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Estimation of limiting conditional distributions for the heavy
tailed long memory stochastic volatility process

Rafat Kulik* Philippe Soulier!

Abstract

We consider Stochastic Volatility processes with heavy tails and possible long memory
in volatility. We study the limiting conditional distribution of future events given that
some present or past event was extreme (i.e. above a level which tends to infinity). Even
though extremes of stochastic volatility processes are asymptotically independent (in the
sense of extreme value theory), these limiting conditional distributions differ from the
ii.d. case. We introduce estimators of these limiting conditional distributions and study
their asymptotic properties. If volatility has long memory, then the rate of convergence
and the limiting distribution of the centered estimators can depend on the long memory
parameter (Hurst index).

1 Introduction

One of the empirical features of financial data is that log-returns are uncorrelated, but their
squares, or absolute values, are dependent, possibly with long memory. Another important
feature is that log-returns are heavy-tailed. There are two common classes of processes to
model such behaviour: the generalized autoregressive conditional heteroscedastic (GARCH)
process and the stochastic volatility (SV) process; the latter introduced by [ ]
and [ ]. The former class of models rules out long memory in the squares, while the
latter allows for it. We will therefore concentrate in this paper on the class of SV processes,
which we define now.

Let {Y},j € Z} be the observed process (e.g. log-returns of some financial time series), and
assume that it can be expressed as

Yy =o0(X;)Z; . (1)

where o is some (possibly unknown) positive function, {Z;,j € Z} is an i.i.d. sequence and
{Xj;,j € Z} is a stationary Gaussian process with mean zero, unit variance, autocovariance
function {75}, and independent from the i.i.d. sequence. The sequence o(X;) can be seen as
a proxy for the volatility. We will assume that either {X;} is weakly dependent in the sense
that

o
> il <o, (2)
j=1
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or that it has long memory with Hurst index H € (1/2,1), i.e.
n = cov(Xo, X,,) = n?724(n) (3)

where /£ is a slowly varying function.

Furthermore, we assume that the marginal distribution Fz of the i.i.d. sequence {Z;} has a
regularly varying right tail with index a > 0, i.e., for all positive y,

FZ(ty) — yfa . (4)

tlgroloIP’(Z >ty Z>t) = A Fy(t)
Examples of heavy tailed distributions include the stable distributions with index a € (0, 2),
the t distribution with « degrees of freedom, and the Pareto distribution with index .

By Breiman’s lemma [1965], [2007], if E[c®*T¢(X)] < oo for some € > 0, then
the marginal distribution of {Y}} also has a regularly varying right tail with index o and

lim P(Y > zy)

AN E[c*(X)ly™*, (5)

where X, Y and Z denote random variables with the same joint distribution as Xg, Yy and Zj.

Estimation and test of the possible long memory of such processes has been studied by
[ |. Estimation of the tail of the marginal distribution by the Hill estimator has
been studied in [ ].

In this paper we are concerned with certain extremal properties of the finite dimensional
joint distributions of the process {Y;} when Z is heavy tailed and the Gaussian process { X}
possibly has long memory.

From the extreme value point of view, there is a significant distinction between the GARCH
and SV models. In the first one, exceedances over a large threshold are asymptotically depen-
dent and extremes do cluster. In the SV model, exceedances are asymptotically independent.
More precisely, for any positive integer m, and positive real numbers x, y,

tlijn tP(Yo > a(t)r, Y >a(t)y) =0, (6)

where a(t) = F; (1 —1/t) and F is the left continuous inverse of Fz. This holds since it
can be easily shown by a conditioning argument that

P(Yg>t, Yo >t)~cxP(Yy>1t)?, t— oo, (7)

for some positive constant c.

The above observations may lead to the incorrect conclusion that, for the SV process, there
is no spillover from past extreme observations onto future values and from the extremal
behaviour point of view we can treat the SV process as an i.i.d. sequence. However, under
the assumptions stated previously, it holds that

E[0*(Xo)Fz(y/o(Xm))] (8)
Efo*(X,n)] '

lim P(Y, <y |Yo>1) =
t—o00
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Figure 1: Empirical Conditional Distribution (points) and Empirical Distribution (solid line)
for SV model (right panel) and i.i.d. data (left panel)

Therefore, the limiting conditional distribution is influenced by the dependence structure of
the time series. To illustrate this, we show in Figure 1 estimates of the standard distribution
function and of the conditional distribution for a simulated SV process. Clearly, the two
estimated distributions are different, as suggested by (8). For a comparison, we also plot the
corresponding estimates for i.i.d. data. Other kind of extremal events can be considered,
for instance, we may be interested in the conditional distribution of some future values given
that a linear combination (portfolio) of past values is extremely large, or that two consecutive
values are large. As in Equation (8), in each of these cases, a proper limiting distribution can
be obtained. To give a general framework for these conditional distributions, we introduce a
modified version of the extremogram of [ |. For fixed positive integers
h < m and k' > 0, Borel sets A C R* and B C Rh/ﬂ, we are interested in the limit denoted
by p(A, B, m), if it exists:

p(A7B7m) = tEI&P((Yma"WYerh’) €eB | (Ylv"' 7Yh) € tA) : (9)

The set A represents the type of events considered. For instance, if we choose A = {(z,y,z2) €
[0,00)2 |  +y + 2z > 1}, then for large ¢, {(Y_2,Y_1,Yy) € tA} is the event that the sum of
last three observations was extremely large. The set B represents the type of future events
of interest.

In the original definition of the extremogram of [ |, the set B is also
dilated by ¢t. This is well suited to the context of asymptotic dependence, as arises in GARCH
processes. But in the context of asymptotic independence, this would yield a degenerate limit:
if h < m, then for most sets A and B,

lim ]P’((Ym,...,ym+h/) €tB ‘ (Yl,...,Yh) GtA) =0.

t—o00



The general aim of this paper is to investigate the existence of these limiting conditional
distributions appearing in (9) and their statistical estimation. The paper is the first step
towards understanding conditional laws for stochastic volatility models. Although we provide
theoretical properties of estimators, their practical use should be investigated in conjunction
with resampling techniques. This is a topic of authors’ current research.

The paper is structured as follows. In Section 2, we present a general framework that enables
to treat various examples in a unified way. In Section 3 we present the estimation procedure
with appropriate limiting results.

The proofs are given in Section 4. In the Appendix we collect relevant results on second order
regular variation, (long memory) Gaussian processes, and criteria for tightness.

We conclude this introduction by gathering some notation that will be used throughout the
paper. We denote convergence in probability by —p, weak convergences of sequences of
random variables or vectors by —4 and weak convergence in the Skorokhod space D(RY) of
cadlag functions defined on R? endowed with the J; topology by =-.

Boldface letters denote vectors. Product of vectors and inequalities between vectors are taken
componentwise: u-v = (ujvy,...,uqvq); X <y if and only if x; < y; for all i = 1,...,d. The
(multivariate) interval (oo, y] is defined accordingly: (co,y] = H?Zl(—oo, il

For any univariate process {{;} and any integers h < A/, let &, denote the (b’ — h + 1)-
dimensional vector (&, ..., & ).

For ACRYand u € (0,00), ut - A={xcR?|u-xec A}

If X is a random vector, we denote by LP(X) the set of measurable functions f such that
E[lf(X)[7] < oc.

For any univariate process {{;} and any integers h < A/, let £, denote the (b’ — h + 1)-
dimensional vector (&, ..., & ).

The o-field generated by the process {X;} is denoted by X.

2 Regular variation on subcones

Since we considered dilated sets tA, where A C R” for some integer h > 0, it is natural to
consider cones, that is subsets C of [0, 00]" such that tx € C for all z € C and ¢ > 0. The next

definition is related to the concept of regular variation on cones of [ ]. We endow
R" with the topology induced by any norm and [0, 00]” is the compactification of [0, 00)". A
subset A of [0, 00]"\ {0} is relatively compact if its closure is compact. See [ | for

more details. We first state a general assumption and will give examples afterwards.

Assumption 1. Let h be a fived positive integer. Let C be a subcone of [0,00]" \ {0} such
that, (i) for all relatively compact subsets A of C and all u € (0,00)", u=' - A is relatively
compact in C, and (ii) there exists a function gc and a non degenerate Radon measure ve on
C such that

P(Zy, € tA)

ey e (19



Note that in the case h = 1, the cone C = (0, 00) and Assumption 1 is nothing more than the
regular variation of the tail of Z;.

Assumption 1 implies that the function g¢ is regularly varying at 0 with index B¢ € (0, 00)
and the measure v¢ is homogeneous with index —a/f¢. For s > 1, define

gC(FZ(tS)) _ Sfaﬁc

Te(s) = " )

Next, Assumption 1 implies that for all u € (0, 00)", it holds that

. IP’(u WANES tA)
lim =
t=oo ge(Fz(1))

=ve(ut-A).

This convergence implies that there exists a function M4 such that for all u € (0, 00)",

]P’(u . Zl,h € tA)
su =
> go(F4 (1)

< Ma(u) . (11)

Hence, if E[Ma(o(X14))] < 0o, by bounded convergence, we have

L P(O’(Xl,h) . Zl,h S tA)
1m —
t—o00 gc(Fz(t))

For h =1, and A = (1, 00), Potter’s bound imply that (11) holds with Ma(u) = Cu®** for
some constant C i.e.

= Elve(o(Xpn) "t - A)] .

P(uZ > t)
sup ———2 < Cute . 12
tzll) Fz(t) — (12)

For example, for m > h and k' > 0, and for any Borel measurable set B ¢ R"*1, we have,
by the same bounded convergence argument

P(Y tA .Y, men € B
lim (Yin €tA, Yo miw € B)

o ge(Fz(1)) =E [re(o(X1n) ™" AP(Yinmsnw € B| X)) .

If Elve(o(Xy1)"t - A)] > 0 (which in examples is seen to hold as soon as v¢(4) > 0), we
obtain that the extremogram defined in (9) can be expressed as

p(A,B,m) = lim P(Y,, i € B| Y €tA)
t—ro0

~ Efve(0(Xipn) ' APYmmn € B X)]
B Elve(o(Xyn)~t - A)]

(13)

We will consider the following type of cones. For j € {0,1}", let C; denote the cone defined
by

G ={z €000 [ {3 2} I 2> 0} (14)

1:5;=0 4,i=1
In words, a vector z € Cj if at least one of its entries corresponding to the components of j
equal to zero is positive, and all of its entries corresponding to the components equal to one



of j are positive. For h = 1, the only cone is (0, 00] and we will denote it Cy for consistency
of the notation.

A subset A is relatively compact in Cj if and only if there exists 7 > 0 such that )
and z;, > n for all 4 such that j; = 1.

For example, if h = 3 and j = (0,0, 1), then C; = ([0, 00] x [0,00] \ {(0,0)}) x (0,00], and A
is a relatively compact subset of C(g 1) if there exists € > 0, such that (z1, 22, 23) € A implies
Z1 > €or 23 > €, and 23 > €.

iji=0 %3 > M

Denote |j| = j1 + -+ + jn, i.e. the number of non zero components in j. Then, there exists a
non zero Radon measure vj on Cj such that for each relatively compact set A € C;j,

P(Zl,h € tA)

M e A

The measure v; can be described more precisely.

vj(dz) = aliltt Z zj_io‘_léji(dzji) H zj_io‘_ldzji ,

i:5;=0 iji=1

where 0; is Lebesgue’s’s measure on the j-th coordinate axis, i.e. for any non negative
measurable function ¢,

/ qﬁ(z)éj(dz):/ 6(0,...,2,...,0)dz; .
[0,00]" 0

Moreover, for any relatively compact subset A of C;, and for any € > 0, there exist > 0 and
a constant C (which both depend on A) such that, for all u € (0, 00)",

Puzyp €tA) _ P Uiji=o{u;i Zj; > 0} 0 Nigi=1{us Zj; > 13)

Fyw)lil+l = Fz(u)ll+t
< O WHEDEFD 8N (uy, vyt b T (ug, v 1)t (15)

Thus (11) holds and if
E ST oot b T o ()| < oo, (16)
i:§;=0 iji=1
then, cf. (13),

. E [vi(0(X1)  A) P(Y sy € B | X)]
tliglo P(Ypmin € B| Y1, €tA) = Elv;(o(X1) 1 A)]

Remark 1. We assume that h < m. Otherwise, if m < h, then vectors Y, s and Yy,
may be asymptotically dependent. For example, if {Z;} is i.i.d with the tail distribution as
in (4), then P(Zo + Zs > t | Z1 + Z2 > t) — 1/2. We do not think that this is of particular
interest, since one is primary interested in estimating distribution of future vector Y, min/
based on the past observations Y .



Remark 2. The cones Cj are the only ones such that u™'- A C C for all u € (0, o0)" and every
A C C. This assumption can be relaxed and other cones could be considered if ¢ is bounded
above and away from zero, but this is not a desirable assumption since for instance it rules
out the case o(x) = e”.

Remark 3. Consider for example o(x) = exp(x). Assumption (16) is fulfilled for arbitrary
(weak and strong) dependence structure of {X;}. The same holds for many moment assump-
tions which appear in the paper.

2.1 Examples

Ezample 1. Fix some positive integer h and consider the cone C; = (0,00)". Then (10) holds
with gp,(t) = t" and v}, defined by

h
__h —a—1
vp(dzy,...,dzp) = « z; dz; .
=1

Consider the set A defined by A = {(21,...,21) € R’j_ |z1>1,...,2, > 1} If

h

H Ua+e (Xz)

=1

E < 00

for some € > 0, we obtain, for m > h, and B € RV+1,
E [T 0*(X)P(Yommiwr € B| X)]
E [T 0 (X))

lim P(Ymm-i—h’ EB’Yl >t,...,Y >t):
t—o0 ?

In particular, setting B = (—oo,y] and A’ = 0, the limiting conditional distribution of Y,
given that Y7,...,Y) are simultaneously large is given by

E [T 0 (X0) Fa(y/o (X))
E [T, 0(X0)]

Wn(y) = Jim B(¥ <y | V>t Yy > 1) = (17)

Ezample 2. Consider again the case C; = (0,00). Another quantity of interest is the limiting
distribution of the sum of A’ consecutive values, given that past values are extreme. To keep
notation simple, consider A’ = 1 and, for m > 1,

Elo®(X1)P(Yon + Y1 <y | X))
E[o(X1)]

U (y) = lim P(Yy + Yopn <y [ V1 > 1) =

Estimating this distribution yields for instance empirical quantiles of the sum of future returns,
given the present one is large.

Ezample 3. Consider the cone Cyo = [0,00) x [0,00) \ {0}. Then (10) holds with goo(t) =¢
and v o defined by

vp,0(dz1,dz2) = a{é(oyw]x{o}zfa_ldzl + (5{0}X(0700122_a_1d,22} .



The bound (11) with M (u,v) = C(u®t€¢ + v**¢) for some constant C. Consider the set A
defined by A = {(z1,22) € R? | z1 + 22 > 1}. If E[c“7¢(X})] < o0 for some € > 0, we obtain

tlgilo P(Ypminw € B Y1 +Y2 > 1) = - [P(Ymmlg[};ae()i)‘])—l(}lgziég; i

In particular, take B = (—o0, y] and A’ = 0. The limiting conditional distribution of Y;,, given

Y1 + Y5 is large is defined by

E[{o®(X1) +0%(X2) } Fz(y/o(Xm)]
Elo*(X1) + 0%(X3)]

Aly) = lim P(Yy, <y [V +Y2 > 1) =

Ezample 4. We can combine the previous examples. Consider A = {(21, 22, 23) € R3 |21+ 29 >
1,23 > 1}. We may obtain for instance, for m > 3,

tliglo P(Ym,m+h’ €B | Yi+Y, >t Y; > t)
_ E [P(Ym,erh’ €eB ‘ X){Ua(Xl) +Ua(X2)}Ua(X3)]
E[{o*(z1) + 0%(X2)}o*(X3)] ’

if E[{o*"(X1) + 0T¢(X2)}o*"¢(X3)] < oo for some € > 0. The relevant cone is Copp 1,
go,0,1(t) = t2 and the associated measure on Co,0,1 is defined by

10,01 = Oz2{5(07oo]><{0}2:1_a_1d21 + 5{0}X(OyoO}ZQ_a_leQ}Z;a_lef} .

3 Estimation

To simplify the notation, assume that we observe Yi, ..., Y, 1 ;min. An estimator p,(A, B,m)
is naturally defined by

n
pn(A, B,m) = Zj=1 1{Yj,j+hfley(n:n—k)A}1{Yj+m7j+m+h,€B}

9

211
j:]- {ijj-‘rh—le}/(n:nfk)A}

where £k is a user chosen threshold and Y(,,.;) < --- < Y{;.;,) are the increasing order statistics
of the observations Y7,...,Y,. We will also consider the case B = (—o0,y], i.e. the case of
the limiting conditional distribution of Y, 14 given Y1 € tA, ie.

\IJA,m,h’(y) = tli)I& IP>(Ym,m+h/ < y ‘ Yl,h € tA)

Elve(o(X1) ™" A ITisy Fui/o(Xmei)]

= A7 OO, 7777, = 18
p(A, ( yl,m) E[VC(U(XLh)_l - A)] (18)
An estimator W, 4 p of W, is defined on RY+1 by
n
U e () = 2521 MY 11 Y ALY, s om0 <) (19)
n? 7m7 - .

>l
j=1 {Yj,j-‘rh—leyv(n:nfk)A}

In order to obtain statistical results, we need additional assumptions. We first state two
assumptions which will be needed to prove the weak convergence of a multivariate conditional
empirical process.



Assumption 2. For j =1,...,h, there exist functions L; such that for all s,s' > 1, u,v €
(0,00)",

5 P(u-Zyy €tsA,v-Zj i1 €ts'A)
im _
t=o0 gc(Fz(1))

=Lij(Au,v,s,5). (20)

For j = 1 we only need that (20) holds with u = v. If A is a cone, then (20) holds for j =1
with £1(A,u,u,s,8) = Te(sV s )ve(u™! - A) as an immediate consequence of Assumption 1.
It may happen that £;(A,-) = 0 for j = 2,...,h. Intuitively, this happens if u - Z;j and
v - Zj j+n—1 belong simultaneously to tA implies that at least h + 1 coordinates of Zj 41
are large. This is the case for instance for Examples 1 and 4. Actually, Assumption 2 holds
for the cones Cj, but a precise description of the functions £; when they are not identically
zero would be extremely involved. This will only be done for Example 3. See Section 3.3.

By Cauchy-Schwartz inequality, if Assumptions 1 and 2 hold, then, for s,s" > 1,
Li(u,v,sA,s"’A) </ Ma(a)Ma(v) .

Thus, if E[M4(0(X1,4))] < 0o, then the convergence in (20) is also in L' (6/(X1.1), (X j+n—1))-

The next assumption is needed for the quantities (that will appear in the limiting distribu-
tions) to be well defined and to use bounded convergence arguments.

Assumption 3. E[M3(0(X1,))] < 0o
As usual, the bias of the estimators will be bounded by a second order type condition. Let

k be a non decreasing sequence of integers, let Fy denote the distribution of Y and let
un = (1/Fy)“ (n/k). Consider the measure defined on the Borel subsets of C by

Elve(o(Xip) ™t - A)]

:U’C(A) - (]E[O’O‘(X)])BC (21)
We introduce a rate of convergence:
_Elsa P(Y1p €upsA | X) .
() = B [sup [P Te(ohel) | - (22)

Lemma 1. Under Assumption 1 and 3, lim,_, . v,(A) = 0.

We need also the following quantities, which are well defined under Assumptions 1, 2 and 3.
For j = 2,...,h and measurable subsets B, B of Rh/ﬂ, define

Rj(A, B, B,)
E[L(A,0(X14),0(Xj1h-1),0,0) X P(Yonmin € B, Yiij 1mintj1 € B | X)]
(E[oe(X)])Pe Elve(o(Xyp) 7t - A)]

)~
E[ﬁ(A,O‘(XLh),O'(X j,j+h— 1)7070) ( m,m+h' € B/aYm+jfl,m+h’+jfl €B | X)]
(Elo(X)])Fe E[ve(o(X1,p) 7t - A)] '

(23)
For brevity, denote R;(A, B) = R;(A, B, B).



3.1 General result: weak dependence

We can now state our main result in the weak dependence setting, i.e. when absolute summa-
bility (2) of the autocovariance function of the process {X;} holds.

In order to simplify the proof, we make an additional assumption.

Assumption 4. If s <t then tA C sA.

This assumptions holds for all the examples considered here and most common examples.

Theorem 2. Let Assumptions 1, 2, 3, 4 and the weak dependence condition (2) hold. Assume
moreover that uc(A) >0, k/n — 0, nge(k/n) — oo and

Jim_nge(k/n) va(A) = 0. (24)

Then

\/ngC(k/n),uC (A) {ﬁn (Av B, m) - ,O(A, B, m)}

converges weakly to a centered Gaussian distribution with variance

p(Avam){l - p(A7B7m)}
hA(m—h)
+ Y {Rj(A,B) - 2p(A, B,m)R;(A, B,R" ) + p?(A, B,m)R;(A,RM 1)} . (25)
j=2

Remark 4. If h = 1 or if the functions £; defined in Assumption 2 are identically zero for
J > 2, then the limiting covariance in (25) is simply p(A, B,m){1 — p(4, B,m)}.

Otherwise, the additional terms can be canceled by modifying the estimator of p, (A, B, m).
Assuming we have nh +m + h’' + 1 observations, we can define

n
Zj:l 1{Y(j—1)h+1,jh€Y(n:n—k)A} 1{Y(j—1)h+m,(j—1)h+m+h/EB}

,5“(14, 37 m) = n
Zj:l 1{Y(j—1)h+1,jh€Y(n:n—k)A}

Noting that the events {Y; j;4—1 € A} are h-dependent conditionally on X, the proof of The-
orem 2 can be easily adapted to show that the limiting variance of \/nge(k/n){pn(A, B,m)—
p(A, B,m)} is the same as in the case where £; = 0 for j = 2,..., h. But this is of course at
the cost of an increase of the asymptotic variance, due to a different sample size.

We can also obtain the functional convergence of the estimator \ifn Am,p of the limiting
conditional distribution function W4 ., s, defined respectively in (19) and (18).

Corollary 3. Under the Assumptions of Theorem 2, and if moreover the distribution ¥ 4 p, ps
is continuous, then

\/ngC(k/n)NC (A){\ijn,A,m,h’ - \IlA,m,h’}

converges in D(Rhlﬂ) to a Gaussian process. If h = 1 or if the functions L; are identically
zero for j = 2,...,h, then the limiting process can be expressed as B oW 4 ., p, where B is the
standard Brownian bridge.

Note that a sufficient condition for W4 ,, ;s to be continuous is that Fz is continuous.

10



3.2 General result: long memory

We now state our results in the framework of long memory. This requires several additional
notions, such as multivariate Hermite expansion and Hermite ranks which are recalled in
Appendix B.

Define the functions G, and G for (x,x’) € R? x R¥*! and s > 1 by

P(o(x) - Z1p € upsA)
g(k/n)

Gn(A, B, s, x,x') = P(o(X') - Zmm+i € B) (26)

G(A, B,x,x') = lim G,(A, B,1,x,x)

n—oo

_ (we(a(x)"" - 4) n. ,
T E[ov(X1)])Pe P(o(x') - Zy,m+n € B) . (27)

Let 7,(A, B,s) and 7(A, B) be the Hermite ranks with respect to (Xj 5, Xy m+n/) of the
functions G, (A, B, s,-,-) and G(A, B, -, -), respectively. Define 7(A4) = 7(A4,R9).

Assumption 5. For large n, infs 7,(A, B,s) = 7(A, B) and 7(A, B) < 7(A).

This assumption is fulfilled for example when o(x) = exp(z), in which case all the considered
Hermite ranks are equal to one, or if o is an even function with Hermite rank 2 (such as
o(x) = x?), in which case they are equal to two. The modification of Theorem 2 reads as
follows.

Theorem 4. Assume that {X;} is the long memory Gaussian sequence with covariance given
by (3). Let Assumptions 1, 2, 3, 4 and 5 hold, uc(A) >0 and k/n — 0, nge(k/n) — oo and

nl;rrgo {ngc(k/n) A ’y;T(A’B)/Q} vp(A)=0. (28)

(i) If ngc(k/n)’}/;(A’B) — 0, then

\/ngC(k/n)MC(A){ﬁn(Aa B’ m) - ,O(A, Bv m)}

converges to a centered Gaussian distribution with variance given in (25)

(ii) If ngc(k:/n)’y;(A’B) — 00, then VJT(A’B)/Q{pAn(A,B,m) — p(A, B, m)} converges weakly

to a distribution which is non-Gaussian except if T(A, B) = 1.

The exact definition of the limiting distribution will be given in Section 4. It suffices to
mention here that this distribution depends on H and 7(A, B). The meaning of the above
result is the following. In the long memory setting, it is still possible to obtain the same limit
as in the weakly dependent case, if k (i.e., the number of high order statistics used in the
definition of the estimators) is not too large, so that both the bias and the long memory effect
are canceled.

Define a new Hermite rank 7%(A) = inf, _pu1 7(A, (00,]).
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Corollary 5. Under the Assumptions of Theorem 4, if the distribution function W p, pr 18
continuous and if T*(A) < 7(A), then

A)

° Ifngc(k‘/n)%z*( — 0, then

\/ngC(k/n):u’C (A){\i/n,A,m,h’ - \I/A,m,h’}

h'+1

converges in D((—oo, +00) to a Gaussian process. If h =1 or if the functions L; are
identically zero for j = 2,..., h, then the limiting process can be expressed as BoW 4 ., b/,
where B is the standard Brownian bridge.

. Ifngc(k‘/n)mfb* — 00, then fyﬁT*(A)/z{\i/n’Am,h/—\IfAymyh/} converges in D((—oo, +00)h' +1
to a process which can be expressed as J o m p N where J 4 1 15 a deterministic function
and X is a random variable, which is non Gaussian except if T*(A) = 1.

(4)

The exact definition of the function J4 ,, s and of the random variable R will be given in
Section 4. Anyhow, they are not of much practical interest. In practice, the main goal will
be to choose the number k of order statistics used in the estimation procedure so that both
the bias and the long memory effect are canceled, and the limiting distribution of the weakly
dependent case can be used in the inference.

3.3 Examples

We now discuss the Examples introduced in Section 2.1. In order to evaluate the rate of
convergence (22), it is necessary to introduce a second order regular variation condition. We
follow here [ ].

Assumption 6. There exists a bounded non increasing function n* on [0, 00), regularly vary-
ing at infinity with index —aC for some ¢ > 0, and such that limy_,oo n*(t) = 0 and there
exists a measurable function n such that for z > 0,

P(Z > z) = cz”%exp (/:Mds) ,

s
AC >0, Vs>0, [n(s) <Cn*(s).

On account of Breiman’s lemma, if the tail of Z is regularly varying with index —a, then
the same holds for Y = 0(X)Z, as long as X and Z are independent, and E[c®(X)] < oo.
Also, (SO) property is transferred from the tail of Z to Y; See [ , ,
Proposition 2.1].

For the sake of simplicity and clarity of exposition, we will make in this section the usual
assumption that o(xz) = exp(z), so that the Hermite rank of o is 1. This will avoid to define
many auxiliary functions and Hermite ranks. But the examples can of course be treated in a
more general framework. Also, we will only state the convergence results under the conditions
which imply that the limiting distribution is the same as in the weak dependence case, since
this is the case of practical interest. We only treat Examples 1 and 3 since they exhibit
the two different possibility for the limiting distributions. The computations for the other
examples are straightforward.

12



3.3.1 Example 1 continued

Fix integers h > 1 and m > h. Recall the formula (17) for the conditional distribution of ¥,
given that Y7,...,Y} are simultaneously large. Its estimator ¥,, ; is defined by

n
= =1 H{Yi>Ynin—k)s Yith—1>Y(nin—k), Yitm <y}
U n(y) =

n
Z]:l 1{Y3 >Yv(n:n—k)7~~-’Yj+h71>§/(n:n—k)}

with a user chosen k.

Assumption 2 holds with £;(A,-) =0, j = 2,...,h. Assumption 6 and | ,
, Proposition 2.8] imply that if moreover

E

h
HO_Qa(C-‘rl)-‘re(Xi)] < 00 (29)
i=1

for some ¢, e > 0, a bound for v, (A) is then given by
vn(A) = O(n*(un)) - (30)

The moment restriction (29) is quite weak. In particular, it is fulfilled for o(z) = exp(z); see
Remark 3. Recall that in this example Assumption 1 and 2 hold and the functions £; therein
are vanishing for j > 2. Also, Assumption 3 is implied by (29).

Corollary 6. Assume that o(x) = exp(z). Let Assumption 6 and (29) hold. Let k be such
that k/n — 0, n(k/n)" — co, and

lim (n(k/n)")Y*n* (u,) = 0. (31)

n—oo

In the weakly dependent case (2) or in the long memory case (3) if moreover n(k/n)"y, — 0,

then
i Eo®(X1) - o®(Xp)]\
n(k/n)"(¥nn — V) = o (X)) Bo ¥,

weakly in D((—o0,00)), where B is the standard Brownian bridge.

3.3.2 Example 3 continued

Consider the estimation of

E[{o®(X1) + 0%(X2)} Fz(y/0(Xm))]
E[o®(X1) + 0%(X2)] '

A(y):tli}r&P(Ymgy|Y1+Yg>t):

An estimator if defined by

n
[\n(y) = Zj:l 1{Yj+yj+1>Y(n:n—k)}1{Y3+mSy} .

2 -1l
j=1 {1/j+1/j+1>yv(n:nfk)}

13



We have already shown that Assumption 1 holds and Assumption 4 holds trivially. Assump-
tion 2 holds with the function Lo defined by

(32)

1 1 "\
£2(A7u1>u2>vlav2>378,) = < e \% e > .

U2 U1

If E[J2a(<+1)+€(X1)] < 00, then Assumption 3 holds and applying Lemma A.1, we obtain a
bound for vy, (A):

) =0 () 4wt [ Fao)as) (33)
(34)

Corollary 7. Let Assumption 6 and (29) hold. Let k be such that k — oo, k/n — 0 and

lim k'/? (n*(un)+u;1/ nFZ(s) ds) =0.
0

n—o0

In the weakly dependent case (2) or in the long memory case (3) if moreover kv, — 0, then

) o o —1/2
KY2(A, — A) = <E[ g[(;l&l)](Xz)]> W

weakly in D((—oo,00)), where W is a Gaussian process with covariance

cov(W(y), W(y') = Ay Ay') — 2A(y)A(Y')
L Bl (X ){F2(y/0 (X)) F2(y' /0 (Xm1)) + Fz(y/o(Xm)) Fz(y'/o(Xm+1))]
Elo%(X1) + 0%(X2)] '

Remark 5. If the estimator if modified by taking only every other observation, then vk (f\n—A)
converges weakly to 2B o A where B is the standard Brownian bridge.

4 Proofs

For clarity of notation, denote o; = o(X;), g = gc, T =T¢ and 8 = fSc. Recall that Fy
denotes the distribution function of Y and u, = (1/Fy)"(n/k). By (4) and the regular
variation of g, it holds that Fy (u,) ~ E[o§]|Fz(u,) and

m g(k/n) _ o& B
i T an) (Elog])” -

Whenever there is no risk of confusion, we omit dependence on h, m, h’ and A in the notation.
For j =1,...,n, define the following random variables

Wjan(s) - 1{Yj,j+h71€un5A} ) S Z 1 ) V?(B) - 1{Yj+m,j+m+h’€B} . (35)
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Assumption 1 together with the choice of u,, implies that (recall the definitions (13) and (21)

of p(A, B,m) and puc(A)),

E[Wj,n(s)]

_ E[Wjn(s)V;(B)] _
Define, for s > 1 and x € R" and x’ € R" !, the functions L,, and G, by
B P(o(x) - Z1 € upsA)
B (7 R
Gn(s,%x,x',B) = Ly(3,x) P(6(X) - Zypm+1 € B) .
With these notations, we have,
s Xy = BBl
y L _ EWjn(s)V;(B) | X]
Gn(S)X],]—Fh—laXj—l—m,]—‘rm-i—h”B) = g(k‘/n) .
For x € R, denote
_we(o(x)'-4)
) =@ e 7
so that E[L(Xy 4)] = uc(A).
Proof of Lemma 1. Write
Ly(s,x) = Te(s)L(x)
B 9(Fz(ups)) _ (Els® _5 . P(o(x) - Z1p € upsA)
- {2 - Eer ey me | S
5 B (s P(o(x) -_Zl’h € upsA)
(B0 (0) P Te(s) { FTCI A

Thus, recalling the definition of v,, from (22), we have

9(Fz(uns))
g(k/n)

+ (E[c*(X)]))""E [Sup

s>0

vp(A) <

s>1

— (E[o™(X)]) " Te(s)

E[Ma(o(X1n))]

Plo(X1,n) - Z1p € upsA| X)
9(Fz(uns))

By Assumption 1, for all x € R?,

P(o(x) - Z1 4 € upsA)
9(Fz(uns))

lim sup
n—oo s>1

15
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Moreover, by (11),

P(o(x) - Z1 4 € upsA)
9(Fz(ups))

— (E[o*(X)])’L(x)| < 2Ma(o(x)) .

o

Since g o F is regularly varying at infinity with negative index, by [ , ,
Theorem 1.5.2], the convergence of g(Fz(uys))/g(k/n) to (E[c®(X)])™PT¢(s) is uniform on
[1,00). Thus we have proved that v,(A) — 0. O

sup
s>1

Thus, by Assumption 3 and bounded convergence,

]P)(O'(leh) . Z17h € upsA ’ X)

B 9(F7(uns))

n—o0

— (E[o*(X)])L(X1,n)

sup
s>0

Proof of Theorem 2. Define

K<B7 8) = Tc(S)Mc(A),O(A, Bam) s Kn(Bv 8) = M Z Wj,n(s)‘/](B) 5
=1
~ P / . 1 = ' . Yv(nzn—k)

With this notation, we have

Kn(B, &)
n(A, B,m) = —
Equations (37) and (36) imply, respectively, that
lim E[R,(B.)] = K(B.s)  lim Elea(s)] = T(s)pc(A).

With this in mind, we split

pAn(A7 B7 m) - P(A7 B? m)
_ f{n(Bafn) — K(B,&n) _ p(A, B,m)
én(&n) én(&n)
Thus, we only need to find the correct norming sequence w,, and asymptotic distribution in

D([a, b)) for any 0 < a < b of the sequence of processes wy,{K,(B, ) — K(B,-)}. To do this,
define further

{én(gn) - NC(A) TC(fn)} : (41)

Kn(B,s) =E[K,(B,s)] . (42)
Then

K,(B,s)— K(B,s) = K,(B,s) — K,(B,s) + K,(B,s) — K(B,s) .
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The term K, (B, s)— K (B, s) is a deterministic bias term that will be dealt with by the second
order condition (24). Write K,, — K, = (ng(k/n))"'/?E,1 + E, 2 with

En1(B,s) = \/T/Z{ (B) —E[W;n(s)V;(B) | X1}, (43)
En2(B,s) = k/n ZE in()V;(B) | X] — Ku(B,s)
= %Z{Gn(saXj,j+h—17Xj+m,j+m+h’aB) — Ku(B,s)} . (44)

Jj=1

The term in (43) will be called the i.i.d. term. It is a sum of conditionally independent
random variables. The term in (44) will be called the dependent term. It is a function of the
dependent vectors (X jth—1, Xjtm, jtmth’)-

We now state some claims whose proofs are postponed to the end of this section. The
implication of Claims 1 and 3 is, in particular, that in the weakly dependent case only the
i.i.d. part contributes to the limit.

Claim 1. The process E, 1 converges in the sense of finite-dimensional distributions to a
Gaussian process W with covariance
(E[0*(X1)]) cov(W (B, 5), W (B', )
E[ﬁl(A o(X11),0(X10), 5 8) X PY st € B, Yopmsnw € B | X)

hA(m—h)

+ Z E[ﬁj(A,O'(leh),O'(XjJJrh,l),S,S/)
Jj=2

X AP(Y e+ € By Yt j—1min+j—1 € B' | X)
+P(Ym,m+h’ S B/aYm+j—1,m+h’+j—1 eEB|AX)}|, (45)

where the functions L; are defined in Assumption 2.

Claim 2. For each fized B, E, 1(B,-) is tight in D([a,b]) for each 0 < a < b.

This claim is proved in Lemma C.3.

The previous two statements are valid in both weakly dependent and long memory case. The
next one may not be valid in the long memory case. See Section 3.2.

Claim 3. In the weakly dependent case E,2(B,-) = Op(y/n), uniformly with respect to
s € la,b] for any 0 < a < b.

The next claim is proved in [ , , Corollary 2.4].

Claim 4. &, — 1 =o0p(1).

The last thing we need is the negligibility of the bias term.
Claim 5. For any a > 0, supgs,supp | Ky, (B,s) — K(B,s)| = O(v,(A)).
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Therefore if ng(k/n) — oo and (24) holds (i.e. ng(k/n)v,(A) — 0), then
\/W{Kn(Bv ) - K(B7 ')7 én() - K(Rdﬂ )} = (W(B7 ')7 W(Rhurl? )) :

This convergence and the decomposition (41) imply

\% ng(k/n)MC(A){ﬁn(Aa va) - p(A, B7m)} —d W(B> 1) - p(A, va)W(Rh/+1a 1) :

This distribution is Gaussian. Applying (45) and the fact that p(A, R?*1 m) = 1, it is easily
checked that its variance is given by (25). This concludes the proof of Theorem 2. O

We now prove the claims.

Proof of Claim 1. For j =1,...,n, denote
1
ni(B,s) = ———=W.,,(s)V;(B) .
Cnj(B;s) DG (s)V;(B)

In order to prove our claim, we apply the central limit theorem for m-dependent random
variables, see [ ]. Let C(B,B',s,s’) denote the quantity in the right hand side
of (45). We need to check that

cov [ 3 Cui(B,5), > Cuj(B,8) | X | =p C(B,B,s,5), (46)
— =

ZE i(B,s) | X] =p0. (47)

By standard Lindeberg-Feller type arguments, this proves the one-dimensional convergence.
The finite-dimensional convergence is proved by similar arguments and by computing the
asymptotic covariances. We now prove (46) and (47).

For u > 1, x,x’ € R", denote

P(o(x) - Z1j € unsA,o(X') - Zyysrh—1 € ups'A)
9(Fz(un)) '
For 1 < u < h, by Assumptions 1 and 2, the functions £, , converge in L' (X 5, Xy utn—1)

to the functions £, defined in Assumption 2. For u > h, Z; j, and Z,, ,1,—1 are independent,
so L, converges a.s. and in Ll(X17h,Xu7u+h_1) to 0.

Envu(A,x,x/, 5,8) =

The random variables (, ; are m + h’ dependent. Thus,

cov ZCNJ(BVS%ZCRJ(BI? ZCOV Cn] B 3) Cn]( ) ‘X)
j=1 j=1

7=1
n m-+h'
+Z Z COV(C”:j(BvS)?Cn,j—‘ru(B/;S/) ‘ X) (48)
7j=1 u=1
n m-+h'
3D cov(Gujan(B.5).Gus(BLs) | X) (19)
7j=1 u=1
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Foru=1,...,h A (m — h) it is easily seen that

Zcov(g‘mj(B,8),Cn,j+u(B/,3/) | X)

j=1
FZ un /
ng k:/n Zﬁnu 3,J+h—1> ]+u,j+u+h717375 )
X P(Yjmjtm+h € B, Yjrutmjtutmin € B' | X)
N E [Eu(Ay Xl,h7 Xu,thufla S, SI)P(Ym,m+h € B7 Yu+m,u+m+h’ ep ‘ X)]
P .

(Elo>(X)])”

This yields the right-hand side of (45), so we must prove that the terms in (48) and (49) are
negligible. If h > m — h, then for large n and m — h < u < h, we have (u,s’A) N B = 0, so,
forallj=1...,n

P(Yj,jJrh—l € unSAan+u,j+u+h—1 € ups' A,
Y imjtm+h € B, Y jtutmjturmin € B'1 X) =0.

For u > h, then as mentioned above, £,(4,-, -, s, s") converges to 0 in L'(Xy 5, Xy utn_1) 50

> cov(Gni(B, ), Cnjru(B,8) | X) 2p 0.
j=1

This proves (46). Next, since (, ; are indicators and applying (37)

E[Wi (s, A)V1(B)]

nglk/m)

Y ElG;(B.s) <C

Jj=1

This proves (47) and the weak convergence of finite dimensional distributions. t

Proof of Claim 3. By definition of the functions L, and G, (cf. (38) and (39)), it clearly
holds that

|G (8, X jrh—15 Xjgm,jrmin's B)| < Ln(s, X jvn-1) -
We apply the variance inequality (B.3) in the weak dependence case to get
C 1
V&I‘(EmQ(B, 8)) < gV&I‘(Gn(S, Xl,h7 X1+m,1+m+h’7 B)) < E[L (8 Xl h)]
By (11), Ly(s,x) < My(o(x)). Thus, by Assumption 3, the right hand side is uniformly
bounded, thus var(E,2(B,s)) = O(1/n) and for any fixed s > 0, \/nEy,2(B,s) = Op(1).
Tightness follows from Lemma C.4, thus E, 2(B, -) converges uniformly to 0 on any compact
set of (0, o0]. O
Proof of Claim 5. Consider now the bias term K,, — K. Recall that (see (42) and (37))
Kn(B,s) = E[Kn(B, )] = Te(s)uc(A)p(A, Bym) = K(B, s)
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Therefore, K, (B,s) converges pointwise to K(B,s). The goal here is to show that this
convergence is uniform. Using the definition of K, (38) and (39) we have

K, (B,s) = ]E[Gn(sa X1h Xonymth! s B)] = E[Ln(sa Xl,h)]P)(O'(Xm,m+h’) Ly €B ‘ X)] .
Using this definition and recalling the formula for p(A, B, m) (see (13))
K(B,s) = Te(s)ELXy p)P(0 (Xonms) - Zonmsr € B | X)]
Therefore, recalling the definition (22) of v,,(A), we obtain that
|K,(B,s) — K(B,s)| <E 8151) |Ln(s,X1n) — Te(s)L(Xqn)|| = vn(A) .

O

Proof of Corollary 3. In the following, y stands for the set (—oo,y] in the previous notation.
For y € RM+1, rewrite the decomposition (41) in the present context to get

B (y) - w(y) = S 2 - Bz 6) o) Te(6))

Thus we need only prove that the sequence of suitably normalized processes K’n(s,y) —
K, (y,s) converge weakly to the claimed limit. The convergence of finite dimensional distri-
butions follows from Theorem 2 and the tightness follows from Lemmas C.3 and C.4. O

Proof of Theorem 4. Claims 1, 2, 4 and 5 hold under the assumptions of Theorem 4. Thus,
the result will follow if we prove a modified version of Claim 3.

Claim 6. If 27(A,B)(1 — H) < 1, then 7;T(A’B)/2En72(A,B, -) converges weakly uniformly
on compact sets of (0,00] to a process Tc - Z(A, B) where the random variable Z(A, B) is
in a Gaussian chaos of order T(A,B) and its distribution depends only on the Gaussian
process { X, }.

For any d € N*, q € N? and x € R?, denote

d

Ho(x) = [ Hq () -

i=1
Define X; = (X1, Xjgn, Xjtm, - -+ » Xjpmin). The Hermite coefficients of G, (s,-) and
G with respect to Xg can be expressed, for q € N+ a5

Jn(a,s) = E[Hq(Xo)Gn(s,X0)] , J(a) = E[Hq(X0)G(Xo)] -

Since Gy, (s, -) converges to T'(s)G(+) in LP(Xy) for some p > 1, J,,(q, s) converges to T¢(s)J(q).
Let U be an (h+h'+1) x (h+h'+1) matrix such that UU’ is equal to the inverse of the covari-
ance matrix of Xg. Define J'(q, s) = E[Hq(UX0)Gy (s, UXp)] and J*(q) = E[Hq(UXo)G(Xo)].
Under Assumption 5, the function G,, can be expanded for x € R*/+1 a5

Gn(s,x) = E[Gn(s,X0)] = Y ‘m(;ll’s)ﬂq((]x) +ra(s,x) ,
lal=7(A,B)
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where 7, is implicitly defined and has Hermite rank at least 7(A, B) + 1 with respect to UX.
Denote R, (s) =n~1 > i=17n(s8,X;). Applying (B.3), we have

1 1
v (R(9) < € (37497 L) sar(Gy (o, 30)) < € (5548 L) B s, X))

n
By Assumption 3, E[L2(s,X;)] is uniformly bounded, thus var(R,(s)) = o('yg(A’B)) and
n T(A’B)Rn(s) converges weakly to zero. The convergence is uniform by an application of

Lemma C.1.

T(A,B)/Ql;

Thus, the asymptotic behaviour of ~;, n2 is the same as that of

JHaq,s)n™t -
Zn(s) = Z Ja(a, s)n”" N T(AB)/2 ZHq(UXj) )

|
q=r(a8) ¥ =1

By | , , Theorem 6], there exist random variables X*(q) such that Z,(s) converges

(Y I S C N

la|=7(A,B)

for each s > 0. To prove that the convergence is uniform, we only need to prove that J(q, -)
converges uniformly to T¢- J*(q) for each q such that |q| = 7(A). Since the coefficients J} can
be expressed linearly in terms of the coefficients J,, it suffices to prove uniform convergence
of the coefficients J,. Applying Hoélder inequality, we obtain, for p > 1 and for any a > 0,

sup [Jn(q, 5) = Te(s)J(q)| < CE |sup [Ln(s, X1 ) — Te(s) LX)l

s>a s>a

We have already seen that this last quantity converges to 0 for p = 2 by Assumption 3. [

Appendix

A Second order regular variation of convolutions

Denote A =< B if there exists positive constant ¢; and ¢y such that ;A < B < ¢ B.

Lemma A.1. Let Zy and Z3 be i.i.d. non negative random variables with common distribution
function F' that satisfies Assumption 6. Then

t
P(u1Z) + usZa > t) — F(t/ur) — F(t/ug)| < Cugteugte e F(t) / F(s)ds .
0

Proof. Obviously, we have

P(u1Zy +ugZa > t) = F(t/ur) + F(t/u) — F(t/ur)F(t/uz)
+P(t/2 < w1 Zy < H)P(t/2 < ugZy < t)
+P(u1Z1 < t/2,u9Zs < t,u1Z1 + uaZs > t)
+P(uaZs < t/2,u1Z1 < t,u1Z1 +uaZs > t) .
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Consider for instance the second last term. It may be written as

(A5 )]

Since F satisfies Assumption 6, we have, for u € [1/2,1],

F(ut

~—

0= F L m et s g gy el M as oS as g
t
Ca o mus g Lt g (pt(ts)
§|u _1|e1/2 s —1—61/2 s ——~ Zds.
S
u

Since n*(t) is decreasing, we have, for all u € [1/2,1],

0< ngg) —1<C{ju* —=1]+log(u)} <C(1—u).

Applying this inequality with 1 — u = uyZ;/t on the event u1Z; < t/2 yields

t/u1 t B
I < Cut 'R (211, 2, <y] < Ct_l/o F(s)ds = Ct_lull/o F(s/uy)ds .

By Potter’s bounds, for any € > 0, there exists a constant C such for any s,¢ > 0,

F(S/ul) — —a—e¢
“F() < Clupt A1) .

Applying this bound we obtain

t
I < C(up v 1)* (ug v 1)0‘+€t—1F(t)/ F(s)ds.
0

To conclude, note that F2(t) = Ot~ F(t) fg F(s)ds)ifa < 1and F2(t) = o(t 1 F(t) fg F(s)ds)
if > 1. ]

Remark 6. By induction, we can obtain the bound
— — t —
B(Zi+ -+ 2, > 1)~ nF(1)] < Ct—lF(t)/ F(s)ds
0

and we can also recover a particular case of a result of [ | in a slightly
different form. For o > 1 and E[Z;] < oo,

P(Zl+--'+Zn>t)_n}:n(n—1)

lim ¢
e+ { P(Z, > t)

t—o00
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B Multivariate Hermite expansions and variance inequalities
for Gaussian processes

Consider a multidimensional stationary centered Gaussian process {X,,} with autocovariance
function v, (i,7) = E[Xéz)Xy(l] )] and assume either

Vi<ij<d, Y |l <oo, (B.1)
n=0

or that there exists H € (1/2,1) and a function ¢ slowly varying at infinity such that

lim Yn i, 7)

A 2y = Vi (B:2)

and the coefficients b; ; are not identically zero. Then, we have the following inequality due
to [ ].

For any function G such that E[G?(X()] < oo and with Hermite rank ¢ with respect to Xo,
var ('Y G(X;) | < C(n)n® D) vt var(G(Xo)) - (B.3)
j=1

where the constant C' depends only on the Gaussian process {X,,} and not on the function G.
This bound summarizes Equations 2.18, 3.10 and 2.40 in [ ]. The rate obtained
is n~! in the weakly dependent case where (B.1) holds and in the case where (B.2) holds and
G has Hermite rank ¢ such that ¢(1 — H) > 1. Otherwise, the rate is £9(n)n?H=1),

C A criterion for tightness

We state a criterion for the tightness of a sequence of random processes with path in D(R9),
which adapts to the present context [ , Theorem 3| and the remarks
thereafter.

Let T be a rectangle T = T x Ty € R%. A block B in T is a subset of T of the form H?:1(5ia t;)
with s; < t;, 1 < i < d. Disjoint blocks B = [[, (si, #;] and B’ = [[_, (s}, /] are neighbours

(2
if there exists p € {1,...,d} such that s;, = ¢, or s, = ¢}, and s; = s} and t; = t] for i # p.
(In the terminology of [ ] the blocks B and B’ are said to share a

common face.) Let X be a random process indexed by 7. The increment of the process X
over a block B = Hle(si, t;] is defined by

X(B) = > (~)T TG X (51 + ety — 51, 80+ €alta — 54) -
(€1,...,64)€{0,1}4

(This is the usual d-dimensional increment of a random process X . If for instance d = 2, then
X(B) = X(tl, tg) —X(tl, 52) —X(Sl, tQ) +X(81, 82)). If X isan indicator, i.e. X(y) = 1{ng}
for some T' valued random variable Y, then X (B) = 1{yep)}-
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Lemma C.1. Let {(,} be sequence of stochastic processes indexed by a compact rectangle
T c R, Assume that the finite dimensional marginal distributions of (, converges weakly to
those of a process ( which is continuous on the upper boundary of T. Assume moreover that
there exist v > 0 and 8 > 1 such that

P(IGa(B) A lGa(B)] 2 A) < CAE[u (B U B')] (C.1)

for some sequence of random probability measures p, which converges weakly in probability to
a (possibly random) probability measure p with (almost surely) continuous marginals. Then
the sequence of processes {(,} is tight in D(T,R).

Sketch of proof. For f defined on T =Ty x --- x Ty, i € {1,...,d} and t € T;, define ft(i) on
Ty X - x Ty xTipq X -+ x Ty by

ft(z)(th costict tigts - td) = f(t o tion t b, o, t)

and define, for s <t € T; and § > 0,

w(fo5,) = sup D = fP oo ALY = £ e
s<u<v<w<t
wi(£,0) = sup [0 = f7 oo ALY = F e
u<v<w<u+4d
By the Corollary of [ |, a sequence of processes {X,,} defined on T

converges weakly in D(T') to a process X which is continuous at the upper boundary of T
with probability one, if the finite-dimensional marginal distributions of X,, converges to those
of X and if, for all 6, A > 0,and ali=1,...,d,

P(w!(X,,0) > \) = 0. (C.2)
For any measure p on T, define its i-th marginal (¥ by

u(i)((s,t]) =u(Th x -+ xTimy X (8,8] X Tijp1 X -+ x Tyg) ,s,t €T; .

As mentioned in the remarks after the proof of [ , Theorem 3], an easy
adaptation of the proof of [ , Theorem 15.6] shows that (C.2) is implied by
P(w](Xn, 5,1) > X) < CATE[{p)(s,1])}7] , (C.3)

where p,, satisfies the assumptions of the Lemma. So we must show that (C.1) implies (C.3).
The proof is by induction, so the first step is to prove it in the one-dimensional case, where
(C.1) becomes, for u < v <w €T,

P(¢n(v) = ()| A [Gn(w) = Ga(v) 2 X) < CATE[pg((u, w))] - (C.4)

The proof of (C.3) under the assumption (C.4) follows the lines of the proof of [ ,

, (15.26)] under the assumption | , , (15.21)]. The key ingredient is the
maximal inequality | , , Theorem 12.5], which can be easily adapted as fol-
lows in the present context. Let Sy,...,.S, be random variables. Assume that there exists
nonnegative random variables uq, ..., u, such that

P(’SZ — S]| A |Sk - S]’ > )\) < )\_VE[(u,; + - —|—uk)6]
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for some 8 > 1and v >0and all 1 <¢ < j <k <n and, then there exists a constant C' that
depends only on § and - such that

P( max |Si_5j‘/\‘5k_sj|>)\> SC/\_’YE[(’UJ—F"'-F’U,”)B].

1<i<j<k<n

Proving by induction that (C.1) implies (C.3) in the d-dimensional case can be done exactly
along the lines of Step 5 of the proof of [ , Theorem 1]. O

In order to apply this criterion to the context of empirical processes, we need the following
Lemma which slightly extends the bound [ , (13.18)].

Lemma C.2. Let {(B;, Bl)} be a sequence of m-dependent vectors, where B; and B) are
Bernoulli random variables, with parameters p; and g;, respectively, and such that B; B, = 0
a.s. Denote Sy, =%, (Bj —p;) and S;, = >%_, (B} — q;). Then, there exists a constant C
which depends only on m, such that

E[S25.% < C (Zm) (zn: %‘) <C (Zn:pﬂqz) : (C.5)

Proof. We start by assuming that the pairs (B;, B]) are i.i.d. and we prove (C.5) by induction.
For any integrable random variable X, denote X = X — E[X]. For n = 1, since B; B} = 0,
we obtain E[B;B!] = —p;q; and
=9 5,2
E[B}B'\] = E[(B1 — 2p1B1 + p})(B] — 201 B} + ¢})]
=g +pia - 3p1¢* = prar(pr + @1 = 3p1an) < prga -
The last inequality comes from the fact that BiB] = 0 a.s. implies that p; + ¢; < 1, and
0<p+qg—3pg <p+q<1forall p,qg > 0 such that p+ ¢ < 1. Assume now that (C.5) holds
with C' = 3 for some n > 1. Then, denoting s, = >_"_, pj and s}, =37, g;, we have
2
E[S7+15n4+1)
2 2 2
=E[S35,°] + E[STE[B, 1] + E[S, JE(B n+1] + 4E[SpS}JE[Bny1 By 1) + E[B2 1 Bly]
< SSnSIn + Spqn+1 + ngpn-i-l + 4pn+1Qn+1 Zpi%’ + Pn+1Qn+1
i=1
< 35n3;7, + 38nGn+1 + 38%pn+1 + Pnt1gni1 < 35n+15;1+1 .
This proves that (C.5) holds for al n > 1.

We now consider the case of m-dependence. Let a;, 1 < i <n be a sequence of real numbers
and set a; = 0 if ¢ > n. Then

2

n 2 m [n/m] m [n/m]
(Za> =22 2 aGnmea | M| D aG-nmig

g=1 j=1 =1 \ j=1

2
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Applying this and the bound for the independent case (extending all sequences by zero after
the index n) yields

m m [n/m][n/m]

E[S2S! 7] % < 3m22 Z Z Z PG—1)ym+qP(—)ym+q = 3m2s,s),

qg=1q¢'=1 j=1 j'=1

O

Let us apply this criterion in the context of section 3. Fix a cone C and a relatively compact
subset A € C. Recall that E, ; and E, > are defined in (43) and (44).

Lemma C.3. Under the assumptions of Theorem 2 or 4, for any fixred B € R+, E,1(B,-)
is tight in D([a,b]), and if moreover W 4 p, j, is continuous, then E, 1 is tight in D(K X [a, b])
for any 0 < a < b and any compact set K of RP+1,

Proof. By Assumption 4, if s < ¢, then tA C sA. Thus, a sequence of random measures i,
on R x (0, 00) can be defined by

LG P(Y i € supd | X)
(51000 = 3 2 = )

,an((_ooa}’] X ]P)(Yj+m,j+m+h’ <y | X)

=1

1 n
= E Z Gn(S, Xj7hXj+m7j+m+h” y) P
j=1

where G, is defined in (39). Then [, converges vaguely in probability to the measure u
defined by

(=00, y] x (s,00)) = pe(A)T () ¥ amn(y) -

Then, by conditional m-dependence, for any neighbouring relatively compact blocs D, D’ of
R? x (0, 00], applying Lemma C.2 yields

E[E} 1 (D)E} 5(D") | X] < Clin(D)fin(D') -
Taking unconditional expectations then yields
E[E}, 5(D)Ep o(D)] < CE[pn(D)jin(D)] < Elfi (DU D)) .

Thus (C.1) holds with 8 = v = 2. In the context of Theorem 2, for any fixed B, this
implies that FE, 1(B, ) is fixed, since the limiting distribution is proportional to T'(s) which
is continuous. If the distribution function V¥ is assumed to be continuous, then Lemma C.1
applies and the process F,, 1 is tight with respect to both variables. ]

Lemma C.4. Under the assumptions of Theorem 2, for any fited B € RM+1, En72(B,j
converges uniformly to zero on compact sets of (0,00]. Under the assumption of Corollary 3,
E, 2 converges uniformly to zero on compact sets of R+ (0, 00].
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Proof. We only need to prove the tightness. By the variance inequality (B.3) and Holder’s
inequality, we have, for any relatively compact neighbouring blocks D, D’ of R? x (0, c0),

P(|E2n(D)| A [B2n(D)] 2 A) < A*Q\/E[Ein(D)]E[E%n(D’)] < ATE[E3, (DU D)
< CX\?n R[22 (DU D)
where fi,, is the random measure defined by
P(Yy € su,A | X)
g(k/n)

Assumptions 1 and 3 imply that fi, converges vaguely on R? x (0, c], in probability and in
the mean square to the measure [ defined by

[Ln(s7Y) = P(Ym,erh’ <y ‘ X) .

ve(o(Xyp)7t - A)
Elve(o(Xqp)~t - A])8

ﬂ((_ooay] X (S,OO]) = ( T(S)P(Y’m,m-‘rh’ <y | X) .

The measure [ has continuous marginals if we consider the case of a fixed B (which takes
care of Theorem 4). The marginals of i are almost surely continuous if F is continuous, so
Lemma C.1 applies. O
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