that βCr ≥ βC . Indeed, if there exists only ℓ < βC indices i1, . . . , iℓ such that zi > 0,
then the first product above is zero, hence (z1, . . . , zh+r−1) /∈ Cr. Let now Ar(s, s

′) be the
subset of [0,∞]h+r−1 such that (z1, . . . , zh+r−1) ∈ Ar(s, s

′) if and only if (z1, . . . , zh) ∈ sA
and (zr, . . . , zh+r−1) ∈ s′A. If A is relatively compact in C, then Ar(s, s

′) is also relatively
compact in Cr and thus, it holds that

lim
t→∞

P(Z1,h ∈ tsA , Zr,r+h−1 ∈ ts′A)

(F̄Z(t))βCr
= lim

t→∞

P(Z1,r+h−1 ∈ tAr(s, s
′))

(F̄Z(t))βCr
= νCr(Ar(s, s

′)) ,

and (15) follows straightforwardly, with Lr ≡ 0 if βCr > βC .

Proof of Lemma 3. By assumption, we have

lim
t→∞

P((Z1, . . . , Zh) ∈ tA)

(F̄Z(t))βC
= νC(A) , lim

t→∞

P((Z1, . . . , Zh) ∈ tA)

(F̄Z(t))βC′
= νC′(A) ,

with νC(A) ∈ (0,∞) and νC′(A) ∈ (0,∞). This implies that βC = βC′ and νC(A) = νC′(A). It
easily follows that for all u ∈ (0,∞]h, νC(u ·A) = νC′(u · A).

We now prove the results of Section 3. For clarity of notation, denote σi = σ(Xi), νC = ν,
µC = µ and define g(t) = tβC and T (s) = s−αβC . Recall that FY denotes the distribution
function of Y and un = (1/F̄Y )←(n/k). By (4), (13), Breiman’s Lemma applies and thus it
holds that F̄Y (un) ∼ E[σα

0 ]F̄Z(un) and

lim
n→∞

g(k/n)

g(F̄Z(un))
= (E[σα

0 ])βC .

Whenever there is no risk of confusion, we omit dependence on h, m, h′ and A in the notation.
For r = 1, . . . , n, define the following random variables

Wr,n(s) = 1{Yr,r+h−1∈unsA} , s ≥ 1 , Vr(B) = 1{Yr+m,r+m+h′∈B}
. (36)

The choice of un implies that (recall the definitions (16) and (20) of ρ(A,B,m) and µ(A)),

lim
n→∞

E[Wr,n(s)]

g(k/n)
= T (s)µ(A) , (37)

lim
n→∞

E[Wr,n(s)Vr(B)]

g(k/n)
= T (s)µ(A)ρ(A,B,m) . (38)

Recall the definition (25) of the function Gn:

Gn(A,B, s,x,x′) =
P(σ(x) · Z1,h ∈ unsA)

gj(k/n)
P(σ(x′) · Zm,m+h′ ∈ B)

Also, define, for s ≥ 1 and x ∈ R
h and x′ ∈ R

h′+1, the function Ln by

Ln(s,x) =
P(σ(x) · Z1,h ∈ unsA)

g(k/n)
, (39)

17



With these notations, we have,

Ln(s,Xr,r+h−1) =
E[Wr,n(s) | X ]

g(k/n)
,

Gn(A,B, s,Xr,r+h−1,Xr+m,r+m+h′) =
E[Wr,n(s)Vr(B) | X ]

g(k/n)
.

For x ∈ R
h, denote

L(x) =
ν(σ(x)−1 · A)

(E[σα(X)])δ
, (40)

so that E[L(X1,h)] = µ(A).

Proof of Lemma 4. Write

Ln(s,x) − T (s)L(x)

=

{

g(F̄Z(uns))

g(k/n)
− (E[σα(X)])−δ T (s)

}

P(σ(x) · Z1,h ∈ unsA)

g(F̄Z(uns))

+ (E[σα(X)])−δT (s)

{

P(σ(x) · Z1,h ∈ unsA)

g(F̄Z(uns))
− (E[σα(X)])δL(x)

}

.

Thus, recalling the definition of vn from (21), we have

vn(A) ≤ sup
s≥1

∣

∣

∣

∣

g(F̄Z(uns))

g(k/n)
− (E[σα(X)])−δ T (s)

∣

∣

∣

∣

E[M(σ(X1,h))]

+ (E[σα(X)])−δE

[

sup
s≥1

∣

∣

∣

∣

P(σ(X1,h) · Z1,h ∈ unsA | X )

g(F̄Z(uns))
− (E[σα(X)])δL(X1,h)

∣

∣

∣

∣

]

For all x ∈ R
h, we have

lim
n→∞

sup
s≥1

∣

∣

∣

∣

P(σ(x) · Z1,h ∈ unsA)

g(F̄Z(uns))
− (E[σα(X)])δL(x)

∣

∣

∣

∣

= 0 .

Moreover, by (35),

sup
s≥1

∣

∣

∣

∣

P(σ(x) · Z1,h ∈ unsA)

g(F̄Z(uns))
− (E[σα(X)])δL(x)

∣

∣

∣

∣

≤ CM(σ(x)) .

Thus, by (13) and bounded convergence,

lim
n→∞

E

[

sup
s≥1

∣

∣

∣

∣

P(σ(X1,h) · Z1,h ∈ unsA | X )

g(F̄Z(uns))
− (E[σα(X)])δL(X1,h)

∣

∣

∣

∣

2
]

= 0 .

Since g ◦ F̄ is regularly varying at infinity with negative index, by (Bingham et al., 1989,
Theorem 1.5.2), the convergence of g(F̄Z(uns))/g(k/n) to (E[σα(X)])−δT (s) is uniform on
[1,∞). Thus we have proved that vn(A) → 0.
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Proof of Theorem 5. For s ≥ 1, define

K(B, s) = T (s)µ(A)ρ(A,B,m) , K̃n(B, s) =
1

ng(k/n)

n
∑

r=1

Wr,n(s)Vr(B) ,

ẽn(s) = K̃n(Rh′+1, s) =
1

ng(k/n)

n
∑

r=1

Wr,n(s) , ξn =
Y(n:n−k)

un
.

With this notation, we have

ρ̂n(A,B,m) =
K̃n(B, ξn)

ẽn(ξn)

Equations (38) and (37) imply, respectively, that

lim
n→∞

E[K̃n(B, s)] = K(B, s) lim
n→∞

E[ẽn(s)] = T (s)µ(A).

With this in mind, we split

ρ̂n(A,B,m) − ρ(A,B,m)

=
K̃n(B, ξn) −K(B, ξn)

ẽn(ξn)
− ρ(A,B,m)

ẽn(ξn)
{ẽn(ξn) − µ(A)T (ξn)} . (41)

Thus, we only need to find the correct norming sequence wn and asymptotic distribution in
D([a, b]) for any 0 < a < b of the sequence of processes wn{K̃n(B, ·) −K(B, ·)}. To do this,
define further

Kn(B, s) = E[K̃n(B, s)] . (42)

Then

K̃n(B, s) −K(B, s) = K̃n(B, s) −Kn(B, s) + Kn(B, s) −K(B, s) .

The term Kn(B, s)−K(B, s) is a deterministic bias term that will be dealt with by the second
order condition (23). Write K̃n −Kn = (ng(k/n))−1/2En,1 + En,2 with

En,1(B, s) =
1

√

ng(k/n)

n
∑

r=1

{Wr,n(s)Vr(B) − E[Wr,n(s)Vr(B) | X ]} , (43)

En,2(B, s) =
1

ng(k/n)

n
∑

r=1

E[Wr,n(s)Vr(B) | X ] −Kn(B, s)

=
1

n

n
∑

r=1

{Gn(A,B, s,Xr,r+h−1,Xr+m,r+m+h′) −Kn(B, s)} . (44)

The term in (43) will be called the i.i.d. term. It is a sum of conditionally independent
random variables. The term in (44) will be called the dependent term. It is a function of the
dependent vectors (Xr,r+h−1,Xr+m,r+m+h′).

We now state some claims whose proofs are postponed to the end of this section. The
implication of Claims 1 and 3 is, in particular, that in the weakly dependent case only the
i.i.d. part contributes to the limit.
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Claim 1. The process En,1 converges in the sense of finite-dimensional distributions to a
Gaussian process W with covariance

(E[σα(X1)])δcov(W (B, s),W (B′, s′))

= E

[

L1(A,σ(X1,h),σ(X1,h), s, s′) × P(Ym,m+h′ ∈ B,Ym,m+h′ ∈ B′ | X )
]

+

h∧(m−h)
∑

r=2

E

[

Lr(A,σ(X1,h),σ(Xr,r+h−1), s, s
′)

× {P(Ym,m+h′ ∈ B,Ym+r−1,m+h′+r−1 ∈ B′ | X )

+ P(Ym,m+h′ ∈ B′,Ym+r−1,m+h′+r−1 ∈ B | X )}
]

, (45)

where the functions Lr are defined in (15).

Claim 2. For each fixed B, En,1(B, ·) is tight in D([a, b]) for each 0 < a < b.

This claim is proved in Lemma C.3.

The previous two statements are valid in both weakly dependent and long memory case. The
next one may not be valid in the long memory case. See Section 3.2.

Claim 3. In the weakly dependent case En,2(B, ·) = OP (
√
n), uniformly with respect to

s ∈ [a, b] for any 0 < a < b.

The next claim is proved in (Kulik and Soulier, 2011, Corollary 2.4).

Claim 4. ξn − 1 = oP (1).

The last thing we need is the negligibility of the bias term.

Claim 5. For any a > 0, sups≥a supB |Kn(B, s) −K(B, s)| = O(vn(A)).

Therefore if ng(k/n) → ∞ and (23) holds (i.e. ng(k/n)vn(A) → 0), then

√

ng(k/n){K̃n(B, ·) −K(B, ·), ẽn(·) −K(Rd, ·)} ⇒ (W (B, ·),W (Rh′+1, ·)) .

This convergence and the decomposition (41) imply

√

ng(k/n)µ(A){ρ̂n(A,B,m) − ρ(A,B,m)} →d W (B, 1) − ρ(A,B,m)W (Rh′+1, 1) .

This distribution is Gaussian. Applying (45) and the fact that ρ(A,Rh′+1,m) = 1, it is easily
checked that its variance is given by (24). This concludes the proof of Theorem 5.

We now prove the claims.

Proof of Claim 1. For r = 1, . . . , n, denote

ζn,r(B, s) =
1

√

ng(k/n)
Wr,n(s)Vr(B) .
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In order to prove our claim, we apply the central limit theorem for m-dependent random
variables, see Orey (1958). Let C(B,B′, s, s′) denote the quantity in the right hand side
of (45). We need to check that

cov

(

n
∑

r=1

ζn,r(B, s),

n
∑

r=1

ζn,r(B
′, s′) | X

)

→P C(B,B′, s, s′) , (46)

n
∑

r=1

E[ζ4n,r(B, s) | X ] →P 0 . (47)

By standard Lindeberg-Feller type arguments, this proves the one-dimensional convergence.
The finite-dimensional convergence is proved by similar arguments and by computing the
asymptotic covariances. We now prove (46) and (47).

For u ≥ 1, x,x′ ∈ R
h, denote

Ln,u(A,x,x′, s, s′) =
P(σ(x) · Z1,h ∈ unsA,σ(x′) · Zu,u+h−1 ∈ uns

′A)

g(F̄Z(un))
.

The functions Ln,u converge in L1(X1,h,Xu,u+h−1) to the functions Lu defined (15). For
u > h, Z1,h and Zu,u+h−1 are independent, so Ln,u converges a.s. and in L1(X1,h,Xu,u+h−1)
to 0.

The random variables ζn,r are m + h′ dependent. Thus,

cov

(

n
∑

r=1

ζn,r(B, s),
n
∑

r=1

ζn,r(B
′, s′) | X

)

=
n
∑

r=1

cov(ζn,r(B, s), ζn,r(B
′, s′) | X )

+
n
∑

r=1

m+h′
∑

u=1

cov(ζn,r(B, s), ζn,j+u(B′, s′) | X ) (48)

+
n
∑

r=1

m+h′
∑

u=1

cov(ζn,j+u(B, s), ζn,r(B
′, s′) | X ) . (49)

For u = 1, . . . , h ∧ (m− h) it is easily seen that

n
∑

r=1

cov(ζn,r(B, s), ζn,r+u(B′, s′) | X )

∼ g(F̄Z(un))

ng(k/n)

n
∑

r=1

Ln,u(Xr,r+h−1,Xr+u,r+u+h−1, s, s
′)

× P(Yr+m,r+m+h ∈ B,Yr+u+m,r+u+m+h′ ∈ B′ | X )

→P
E
[

Lu(A,X1,h,Xu,h+u−1, s, s
′)P(Ym,m+h ∈ B,Yu+m,u+m+h′ ∈ B′ | X )

]

(E[σα(X)])δ
.

This yields the right-hand side of (45), so we must prove that the terms in (48) and (49) are
negligible. If h > m− h, then for large n and m− h < u ≤ h, we have (uns

′A) ∩ B = 0, so,
for all r = 1 . . . , n,

P
(

Yr,r+h−1 ∈ unsA,Yr+u,r+u+h−1 ∈ uns
′A,

Yr+m,r+m+h ∈ B,Yr+u+m,r+u+m+h′ ∈ B′ | X
)

= 0 .
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For u > h, then as mentioned above, Lu(A, ·, ·, s, s′) converges to 0 in L1(X1,h,Xu,u+h−1) so

n
∑

r=1

cov(ζn,r(B, s), ζn,r+u(B′, s′) | X ) →P 0 .

This proves (46). Next, since ζn,r are indicators and applying (38)

n
∑

r=1

E[ζ4n,r(B, s)] ≤ C
E[W1,n(s,A)V1(B)]

ng(k/n)
→ 0 .

This proves (47) and the weak convergence of finite dimensional distributions.

Proof of Claim 3. By definition of the functions Ln and Gn (cf. (39) and (25)), it clearly
holds that

|Gn(A,B, s,Xr,r+h−1,Xr+m,r+m+h′)| ≤ Ln(s,Xr,r+h−1) .

We apply the variance inequality (B.3) in the weak dependence case to get

var(En,2(B, s)) ≤ C

n
var(Gn(A,B, s,X1,h,X1+m,1+m+h′)) ≤ 1

n
E[L2

n(s,X1,h)] .

By (35), Ln(s,x) ≤ CM(σ(x)). Thus, by (13), the right hand side is uniformly bounded, thus
var(En,2(B, s)) = O(1/n) and for any fixed s > 0,

√
nEn,2(B, s) = OP (1). Tightness follows

from Lemma C.4, thus En,2(B, ·) converges uniformly to 0 on any compact set of (0,∞].

Proof of Claim 5. Consider now the bias term Kn −K. Recall that (see (42) and (38))

Kn(B, s) = E[K̄n(B, s)] → T (s)µ(A)ρ(A,B,m) = K(B, s)

Therefore, Kn(B, s) converges pointwise to K(B, s). The goal here is to show that this
convergence is uniform. Using the definition of Kn, (39) and (25) we have

Kn(B, s) = E[Gn(A,B, s,X1,h,Xm,m+h′)] = E[Ln(s,X1,h)P(σ(Xm,m+h′) · Zm,m+h′ ∈ B | X )] .

Using this definition and recalling the formula for ρ(A,B,m) (see (16))

K(B, s) = T (s)E[L(X1,h)P(σ(Xm,m+h′) · Zm,m+h′ ∈ B | X )] .

Therefore, recalling the definition (21) of vn(A), we obtain that

|Kn(B, s) −K(B, s)| ≤ E

[

sup
s≥1

|Ln(s,X1,h) − T (s)L(X1,h)|
]

= vn(A) .

Proof of Corollary 6. In the following, y stands for the set (−∞,y] in the previous notation.
For y ∈ R

h′+1, rewrite the decomposition (41) in the present context to get

Ψ̂n(y) − Ψ(y) =
K̃n(y, ξn) −K(y, ξn)

ẽn(ξn)
− Ψ(y)

ẽn(ξn)
{ẽn(ξn) − µ(A)T (ξn)} .

Thus we need only prove that the sequence of suitably normalized processes K̃n(s,y) −
Kn(y, s) converge weakly to the claimed limit. The convergence of finite dimensional distri-
butions follows from Theorem 5 and the tightness follows from Lemmas C.3 and C.4.
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Proof of Theorem 7. Claims 1, 2, 4 and 5 hold under the assumptions of Theorem 7. Thus,
the result will follow if we prove a modified version of Claim 3.

Claim 6. If 2τ(A,B)(1 − H) < 1, then γ
−τ(A,B)/2
n En,2(A,B, ·) converges weakly uniformly

on compact sets of (0,∞] to a process T · Z(A,B) where the random variable Z(A,B) is
in a Gaussian chaos of order τ(A,B) and its distribution depends only on the Gaussian
process {Xn}.

For any d ∈ N
∗, q ∈ N

d and x ∈ R
d, denote

Hq(x) =
d
∏

i=1

Hqi(xi) .

Define Xj = (Xj+1, . . . ,Xj+h,Xj+m, . . . ,Xj+m+h′). The Hermite coefficients of Gn(A,B, s, ·)
and G with respect to X0 can be expressed, for q ∈ N

h+h′+1, as

Jn(q, s) = E[Hq(X0)Gn(A,B, s,X0)] , J(q) = E[Hq(X0)G(X0)] .

Since Gn(A,B, s, ·) converges to T (s)G(·) in Lp(X0) for some p > 1, Jn(q, s) converges to
s−αδJ(q). Let U be an (h + h′ + 1) × (h + h′ + 1) matrix such that UU ′ is equal to the
inverse of the covariance matrix of X0. Define J∗n(q, s) = E[Hq(UX0)Gn(A,B, s, UX0)] and
J∗(q) = E[Hq(UX0)G(X0)]. Under Assumption 1, the function Gn can be expanded for
x ∈ R

h+h′+1 as

Gn(A,B, s,x) − E[Gn(A,B, s,X0)] =
∑

|q|=τ(A,B)

J∗n(q, s)

q!
Hq(Ux) + rn(s,x) ,

where rn is implicitly defined and has Hermite rank at least τ(A,B) + 1 with respect to UX0.
Denote Rn(s) = n−1

∑n
r=1 rn(s,Xj). Applying (B.3), we have

var (Rn(s)) ≤ C

(

γτ(A,B)+1
n ∨ 1

n

)

var(Gn(A,B, s,X0)) ≤ C

(

γτ(A,B)+1
n ∨ 1

n

)

E[L2
n(s,X1,h)] .

By Assumption (13), E[L2
n(s,X1,h)] is uniformly bounded, thus var(Rn(s)) = o(γ

τ(A,B)
n ) and

γ
−τ(A,B)
n Rn(s) converges weakly to zero. The convergence is uniform by an application of

Lemma C.1.

Thus, the asymptotic behaviour of γ
−τ(A,B)/2
n En,2 is the same as that of

Zn(s) =
∑

|q|=τ(A,B)

J∗n(q, s)n−1

q!
γ−τ(A,B)/2
n

n
∑

r=1

Hq(UXj) .

By (Arcones, 1994, Theorem 6), there exist random variables ℵ∗(q) such that Zn(s) converges
to

T (s)
∑

|q|=τ(A,B)

J∗(q)

q!
ℵ∗(q)

for each s ≥ 0. To prove that the convergence is uniform, we only need to prove that J∗n(q, s)
converges uniformly to T (s)J∗(q) for each q such that |q| = τ(A). Since the coefficients J∗n can
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be expressed linearly in terms of the coefficients Jn, it suffices to prove uniform convergence
of the coefficients Jn. Applying Hölder inequality, we obtain, for p > 1 and for any a > 0,

sup
s≥a

|Jn(q, s) − T (s)J(q)| ≤ CE

[

sup
s≥a

|Ln(s,X1,h) − T (s)L(X1,h)|p
]

.

As already shown in the proof of Lemma 4, this last quantity converges to 0 for p = 2.

Appendix

A Second order regular variation of convolutions

Denote A ≍ B if there exists positive constant c1 and c2 such that c1A ≤ B ≤ c2B.

Lemma A.1. Let Z1 and Z2 be i.i.d. non negative random variables with common distribution
function F that satisfies Assumption 2. Then

∣

∣

∣P(u1Z1 + u2Z2 > t) − F̄ (t/u1) − F̄ (t/u2)
∣

∣ ≤ Cuα+ǫ
1 uα+ǫ

2 t−1F̄ (t)

∫ t

0
F̄ (s) ds .

Proof. Obviously, we have

P(u1Z1 + u2Z2 > t) = F̄ (t/u1) + F̄ (t/u2) − F̄ (t/u1)F̄ (t/u2)

+P(t/2 < u1Z1 ≤ t)P(t/2 < u2Z2 ≤ t)

+P(u1Z1 ≤ t/2, u2Z2 ≤ t, u1Z1 + u2Z2 > t)

+P(u2Z2 ≤ t/2, u1Z1 ≤ t, u1Z1 + u2Z2 > t) .

Consider for instance the second last term. It may be written as

I1 := E

[

1{u1Z1≤t/2}

{

F̄ (t(1 − u1Z1/t)/u2)

F̄ (t/u2)
− 1

}]

.

Since F satisfies Assumption 2, we have, for u ∈ [1/2, 1],

0 ≤ F̄ (ut)

F̄ (t)
− 1 = u−αe

∫ u
1

η(ts)
s

ds − 1 = {u−α − 1}e
∫ u
1

η(ts)
s

ds + e
∫ u
1

η(ts)
s

ds − 1

≤ |u−α − 1|e
∫ 1
1/2

η∗(ts)
s

ds
+ e

∫ 1
1/2

η∗(ts)
s

ds
∫ 1

u

η∗(ts)

s
ds .

Since η∗(t) is decreasing, we have, for all u ∈ [1/2, 1],

0 ≤ F̄ (ut)

F̄ (t)
− 1 ≤ C{|u−α − 1| + log(u)} ≤ C(1 − u) .

Applying this inequality with 1 − u = u1Z1/t on the event u1Z1 ≤ t/2 yields

I1 ≤ Cu1t
−1

E
[

Z11{u1Z1≤t}

]

≤ Ct−1
∫ t/u1

0
F̄ (s) ds = Ct−1u−11

∫ t

0
F̄ (s/u1) ds .
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By Potter’s bounds, for any ǫ > 0, there exists a constant C such for any s, t > 0,

F̄ (s/u1)

F̄ (s)
≤ C(u−11 ∧ 1)−α−ǫ .

Applying this bound we obtain

I1 ≤ C(u1 ∨ 1)α+ǫ(u2 ∨ 1)α+ǫt−1F̄ (t)

∫ t

0
F̄ (s) ds .

To conclude, note that F̄ 2(t) = O(t−1F̄ (t)
∫ t
0 F̄ (s) ds) if α < 1 and F̄ 2(t) = o(t−1F̄ (t)

∫ t
0 F̄ (s) ds)

if α ≥ 1.

Remark. By induction, we can obtain the bound

∣

∣

∣
P(Z1 + · · · + Zn > t) − nF̄ (t)

∣

∣ ≤ C t−1F̄ (t)

∫ t

0
F̄ (s) ds ,

and we can also recover a particular case of a result of Omey and Willekens (1987) in a slightly
different form. For α ≥ 1 and E[Z1] < ∞,

lim
t→∞

t
{

P(Z1 + · · · + Zn > t)

P(Z1 > t)
− n

}

=
n(n− 1)

2
E[Z1] .

B Gaussian long memory sequences

For the sake of completeness, we recall in this appendix the main definitions and results
pertaining to Hermite coefficients and expansions of square integrable functions with respect
to a possibly non standard multivariate Gaussian distribution. Expansions with respect to the
multivariate standard Gaussian distribution are easy to obtain and describe. The theory for
non standard Gaussian vectors is more cumbersome. The main reference is Arcones (1994).

B.1 Hermite coefficients and rank

Let G be a function defined on R
k and X = (X(1), . . . ,X(k)) be a k-dimensional centered

Gaussian vector with covariance matrix Γ. The Hermite coefficients of G with respect to X
are defined as

J(G,X,q) = E



G(X)
k
∏

j=1

Hqj(X
(j))



 ,

where q = (q1, . . . , qk) ∈ N
k. If Γ is the k × k identity matrix (denoted by Ik), i.e. the

component of X are i.i.d. standard Gaussian, then the corresponding Hermite coefficients are
denoted by J∗(G,q). The Hermite rank of G with respect to X, is the smallest integer τ such
that

J(G,X,q) = 0 for all q such that 0 < |q1 + · · · + qk| < τ .
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B.2 Variance inequalities

Consider now a k-dimensional stationary centered Gaussian process {Xi, i ≥ 0} with covari-

ance function γn(i, j) = E[X
(i)
0 X

(j)
n ] and assume either

∀1 ≤ i, j ≤ k ,

∞
∑

n=0

|γn(i, j)| < ∞ , (B.1)

or that there exists H ∈ (1/2, 1) and a function ℓ slowly varying at infinity such that

lim
n→∞

γn(i, j)

n2H−2ℓ(n)
= bi,j , (B.2)

and the bi,js are not identically zero. Denote then γn = n2H−2ℓ(n). Then, we have the
following inequality due to Arcones (1994).

For any function G such that E[G2(X0)] < ∞ and with Hermite rank q with respect to X0,

var

(

n−1
n
∑

r=1

G(Xj)

)

≤ C(ℓq(n)n2q(H−1)) ∨ n−1 var(G(X0)) . (B.3)

where the constant C depends only on the Gaussian process {Xn} and not on the function G.
This bound summarizes Equations 2.18, 3.10 and 2.40 in Arcones (1994). The rate obtained
is n−1 in the weakly dependent case where (B.1) holds and in the case where (B.2) holds and
G has Hermite rank q such that q(1 −H) > 1. Otherwise, the rate is ℓq(n)n2q(H−1).

C A criterion for tightness

We state a criterion for the tightness of a sequence of random processes with path in D(Rd),
which adapts to the present context Bickel and Wichura (1971, Theorem 3) and the remarks
thereafter.

Let T be a rectangle T = T1×Td ⊂ R
d. A block B in T is a subset of T of the form

∏d
i=1(si, ti]

with si < ti, 1 ≤ i ≤ d. Disjoint blocks B =
∏d

i=1(si, ti] and B′ =
∏d

i=1(s
′
i, t
′
i] are neighbours

if there exists p ∈ {1, . . . , d} such that s′p = tp or sp = t′p and si = s′i and ti = t′i for i 6= p.
(In the terminology of Bickel and Wichura (1971) the blocks B and B′ are said to share a
common face.) Let X be a random process indexed by T . The increment of the process X
over a block B =

∏d
i=1(si, ti] is defined by

X(B) =
∑

(ǫ1,...,ǫd)∈{0,1}d

(−1)d−
∑d

i=1 ǫiX(s1 + ǫ1(t1 − s1), . . . , sd + ǫd(td − sd)) .

(This is the usual d-dimensional increment of a random process X. If for instance d = 2, then
X(B) = X(t1, t2)−X(t1, s2)−X(s1, t2)+X(s1, s2)). If X is an indicator, i.e. X(y) = 1{Y≤y}
for some T valued random variable Y, then X(B) = 1{Y∈B}.

Lemma C.1. Let {ζn} be sequence of stochastic processes indexed by a compact rectangle
T ⊂ R

d. Assume that the finite dimensional marginal distributions of ζn converges weakly to

26



those of a process ζ which is continuous on the upper boundary of T . Assume moreover that
there exist γ ≥ 0 and δ > 1 such that

P(|ζn(B)| ∧ |ζn(B′)| ≥ λ) ≤ Cλ−γE[µδ
n(B ∪B′)] (C.1)

for some sequence of random probability measures µn which converges weakly in probability to
a (possibly random) probability measure µ with (almost surely) continuous marginals. Then
the sequence of processes {ζn} is tight in D(T,R).

Sketch of proof. For f defined on T = T1 × · · · × Td, i ∈ {1, . . . , d} and t ∈ Ti, define f
(i)
t on

T1 × · · · × Ti−1 × Ti+1 × · · · × Td by

f
(i)
t (t1, . . . , ti−1, ti+1, . . . , td) = f(t1, . . . , ti−1, t, ti+1, . . . , td)

and define, for s < t ∈ Ti and δ > 0,

wPimePime
i (f, s, t) = sup

s<u<v<w<t
‖f (i)

u − f (i)
v ‖∞ ∧ ‖f (i)

v − f (i)
w ‖∞ ,

wPimePime
i (f, δ) = sup

u<v<w<u+δ
‖f (i)

u − f (i)
v ‖∞ ∧ ‖f (i)

v − f (i)
w ‖∞ .

By the Corollary of Bickel and Wichura (1971), a sequence of processes {Xn} defined on T
converges weakly in D(T ) to a process X which is continuous at the upper boundary of T
with probability one, if the finite-dimensional marginal distributions of Xn converges to those
of X and if, for all δ, λ > 0, and al i = 1, . . . , d,

P(wPimePime
i (Xn, δ) > λ) → 0 . (C.2)

For any measure µ on T , define its i-th marginal µ(i) by

µ(i)((s, t]) = µ(T1 × · · · × Ti−1 × (s, t] × Ti+1 × · · · × Td) , s, t ∈ Ti .

As mentioned in the remarks after the proof of Bickel and Wichura (1971, Theorem 3), an
easy adaptation of the proof of Billingsley (1968, Theorem 15.6) shows that (C.2) is implied by

P(wPimePime
i (Xn, s, t) > λ) ≤ Cλ−γE[{µ(i)

n (s, t])}δ ] , (C.3)

where µn satisfies the assumptions of the Lemma. So we must show that (C.1) implies (C.3).
The proof is by induction, so the first step is to prove it in the one-dimensional case, where
(C.1) becomes, for u < v < w ∈ T ,

P(|ζn(v) − ζn(u)| ∧ |ζn(w) − ζn(v)| ≥ λ) ≤ Cλ−γE[µδ
n((u,w])] . (C.4)

The proof of (C.3) under the assumption (C.4) follows the lines of the proof of (Billingsley,
1968, (15.26)) under the assumption (Billingsley, 1968, (15.21)). The key ingredient is the
maximal inequality (Billingsley, 1968, Theorem 12.5), which can be easily adapted as fol-
lows in the present context. Let S0, . . . , Sn be random variables. Assume that there exists
nonnegative random variables u1, . . . , un such that

P(|Si − Sj| ∧ |Sk − Sj| > λ) ≤ λ−γE[(ui + · · · + uk)δ]
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for some δ > 1 and γ ≥ 0 and all 1 ≤ i ≤ j ≤ k ≤ n and, then there exists a constant C that
depends only on δ and γ such that

P

(

max
1≤i≤j≤k≤n

|Si − Sj | ∧ |Sk − Sj| > λ

)

≤ Cλ−γE[(u1 + · · · + un)δ ] .

Proving by induction that (C.1) implies (C.3) in the d-dimensional case can be done exactly
along the lines of Step 5 of the proof of Bickel and Wichura (1971, Theorem 1).

In order to apply this criterion to the context of empirical processes, we need the following
Lemma which slightly extends the bound Billingsley (1968, (13.18)).

Lemma C.2. Let {(Bi, B
′
i)} be a sequence of m-dependent vectors, where Bi and B′i are

Bernoulli random variables, with parameters pi and qi, respectively, and such that BiB
′
i = 0

a.s. Denote Sn =
∑n

r=1(Bj − pj) and S′n =
∑n

r=1(B
′
j − qj). Then, there exists a constant C

which depends only on m, such that

E[S2
nS
′
n
2
] ≤ C

(

n
∑

i=1

pi

)(

n
∑

i=1

qi

)

≤ C

(

n
∑

i=1

pi ∨ qi

)2

. (C.5)

Proof. We start by assuming that the pairs (Bi, B
′
i) are i.i.d. and we prove (C.5) by induction.

For any integrable random variable X, denote X̄ = X − E[X]. For n = 1, since B1B
′
1 = 0,

we obtain E[B̄iB̄
′
i] = −piqi and

E[B̄2
1B̄
′2
1] = E[(B1 − 2p1B1 + p21)(B

′
1 − 2q1B

′
1 + q21)]

= p1q
2 + p21q1 − 3p21q

2 = p1q1(p1 + q1 − 3p1q1) ≤ p1q1 .

The last inequality comes from the fact that B1B
′
1 = 0 a.s. implies that pi + qi ≤ 1, and

0 ≤ p+ q− 3pq ≤ p+ q ≤ 1 for all p, q ≥ 0 such that p+ q ≤ 1. Assume now that (C.5) holds
with C = 3 for some n ≥ 1. Then, denoting sn =

∑n
r=1 pj and s′n =

∑n
r=1 qj, we have

E[S2
n+1S

′
n+1

2
]

= E[S2
nS
′
n
2
] + E[S2

n]E[B̄′
2
n+1] + E[S′n

2
]E[B̄2

n+1] + 4E[SnS
′
n]E[Bn+1B

′
n+1] + E[B̄2

n+1B̄
′2
n+1]

≤ 3sns
′
n + snqn+1 + s′npn+1 + 4pn+1qn+1

n
∑

i=1

piqi + pn+1qn+1

≤ 3sns
′
n + 3snqn+1 + 3s′npn+1 + pn+1qn+1 ≤ 3sn+1s

′
n+1 .

This proves that (C.5) holds for al n ≥ 1.

We now consider the case of m-dependence. Let ai, 1 ≤ i ≤ n be a sequence of real numbers
and set ai = 0 if i > n. Then

(

n
∑

i=1

ai

)2

=





m
∑

q=1

⌈n/m⌉
∑

r=1

a(j−1)m+q





2

≤ m
m
∑

q=1





⌈n/m⌉
∑

r=1

a(j−1)m+q





2

.
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Applying this and the bound for the independent case (extending all sequences by zero after
the index n) yields

E[S2
nS
′
n
2
] ≤ 3m2

m
∑

q=1

m
∑

q′=1

⌈n/m⌉
∑

r=1

⌈n/m⌉
∑

j′=1

p(j−1)m+qp(j′−1)m+q′ = 3m2sns
′
n .

Let us apply this criterion in the context of section 3. Fix a cone j and a relatively compact
subset A ∈ j. Recall that En,1 and En,2 are defined in (43) and (44).

Lemma C.3. Under the assumptions of Theorem 5 or 7, for any fixed B ∈ R
h′+1, En,1(B, ·)

is tight in D([a, b]), and if moreover ΨA,m,h is continuous, then En,1 is tight in D(K × [a, b])
for any 0 < a < b and any compact set K of Rh′+1.

Proof. Since A is a cone, if s < t, then tA ⊂ sA. Thus, a sequence of random measures µ̂n

on R
d × (0,∞) can be defined by

µ̂n((−∞,y] × (s,∞)) =
1

n

n
∑

r=1

P(Yj,h ∈ sunA | X )

g(k/n)
P(Yr+m,r+m+h′ ≤ y | X )

=
1

n

n
∑

r=1

Gn(A,B, s,Xj,hXr+m,r+m+h′ ,y) ,

where Gn is defined in (25). Then µ̂n converges vaguely in probability to the measure µ
defined by

µ((−∞,y] × (s,∞)) = µ(A)T (s)ΨA,m,h(y) .

Then, by conditional m-dependence, for any neighbouring relatively compact blocs D,D′ of
R
d × (0,∞], applying Lemma C.2 yields

E[E2
n,1(D)E2

n,2(D′) | X ] ≤ Cµ̂n(D)µ̂n(D′) .

Taking unconditional expectations then yields

E[E2
n,2(D)E2

n,2(D′)] ≤ CE[µ̂n(D)µ̂n(D′)] ≤ E[µ̂2
n(D ∪D′)] .

Thus (C.1) holds with δ = γ = 2. In the context of Theorem 5, for any fixed B, this implies
that for each B, the sequence of processes En,1(B, ·) is tight, since the limiting distribution
is proportional to T (s) which is continuous. If the distribution function Ψ is assumed to
be continuous, then Lemma C.1 applies and the process En,1 is tight with respect to both
variables.

Lemma C.4. Under the assumptions of Theorem 5, for any fixed B ∈ R
h′+1, En,2(B, )̇

converges uniformly to zero on compact sets of (0,∞]. Under the assumption of Corollary 6,
En,2 converges uniformly to zero on compact sets of Rh′+1 × (0,∞].
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Proof. We only need to prove the tightness. By the variance inequality (B.3) and Hölder’s
inequality, we have, for any relatively compact neighbouring blocks D,D′ of Rd × (0,∞),

P(|E2,n(D)| ∧ |E2,n(D′)| ≥ λ) ≤ λ−2
√

E[E2
2,n(D)]E[E2

2,n(D′)] ≤ λ−2E[E2
2,n(D ∪D′)]

≤ Cλ−2n−1E[µ̃2
n(D ∪D′)]

where µ̃n is the random measure defined by

µ̃n(y, s) =
P(Y1,h ∈ sunA | X )

g(k/n)
P(Ym,m+h′ ≤ y | X ) .

The sequence µ̃n converges vaguely on R
d × (0,∞], in probability and in the mean square to

the measure µ̂ defined by

µ̂((−∞,y] × (s,∞]) =
νj(σ(X1,h)−1 ·A)

(E[νC(σ(X1,h)−1 ·A])δ
T (s)P(Ym,m+h′ ≤ y | X ) .

The measure µ̂ has continuous marginals if we consider the case of a fixed B (which takes
care of Theorem 7). The marginals of µ̂ are almost surely continuous if FZ is continuous, so
Lemma C.1 applies.
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