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Accurate Subpixel Point Spread Function
Estimation from scaled image pairs

Mauricio Delbraciof® Andrés Almansa ¥

Jean-Michel Morel 8 Pablo Musé T

Abstract

In most digital cameras, and even in high-end digital SLRs, the ac-
quired images are sampled at rates below the Nyquist critical rate, causing
aliasing effects. This work introduces an algorithm for the subpixel es-
timation of the point spread function of a digital camera from aliased
photographs. The numerical procedure simply uses two fronto-parallel
photographs of any planar textured scene at different distances. The
mathematical theory developed herein proves that the camera PSF can
be derived from these two images, under reasonable conditions. Math-
ematical proofs supplemented by experimental evidence show the well-
posedness of the problem and the convergence of the proposed algorithm
to the camera in-focus PSF. An experimental comparison of the result-
ing PSF estimates shows that the proposed algorithm reaches the accuracy
levels of the best non-blind state-of-the-art methods.

1 Introduction

Light diffraction, lens aberrations, sensor averaging and antialiasing filters are
some of the inherent camera factors that unavoidably introduce blur in pho-
tographs. The blur that results from the combination of all these factors can be
modeled locally as a convolution kernel known as point spread function (PSF),
that corresponds to the space variant impulse response of the whole camera,
including the sensor, before the final sampling.

The area enclosed by the first zero crossing of the PSF, usually called Airy
pattern, is arguably the most reasonable characterization of the optical system
resolution. Top camera/lens manufacturers use charts based on the Psr Fourier
spectrum modulus (the Modulated Transfer Function, MTF) to describe their
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products. But accurate knowledge of the PSF is not limited to quality assessment
of optical devices, and proves to be extremely useful or even necessary for several
image processing tasks such as deblurring [28], super-resolution [29, 31] or shape
from defocus [10].

In most typical digital cameras, both compact and high-end DSLRs, im-
ages are sampled at frequencies below Nyquist critical rate. Consequently, only
aliased versions of the camera PSF can be directly observed. Yet, to fully char-
acterize the PSF, it is necessary to recover it at a subpixel resolution.

PSF estimation methods can be classified as non-blind or blind, depending on
whether they use a snapshots of a specially designed calibration pattern. Blind
approaches try to estimate the PSF from photographs from an unknown scene.
They do assume, however, that the scene involved in the estimation follow some
statistical model of sharp images, or include a significant amount of geometric
cues such as sharp edges. Most of these PSF approaches attempt to detect
edges, which are modeled as pure step-edge functions convolved with the PSF
kernel [9, 24, 8, 4]. In this setting, the estimation is very ill-posed; to solve the
inverse problem, the solution space has to be constrained by considering kernels
with a parametric model or with strong regularity assumptions. Therefore,
such blind estimation techniques do not lead to accurate PSF estimates, and are
normally an ingredient in image restoration problems, where precision is not
the main objective. For this reason, accurate PSF estimation procedures rely on
the use of specially designed calibration patterns. A local kernel estimation is
performed by comparing the ideal calibration pattern to its photographs.

Several patterns have been used for PSF estimation, ranging from pin-hole,
slanted-edge [18, 30, 38, 11], or arc-step-edge patterns [20, 19] to random noise
images [12, 21, 2, 3, 7]. Until recently, even non-blind sub-pixel PSF estima-
tion methods reported in the literature led to ill-posed inverse problems. The
inversion required the imposition of simple PSF parametric models, or other
regularity or symmetry priors. In a recent work [14] we have shown that such
a priort assumptions on the PSF are actually unnecessary and jeopardize the
estimation accuracy. More precisely, by carefully modeling the image acquisi-
tion system, a calibration pattern made of a white noise realization is nearly
optimal in terms of well-conditioning of the problem. This procedure leads to
very accurate regularization-free subpixel PSF estimation.

The purpose of the present work is to explore the feasibility of obtaining
accurate PSF estimates, while avoiding the explicit use of a calibration pattern.
The motivation comes from the fact that, although very precise, the use of a
calibration pattern can be sometimes tedious and impractical: these approaches
rely on a careful setup, and the calibration grid has to be properly assembled
where a good quality print is essential.

We show that, instead of using a photograph of a known calibration pattern,
two photographs of the same scene acquired at different distances with fixed
camera configuration are enough to recover a regularization-free subpixel PSF.
The proposed acquisition procedure is simple and handy in comparison to a non-
blind approach. Experimental evidence will show that the resulting estimates
do not exhibit any significant accuracy loss compared to their best non-blind
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competitors. The choice of the photographed scene is important but not critical.
For a wide range of everyday textured scenes, the acquired image pairs lead to
well posed inversions and highly accurate results.

This paper is written with a dual public in mind: mathematicians and/or
image processing specialists. We have tried to define accurately all mathemat-
ical objects necessary to deal rigorously with image formation. An accurate
formalism is needed to justify the somewhat intricate interlacement of sampling
and convolution operations. This forces one to check on the compatibility of
all function or distribution spaces the objects belong to, and to verify that the
formulas are mathematically consistent. Nevertheless the application-oriented
reader can skip the proofs and the functional space details at a first reading,
and simply focus on the standard image processing formalism and algorithms.
Most proofs are anyway placed at the end of the paper. A glossary is appended
to display all notation in a single place.

The article is organized as follows: Section 2 presents a mathematical model
of the digital image acquisition system. This model is used in Section 3, where
it is shown that the camera PSF can be recovered from a pair of unknown scaled
images. We define the notion of blur between such pair of images, and we
propose a method to perform its estimation. Then we prove that the camera
PSF can be recovered from this inter-image blur. Section 4 presents an algorithm
that implements the complete PSF estimation procedure described in Section 3.
In Section 5 we discuss a series of experiments on real and simulated images.
Finally, Section 6 closes with a brief recapitulation and conclusions. The paper
ends with appendices containing a detailed notation and complete mathematical
proofs.

2 Image Formation Model

2.1 Generalized Digital Pin-hole Camera

An accurate estimation of the PSF requires a proper modeling of the digital
image formation process. The geometric component of this process is most often
modeled in computer vision by a pin-hole camera. An ideal pin-hole camera with
focal length f, shooting at a planar scene u from a distance d and at fronto-
parallel pose, will produce an image w(x) = u(Ax) which is just an homothecy
of scale factor A = ¢ of the original planar scene .

If the pose is not perfectly fronto-parallel, or the pin-hole camera presents
non-canonical internal calibration parameters, w and u are related by a planar
homography D, i.e. w = uoD. In a more accurate camera model the distortion
D takes the form of a more general (but regular) diffeomorphism. This is re-
quired when the scene is a regular close-to-planar surface (as is assumed here),
or when the geometric distortion due to the optical system is taken into account
as suggested in [38, 20, 14].

For the purpose of PSF estimation this simple model needs to be augmented
with an accurate radiometric component, comprising at least the following ele-
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ments:

Blurring

The pPSF kernel h models blur due to intrinsic camera characteristics, such as
diffraction when light goes through a finite aperture, light averaging within
the sensor, lens aberration, etc. Other blur sources like motion, atmospheric
turbulence or defocus blur, that may change from one snapshot to another will
be minimized by the experimental procedure and it is not the goal of the present
work to estimate them.

The diffraction kernel is determined by the shape and size of the aperture,
the focal length, and the wavelength of the considered monochromatic light.
Under the Fraunhofer far-field approximation, for incoherent light this kernel
is the squared Fourier transform modulus of the camera’s aperture indicator
function [15]. It follows that the psF diffraction kernel is always non-negative
and band-limited.

Besides the kernel due to diffraction, other sources of blur inherent to the
optical system are present in real cameras. These are mainly optical aberrations,
and anti-aliasing filters (that reduce aliasing but do not completely cancel it)
introduced in the system prior to sampling [35, 39] . The sampling process also
introduces blur. Indeed, each photo-sensor in the rectangular sampling grid
integrates the light arriving at a particular exposure time. This corresponds to
a convolution with the indicator function of the photo-sensor active area. To
sum up, the unknown PSF results basically from the convolution of three non-
negative kernels (diffraction, aberrations and anti-aliasing filters, and sensor
averaging) one of them being band-limited. No parametrical model on the PSF
will be adopted here. Nonetheless the physical modeling justifies our assumption
that the PSF is band-limited and non-negative.

Sampling

A model of continuous to digital conversion at the image plane, i.e. an ideal
sampling operator S; and additive noise n due to measurement uncertainties.
Physical models of digital camera sensors, both for cCD and CcMOS sensors, sug-
gest that the readout noise n is a mixture of luminance independent (Gaussian,
thermal) noise, and luminance dependent (Poisson or photon counting) noise
[16, 34, 25]. A usual simplification of this model, which we follow here, assumes
the noise is image independent, white, Gaussian, with constant variance.

The whole image formation process can then be summarized in a single
equation:

v =¢(Si((uoD)xh))+n,

where ¢(+) is a monotone non-decreasing function that describes the non-linear
sensor response. If the camera is working outside the saturation zone, in RAW
images this response can be reasonably assumed to be linear [14]. This boils
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u, v Images defined on continuous domain x € R?

u, v Digital images are sampled on a discrete grid k € Z?2

F Fourier transform

f Fourier transform of a function f

I Shannon-Whittaker interpolator: Iyu(x) = >, u(k)sinc(x — k)

S1 1-sampling operator: u(k) = (S1u)(k) = u(k)

W Ideal low-pass filter that cuts the spectrum of continuous signals to [—w, w7r}2
Ss The s-to-1-resampling operator Ss = S1 HsIy

H) Continuous homothecy: Hyu(z,y) = A2u(Az, Ay). (A < 1 dilation, XA > 1 contraction)
H. Digital Nyquist homothecy operator of parameter a: Hou := S1Wi1HyIiu
Clu] Linear map associated to the convolution with a digital image u

L* Adjoint of a linear operator L

L+t Pseudo-inverse LT := (L*L)~'L* of a linear operator L

Lt Integrable functions on R? (L!(R?))

L? Square integrable functions (L2(R?)).

BL£2 L2 functions, band limited in [—m, ]2

BL% L2 functions with compactly supported Fourier transform.

Table 1: Notation used in this article

down to a rescaling of the dynamics of u and therefore disappears w.l.o.g. from
the model. Hence, in the sequel, the image formation model will be

(M) v=S;((uoD)x*h)+n.

2.2 Inverse problem statement in terms of digital sequences

Since in practice our data consist exclusively of discrete sequences (or digital
images), the image formation model will be rewritten in terms of discrete se-
quences. This requires the introduction of additional notation, summarized in
Table 1 (a more precise definition of each term is presented in Appendix A). Tt
would be cumbersome to verify systematically all regularity requirements on all
functions and distributions needed in the proofs. Thus, all necessary results are
given in a precise form in the appendices. They will be invoked in the proofs
and the reader is invited to check that their use was licit.

Suppose that the PSF h is s-band-limited, that is supp(h) = [—s,s7]>.
Then, if sampled at a rate s, the Nyquist sampling theorem guarantees perfect
reconstruction of A from its samples h = S; H1 h. We are actually interested in
the case s > 1, usual for digital cameras. T his means that the images obtained
from (M) may be subject to aliasing. Following Lemma 6, the image formation
model (M) can be written in terms of discrete sequences:

V= SS(I_ID *h) + n,
= S,Clup]h + n. (1)

The digital image ap = S1Wi1Hiup is a well-sampled version of the distorted
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image up = wo D. The value s is the resampling rate from the high resolution
lattice sx, where the PSF estimation will take place, to the 1x sensor grid.

The numerical method will recover only a finite number of samples h of
h. Strictly speaking h being band limited cannot be compactly supported.
Nonetheless, the error introduced by assuming that the support of A is bounded
will prove negligible in comparison to the other sources of error: image noise,
quantization, slight estimation errors of D, etc. Indeed, the retrieved solution
h will prove to be experimentally independent from variations of its assumed
support as long as it is large enough for errors to be negligible, and small enough
for the operator to be still well conditioned.

When n is a zero-mean white discrete Gaussian noise, it follows from the
previous formula that h, = (S;C[up]) TV is an unbiased estimator of h, as long
as the linear operator S;Clup] is injective. It can be shown that the estimator
variance is proportional to the Hilbert-Schmidt norm of (SsC[ap]) (for matrices,
the Frobenius norm!), and that it is nearly minimal when iip is a white noise
realization (see [14]).

3 PSF Estimation from an unknown pair of scaled
images

Assume that we have perfect knowledge of the latent sharp image u that pro-
duced the blurry aliased observation v. Under this non-blind assumption solving
for the PSF amounts to solving an inverse problem governed by the image for-
mation model (M). Of course, this would require the use of a specially designed
calibration pattern. We are now interested in investigating to what extent the
use of such pattern could be circumvented. We will propose a method that al-
lows to accurately estimate the PSF from a pair of snapshots of the same scene,
captured from different distances. In this method, the closest image will play a
similar role to a calibration pattern in a classical non-blind approach.

In a previous work, we have shown that the highest accuracy in the psF
estimation is obtained by using a realization of a Bernoulli white noise as cal-
ibration target [14]. However, many highly textured scenes do exist in nature
that, while not being optimal, may still lead to a well-posed inverse problem.
In what follows, we prove that from two far apart snapshots of this kind of
scene, complete recovery of the camera PSF is theoretically possible based on
the estimation of the blur between this pair.

3.1 Relative blur between two images: the inter-image
kernel

Consider two digital images vi, vy of the same planar scene u, captured from
different distances in a fronto-parallel position with negligible rotation around

!Recall that the Hilbert-Schmidt norm is >, ||Le;||2, where {e;} is any Hilbert basis of
the domain of L. If the linear operator is a matrix then the Hilbert-Schmidt norm is the
Frobenius norm of the matrix.
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the optical axis. Let A\; and A2 denote the corresponding scale factors between
the scene and each of the images. Then,

Vi =S1Hy,uxh+mn; fori=1,2 (2)
= Sl’Ui +n;
=vVv;+ n;,
where v; := Hy,u * h and v; := Sjv;. We will realistically assume that

h € L' N BL] is non-negative with ||hl|;1 = 1, and u € BL] (details on the
appropriateness of these assumptions are given in Appendix A.1). Also, it will
be assumed that the acquisition distances are such that sA\; < Ag; the impor-
tance of this assumption will soon become clear.

Definition 1. Let vi,vy € B[,g be two fronto-parallel continuous views of the
same scene, acquired from different distances A1 and Ao respectively. We call
inter-image kernel between v and ve, any kernel k € BE% satisfying

Vo = HAQ/M’Ul * k.

The following lemma provides a characterization of the inter-image kernel.

Lemma 1. Let h € L' N Bﬁg be non-negative, band-limited with supp(ﬁ) C
[—sm, s7)° and h(0) = 1. Let p be the largest positive number such that |h(C)| > 0
for every ||C||, < pm and assume that Aap > s\i. Then there is an inter-image

kernel k € B[,% with support in [—s, s7r]2 between (fronto-parallel views) v1 and
vg that satisfies

A
Hyh*k = h, where)\:/\—2. (3)
1

If 4 does not vanish inside [—s%,s%] then the inter image-kernel is unique
and only depends on h and \.

Proof. If k is an inter-image kernel between v, and vs, according to Definition 1
it must satisfy

F(Hv1)(Q)k(C) = 92(0).
Since v; := Hy,u * h, the right hand side of the previous equation is given by
02(¢) = @ (52) h(Q).
In the same way, for the left-hand side,

H)\’Ul = H,\(H)\2u>kh) (210) H,\Z’U,*H)\h,

i.e. F(Hyv1)(Ok(C) = @(S/x) b (¢/»). Hence,

@ ($/2) h () E(C) = @ (¢/r) R (€). (4)
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It follows that a sufficient condition for k to be an inter-image kernel is i (¢/x) k(¢)
h (¢). Since h € L1, h is continuous. It follows that p is necessarily positive,
since h(0) = 1 > 0. In addition, as A > % by hypothesis, F(H\h)(¢) = h(¢/»)
does not vanish inside [—sm, s7]? and

(5)

is well defined all over its support, supp(k) C [—sm, s7]°. Finally, if @ (¢/,) does
not vanish within the support of h, from Eq. (4) k is unique. O

Remark 1. In the previous Lemma 1 it is assumed that the PSF h is the same
for the two images. This has at least two practical implications. First, extreme
precautions should be taken to ensure that both images are strictly in focus. We
are also assuming that for a fized camera configuration, as long as both images
are taken in focus, the PSF remains constant. Second, the common area between
v1 and vo covers an important part of the former one, and consequently its PSF
may exhibit some space variance that may degrade the estimation. This can be
avoided by taking snapshots with their common area covering only the central
part of the frame, where the kernel does not change significantly.

3.2 Estimation of the inter-image kernel

The next goal is to estimate the inter-image kernel k. Being k a s-band-limited
function, we will work with its sx samples k = S; H1 k. We will show that under
reasonable conditions, k can be recovered from the noisy aliased observations
v1 and vo. Let us first build up some intuition on how to derive the proposed
estimator. In what follows, vi = S;Wj H xv; denotes a well sampled homothecy
of parameter /s of vy. )

Proposition 1. Under the assumptions of Lemma 1,
Vo = (SSC[\Dfl])k (6)

Proof. Being k an inter-image kernel between vy and wvq, it satisfies Eq. (3).
Then,

Vo = Sl(’Ug)
= S1(Hyv1 *x k).

Since k is s-band-limited, it follows that

vo 'S (W, Hyvr * Wok). (7)
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Using the Nyquist-Shannon theorem for a band-limited signal, and a set of
properties detailed in the Appendix, yields

V2 S;O SleHl (WSH)\’Ul * Wsk/’)

) S\ B, (HL W, Hyoy + HiW,k)

O S\ H, (Wi Havy x WiHLE)

) S\ H, LS (Wi Hsvi + Wi HLE)
(2) SleIl(Sll/VlHA’Ul * Slle; k)

©IS H,L (V) + k)

dZEf Ss (\071 * k)

s, C[v k.
O

Of course, in practice we do not have access to vi nor to vg, but to their
noisy, aliased versions vi; and vo. Thus k cannot be directly estimated from
Eq. (6). However, a relationship between v; and ¥ can be established as follows.

Hivi =Hi(vi+mny)+vy —vy
=V +81W1H%(11V1 —’U1)+H%1’11, (8)

r

where the last equality results from the definition of the discrete homothecy
operator. The term r is a consequence of aliasing when sampling v1, and intro-
duces an unknown bias in the estimation of k. While this bias cannot be fully
controlled, its impact can be mitigated. Indeed, since

r=S WiHx (I1V1 - 'Ul)
(2) SlHAW§ (11V1 — U1)7

the aliasing term r will only be non-zero if there are aliasing components in
the frequency interval [ffw, §ﬂ2. This allows to choose v1 = Hj,u such that
supp(d1) C [—2m + $m,2m — §7r]2 (see Figure 1). Thus, to minimize the impact
of the aliasing term the images should be acquired from a pair of fronto-parallel

locations as far as possible one from the other, since that amounts to increase
the value of .

From now on, we assume that the snapshots are acquired following the previ-
ous considerations. Therefore, we can ignore the aliasing term in Eq. (8), what
leads to

Vo = (SSC[\Ofl])k = (SSC[Hévl - H%nl])k,
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that is
(SSC[HA{H — Hgnl])k = V3 —no.

One could be tempted to solve for k in the previous equation using a Total Least
Squares based approach:

(TLS) argmin ||| + «||€]| subject to SsC[HAV; +dk = V3 +e€.
k,5,€ °
However, the particular structure of the operator S¢C[H vy + ] makes this
problem a difficult one. Instead we prefer to follow a simpler approach, that
results from neglecting the noise term Han;. This yields to the least squares
estimation problem

(LS) argmin |le|| subject to SsC[Hav1lk = V2 + €,
% s

,E

whose solution is given by
+
k. = (SSC[HA%]) Vs 9)

If the noise n; is small compared to vy, this solution would be very close to

the one that would be obtained from (TLS). If in addition ny is small com-

pared to vz, both solutions would be close to the actual inter-image kernel
+

k = (550[01]) vo. This follows directly from the continuity and injectivity

assumptions on S;C[v1], as a consequence of Lemma 6. This being said, we will
consider the estimator of the inter-image kernel in Eq. (9).

vi =S Lv
V1

)

aliasing
terms

Figure 1: Neglecting the aliasing The estimation will only be affected by aliasing

. 12 .
,%7‘(‘] . Hence, to avoid

aliasing one can choose v; = Hy, u such that supp(vi) C [—27 + 7,27 — 7] %,

if there are aliasing components in the interval [—%ﬂ
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Remark 2. If A < s, the convolution between k and H vy is not invertible so
the operator SsC[H av1] will not be injective. This constraint on \ is necessary
but not sufficient to ‘make SsC[H V1] invertible. In addition, it is required that
the spectrum of the image H v exhibits slow-decay. Indeed, it is shown in [14]
that the more flat the spectrusm of the image scene, the better conditioned is the
inverse problem. For that reason, in order to obtain accurate estimates of k, it
is desirable that the chosen scene u exhibits white noise characteristics.

3.3 From relative to absolute blur

Now that we have a method to estimate the inter-image kernel k, we will con-
centrate on how to recover the camera PSF. Notice that h is related to k by
Hy)h % k = h, and therefore its derivation is not straightforward. However, as
we prove in Appendix C, Proposition 5, it holds that

h= lim Hyn1k*...x Hykxk. (10)

n—oo

This equality shows that it is possible to recover the camera PSF h from the inter-
image kernel k. Recall that in practice we only have access to discrete sequences,
therefore it is convenient to derive a discrete equivalent of the previous limit.
Since k is s-bandlimited,

SiH. (Hyk k) ‘= S, Hy (W, Hk + k)
S\ (Hy W, Hyk * H k)
=S\ (Wi Hk  Hik)
B S WiH sk« S Hik
4 1,k * k.
TIteratively applying this result to Eq (10) yields

h= lim Hy.-:kx...« Hykxk. (11)

n—oo

4 The complete PSF Estimation Procedure

This section describes the algorithmic steps that lead to local subpixel PSF esti-
mates. The complete chain is summarized in the block diagram of Fig. 2. The
next paragraphs present brief summaries for each block.

Image Alignment In order to estimate the geometric transformation be-
tween both images, they need to be precisely aligned. This alignment can be
obtained by matching SIFT descriptors [23], which have the advantage of being
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resolution
sX
SIFT Geometric Image
Feature Transformation 1 Interpolation
Matching Estimation ] H,, v,
Y
Captured
Image Vv,
Captured
Image V,

Figure 2: Algorithm Description. Both captured images are aligned via SIFT
feature matching followed by the estimation of a smooth geometric distortion
through thin-plate approximation of matched features. The relative geometric
distortion and gray-level corrections are applied to a low-pass (unaliased) version
of the finest scale image vi. Then the interpolated image Hav; and image

Inter-K
Estimation k

From Kernel
to
PSF h

vy are compared to obtain the inter-image kernel k, which is later iteratively
updated to obtain the absolute camera PSF h.

scale invariant. The IPOL implementation of ASIFT [27, 37] was chosen because
of the efficiency of the Optimized Random Sampling Algorithm (ORSA) rejection
of false matches.

Geometric Transform Estimation The complete geometric transformation
from one image to the other was approximated with thin-plate splines [6, 32]
from the matched SIFT pairs. This permits the correction of small non-affine
distortions, and for deviations from the fronto-parallel assumption in the ac-
quisition. Of course, if the distortion is significant the assumed inter-image
kernel Eq. (3) will not be accurate. The thin-plate representation as affine
+ non-affine parts of the geometric distortion is especially helpful to estimate
the relative scale A = (Ag, Ay) between both views, since this can be directly
estimated from the affine part.

Gray level adjustment Both snapshots should be acquired with exactly the
same camera configuration, and constant scene illumination. This ensures that
there is no contrast change between them.

Resampling and Distortion Correction of vi The generation of the rescaled
samples Ha vy, requires the interpolation of v; at the desired scale »/s. This
is done by flsing the estimated geometric transformation with bicubic interpo-
lation. Notice that since v; is not very aliased, one can correctly interpolate it
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without introducing artifacts.

Numerical Methods for Inter-Image Kernel Estimation Suppose that
the image v has size m x n. The goal is to estimate k at sx the resolution of
V5 (camera sensor resolution). Also suppose that the estimated support of the
inter-image kernel k is contained in a 7 X r patch. Then the matrix SSC[H% V1]
is of size mn xr2. A simple least-squares procedure yields the inter-image kernel
estimator:

2
S.CH ¥k — GQH .

k. = argmin
k

Transforming the kernel: from k to h Recovering the samples of the
camera PSF h amounts to evaluate the limit in Eq (11). Directly working with
the digital sequences requires some care about how the successive convolutions
are computed. Since A > 1, the application of Hy would require a lowpass filter
to avoid aliasing artifacts. To bypass this inconvenient one can re-state the limit
convolution as follows:

h = lim H,\n(k*Hlk...*HL )

n—o0 A AT
If implemented in this way, the successive discrete convolutions can be computed
without any special care. To apply the discrete homothecy operator to k, we
need to resample k using the Shannon-Whittaker interpolator. Because of its
slow decay, in order to reduce ringing and other windowing effects, we opted to
use bicubic interpolation. The whole derivation of h from k is summarized as
follows:

Algorithm 1: From inter-image kernel to PSF

1. Initialize wog =k, n =1
2. Compute Hi/,»k by using A = (Az, Ay) (from thin-plates affine part).

Calculate u, = Hy/ynk * wp_1.

- W

If min{ A}, A} > Amax go to 5. Else update n :=n+1 and repeat from 2.

5. Calculate h = HYw,,.

This algorithm converges after a few iterations since \” grows very fast. In
practice, we set Apax = 50, since the convolution with a 50x scale-contracted
inter-image kernel produces a negligible change in the final result (it amounts
to convolve with a Kronecker delta).

In theory, as we already stated, the estimated PSF should be non-negative. In
practice, small negative values may be observed, due to deviations form model
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assumptions and numerical artifacts. To correct for these deviations, we simply
set to zero all negative values.

5 Experimental Results

Since there is no PSF ground-truth available, the validation of the proposed
method was carried out by simulations and by comparing the results with state-
of-the-art methods [20, 19, 14, 22]. Comparison was made only to non-blind,
target based methods, as the accuracy of blind methods is significantly lower. A
complete algorithmic description, an online demo facility and a reference source
code can be found at the IPOL workshop by [13].

5.1 Simulations as a Sanity Check

A synthetic random image u was generated and re-interpolated 4x in order
to get the “continuous” sharp homothecy of the image u. Next both images
were convolved with a PsF-like kernel (in this case a Gaussian isotropic kernel),
and down-sampled to get the respective observed digital images at the camera
resolution (i.e. 1x). The kernel was chosen so that the low resolution image
presents aliasing artifacts. By generating the views of w in this way, there are
no aliasing artifacts in the closest image. This experiment was done as a sanity
check of the proposed method. A 4x kernel was estimated from the observed
image pair. The results are shown in Figure 3 and 4.

The procedure was tested for both automatic SIFT-based registration and
the ideal (known) alignment. Although both estimates are significantly accu-
rate, the automatic registration introduces a small mis-alignment, as shown in
the difference images. See caption for details.

5.2 Real camera examples

The behavior of the proposed approach was tested for several different image
pairs and for super-resolution estimations ranging from 1x to 4x. The ex-
periments were performed using a a Canon EOS 400D camera equipped with
a Tamron AF 17-50mm F/2.8 XR Di-II lens. The focal length was fixed to
50.0 mm.

Two-scale vs. non-blind target-based method In [14] we proposed a
non-blind method that uses a realization of white noise as calibration pattern.
It was proved that, up to now, this method is the one estimates the PSF with
highest accuracy. Therefore, the PSF resulting from this method will be used
here as ground truth. Figure 6 shows the 4x PSF estimated by the proposed
two-scale method from a pair of views of a wall shown in Figure 5. The esti-
mation was conducted for one of the green channels (half of the green pixels of
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Figure 3: Synthetic example: 4x PSF estimation for simulated data. Top row:
the two views closest / farthest images. Middle row: the simulated PSF (ground
truth) and the respective PSF estimations using the automatic SIFT points /
thin-plates alignment and the ideal alignment. Both estimations are accurate.
However, as shown in the difference images the automatic registration introduces
a small mis-alignment. This can also be seen in the phase and modulus of the
PSF Fourier Transform vertical profile, shown in the bottom row. Bottom row,
on the right: comparison of the inter-image and PSF kernels. Since both input
images are simulated at distances in a ratio of A = 4%, h is very close to k.

the Bayer matrix), with the camera aperture set to f/5.7. The estimated PSF is
quite close to the one obtained by using our random target based approach. In
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Figure 4: Synthetic example: 4x PSF estimation for simulated data, residual
image. From left to right: farthest image, and residual images Sq(H » V1 xk) — ¥4
with the estimated kernel from ideal and automatic alignment. The residual in
the automatic alignment case is significantly larger than in the ideal alignment

case. However, the difference in the PSFs seems to be negligible up to a subpixel
translation as shown in Figure 3.

particular their sizes are similar and their corresponding MTFs present zeros at
the same locations.

P nq'
=

farthest snapshot closest snapshot

Figure 5: Wall image: two-scale vs. white noise target-based estimation. Two
distant, parallel views of a textured wall.

Color filter array estimations Two pictures of another textured wall shown
in Figure 7 were used to estimate the PSF of the four color Bayer channels (RAW
camera output). This wall texture presents characteristics similar to white noise.
The results for the 4x PSF estimated at the image center are shown in Fig. 7.
Notice that the red channel PSF is wider than the green and the blue one,
as expected from the physics of diffraction-limited optical systems, since the
wavelengths associated to red light are larger than the rest. The differences
between the dominant orientations of the red/blue and green PSF spectra can
be explained by the sensor shape and layout. In fact, each sensor active zone is
usually L-shaped, and the red and blue sensors are rotated 90° w.r.t. the green
ones (see for example [36]). These rotations are consistently observed in the
PSFs and MTFs estimated with our two-scale method. This clearly illustrates
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Figure 6: Wall image: two-scale vs. white noise target-based estimation. Es-
timation at 4x PSF resolution for one of the green channels from the camera
RAW output. Top row: two distant, parallel views of a textured wall. Middle
row: the PSF estimated with the proposed algorithm and the one estimated us-
ing the random target method. Bottom row: vertical profile of the MTF. Both
estimations are close. In particular the associated airy disks have similar sizes
and the MTFs vanish in the same locations.

the accuracy of the proposed approach.

Different kinds of scenes The wall images in the previous experiments are
well adapted for our two-scale PSF estimation method, since their spectra show
slow decay. A priori one would think that images from pure white noise would
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Figure 7: Different color channels: PSF estimation at 4x resolution for the four
Bayer channels (two greens, red and blue). Top row: two distant, parallel views
of a concrete wall. Middle row: the 4x PSF estimated for the four channels.
Bottom row: their corresponding Fourier spectrum modulus. The estimation
was performed with images captured at aperture £/5.7. The red PSF is larger
than the blue and the green ones. This is consistent with the diffraction phe-
nomenon: the red wavelengths red are larger than the rest, thus its diffraction
kernel is wider. Also notice the differences between the shape of the red/blue
and green PSF spectra (bottom row). Red and blue MTFs are rotated 90° with
respect to the green ones. This symmetric behavior is consistent with the layout
of L-shaped sensors [36].

yield to better estimates, since this is what happens in our previous target-
based approach [14]. But for our two-scale approach, this would be true if
both snapshots could be precisely aligned, which is not the case in practice.
Indeed, SIFT descriptors are not stable in the presence of aliasing. Hence, there
is a trade-off between having accurate SIFT matches and textures with high
frequency information. The texture shown in Figure 7 is an example of an
appropriate trade-off.

Figure 8 shows two snapshots of a photograph in a magazine, with the corre-
sponding 1x to 4x PSF estimations for the first green channel. The estimation
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was performed at the image center for the camera working at /5.7 aperture.
All the subpixel estimations are consistent: their MTFs exhibit good overlap in
common regions. While these newspaper images produce accurate SIFT points,
their spectra decay faster than those of the wall images. Consequently, the high
frequencies in the PSF estimate are noisier. This can be readily seen by com-
paring both estimates at 4x resolution.

What kind of textures should be used? It follows from the previous anal-
ysis that, in order to simultaneously produce good SIFT points and a sufficiently
slow frequency decay, textures composed by elements with different sizes are to
be preferred. 3D textures like those shown in Figure 9 can be problematic for
this approach. Even though they respect the two previous conditions, their 3D
nature produces disparities and occlusions which change the image beyond a
simple zoom. Likewise, non-Lambertian surfaces and dynamical scenes are not
appropriated either.

Comparison to other methods In this experiment we compare the per-
formance of the two-scale method proposed here, with three state-of-the-art
non-blind methods: Joshi et al.’s [20, 19], Imatest commercial software [22] and
our previous random target method [14]. All the estimates were computed at
the image center, with aperture £/5.7. For the two-scale approach, we used the
wall image pair shown in Figure 7. Joshi et al.’s and Imatest use two different
kinds of slanted-edge calibration patterns. The algorithm by Joshi requires to
set a regularization parameter; we show the results obtained for three different
levels of regularization.

Figure 10 shows the MTF profiles of the obtained PSF estimates. The pro-
posed two-scale method performs at least as well as the non-blind methods un-
der comparison. Joshi et. al. method shows similar performance for a carefully,
manually chosen regularization parameter. See caption for details.

6 Conclusion

In this work we presented an algorithm for the subpixel estimation of the point
spread function of a digital camera from aliased photographs. The procedure
is based on taking two fronto-parallel photographs of the same flat textured
scene, from different distances leading to different geometric scales, and then
estimating the kernel blur between them.

The estimation method is regularization-free. In that sense, the technique
is closely related to our recent non-blind estimation method [14], which uses
a random noise pattern. This later paper shows that with such patterns the
estimation problem is well posed and leads to accurate regularization-free es-
timates. The main difference is that non blind methods can estimate directly
the PSF using the perfect knowledge of the pattern. In the proposed two-scale
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Figure 8: Magazine image: x1, x2, x3 and x4 estimations for the first green
channel from a pair of photographs of a newspaper image. The estimation
was done at the image center for the camera working at f/5.7 aperture. All
the estimations are consistent: their MTFs show good overlap. The 4x PSF
estimation is noisier than the one produced from the wall images. The main
reason is that the spectrum of the magazine image decays faster.

method the question is far more intricate because only the blur between the
acquisitions can be estimated. Thus a mathematical analysis and new algo-
rithms have been introduced proving how the PSF can be recovered from the
inter-image kernel.

To reach high accuracy, images of textured scenes with flat enough spectrum
are preferred. It was experimentally verified that many textures found in nature
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Figure 9: Examples of textures which are not adapted to the two-scale approach.
Their 3D nature produces disparities and little changes in the angle-of-view
would result in accuracy loss. Non-Lambertian surfaces and dynamical scenes
are not appropriated either.

IR —o— joshi—-noreg
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W imatest
0.7r B —O— two-scale
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0 0.5 1 1.5 2

Figure 10: Comparison of PSF/MTF estimation methods Our implementation of
Joshi et al. PSF estimation algorithm [20, 19], Imatest commercial software [22],
our previous random target method [14], and the two-scale method proposed
in this work (applied to the images of the wall shown in Fig. 7). On the low
frequencies all algorithms produced very similar estimates, while on the higher
frequencies the Joshi et al. estimation depends strongly on the regularization
level. Although much effort was made to get a noise-free MTF estimation from
the Imatest software, the final estimation is quite noisy. The Imatest estimation
is done from a slanted-edge image and only gives an estimation for the MTF at the
slanted-edge orthogonal direction. The proposed two-scale algorithm is the one
presenting closest estimation to the non-blind estimation from [14], considered
as ground-truth in virtue of its high accuracy.
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are well adapted to these requirements. A comparison of the resulting PSF
estimates with other subpixel PSF estimation methods shows that the proposed
algorithm reaches similar accuracy levels to state of the art methods, with the
advantage of not requiring any special acquisition setup or calibration pattern,
thus being much more practical.
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A Mathematical framework and physical mod-
eling

Functional spaces and other notation

o R? is the set of pairs of real numbers x = (21,x2) and 72 the set of pairs
of integers k = (ki, ko). L'(R?) is the set of integrable functions on R?
L?(R?) the set of Square integrable functions, Cf (R?) the set of continuous
bounded functions, C°°(R?) the set of infinitely differentiable functions,
S(R?) the Schwartz class of C™ functions whose derivatives of all orders
have fast decay, S'(R?) its dual, the space of tempered distributions, &’
the subset of S’(R?) of compactly supported distributions. We shall use
the properties of the convolution L' L? ¢ L? L'« L' c L', L?xL? c C°,
xS cS.

e We denote by BL*(R?) (or shortly BL?) the set of L? functions that are
band limited inside [—m, 7]2. More generally, BLZ denotes the space of L?
functions with compactly supported Fourier transform.

The following conventions and notations will be used in the sequel:

e F is the Fourier Transform operator defined on S'; F(f)(¢) = f({) =
J e ™€ f(x)dx defines it for a function f € L*(R?) in a point ¢ = (¢1, (2).
This formula is still valid for functions belonging to LP(R?) with 1 < p < 2

(see e.g. [33, 5]).

e Continuous images are defined for x € R?, whereas digital images are
sampled on a discrete grid k € Z2.
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e S;: Cp — (>(Z?) is the 1-sampling operator such that u(k) = (Syu)(k).
From the distribution viewpoint S; is the product by a Dirac comb Il :=
Zk dsk with s = 1, namely S;u = II;.u where v must be a continuous
function. Both representations of the sampling operator will be identified,
and it will be clear from the context, which one of both representations is
intended.

o A digital image u will be represented either as a sequence (u(k))x in
(>°(Z?) or as the corresponding Dirac comb u := ", ;> u(k)dy.

e The operator I : (2(Z?) — BL*(R?) denotes the Shannon- Whittaker in-
terpolator, defined by Iyu(x) = ) ;2 u(k)sinc(x — k), where sinc(x) =
Singw) Singy). We therefore have Iiu = F~1(3" u(k)e ™ ¢1_, 2). When
u € (2, F(I,u) belongs to L? and is compactly supported. Thus I;u € BL?
and we have S1I; = Id.

e The filter Wy,u = F~1(4 - 1{_wr,wn)?) is an ideal low-pass filter that cuts

the spectrum of u to [—wm, wr]’. It is defined if @ is a function. Note
that if w € L' U L? then Wiu is in BL2.

o Hyu(x) = \u(Ax) is the continuous homothecy (i.e. A > 1 is a contrac-
tion); the rationale for its normalization is to preserve the image mean
(its zero-frequency coefficient). In Fourier F(Hx)({) = ﬁ(%), so if w is
o-band-limited then H 1uis band-limited. ’

o S, : (%(Z?*) — (*(Z?) denotes the s-to-1-resampling operator Ss = S1 H,I;
(i.e. s > 11is a subsampling by s).

o Clu] : (2(Z*) — (*(Z?) denotes the linear map associated to the convo-
lution with a digital image u. The convolved sequence belongs to ¢?(Z?)
which in general is satisfied if u € ¢1(Z?).

e The digital Nyquist homothecy operator Hy, : £?(Z?) — (*(Z?) is defined
by Hou := S1W1H,I1u. It is a digital contraction if o > 1.

e Let L be a bounded linear operator over a Hilbert space. L* is its adjoint

and LT (if it exists) its pseudo-inverse, i.e. the minimum-norm solution
of (L*L)L* = L*.

A.1 Physical and mathematical modeling of continuous
images

Continuous images will be assumed to be functions in BL3(R?). This choice is
consistent, since these functions are continuous (actually C°°) and the sampling
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is well defined. Moreover, as suggested in [26] and later in [1, Appendix A] this
choice is sufficiently general to model the continuous landscape observed by a
camera just before sampling takes place at the sensors.

In fact, even if the raw physical image before blur and sampling is, real-
istically, a positive Radon measure O (due to the photon-counting nature of
sensitive digital systems) with compact support (imposed by the finite number
of photons), it will still be blurred by the camera PSF h which will be regular
enough for h * O to be in Bﬁ%.

How regular can it be realistically assumed to be? The kernel h originates
in several physical phenomena from diffraction, through antialiasing filtering to
sensor integration. Each one of these phenomena, and their combination as well,
lead to model h as a nonnegative function with finite mass [ h =1 (normalized
to 1). In addition the diffraction part ensures that h is compactly supported.
From this one deduces that h € BL N L.

We now turn to the problem of simplifying O to a more manageable function
u, which is indistinguishable from O after convolution with the PSF h. Let
B = supp(ﬁ) be the (compact) spectral support of the PSF h. Hence h can be
idempotently written as h = h * hg, where hy € 8’ has a compactly supported
spectrum satisfying hAo(n) = 1for n € B. The function ho can easily constructed
by an explicit formula as a C°°° and compactly supported function satisfying
fzo(n) =1 on B. Then its inverse Fourier transform has all required properties.

So we have

v=h*xO =hxu, whereu=hgx*O.

In consequence, the observed landscape can be assumed without loss of gen-
erality to be u = hg * O instead of O. Being the convolution of a compactly
supported positive Radon measure O € £’ with hg € Bﬁg N L', u also belongs
to BL3, and its convolution with h € BLE N L' is the observed image v € BLG.

B Standard results from Fourier analysis

The following two main results from standard Fourier analysis and distribution
theory are stated without proof. The reader is referred to e.g. [33, 17] for the
proofs in the particular setting chosen here.

Proposition 2 (Convolution through Fourier transform). The relation

F(f+g)=F(f) F(g) (12)
is valid in any of these cases

1. g € LY(R?) and f € LP(R?) for 1 < p < 2. Then f * g belongs to LP(R?)
(see [33, Theorem 2.6]).

2. ge& and f €8'. Then f xg belongs to 8" (see [17, Theorem 7.1.15]).
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Applying the Fourier transform on both sides of Equation (12) and recall-
ing that the squared Fourier Transform operator F2(u) = (27)%[x — u(—x)] is
almost the identity (except for flipping and a constant factor), we obtain the
following:

Corollary 1 (Product through Fourier transform). The relation
1
F(f-9)= —=F(f)*F(g
(7-9) = GrzF () Fla) )
Fl(f-g)=F'(f)xF'(9)
holds when g € & and f € 8'. Then f - g belongs to S’.

Proposition 3 (Poisson Formula in R? for tempered distributions [17]).
I, = (27)%,. (14)

Lemma 2. Ifa € &, then

F(II; - u) = Iy # . (15)
Proof. We can apply the first form of Corollary 1 where f = II; € & and
g=1u € & to obtain

F(I - u) = (27) 200 * 6 = Ioy @

where the last equality is deduced from the Poisson formula (14).

O

The Shannon-Whittaker sampling theorem is then a direct consequence of the
two previous results:

Proposition 4 (Nyquist-Shannon Theorem). If u € BL*(R?), then
u = 11 Slu. (16)

Proof. We can apply Lemma 2
Multiplying both sides of Equation (15) by F(sinc) = 1[5 we obtain

F(sinc) - F[Syu] = F(sinc) - [[Ia, * ]
=Y (- +27k)1

keZ2

where in the right-hand side the only non-null term is for k = 0 because u is
bandlimited in B = [—m, 7] and F(sinc) = 1(p). Finally, using the second form
of Corollary 1 we obtain

sincx(Squ) = u

and the left term is by definition I;Sju.
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Corollary 2. If u € L? is s-band-limited then
u:HsIlslH;u (17)

C Proof of Main Results of Sections 2 and 3

Common hypotheses

According to the discussion in Appendix A, and in order to justify all the
Lemmas and Propositions we will require that

- h e BL2N LY(R?), non-negative, h(0) = 1.
- u € BLE

This ensures that the convolution u * h = v is well defined with u € BLZ.
For the uniqueness of the inter-image kernel we shall additionally assume
that @ does not vanish inside [—sZ, 5>7].

Main Results

We now prove several properties that are used throughout the article.
Lemma 3. Ifu € BL], then Siu € (2(Z2).

Proof. As u is in BE% there exists s > 0 such that 4 C [—sm, s7]. Furthermore,
since & € & applying (15) we have F(Sju) = (2m)%Ila, * 4. Since u belongs
to L? then @ is again in L?. Thus, Iy, * @ is the 27-periodic version of a L2
function in [—sm, s7]. Consequently the inverse Fourier transform of Ila, x4 is a
Dirac comb whose coefficients are the Fourier series coefficients of @#. Thus the
coefficients of S;u form a £2 sequence. O

Proposition 5. Let h € L'(R?) and u,v € L*UL?(R?). The following equalities
hold:

Wl(h*v):Wlh*v:h*le (18)

WiHyw = H\W 1 (19)

H,(u*v) = Houx Hyv (20)
Proof. The proof of (18).

In Fourier,

F(Wl(h * ’U)) dng(h * ’U) . 1[,71.17‘.]2 (g) F(h) . F(U) . 1[,71.17‘.]2

Thus,
F(h) . F(’U) . 1[_71.,”]2 = F(h) . 1[_71.,”]2 . F(’U) . 1[_7r7ﬂ.]2

and all results are deduced from this last statement.
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Proof. The proof of (19).

1.
F(H\v) = M’F(o(\)) = X2 0(~) = N’ H1 0.
Thus
FWyHyw) 2 F(H\v) - 1y e = A2H
On the other hand,

= )\Q(H%f)) S
o
Proof. The proof of (20). The proof is a mere change of variables:
Hy(uxv)(x) =a? /u(s)v(ax —s)ds
=aot /u(as)v(ax — as)ds
= (Hyu x Hyv)(x).
o
Lemma 4. Let u,v € BL3(R?). If either u or v is band-limited then
Si(u*v) =S17a*S17, (21)

where we have called u = Wiu and v = Whv .

Proof. We will prove this statement in the tempered distribution sense. We will
consider Sju=1II; -u = Zk 0k - u is a Dirac comb. The application of S; to u,
7 and u % v is well defined as all functions are in BL?*(R?) and by consequence
they are in C*°. Recall that if u € D’ and f is C* then f-u € D’ thus in this
framework we need a function to be in C'*° to be sampled.

From Lemma 3 we know that the coefficients sequence of S;z and S0 are
in ¢2(Z?). Thus (S1a) * (S1?) is a bounded sequence and therefore every term
is well defined.

Finally F(S1(u * v)) = oy % (4.0) = (Il2; % @) - (II2; * ©) is true because
all considered functions happen to be 27-periodizations of compactly supported
functions in (—, )2, namely 4, © and their product. O

Proposition 6. (Discrete Camera Model) Let uw € BL3 and h € L' N BLE,
band-limited in [—sm, sw|>. Then

Si(ux*h)=S8s(a+h), (22)

where we have called u = S;Wi1Hiu and h=S{Hih.
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Proof. We first derive the expression and then justify the application of each
result.

Si(uxh)=S1HHi(uxh)

O S HHy (Wau s h)

0 S\ H,(HWou* Hih)

O S H (W Hyus Hih)

© S H,1,S,(WiHsu* Hih)

S H,1,(S\WiHyu S Hih)

'S I, (@ *h)

LS, (a+h).

First notice that as u € BL; and h € L' are in we can apply (18) (20)
directly. As Wiu is in BL? we can apply (19). Nyquist theorem (16) is valid
since u € L? and h € L' then Wy Hiu % H1h belongs to BL2.

Both WiHiu and Hih are band-limited finite energy functions so we are
free to apply (251) Since the sequence (ux*h) is the sampling of the bandlimited
L? function W1 H 1uxHih it belongs to ¢? (Lemma 3). Finally, the interpolation
I (0 h) is well defined. O

Lemma 5. Let h € L' N BL2 and k € BLE such that k(¢) = % Assume A
A

large enough to ensure h(S/x) does not vanish in the support of k. Then if A > 1
we have
lim Hyn1kx...xHyxkxk=h

n—oo

where the limit is in L? N CO.

Proof. Let us call up, = Hyn-1k*...x Hyk k. Then in the Fourier domain we
have

lim @, (C)

n—1 C
Jim, Jim 11k (r)

L h(Q)
n— o0 ]Al(g/)\n)

Since h € L' then h € C° and we have

lim h(¢/x") = h(0) =1

n—oo

The convergence is uniform on a fixed compact set because h is continuous and
compactly supported. This implies that the convergence holds in L' and L2.
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Therefore o
H/\nqk*...*H,\k*kL&c; h

O

D Stability of the inter image kernel estimation

Lemma 6. Let A be an injective bounded linear operator (1BLO) defined on a
Banach space X and AA a perturbation of A such that A + AA is also 1BLO
and ||A||JAA| < 1. Let b € X and Ab be a perturbation of b. Then, the
solution of x = ATb and x* = (A + AA)*(b + db) satisfy:

[x* —x|| _ _ cond(A) (||5b| IAAII)_
x| = 1—[[ATAA \ [b] — [[A]

(23)

where cond(A) = ||A]|||AT].

Proof. First notice as A is full rank the pseudo-inverse is the left-inverse of A,
namely ATA = 1. Since ||A||||AA|| < 1 we have that

(A+AA)T =(T+ATAA) AT

and we also have

1

I+ Avan) =[S Aran)]| < STIATAMN = —rrrgT

Hence,

x* —x= (A +AA)*(b+6b)— ATb
= (I+A*AA)'A*(b+6b) — ATb

therefore

I+ ATAA)(x* —x) = AT (b+b)— Atb— ATAAATD
= AT (5b — AAx)

and then
I —x| _ A7) [Iob]|+ [AAx]
[ — 1-[[ATAA| [
_ cond(A) bl + || AAX]|
1—[JATAAL [JA]llx]]
cond(A) ( llob]l ||AA||X|)
1—[[ATAA] \[lAx| — [[Afl[x]
cond(A) (|5b|| ||AA|)
1—[[ATAA] \ [b] — [A]
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