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Abstract

In this article, we propose an arbitrage-free modeling framework for the joint

dynamics of forward variance along with the underlying index, which can be seen as

a combination of the two approaches proposed by Bergomi. The di�erence between

our modeling framework and the Bergomi models (2008), is mainly the ability to

compute the prices of VIX futures and options by using semi-analytic formulas.

Also, we can express the sensitivities of the prices of VIX futures and options with

respect to the model parameters, which enables us to propose an e�cient and easy

calibration to the VIX futures and options. The calibrated model allows to Delta-

hedge VIX options by trading in VIX futures, the corresponding hedge ratios can

be computed analytically1.

1 Introduction

Several recent studies pointed out some of the limitations of classical models used for

equity derivatives. For example, Bergomi (cf [1]) showed that Dupire's formula gives un-

1This research was supported in part by NATIXIS. I am grateful to M. Crouhy, A. Reghai and A. Ben

Haj Yedder for their helpful advice and comments. Moreover, thanks to Damien Lamberton for many

useful discussions.
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realistic smile dynamics, causing signi�cant pricing errors for path-dependant or forward-

starting options; traditional stochastic volatility and jump/Lévy models impose structural

constraints on the relationship between the forward skew. To alleviate this problem, a

new modeling approach proposed by Bergomi [1], [2], [3] (see also related work of Büh-

ler [8] and Gatheral [16]) in which, instead of modelling �instantaneous� volatility, one

starts by specifying the dynamics of the entire curve of (forward) variance as a random

variable, just as HJM-type interest rate models start from the forward rate curve. The

additional complication in the case of forward variance is that we do not only want to

model the variance swap price process, but we need to derive the dynamics of a stock

price process which is consistent with the modeled variance. One of the strengths of

this modelling approach is that it provides two levels of calibration. In the �rst step, we

calibrate the parameters that generate the forward variance curve to match the prices

of volatility derivatives, which allows a better control of the he term structure of the

volatility of volatility (For example, by calibrating VIX futures and the implied volatility

of its options). At the second step, we use the resulting parameters, from the �rst step,

and calibrate the correlation coe�cients between the Brownian motion deriving the stock

price and the factors to control the term structure of the skew of the vanilla smiles.

Before describing our contribution, we will recall a few facts about variance modelling

and Bergomi's modelling framework.

1.1 Variance Swaps and Forward Variance Curve

A variance swap with maturity T is a contract which pays out the realized variance of

the logarithmic total returns up to T less a strike called the variance swap rate V T
0 ,

determined in such a way that the contract has zero value today.

The annualized realized variance of a stock price process S for the period [0, T ] with

business days 0 = t0 < ... < tn = T is usually de�ned as

RV 0,T :=
d

n

n∑
i=1

(
log

Sti
Sti−1

)2

.

The constant d denotes the number of trading days per year and is usually �xed to 252

so that d
n
≈ 1

T
. We assume the market is arbitrage-free and prices of traded instruments

are represented as conditional expectations with respect to an equivalent pricing measure
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Q. A standard result gives that as supi=1,...,n |ti − ti−1| −→ 0, we have

n∑
i=1

(
log

Sti
Sti−1

)2

−→ 〈logS〉T in probability (1.1)

when (St)t≥0 is a continuous semimartingale.

Approximating the realized variance by the quadratic variation of the log returns works

very well for variance swaps, but care should be taken in practise if we price short dated

non-linear payo�s on realized variance. Denote by V T
t , the price at time t of a variance

swap with maturity T <∞. It is given under Q by

V T
t = EQ

t

[
RV 0,T

]
= EQ

t [〈logS〉T ] .

We de�ne the forward variance curve (ξT )T≥0 as

ξTt := ∂TV
T
t , T ≥ t ≥ 0.

Note that, if we assume that the S&PX index follows a di�usion process, dSt =

µtStdt + σtStdWt with a general stochastic volatility process, σ, the forward variance is

given by

ξTt = EQ
t

(
σ2
T

)
.

It can be seen as the forward instantaneous variance for date T, observed at t. In particular

ξtt = σ2
t , ∀t ≥ 0.

The current price of a variance swap, V T
t , is given in terms of the forward variances

as

V T
t = 〈logS〉t +

∫ T

t

ξut du

The models used in practice are based on di�usion dynamics where forward variance

curves are given as a functional of a �nite-dimensional Markov-process:

ξTt = G(T ; t, Zt), (1.2)

where the function G and the m-dimensional Markov-process Z satisfy some consistency
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condition, which essentially ensures that for every �xed maturity T > 0, the forward

variance (ξTt )t≤T is a martingale.

1.2 Bergomi's model(s)

In two articles [2], [3] published in 2005 and 2008 in Risk, L. Bergomi proposed a new

model based on the direct modelling of the forward variance curve. He proposed two

versions of this model: a continuous and a discrete one. The discrete version can be

seen as the analog of the LIBOR market model for volatility modeling, since it aimed to

model forward variance swaps for a discrete tenor of maturities while the second one is

Markovian and time homogeneous, where the volatilities of forward variance depend on

time-to-maturity only.

Both models allow to match any speci�ed term-structure of the at-the-money implied

volatility skew for the short maturities, while being consistent with the market prices for

variance swaps and �tting with a good approximation the at-the-money implied volatilities

and the at-the-money skews. They also provide better control on the smile of forward

variance by calibrating the VIX futures and smiles.

Denote by T0 < T1 < · · · < Tn the tenor structure of the VIX futures. The forward

variance curve in the continuous version of the model is given by

ξTt = ξT0 f
T (xTt , t) = ξT0

(
(1− γT )eωT x

T
t −

ω2
T
2

E(xTt )2

+ γT e
βTωT x

T
t −

β2
T ω

2
T

2
E(xTt )2

)
, (1.3)

where

xTt :=
∑
n

θn e
−κn(T−t)

∫ t

0

e−κn(t−s)dW n
s (1.4)

The Brownian motions W n are correlated with correlation coe�cients ρi,j. The curves γ,

β and ω are taken to be piece-wise constant over the interval [Ti, Ti+1[.

The main drawback for this model is the inability to express explicitly the prices of

VIX futures and options in terms of the model parameters (γ, β and ω). Therefore, the

calibration of the model parameters to a set of market option prices becomes very di�cult

and sometimes impossible.

The forward variance, in the discrete version, is de�ned over the time interval [Ti−1, Ti[

as
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ξTt = ξit = ξi0f
i(t, xTit ), t ≤ T and T ∈ [Ti−1, Ti[.

The calibration to the VIX smiles is exact and fully detailed in Bergomi (2008). However,

the functional of the model, f i(t, xTit ), is not given in advance, but obtained after cali-

bration on a �nite number of points, which makes the use of the model di�cult to price

other types of products. Furthermore, conditionally to FTi , S is lognormal over [Ti, Ti+1[:

the spot process in the discrete version follows the dynamics

dS

S
= (r − q)dt+

√
ξi+1
Ti
dW Ti ≤ t < Ti+1,

which does not allow much �exibility to match the market prices of the S&P options with

30-days maturity starting form Ti.

1.3 Our contribution

In this article, we propose an arbitrage-free modeling framework for the joint dynamics

of the forward variance curve along with the underlying index, based on the modelling of

the forward variance.

Our model combines features of the discrete and continuous versions of Bergomi's

model, without being reduced to either of them. Indeed, as in (1.3), we have an explicit

form of the forward variance in terms of the state variables. On the other hand, we have

a piecewise constant dependence with respect to maturity, as in (1.4). This dependence

with respect to maturity will allow us to express the VIX futures payo� as a deterministic

function of a normal random variable (cf (2.3)).

One of the strengths of this modelling approach is that it provides two levels of cali-

bration. In the �rst step, we calibrate the parameters that generate the forward variance

curve to match the VIX futures and the implied volatility of its options. In particular,

our model reproduces the stylised features of the skew of the implied volatility of VIX.

At the second step, we use the resulting parameters, from the �rst step, and calibrate

the correlation coe�cients between the Brownian motion driving the stock price and the

factors to control the term structure of the skew of the vanilla smiles. The �rst step of the

calibration problem is reduced to the inversion of some monotonic functions, thanks to

the explicit dependence of the prices of VIX futures and Puts with respect to the model
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parameters. The second step is performed by using an e�cient minimization algorithm.

This paper is organized as follows: Section 2 presents a description of the model for

the forward variance curve and the pricing of the VIX futures and options. In section

3, we specify the term structure of the curve ω (The scale factor of the volatility of the

forward variance). The speci�cation of the model is reduced to three parameters for each

tenor date and analytic formulas are derived for the prices of VIX futures and options in

terms of these parameters. In section 4 we show how to calibrate the model parameters

to �t the market prices of VIX futures and options. We also give numerical examples

which demonstrate the performances of the model for calibration to market data. Section

5 shows the hedging of VIX options. We will show that any European option on VIX can

be hedged by taking position on the VIX future, a variance swap, a Put on VIX and on

the skew. The corresponding hedge ratio can be computed analytically. In section 6 we

study the dynamics of the underlying asset and show how the model can be calibrated

to �t implied volatility of the European options on the S&P index, near-the-money, and

�nally, we conclude in section 7.

2 A dynamic model for forward variance dynamics

In this section, we introduce the model which is designed to capture the market prices

of volatility derivatives alongside the stock price. Our initial approach is very similar

to Bergomi's approach for the forward variance modeling. We will assume that a set of

settlement dates is given

T0 < T1 < ... < Tn < . . .

and referred to as the tenor structure (we use especially the tenor structure of the VIX

futures, but it can be generalized to any tenor structure). Consider an underlying asset

whose price S is modeled as a stochastic process (St)t≥0 on a �ltered probability space

(Ω,F , {Ft}t≥0,Q) , where {Ft}t≥0 represents the history of the market.

We �rst specify the dynamics of the forward variance using a log normal speci�cation

which allows analytical pricing of European-type VIX derivatives. The dynamics of the

forward variance under Q is assumed to be

ξTt = ξT0 e
ωT x

Ti
t −

ω2
T
2

E(x
Ti
t )2

, t ≤ T and T ∈]Ti−1, Ti] (2.1)
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where xTt is de�ned by (1.4), and the initial values of forward ξT0 are inputs of the model,

deduced from the curve of variance-swap prices.

The main di�erence between our modelling approach and Bergomi's continuous model

(1.3), in addition to the piecewise dependence with respect to maturity, is that it gives

the S&P index as a di�usion process with stochastic-lognormal volatility process, while

in Bergomi's model, the variance process is given as a sum of two lognormal processes.

However, our model does not reduce to Bergomi's model with γT = 0. Indeed, we will

see that by choosing a speci�c parametrization ω, we can reproduce the positive skew

observed in the VIX options.

The number of factors introduced in this dynamics is the number of degrees of freedom

that will be available to calibrate S&P's smiles, therefore a single-factor model would not

be precise enough. On the other hand, the computation time in a Monte-Carlo method

increases proportionally to the number of factors, therefore a two-factor model o�ers a

good quality/time ratio. Anyway, all the following formulas do not depend on the number

of factors.

The parameters of the dynamics (1.4), κi, θi and ρi,j, are chosen and will not be cali-

brated to market data, because they are not directly involved in the pricing of volatility

derivatives. We follow here the approach of Bergomi [3], where he proposes some param-

eter sets which can be chosen. For example, in the case of 2 factors, Bergomi proposed

to set 1
κ1

in the order of a few months, which corresponds to κ1 ≈ 8, 1
κ2

in the order of a

few years: κ2 ≈ 0.3. The curve ω is a deterministic function of T. It is a scale factor for

the volatility of ξ and it allows to control the term structure of the volatility of volatility

by calibrating VIX futures and options.

2.1 The VIX Index

The VIX Futures maturing at time T quotes the expected volatility for the next 30 days.

So V IX2 represents 30-day S&P 500 variance swap rate, it is given under the risk neutral

measure by

V IXT =

√
EQ
T

[
1

δ
RV T,T+δ

]
, (2.2)
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where δ = 30
365

and RV T,T+δ = RV 0,T+δ −RV 0,T . In terms of the forward variance curve,

the VIX is given by

V IXT =

√
1

δ

∫ T+δ

T

ξuTdu =

√
1

δ

∫ T+δ

T

ξu0 e
ωux

τu
T −

ω2
u
2
E(xτuT )2

du,

where τu =
∑

i≥1 Ti1u∈]Ti−1,Ti]. Note that Ti+1 − Ti = δ

We are only interested in maturities on which VIX is traded. This corresponds to

the special (typically useful) case where T = Ti for some i = 1, . . . , n. Denote by

V IXi := V IXTi . Assumed that ω is Borel measurable and locally bounded. We have

V IXi =

√
1

δ

∫ Ti+1

Ti

ξu0 e
ωux

Ti+1
Ti

−ω
2
u
2
E(x

Ti+1
Ti

)2

du ≡
√
gi(Z), (2.3)

where Z has the standard normal distribution and the function gi is de�ned as

gi(z) =
1

δ

∫ Ti+1

Ti

ξu0 e
z ω̄i(u)− ω̄

2
i (u)

2 du (2.4)

and

ω̄i(u) := ωu

√
E(x

Ti+1

Ti
)2. (2.5)

2.2 Pricing VIX Futures and Options

In this section, we derive closed form expressions for the prices of the VIX futures and

call options. By using (2.3), we can evaluate any given European-like claim on V IXi,

with pay-o� function f , as

EQf(V IXi) =

∫
R
f(
√
gi(x))

e−
x2

2

√
2π
dx.

We can also express the prices of VIX options in terms of Calls and Puts on VIX2, by using

the following useful representation, which is valid for any twice-di�erentiable function G

and for any k ∈ R+

G(X2) = G(k) +G′(k)(X2 − k) +

∫ ∞
k

G′′(K)(X2 −K)+dK +

∫ k

0

G′′(K)(K −X2)+dK
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This gives in particular the price of Calls and Put on VIX in terms of Calls and Puts on

V IX2, by extending this formula to the functions x 7−→ (
√
x− k)+ and x 7−→ (k−

√
x)+

E(V IXi − k)+ =
1

2k
E(V IXi

2 − k2)+ −
∫ ∞
k2

1

4K
√
K

E(V IXi
2 −K)+dK (2.6)

E(k − V IXi)+ =
1

2k
E(k2 − V IXi

2)+ +

∫ k2

0

1

4K
√
K

E(K − V IXi
2)+dK (2.7)

and by call-put parity, one can express the VIX future price in terms of calls and puts on

V IX2. For every k > 0, we have

E(V IXi) =
k + EV IXi

2

2
√
k

−
∫ k

0

E(K − V IXi
2)+dK

4K
√
K

−
∫ ∞
k

E(V IXi
2 −K)+dK

4K
√
K

(2.8)

In particular, for k = EV IX2
i , we have

E(V IXi) =
√

EV IX2
i −
∫ EV IX2

i

0

E(K − V IXi
2)+dK

4K
√
K

−
∫ ∞
EV IX2

i

E(V IXi
2 −K)+dK

4K
√
K

(2.9)

Note that EV IX2
i = 1

δ

∫ Ti+1ξ
u
0 du

Ti
.

Now, the price of Calls and Puts on V IXi are given by the next proposition

Proposition 2.1. If the function ω̄i is positive, then for any nonnegative strike K, the

price of a call on V IX2
i with strike K is given by

E(V IXi
2 −K)+ =

1

δ

∫ Ti+1

Ti

ξu0N(−z∗i (K) + ω̄i(u))du−KN(−z∗i (K)) (2.10)

and the price of a Put on V IXi
2 with strike K is given by

E(K − V IXi
2)+ = KN(z∗i (K))− 1

δ

∫ Ti+1

Ti

ξu0N(z∗i (K)− ω̄i(u))du (2.11)

where N denotes the standard normal cumulative distribution function and z∗i is de�ned

as

z∗i (K) = inf
{
z ∈ R

∣∣∣ gi(z) ≥ K
}

= g−1
i (K)
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Proof

We can write

E(V IXi
2 −K)+ = E(gi(Z)−K)1gi(Z)≥K

=

∫ ∞
z∗i (K)

(gi(x)−K)
e−x

2/2dx√
2π

=
1

δ

∫ Ti+1

Ti

ξu0

∫ ∞
z∗i (K)

e−
x2

2
+xω̄i(u)− ω̄

2
i (u)

2 dx√
2π

du−KN(−z∗i (K))

=
1

δ

∫ Ti+1

Ti

ξu0N(−z∗i (K) + ω̄i(u))du−KN(−z∗i (K)) �

3 Specifying ω̄i

The prices of VIX futures and options depend only on the volatility of volatility speci�-

cation controlled by the parameter ω̄i. So every assumption made on the structure of ω̄i

gives a new modelling approach.

On the other hand, the VIX dynamics is given by

dV IX2
t =

ξt+δt − ξtt
δ

dt+
1

δ

∫ t+δ

t

du ξu0 e
ωux

τu
t −

1
2
ω2
uE(xτut )2

dxτut

=
ξt+δt − ξtt

δ
dt+

∑
n

[
θn
δ

∫ t+δ

t

ξu0 e
ωux

τu
t −

1
2
ω2
uE(xτut )2

e−κn(τu−t)du

]
dW n

t .

It is easy to check that if the Brownian motionsW n are positively correlated, the volatility

of V IX2 dynamics is stochastic and positively correlated with the VIX dynamics, for any

form of ω̄i. So by Durrleman [15] the model will generate the positive skew observed in

the VIX options. Note that in the particular case where ω̄i is constant, the VIX skew

generated by the model will be equal to 0.

In this work, we assume that ω̄i takes only two values within interval ]Ti, Ti+1]. We

will show that in addition to modeling the positive skew observed in the VIX options, we

can calibrate, exactly, VIX future as well as "at least" one Put option by maturity.

Assumption 3.1. The function ω̄i is decreasing and does not take more than two values

over the time interval ]Ti, Ti+1].
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Denote by Li the point where it changes its value. The curve ω̄i can then be parametrized

as follows :

ω̄i(t) = ζi1t∈]Ti,Li] + βiζi1t∈]Li,Ti+1]. (3.1)

where βi ∈ [0, 1].

Under this assumption, F i2 takes the form

V IXi
2 = mi

[
(1− γi)eζiZi−

ζ2i
2 + γi e

βiζiZi−
β2
i ζ

2
i

2

]

where mi := 1
δ

∫ Ti+1

Ti
ξu0du, γi =

1
δ

∫ Ti+1
Li

ξu0 du

mi
and the random variable Zi := 1√

E(x
Ti+1
Ti

)2

x
Ti+1

Ti

has the standard normal distribution.

The price of any VIX future contract is then given as a function of the triplet (γi, βi, ζi).

This is given as function of calls and puts on V IX2
i by using proposition 2.11 and the

equalities (2.6), (2.7) and (2.8). Noting that, with this special parametrization of the

function ω̄i, the price of call on V IXi
2 with strike K is given by

E(V IXi
2 −K)+ = mi [(1− γi)N(−z∗i (K) + ζi) + γiN(−z∗i (K) + βiζi)]−KN(−z∗i (K))

(3.2)

and the price of put on V IXi
2 with strike K is given by

E(K−V IXi
2)+ = KN(−z∗i (K))−mi [(1− γi)N(z∗i (K)− ζi) + γN(z∗i (K)− βiζi)] (3.3)

Prices of VIX futures and options are then given by explicit formulas in terms of

parameters γi, βi and ζi.

We will study the particular case of VIX future and Put prices. First, to simplify the

notation, denote

V γ,β,ζ
i := mi

[
(1− γ)eζZi−

ζ2

2 + γeβζZi−
β2ζ2

2

]
,

for (ζ, β, ζ) ∈ [0, 1]× [0, 1]× R+. Also, let

FV IX(γ, β, ζ) = E
√
V γ,β,ζ
i and pk(γ, β, ζ) = E(k −

√
V γ,β,ζ
i )+,

the prices of VIX future and Put on VIX with strike k respectively.
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The next result gives more information about the function giving the price of VIX

future and put in terms of the parameters γ, β and ζ. The proof can be found in the

appendix

Proposition 3.2. The functions pk and FV IX are di�erentiable and their �rst partial

derivatives are given by

• ∂ζFV IX(γ, β, ζ) = −
∫∞

0
1

4K
√
K

[mi(1− γ)N ′(z∗i (K)− ζ) +miγβN
′(z∗i (K)− βζ)] dK,

• ∂βFV IX(γ, β, ζ) = −miωγ
∫∞

0
N ′(z∗i (K)− βζ) dK

4K
√
K
,

• ∂γFV IX(γ, β, ζ) = mi

∫∞
0

[N(z∗i (K)− βζ)−N(z∗i (K)− ζ)] dK
4K
√
K
,

• ∂ζpk(γ, β, ζ) = −mi(1− γ)
∫ z∗i (k2)−ζ
−∞

KN ′(K)dK

2
√
gi(K+ζ)

−miβγ
∫ z∗i (k2)−βζ
−∞

KN ′(K)dK

2
√
gi(K+βζ)

,

• ∂βpk(γ, β, ζ) = −miζγ
∫ z∗i (k2)−βζ
−∞

KN ′(K)dK

2
√
gi(K+βζ)

,

• ∂γpk(γ, β, ζ) = mi

∫ z∗i (k2)−ζ
−∞

N ′(K)dK

2
√
gi(K+ζ)

−mi

∫ z∗i (k2)−βω
−∞

N ′(K)dK

2
√
gi(K+βω)

.

In particular, we have

1. ∂ωFV IX and ∂βFV IX are negative.

2. ∂γFV IX , ∂ζpk and ∂βpk are positive.

3. If k ≤ √mi, then ∂γpk is negative.

4 Calibrating γ, β and ζ

A model cannot be used in practise without a reliable and reasonably quick calibration

scheme. We therefore describe here how the model can be calibrated using the "explicit

dependence" between VIX futures and options prices and the model parameters γ, β and

ζ for each maturity Ti, given by proposition 3.2.
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Data

Assume that we observe the Variance-Swap market prices for all maturities. We deduce

the initial variance curve (ξT0 )T≥0 from the market prices of Variance-Swap.

Let us also assume that we observe the VIX future price and a series of Put options

on VIX, for each maturity Ti. Obviously, we will not pretend to be able to calibrate

VIX futures and all European options on VIX, nevertheless we will show that for each

maturity we can calibrate "exactly" both VIX future price and one Put by leaving free

the parameter γ along some interval. This parameter, left free, will serve to calibrate

other options and/or to reproduce the VIX skew.

Phase 1: Calibrating VIX future

The hedging of VIX options is typically done with trading in VIX futures contracts, we

want the model to reproduce the VIX futures prices for each maturity Ti.

Let's denote by F the market price of VIX future for some maturity Ti and denote

by m = 1
Ti+1−Ti

∫ Ti+1

Ti
ξu0du. Note that F and m must satisfy the following (no-arbitrage)

condition :

F ≤
√
m.

The calibration problem of the VIX future is to �nd a triplet (γ, β, ζ) ∈ [0, 1]× [0, 1]×
R+ such that

FV IX(γ, β, ζ) = F.

In what follows, we will show that for every (γ, ζ) belonging to some subset of [0, 1]×R+,

there exists a unique β ∈ [0, 1], such that FV IX(γ, β, ζ) = F.

By Proposition 3.2, we know that for (γ, ζ) ∈ [0, 1]×R+, the function β 7−→ FV IX(γ, β, ζ)

is continuous, decreasing over [0, 1]. It is then bijective from [0, 1] to[
FV IX(γ, β = 1, ζ), FV IX(γ, β = 0, ζ)

]
. (Note that V β,0,ζ and V β,1,ζ are lognormales)

Now, it becomes clear that if the pair (γ, ζ) is such that FV IX(γ, 1, ζ) ≤ F and

FV IX(γ, 0, ζ) ≥ F , then there exists β ∈ [0, 1] such that FV IX(γ, β, ζ) = F .

So, for γ ≥ 0, consider the function ζ 7−→ FV IX(γ, 0, ζ). From Proposition 3.2, we

know that it is continuous and decreasing over R+ satisfying FV IX(γ, 0, ζ = 0) =
√
mγ

13



and limζ→∞ FV IX(γ, 0, ζ) = 0. It allows us to de�ne the fuction

ζ̄F : γ ∈ [0,
F 2

m
) 7−→ ζ̄F (γ) := FV IX(γ, 0, .)−1(F ) (4.1)

This function, ζ̄F , is continuous, increasing over [0, F
2

m
) and satis�es{

ζ̄F (0) = ζF ,

lim
γ→F2

m

ζ̄F (γ) = +∞.

where

ζF := 2

√
log(

m

F 2
) (4.2)

Denote

ΩF =

{
(γ, ζ) ∈ [0,

F 2

m
)× R+

∣∣∣ ζ ∈ [ζF , ζ̄F (γ)]

}
. (4.3)

It is easy to check that for every (γ, ζ) ∈ ΩF , we have FV IX(γ, 1, ζ) ≤ F and

FV IX(γ, 0, ζ) ≥ F. This means that the mapping

βF : (γ, ζ) ∈ ΩF 7−→ βF (γ, ζ) := FV IX(γ, ., ζ)−1(F ) (4.4)

is well de�ned. In particular, for every (γ, ζ) ∈ ΩF , we have FV IX(γ, βF (γ, ζ), ζ) = F �

Phase 2: Calibrating VIX Put

As mentioned above, we choose to calibrate one Put option for each maturity Ti. Denote

by P the market price of this option and by K0 its strike. Here we will try to �nd a family

of pairs (γ, ζ) ∈ ΩF , such that

pk0(γ, βF (γ, ζ), ζ) = P.

The map (γ, ζ) 7−→ pk0(γ, βF (γ, ζ), ζ) is neither monotonic in γ, nor in ζ because of βF ,

then we cannot obtain its inverse easily. To address this problem, we proceed as follows.

By using proposition 3.2 and in the same way as before we can de�ne

ζ̄P : γ ∈ [0,
(k0 − P )2

m
) 7−→ ζ̄P (γ) := pk0(γ, 0, .)−1(P ) (4.5)

14



In particular, ζ̄P is continuous, increasing over [0, (P−k0)2

m
) and satis�es{

ζ̄P (0) = ζP ,

lim
γ→ (P−k0)2

m

ζ̄P (γ) = +∞.

where

ζP = sup

{
ζ > 0; PBS(

√
me−

ζ2

8 , k0,
ζ

2
) ≤ P

}
(4.6)

and

PBS(S, k, σ) = −SN

(
− log(S

k
)− σ2

2

σ

)
+ kN

(
− log(S

k
) + σ2

2

σ

)
.

Denote

ΩP =

{
(γ, ζ) ∈ [0,

(k0 − P )2

m
)× [ ζP , ζ̄P (γ)]

}∨{
[
(k0 − P )2

m
,
F 2

m
)× [ ζP ,∞)

}
We can de�ne the map

βP : (γ, ζ) ∈ ΩP 7−→ βP (γ, ζ) := pk0(γ, ., ζ)−1(P ) (4.7)

Now to solve the "double" calibration problem of the parameters γ, β and ζ to F and

P, it su�ces to �nd (γ, ζ) ∈ ΩF ∩ ΩP such that

βF (γ, ζ) = βP (γ, ζ).

The proof of the next theorem can be found in the appendix.

Theorem 4.1. Assume ζp ≤ ζF (where ζP is de�ned by (4.6) and ζF by (4.2)), then there

exists γ∗ < (k0−P )2

m
such that for every γ ∈ [γ∗, F

2

m
), there exists ζγ = ζ∗(γ, k0, F, P ) ≥

0 such that βF (γ, ζγ) = βP (γ, ζγ). Furthermore, the map ζ∗ is di�erentiable and its

derivatives are given by

• ∂γζ∗(γ, k0, F, P ) =
∂γpk0

×∂βFV IX−∂βpk0
×∂γFV IX

∂ζFV IX×∂βpk0
−∂βFV IX×∂ζpk0

(γ, βF (γ, ζγ), ζγ),

• ∂kζ∗(γ, k0, F, P ) =
pk0
×∂βFV IX

∂ζFV IX×∂βpk0
−∂βFV IX×∂ζpk0

(γ, βF (γ, ζγ), ζγ),

• ∂F ζ∗(γ, k0, F, P ) =
∂βpk0

∂ζFV IX×∂βpk0
−∂βFV IX×∂ζpk0

(γ, βF (γ, ζγ), ζγ),
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• ∂P ζ∗(γ, k0, F, P ) =
−∂βFV IX

∂ζFV IX×∂βpk0
−∂βFV IX×∂ζpk0

(γ, βF (γ, ζγ), ζγ).

Remark 4.1. With all market data that we have dealt with, the condition ζp ≤ ζF is

satis�ed for k0 = F . For general case, we note that

ζp ≤ ζF ⇐⇒ σIMP (k0) ≤ ζP
2
⇐⇒ σIMP (k0) ≤ ζF

2

where σIMP (k) = PBS(F, k0, .)
−1 (P ). Since "in practice", the implied volatility of VIX

options are increasing with respect to the strike, then if k0 is such that σIMP (k0) ≤ ζF
2
,

so the condition is still satis�ed if k0 is replaced by k ≤ k0.

Remark 4.2. Thanks to the monotonicity properties of all the functions we have de�ned,

the calculation of γ∗ and ζγ are made by using a "special" binary search algorithm. This

algorithm will be detailed in the appendix ( see Remark B.1).

Phase 3: Calibrating γ

We can do without this calibration step if we only want to �t the future price and the

Put price by choosing any value of γ between γ∗ and F 2

m
. Noting that (k0−P )2

m
∈ [γ∗, F

2

m
).

Otherwise, we can calibrate the VIX skew or another Put option on VIX.

By proposition 4.1, we know that by choosing any value of γ in [γ∗, F
2

m
), we can �nd

a couple (βγ, ζγ) such that the model price of VIX future and Put on VIX with strike k0

coincides with their market prices. There is therefore a possibility to calibrate γ to match

another VIX future contract. Here we choose to calibrate with the aim to reproduce the

skew of VIX at k0. i.e the slope of the Put implied volatility of VIX at the point k0.

In practice, the skew, at some point k, is measured as the di�erence of the implied

volatilities of 95% and 105% strike. Now to compute the "skew" from the market data

on VIX, we choose k1: the nearest strike to k0, on which the VIX put is available and we

approximate the skew by the di�erence of the implied volatility of k0 and k1.

This step of calibration reduces to �nding γ such that

∂kpk0(γ, βF (γ, ζγ); ζγ) =
P1 − P
k1 − k0

.
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The calibration is thus reduced to minimizing{[
k2

0

m
−
(

(1− γ) eζγZ−
1
2
ζ2
γ + γ eζγβF (γ,ζγ)Z− 1

2
ζ2
γβF (γ,ζγ)2

)]2

, γ ∈ [γ∗,
F 2

m
)

}

Remark 4.3. By di�erentiating the Black-Scholes formula giving the price of Put with

strike k0 with respect to the strike, we can express ∂kpk0 in terms of the skew and the

implied volatility of P at the point k0 as

∂kE(K −
√
V
γ,βP (γ,ζγ),ζγ
i )+

∣∣∣
k=k0

= N(−d2) + Si × k0

√
TiN

′(−d2),

where d2 =
log( F

k0
)−σ

2
V IX (k0)

2
Ti

σV IX(k0)
√
T

and σV IX(k0) is the implied volatility of the Put on VIX with

strike k0. We can then synthesize Et1k≥V IX by observing continuously the price of Put

P, the future price of VIX and the skew.

To illustrate our model, we calibrate it to the VIX options data observed on November

2, 2010. Figure 1 shows the results of the calibration to the implied volatilities of VIX.

Note that the VIX futures prices are perfectly reproduced by the model. Furthermore,

as mentioned in Remark 4.1, the calibration is done by using a "special" binary search

algorithm. The computation time is of the order of a few seconds.

Figure 1: Model v.s. Market VIX implied volatility smiles on November 2, 2010
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5 Hedging VIX options

We have seen in the previous sections, that, for each tenor date Ti, the price of VIX

futures and options are given as a function of the parameters γi, βi and ζi. Now, since

those parameters are calibrated to �t VIX future price and one Put option (with strike

k0) for each tenor date, we can hedge any "other" European contract in VIX futures by

taking positions in the VIX future and the Put used for the calibration.

Example: Fix one maturity T = Ti, for some i ≥ 1. Assume that until T we calibrate

the model to VIX future price (Ft)t≤T ,the put on VIX with strike (k0 = k0(Ft)) and the

skew of VIX at the point k0. Consider the hedging strategies implied by this calibrated

model for one Put option with strike k.

According to the previous sections, we know that the price of this options is given as

E(k − V IXT )+ = pk(γ, βF (γ, ζγ), ζγ)

This option can be hedged by trading, continuously in F, P, D and M. Where Dt :=

Et1k0≥V IXT and Mt = EtV IX2
T . The hedging strategy is given by the next result

Theorem 5.1. For t ≤ T , we have

d [Et(k − V IXT )+] = ∆F (t)× dFt + ∆P (t)× dPt + ∆S(t)× dDt + ∆m × dMt (5.1)

where 

∆F = 1
∂βFV IX

+ ∂Fγ
[
∂γpk − ∂βpk ∂γFV IX∂βFV IX

]
+ ΓF ×

[
∂ζpk − ∂βpk ∂ζFV IX∂βFV IX

]
,

∆P = ∂Pγ
[
∂γpk − ∂βpk ∂γFV IX∂βFV IX

]
+ ΓP ×

[
∂ζpk − ∂βpk ∂ζFV IX∂βFV IX

]
,

∆S =
∂γpk0

+∂γζ∗
(
∂ζpk0

−
∂ζpk0
∂βpk0

∂βpk0

)
∂kγpk0

+∂γζ∗
(
∂kζpk0

−
∂ζpk0
∂βpk0

∂kβpk0

) ,
∆m =

pk−k∂kpk−F∆F−P∆P−k0∆k0

2Mt
.

With

ΓF =
∂βpk0 + ∂Fγ × (∂γpk0 × ∂βFV IX − ∂βpk0 × ∂γFV IX) + k′0 ∂kpk0 × ∂βFV IX

∂ζFV IX × ∂βpk0 − ∂βFV IX × ∂ζpk0

,
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ΓP =
∂βFV IX + ∂Fγ × (∂γFV IX × ∂βpk0 − ∂βFV IX × ∂γpk0)

∂ζpk0 × ∂βFV IX − ∂βpk0 × ∂ζFV IX
,

∆k0 = ∂k0γ

[
∂γpk − ∂βpk

∂γFV IX
∂βFV IX

]
+ ∂k0ζ

∗
[
∂ζpk − ∂βpk

∂ζFV IX
∂βFV IX

]
.

And the derivatives of γ with respect to F and P are directly derived from

∂kkpk0 + ∂k0γ

[
∂kγpk0 −

∂γpk0

∂βpk0

∂kβpk0

]
+ ∂k0ζ

∗
[
∂kζpk0 −

∂ζpk0

∂βpk0

∂kβpk0

]
= 0.

k′(F )∂kkpk0 + ∂Fγ

[
∂kγpk0 −

∂γpk0

∂βpk0

∂kβpk0

]
+ ΓF ×

[
∂kζpk0 −

∂ζpk0

∂βpk0

∂kβpk0

]
= 0.

and

∂Pγ

[
∂kγpk0 −

∂γFV IX
∂βFV IX

∂kβpk0

]
+ ΓP ×

[
∂kζpk0 −

∂ζFV IX
∂βFV IX

∂kβpk0

]
= 0.

Here βF is evaluated in (γt, ζ
∗
γt) and the derivatives of pk and FV IX are evaluated in

(γ, βF (γ, ζ∗), ζ∗).

Remark 5.1. More generally, any claim on a function G(V IX), where G is given as

di�erence of convex functions, can be synthesized using VIX puts and calls at all strikes

by the so-called Carr-formula as

G(V IX) = G(k)+G′(k)(V IX−k)+

∫ ∞
k

G′′(K)(V IX −K)+dK+

∫ k

0

G′′(K)(K − V IX)+dK

Then, there exist g and ψ such that

EG(V IX) = g(γ, βF (γ, ζγ), ζγ) = ψ(F, P )

6 The dynamics of the underlying asset

Until now, we have only addressed issues concerning the modelling of the forward variance

curve. But, once the dynamics of forward variance has been speci�ed, we obtain the (risk

neutral) dynamics of the underlying asset (St)t≥0 as

dSt
St

= rdt+
√
ξttdW

S
t , (6.1)
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where r is the annualized risk-free interest rate and ξtt is given by (2.1) as

ξtt = ξt0 e
ωtx

Ti
t −

ω2
t
2
E(x

Ti
t )2

, t ∈]Ti−1, Ti]

and for t ≤ T , xTt is de�ned in (1.4) as

xTt =
∑
n

θn e
−κn(T−t)

∫ t

0

e−κn(t−s)dW n
s

The Brownian motion W S is correlated with the factors Xn, denote by ρSn = d〈WS ,Xn〉t
dt

.

The number of factors has been discussed in the beginning of this work, it corresponds to

the number of degrees of freedom that will be available to �t many di�erent smile shapes.

Now, thanks to lognormal form of the instantaneous variance, we can use the very

robust approximations we obtain in [20] for the prices of the European options under this

model. We can specify the correlations ρSn to match the speci�ed skew and to calibrate

the ATM implied volatility

7 Conclusion

We have presented a new model for the joint dynamics of the forward variance curve

along with the underlying index, which can be made consistent with both the market

prices of the VIX futures and options, and options on the S&P500 index. This model

leads to a tractable pricing framework for VIX futures and options, where the prices of

such instruments are given by analytical formulas.

We demonstrate how the calibration of the model to VIX futures and options is reduced

to a binary search algorithms. This tractability feature distinguishes our model from

previous attempts [2], [3] which only allow for full Monte Carlo pricing of VIX options

and calibration with a least-square minimisation. The model allows also to Hedge VIX

options by trading on VIX future and one Put option (typically ATM Put), where the

corresponding hedge ratio can be computed explicitly.

This model allows also to control the term structure the forward skew of the at-

the-money implied volatility as well as the implied volatility near the money of the S&P

index. It can therefore be useful in pricing path-dependent options that are sensitive to the

forward smiles, such as Cliquet or forward start options, as well as volatility derivatives,
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since it is consistent with the variance swap curve.
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A Proof of proposition 3.2

By using (2.10) and (2.11), we can easily verify that for every (γ, β, ζ) ∈ [0, 1]× [0, 1]×R+,

we have

• ∂ζE(K − V γ,β,ζ
i )+ = mi(1− γ)N ′(z∗i (K)− ζ) +miγβN

′(z∗i (K)− βζ) > 0,

• ∂βE(K − V γ,β,ζ
i )+ = miζγN

′(z∗i (K)− βζ) > 0,

• ∂γE(K − V γ,β,ζ
i )+ = mi(N(z∗i (K)− ζ)−N(z∗i (K)− βζ)) < 0.

Now by using (2.7) and by performing an integration by parts of the integral part of (2.7),

we obtain the partial derivatives of pk as

• ∂ζpk(γ, β, ζ) = −mi(1− γ)
∫ k2

0
∂Kz

∗
i (K)(z∗i (K)− ζ)N ′(z∗i (K)− ζ) dK

2
√
K
−

miγβ
∫ k2

0
∂Kz

∗
i (K)(z∗i (K)− βζ)N ′(z∗i (K)− βζ) dK

2
√
K
,

• ∂βpk(γ, β, ζ) = −miζγ
∫ k2

0
∂Kz

∗
i (K)(z∗i (K)− βζ)N ′(z∗i (K)− βζ) dK

2
√
K
,

• ∂γpk(γ, β, ζ) = mi

∫ k2

0
∂Kz

∗
i (K)(N ′(z∗i (K)− ζ)−N ′(z∗i (K)− βζ)) dK

2
√
K
.

We obtain the results of the theorem by an appropriate change of variables. The partial

derivatives of FV IX can be found in the same way as for pk. They are given by

• ∂ζFV IX(γ, β, ζ) = −
∫∞

0
1

4K
√
K

[mi(1− γ)N ′(z∗i (K)− ζ) +miγβN
′(z∗i (K)− βζ)] dK,

• ∂βFV IX(γ, β, ζ) = −miζγ
∫∞

0
N ′(z∗i (K)− βζ) dK

4K
√
K
,

• ∂γFV IX(γ, β, ζ) = mi

∫∞
0

[N(z∗i (K)− βζ)−N(z∗i (K)− ζ)] dK
4K
√
K
.

Consider the derivative of pk with respect to β. It is given by

∂βpk(γ, β, ζ) = −miζγ

∫ z∗i (k2)−βζ

−∞

KN ′(K)dK

2
√
gi(K + βζ)

.

- If z∗i (k
2)− βζ ≤ 0, then ∂βpk(γ, β, ζ) ≥ 0.

- If z∗i (k
2)− βζ > 0, we decompose ∂βpk(γ, β, ζ) a follows

∂βpk(γ, β, ζ) = miζγ

[
−
∫ −z∗i (k2)+βζ

−∞

KN ′(K)dK

2
√
gi(K + βζ)

−
∫ z∗i (k2)−βζ

−z∗i (k2)+βζ

KN ′(K)dK

2
√
gi(K + βζ)

]
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Since z∗i (k
2)− βζ > 0, so that −

∫ −z∗i (k2)+βζ

−∞
KN ′(K)dK

2
√
gi(K+βζ)

≥ 0. It follows

∂βpk(γ, β, ζ) ≥ −miζγ

∫ z∗i (k2)−βζ

−z∗i (k2)+βζ

KN ′(K)dK

2
√
gi(K + βζ)

.

On the other hand, we can decompose this integral as follows∫ z∗i (k2)−βω

−z∗i (k2)+βω

KN ′(K)dK

2
√
gi(K + βω)

=

∫ 0

−z∗i (k2)+βω

KN ′(K)dK

2
√
gi(K + βω)

+

∫ z∗i (k2)−βω

0

KN ′(K)dK

2
√
gi(K + βω)

.

Since gi is increasing, we have
1√

gi(K+βζ)
≤ 1√

gi(−K+βζ)
, ∀K ≥ 0, so that

∫ z∗i (k2)−βζ

0

KN ′(K)dK

2
√
gi(K + βζ)

≤ −
∫ 0

−z∗i (k2)+βζ

KN ′(K)dK

2
√
gi(K + βζ)

Thus ∫ z∗i (k2)−βω

−z∗i (k2)+βω

KN ′(K)dK

2
√
gi(K + βω)

≤ 0.

Hence ∂βpk(γ, β, ζ) ≥ 0.

In the same way, we can show that ∂ζpk(γ, β, ζ) ≥ 0.

Consider the derivative of pk with respect to γ. It is given by

∂γpk(γ, β, ζ) = mi

∫ k2

0

∂Kz
∗
i (K)(N ′(z∗i (K)− ζ)−N ′(z∗i (K)− βζ))

dK

2
√
K

It is easy to check that, on [0, k2], N ′(z∗i (K)− ζ)−N ′(z∗i (K)− βζ) ≤ 0 if and only if

(z∗i (K)− ζ)2 ≥ (z∗i (K)− βζ)2.

which is equivalent to

z∗i (K) ≤ ζ(1 + β)

2
⇐⇒ K ≤ gi

(
ζ(1 + β)

2

)
= mi e

ζ2β2

2 .

In particular, if k ≤ √mi, we have ∂γpk(γ, β, ζ) ≤ 0.
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B Proof of theorem 4.1 and theorem 5.1

Lemma B.1. The mapping βP is continuous over ΩP . Furthermore, for γ ∈ [0, (P−k0)2

m
)

the function ζ 7−→ βP (γ, ζ) is decreasing and continuously di�erentiable over
(
ζP , ζ̄P (γ)

)
such that βP (ζP ) = 1, βP (ζ̄P (γ)) = 0 and for ζ ∈

(
ζP , ζ̄P (γ)

)
, we have

∂ζβP (γ, ζ) = −∂ζ pk0(γ, βP (ζ), ζ)

∂β pk0(γ, βP (ζ), ζ)
(B.1)

Also, for ζ ∈
(
ζP , ζ̄P (γ)

)
, the function γ 7−→ βP (γ, ζ) is increasing and continuously

di�erentiable over (0, (P−k0)2

m
) such that

∂γβP (γ, ζ) = −∂γ pk0(γ, βP (ζ), ζ)

∂β pk0(γ, βP (ζ), ζ)
(B.2)

Proof

Let (γ, ζ1), (γ, ζ2) ∈ ΩP such that ζ1 < ζ2, then by de�nition of βP , we have

pk0(γ, βP (γ, ζ2), ζ2) = P = pk0(γ, βP (γ, ζ1), ζ1)

On the other hand, by proposition 3.2, we know that for (γ, β) ∈ [0, 1)×[0, 1], the function

ζ 7−→ pk0(γ, β, ζ) is increasing. Therefore

pk0(γ, βP (γ, ζ2), ζ1) ≤ P.

This means that βP (γ, ζ2) ∈ {β ∈ [0, 1] ; pk0(γ, β, ζ1) ≤ P} . We deduce that βP (γ, ζ2) ≤
βP (γ, ζ1).

Now, for ε small enough, we have

pk0(γ, βP (ζ + ε), ζ + ε) = pk0(γ, βP (ζn), ζ) +

ε [∂ζ pk0(γ, βP (ζ), ζ) + ∂ζβP (γ, ζ)∂β pk0(γ, βP (ζ), ζ)] +O(ε2)

Note that pk0(γ, βP (ζ + ε), ζ + ε) = pk0(γ, βP (ζn), ζ) = P , so by letting ε go to 0 we �nd

(B.1).

Lemma B.2. The mapping βF is continuous over ΩF . Furthermore, for γ ∈ [0, F
2

m
) the
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function ζ 7−→ βF (γ, ζ) is decreasing and continuously di�erentiable over
(
ζF , ζ̄F (γ)

)
such

that βF (ζF ) = 1, βF (ζ̄F (γ)) = 0 and for ζ ∈
(
ζF , ζ̄F (γ)

)
, we have

∂ζβF (γ, ζ) = −∂ζFV IX(γ, βF (ζ), ζ)

∂βFV IX(γ, βF (ζ), ζ)
. (B.3)

Also, for ζ ∈
(
ζF , ζ̄F (γ)

)
, we have

∂γβF (γ, ζ) = −∂γFV IX(γ, βF (ζ), ζ)

∂βFV IX(γ, βF (ζ), ζ)
. (B.4)

Proof of theorem 4.1

Let's consider the maps ζ̄P and ζ̄F de�ned above and denote by

γ∗ := sup

{
γ ∈ [0,

(P − k0)2

m
) ; ζ̄F (γ) ≥ ζ̄P (γ)

}
.

Since k0 − F < P , then (k0−P )2

m
< F 2

m
. In particular ζ̄F is continuous at (P−k0)2

m
. In the

other hand, we know that lim
γ→ (P−k0)2

m

ζ̄P (γ) = +∞: This means that ∃γ0 <
(P−k0)2

m
, such

that

∀γ ∈ [γ0,
(P − k0)2

m
), ζ̄P (γ) > ζ̄F (

(P − k0)2

m
) > ζ̄F (γ).

Hence

γ∗ ≤ γ0 <
(P − k0)2

m
.

In particular, we have

ζ̄F (γ) ≤ ζ̄P (γ), ∀γ ∈ [γ∗,
(P − k0)2

m
). (B.5)

Now let γ ∈ [γ∗, (K0−F )2

m
). We have ζ̄F (γ) ≤ ζ̄P (γ). i.e [ζF , ζ̄F (γ)] ⊂ [ζP , ζ̄P (γ)]. This

means that both βP (γ, .) and βF (γ, .) are well de�ned over [ζF , ζ̄F (γ)]. In particular, we

have {
βP (γ, ζF ) ≤ 1 = βF (γ, ζF ),

βP (γ, ζ̄F (γ)) ≥ 0 = βF (γ, ζ̄F (γ)).

So there exists ζ ∈ [ζF , ζ̄F (γ)] such that βF (γ, ζ) = βP (γ, ζ).
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On the other, let γ ∈ [ (K0−F )2

m
, F

2

m
). Both βP (γ, .) and βF (γ, .) are well de�ned over

[ζF , ζ̄F (γ)] and satisfy {
βP (γ, ζF ) ≤ 1 = βF (γ, ζF ),

βP (γ, ζ̄F (γ)) ≥ 0 = βF (γ, ζ̄F (γ)).

Hence, there exists ζ = ζ∗(F, P, γ) ∈ [ζF , ζ̄F (γ)] such that βF (γ, ζ) = βP (γ, ζ).

Figure 2: ζ̄F vs ζ̄P Figure 3: βF vs βP , where γ = 0.5 > γ∗

Now consider the function F 7−→ ζ∗(F, γ, ζ). First, it is easy to check that

∂F βF (γ, ζ) =
1

∂βFV IX(γ, βF (γ, ζ), ζ)
, .

Let's take ε small enough. The Taylor expansion of βF (ζ) with respect to F gives

βF+ε(γF+ε, ζ) = βF (γF , ζ) +
ε

∂βFV IX
∣∣
(γF ,βF (γF ,ζ),ζ)

+O1(ε2)

Now denote by ζ and ζε, respectively the unique solution of

βF (γ, ζ) = βP (γ, ζ) and βF+ε(γ, ζε) = βP (γ, ζε).

In particular, we have

βP (γ, ζε) = βP + ∂ζβP (γ, ζ)× (ζε − ζ) +O2(‖(ε, ζε − ζ)T‖2.
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On the other hand, we have

βF+ε(γ, ζε) = βF (γ, ζ) + ε∂FβF (γ, ζ) + ∂ζβF (γ, ζ)× (ζε − ζ) +O3(‖(ε, ζε − ζ)T‖2.

So by identifying both equalities, we obtain

ζε − ζ
ε

=
∂FβF

∂ζβP (γ, ζ)− ∂ζβF (γ, ζ)
+
ζε − ζ
ε
×O4(ζε − ζ) +O5(ε)

Thus, ζ∗ is di�erentiable with respect to F and its derivative is given by

∂F ζγ =
∂FβF

∂ζβP (γ, ζ)− ∂ζβF (γ, ζ)
. (B.6)

We can show the other equalities of the theorem in the same way.

Remark B.1. Denote by γ∗ := inf
{
γ ∈ [0, (P−k0)2

m
) ; ζ̄F (γ) ≤ ζ̄P (γ)

}
. We conjecture

that γ∗ = γ∗: This means that the curves ζ̄F and ζ̄P intersect only one time in [0, (P−k0)2

m
).

In particular, for γ ∈ [γast, F
2

m
) the calibration is performed by using the following algo-

rithm ( noting �rst that γast can be easily computed using a Binary search )

ζmin = ζF , ζmax = ζ̄F (γ)

• ζ = ζmin+ζmax
2

and compute βF (γ, ζ) and βP (γ, ζ) .

• if βF (γ, ζ) ≥ βP (γ, ζ), ζmin = ζ, otherwise ζmax = ζ.

• if |βF (γ, ζ)− βP (γ, ζ)| ≤ ERROR, Break.

Proof of theorem 5.1

The price of the Put is given by

Et(k − V IX)+ = pk(t, γt, βt, ζt)

Now, since the parameters γ, β and ζ are calibrated to �t the future price, the Put price

and the skew, the Put price is then given as

Et(k − V IX)+ = pk(t, γt, βFt(γt, ζ
∗(γt), ζ

∗(γt))
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where γt = γ(t, Ft, Pt, Qt) is the solution of

∂kpk0(t, γt, βFt(γt, ζ
∗(γt), ζ

∗(γt)) = Qt.

That means that the price of the put is given as a function of the price of the Put with

strike k0, the future price and D as

Et(k − V IX)+ = ϕ(t,Mt, Ft, Pt, Dt) (B.7)

where

ϕ(M,F, P,D) = pk(t,M ; βF (γ, ζ∗(γ(M,F, P,D), F, P )), ζ∗(M ; γ(M ;F, P,D), F, P ))

The derivatives of ϕ with respect to F, P and D can by easily computed by using the

theorem 4.1 as

∂Fϕ = k′0(F )∂kpk + ∂F ζ
∗∂ζpk + ∂FβF∂βpk + ∂Fγ [∂γpk∂γζ

∗(∂ζpk + ∂ζβF∂βpk)] ,

∂Pϕ = ∂P ζ
∗∂ζpk + ∂Pγ [∂γpk∂γζ

∗(∂ζpk + ∂ζβF∂βpk)] ,

and the derivatives of γ are obtained by di�erentiating (B.7). We obtain

∂Dγ [∂γpk0γ + ∂γζ
∗(∂ζpk0γ + ∂ζβF∂βpk0γ)] = 1,

k′0(F )∂kpk0γ + ∂F ζ
∗∂ζpk0γ + ∂FβF∂βpk0γ + ∂Fγ [∂γpk0γ∂γζ

∗(∂ζpk0γ + ∂ζβF∂βpk0γ)] = 0,

∂P ζ
∗∂ζpk0γ + ∂Pγ [∂γpk0γ∂γζ

∗(∂ζpk0γ + ∂ζβF∂βpk0γ)] = 0.

On the other hand, in addition to P, F and D, the price of VIX Put depends also on Mt

and k0. We can easily check that

ϕ(M ; k, F, P,D, k0) =
√
Mϕ(M = 1;

k√
M
,
F√
M
,
P√
M
,D,

k0√
M

)

In particular, we have

∂M ϕ =
1

2M
[ϕ− k∂k − F∂F − P∂P − k0∂k0 ]ϕ.

29



Finally, by Ito lemma, we know that

d [Et(k − V IX)+] = (. . . )dt+ ∂FϕdFt + ∂PϕdPt + ∂DϕdDt + ∂MϕdMt

and by the martingale properties of P, F and D, the term (. . . ) is then zero.
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