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Abstract. Elementary linear logic is a simple variant of linear logic,
introduced by Girard and which characterizes in the proofs-as-programs
approach the class of elementary functions (computable in time bounded
by a tower of exponentials of fixed height). Other systems, like light linear
logic have then been defined to capture in a similar way polynomial time
functions, but at the price of either a more complicated syntax or of
more involved encodings. Such logical systems can then be the basis of
type systems to guarantee statically complexity properties on lambda-
calculus.
Our goal here is to show that despite its simplicity, elementary linear
logic can nevertheless be used as a common framework to characterize
the different levels of a hierarchy of deterministic time complexity classes,
within elementary time. We consider a variant of this logic with type
fixpoints and weakening (elementary affine logic with fixpoints). The key
ingredients are then the choice of specific types and a finer study of the
normalization procedure on proof-nets. We characterize in this way the
class P of polynomial time predicates and more generally the hierarchy

of classes k-EXP, for k ≥ 0, where k-EXP is the union of DTIME(2n
i

k ), for
i ≥ 1.

1 Introduction

Implicit computational complexity. This line of research promotes inves-
tigations to delineate classical complexity classes by programming languages
or logics, without refering to explicit bounds on resources (time, space . . . ) but
instead by restricting the primitives or the features of the languages. Various ap-
proaches have been used for that, primarily in logic and in functional languages:
restrictions of the comprehension scheme in second-order logic [Lei91,Lei02];
ramification in logic or in recursion [Lei94,BC92]; read-only functional programs
[Jon01]; variants of linear logic [Gir98,Laf04]. . . to name only a few.

Note that the programming disciplines induced by these systems are quite
restrictive, but some of these characterizations have in a second step led to
more flexible criteria for statically checking complexity bounds on programs:



ramification and safe recursion have inspired the work on interpretation methods
for complexity [BMM11] on the one-hand, and linear type systems for non-
size-increasing computation [Hof03] on the other, which itself has led to typing
methods for amortized complexity analysis [HJ06,HAH11].

Linear logic. The linear logic approach to implicit complexity fits in the
proofs-as-programs paradigm. It stems from the observation that as duplication
is controlled in linear logic by the modality !, weaker versions of this modality can
define systems with a complexity-bounded normalization procedure: elementary
linear logic (ELL) [Gir98,DJ03] characterizes in this way the class of Kalmar
elementary functions (computable in time bounded by a tower of exponentials
of fixed height), while light linear logic (LLL) [Gir98] and soft linear logic (SLL)
[Laf04] characterize functions computable in polynomial time. These logical sys-
tems have then enabled the design of type systems for λ-calculus or functional
languages ensuring that a well-typed program has a polynomial time complexity
bound [BT09,GR07,BGM10].

Note that initially ELL does not sound as interesting as LLL and SLL since it
corresponds to elementary complexity, which is not very relevant from a program-
ming point of view. However it has nice logical properties, a simpler language of
formulas than LLL (no § modality) and allows for a more natural programming
style than SLL. It has also been studied for its remarkable properties concerning
λ-calculus optimal reduction [ACM04].

Calibrating complexity. One might however deplore a lack of homogene-
ity in these characterizations of complexity classes by variants of linear logic:
indeed some common deterministic complexity classes like EXP have not yet
been characterized, a different system is needed for each complexity class, and
these various systems are not easy to compare.

By contrast, other methods in implicit complexity have provided frameworks
that can be calibrated to delineate different complexity classes inside the (large)
Kalmar elementary class:

– Jones considers in [Jon01] a read-only functional programming language and
characterizes in it the classes kexptimek, for k ≥ 0, by considering, for each
k, programs using only arguments of type-order at most k;

– Leivant investigates in [Lei02] second-order logic with comprehension (quan-
tifier elimination) restricted to various families of first-order formulas: the
functions provably total in this logic with comprehension restricted to for-
mulas of type-order at most k are precisely the functions of k-EXP.

Note that even if these two frameworks fit in different computational approaches,
they both use as parameter the type-order (or implicational rank) of formulas.

Objective and contribution. A goal of the present work is to provide an
analogous framework in linear logic, allowing to characterize in a single logic a
hierarchy of complexity classes by calibrating a certain parameter. We will use
elementary linear logic, which offers the advantage of simplicity. A key parameter
in this system, as in LLL, is the number of nested modalities (!) and this will be
the value calibrating our complexity bounds.



For technical reasons we will actually consider an extension of ELL ob-
tained by adding to it type fixpoints. It had been observed from the beginning
[Gir98] that this feature does not modify the dynamics of ELL and its complex-
ity bounds. We will also allow unrestricted weakening, which is innocuous and
common practise since [AR02]. Given some types W for binary words and B for
booleans, we will then show that for k ≥ 0, the proofs of conclusion !W ⊸ !k+2B,
where !i stands for a sequence of i !s, correspond to the predicates of k-EXP. In
particular this gives, in the case where k = 0, a characterization of the class P
in an elementary logic, with the type !W ⊸ !2B.

Note that a distinctive point of our characterization is that it does not rely
on a restriction of a particular operation inside the proof-program, like the
application of a function to an argument in [Jon01] or the comprehension rule
in [Lei02]. Instead it only imposes a condition on the conclusion of the proof
(or type of the program), that its to say on its interface. In this sense it is more
modular than these previous characterizations. Observe also that our system
is a second-order logic, as the one of [Lei02], but here comprehension is not
restricted.

The main technical tool we will use to establish our results is that of proof-
nets, a graphical representation of proofs which allows for a fine study of nor-
malization. They were already used in [Gir98] but we will here carry out a finer
analysis of normalization in the particular cases of the proof-nets with the above-
mentioned conclusions, which will lead to sharper complexity bounds.

2 Characterization of the classes P and k-EXP

We consider intuitionistic affine elementary logic with type fixpoints that we
denote by EALµ. Actually for our purpose it is sufficient to consider its multi-
plicative fragment. The grammar of types is:

A ::= α | A ⊸ A | A⊗A | !A | ∀α.A | µα.A

We will represent functions by proofs, but as often it will be convenient to use
λ-calculus to denote the algorithmic content of proofs. For that we will consider
an extension of λ-calculus with a ⊗ construction:

t, u ::= x | λx.t | (t u) | t⊗ u | let t bex⊗ y inu

Its reduction rule is obtained by the context-closure of the usual β-reduction
rule and of the following one:

let t1 ⊗ t2 bex⊗ y inu → u[t1/x, t2/y].

The rules of the EALµ, are now given on Fig. 1, as a sequent calculus decorated
with λ-terms. This system only differs from the intuitionistic version of elemen-
tary linear logic without additive connectives [Gir98,DJ03] by the fact that we
have added the fixpoint construction (rules Lµ and Rµ) and allowed for general
weakening (rule (Weak)). Observe that some rules do not have any effect on the



term (!, Lµ, Rµ, L∀, R∀): this is because we want to keep the term calculus as
simple as possible, and the current calculus is anyway sufficient to represent the
functions denoted by the proofs.

Observe that the formulas !A ⊸ A and !A ⊸ !!A are not provable, which is
the distinctive feature of elementary linear logic with respect to ordinary linear
logic.

Finally, note that if we added the fixpoint rules to intuitionistic logic or linear
logic cut elimination would not be normalizing anymore, but strong normaliza-
tion does hold for EALµ (see [Gir98]).

Axiom and Cut.

x : A ⊢ x : A
Ax

Γ ⊢ t : A ∆, x : A ⊢ u : B

Γ,∆ ⊢ u[t/x] : B
Cut

Structural Rules.

Γ ⊢ t : A
Γ, x : B ⊢ t : A

Weak
Γ, x1 :!A, x2 :!A ⊢ t : B

Γ, x :!A ⊢ t[x/x1, x/x2] : B
Contr

Multiplicative Rules.

Γ ⊢ t : A ∆, x : B ⊢ u : C

Γ,∆, y : A ⊸ B ⊢ u[(y t)/x] : C
L⊸

Γ, x : A ⊢ t : B

Γ ⊢ λx.t : A ⊸ B
R⊸

Γ, x1 : A,x2 : B ⊢ t : C

Γ, x : A⊗B ⊢ let xbex1 ⊗ x2 in t : C
L⊗

Γ ⊢ t1 : A ∆ ⊢ t2 : B

Γ,∆ ⊢ t1 ⊗ t2 : A⊗B
R⊗

Exponential Logical Rule.

Γ ⊢ t : A
!Γ ⊢ t :!A

!

Second Order Rules

Γ, x : C[A/α] ⊢ t : B

Γ, x : ∀α.C ⊢ t : B
L∀

Γ ⊢ t : C α /∈ FV (Γ )

Γ ⊢ t : ∀α.C
R∀

Fixpoint Rules

Γ, x : A[µα.A/α] ⊢ t : B

Γ, x : µα.A ⊢ t : B
Lµ

Γ ⊢ t : A[µα.A/α]

Γ ⊢ t : µα.A
Rµ

Fig. 1. The system EALµ



Let us denote the following types respectively for booleans, n-ary finite types,
tally integers and binary words, and which are adapted from system F:

B = ∀α.α ⊸ α ⊸ α
Bn = ∀α.α ⊸ . . . ⊸ α, with n+ 1 occurrences of α
N = ∀α.!(α ⊸ α) ⊸ !(α ⊸ α)
W = ∀α.!(α ⊸ α) ⊸ !(α ⊸ α) ⊸ !(α ⊸ α)

Recall that these data-types admit some coercions [Gir98]. For W for in-
stance, one can give a proof of type W ⊸ !W which, as a λ-term, acts as an
identity on the terms encoding binary words.

We denote: 2n0 = n, 2nk+1 = 22
n

k . Recall that elementary functions are the
functions computable on a Turing machine in time O(2nk ), for some k.

The standard results of elementary linear logic [DJ03] still hold in the setting
of EALµ:

– for any integer d, any proof of N ⊸ !dN represents an elementary function
(complexity soundness);

– for any elementary function f : N → N there exists an integer d and a proof
of N ⊸ !dN representing it (extensional completeness).

Now, by considering alternative types we can delineate more complexity classes:

Theorem 1. We consider the system EALµ.

– The functions representable by proofs of !W ⊸ !2B (resp. !W ⊸ !3B) are
exactly the class P (resp. EXP);

– More generally, for any k ≥ 0, the functions representable by proofs of !W ⊸

!k+2B are exactly the class k-EXP.

where:
k-EXP = ∪i∈NDTIME(2n

i

k ),
EXP = 1-EXP.

Remark 1. Note that we do not use fixpoints in the final types involved. However,
technically speaking the fixpoints are used in the proofs of completeness, in order
to simulate polynomial time (resp. k-exponential time) Turing machines, as we
will see in Sect. 4.

Remark 2. With the type !W ⊸ !B one characterizes only the constant func-
tions.

Observe that as in [Jon01] we are characterizing here predicates and not general
functions. We will come back to this point later, in Remark 6.

In the rest of the paper we will prove Theorem 1: Sect. 3 will establish
the complexity soundness (proofs with these types represent predicates of the
given complexity classes) and Sect. 4 will prove the extensional completeness (all
predicates of these complexity classes can be computed by suitable proofs).



3 Proof-nets and complexity soundness

In order to prove the complexity bound we study the cut elimination process
and take advantage of the assumption that the conclusion of the proof is of type
!W ⊸ !k+2B in order to derive a sharper bound. For that, as usual in linear
logic it is convenient to use proof-nets to analyse cut elimination as proof-net
reduction. The proof-nets will use formulas of classical elementary linear logic
with fixpoints:

A ::= α | α⊥ | A⊗A | A℘A | !A | ?A | µα.A | µα.A | ∀α.A | ∃α.A

The connectives (modalities) ! and ? are called exponentials and ⊗/℘ are multi-
plicatives.

Formulas of EALµ are translated in this grammar by using A ⊸ B ≡ A⊥℘B
and the usual linear logic De Morgan laws for linear negation:

(A⊗B)
⊥
≡ A⊥℘B⊥, (!A)

⊥
≡?A⊥,

(µα.A)
⊥
≡ µα.A⊥, (∀α.A)

⊥
≡ ∃α.A⊥, A⊥⊥ ≡ A.

In order to handle weakening we will use proof-nets with polarities, following
[AR02]. Note that proof-nets with polarities had been considered before, e.g. in
[Lam96], but here we will follow the conventions and notations of [AR02].

The nodes are described on Fig. 2:

– nodes have ports which are positive (dark bullet) or negative (white bullet);
an edge can link together either two positive or two negative ports; we say
that an edge is positive (resp. negative) if it is connected to a positive (resp.
negative) port;

– as the system is affine, the proof-nets use, beside the weakening w-node, also
an h-node;

– two nodes µ and µ are added, corresponding resp. to the fixpoint rules Rµ

and Lµ ;

– each node ! or ? comes with a !-box, as shown on Fig. 3; two boxes are either
disjoint or one is included in the other; the !-node is called the principal door
of the box and the ?-nodes are its auxilliary doors.

One will translate an EALµ proof π of conclusion x1 : A1, . . . , xn : An ⊢ t : B

by a graph π∗ with conclusions A1
⊥, . . . , An

⊥, B where the edges of the Ai
⊥

(1 ≤ i ≤ n) are negative and the edge of B is positive. This translation is
standard [Gir87] and we only describe a couple of illustrative cases:

– if π is obtained by an Ax rule, then π∗ is an ax-node;

– if π is obtained by a Cut rule between π1 and π2, then π∗ is obtained by
linking π1

∗ and π2
∗ by a cut-node;

– if π is obtained by a !-rule on π1, then π∗ is obtained by applying a !-box on
π1

∗ (see Fig. 3),



and so on. On Fig. 2 below each node we have indicated the sequent-calculus
rule it corresponds to. Note that the h-node is not used for this translation; it
will only appear during normalisation.

Now, a graph R is called a proof-net if there exists a proof π such that
R = π∗.

A cut-node between an ax-node (resp. w-node) and another node (resp. an-
other node which is not an ax-node) is called an axiom cut (resp. a weakening
cut). A cut between an ⊗-node and a ℘-node is called a multiplicative cut. A
cut between a !-node and a ?-node or ?c-node (resp. a ?c-node) is called an ex-
ponential cut (resp. a contraction cut). Quantifier cuts and µ-cuts are defined
in an analogous way.

In a proof-net, a maximal tree with ?-nodes, ax-nodes and w-nodes (of type
?A⊥) as leaves, and ?c-nodes as internal nodes, is called an exponential tree.

Now, given R, the depth of a node is the number of exponential boxes con-
taining it, and the depth d(R) of R is the maximal depth of its nodes.

Let |R|i denote the number of nodes at depth i which are not cut nodes,

w-nodes or h-nodes. We denote |R| = Σ
d(R)
i=0 |R|i.

Reduction. We can describe the reduction procedure on proof-nets, which
consists in eliminating cuts. It is defined by the rules given on Fig. 4, 5, 6, 7:

– Fig. 5 shows the reduction of exponential cuts (contraction step and box-box
step);

– Fig. 6 shows the reduction of weakening cuts; notice that one of these steps
introduces h-nodes;

– Fig. 7 shows the reduction of cuts on h-nodes.

Observe that during a reduction step the depth of an edge does not change,
hence the depth of the proof-net does not increase. This is called the stratification
property [DJ03] and it is a key ingredient for the complexity properties. It is not
valid in ordinary linear logic, and it comes from the fact that during reduction
a !-box is not opened and does not enter another box (see Fig. 5).

We say that an exponential cut c is a special cut if the box B corresponding to
the ! node does not have any cut below its auxilliary ports. The following fact can

be easily verified by examining each reduction step other than the contraction
reduction step:

Lemma 1. Let R be a proof-net and R′ be obtained from R by reducing a cut at
depth i which is not a contraction cut. Then we have |R′|i < |R|i and |R′| < |R|.

Now let us briefly recall the method used in [Gir98] to establish complexity
bounds on proof-net reduction in light linear logic and elementary linear logic.
It uses a specific reduction strategy, obtained by the two following ideas:

– reduce the cuts level-by-level, that is to say first at depth i (round i) for i
successively equal to 0, 1, . . . , d(R);

– at a given depth i, proceed in two phases:
• first reduce cuts that make the size decrease, so in the case of ELL all
cuts but the exponential cuts,



cut

ax
A⊥ A⊥AA

Ax Cut

⊗ ℘ ℘

R⊗

BA

A⊗B

A

L
⊸

R⊗ R
⊸

⊗

A⊥℘B⊥ A⊥℘B

B⊥A⊥ B⊥ BA⊥

A⊗ B⊥

∀ !∃ µ µ ?

A⊥

R∀

∀α.A

A

L∀ Rµ Lµ

A⊥ A⊥[µα.A/α] A

∃α.A⊥ µα.A !A ?A⊥

! !

A[µα.A/α]

µα.A⊥

w h?c

?A⊥ ?A⊥

A⊥ A

Weak

?A⊥

Contr

Fig. 2. Nodes of the proof-nets.

• then reduce the exponential cuts, by repeatedly reducing a special cut.



? ? !

!A

A

?B1

⊥

. . .B1

⊥

?Bn

⊥

Bn

⊥

Fig. 3. !-box.

ax

cut

ax

cut

cut

cut
cut

⊗ ℘

cut
cut

cut

⊗℘

cut

cut

µµ

cut

cut

∀ ∃

∀α.A ∃α.A⊥

A A⊥[B/α]

R[B/α]

A⊥[B/α] A[B/α]

R

Fig. 4. Reduction steps (1/4).

Let us denote by Ri the proof-net at the beginning of round i. In order to bound
the number of steps of this reduction strategy, the proof proceeds by, for i = 0
to d(R):



cut

cut

cut

!

?c

?c

!

!

?

R1

?

?c
?

R1

?

?

R1

?

?A⊥

?A⊥

?Bn

. . .
!A

A

. . .
!A

A

?B1

. . .
!A

A

. . .

?B1

?Bn

cut

cut

!!! ???

A⊥

??

R2

?

R1

?

A⊥

?A⊥

R1 R2

. . .. . .

A

. . .. . .

A

!A

Fig. 5. Reduction steps (2/4).

– bounding the number of steps of round i by using |Ri|i,
– bounding the size increase, that is to say bounding |Ri+1|i+1 by using |Ri|i.

Now, in the present work we will adapt essentially the same reduction strat-
egy and methodology for obtaining the bound, with the following modifications:

– on the strategy: we will not perform the reduction until obtaining a normal
form (proof-net without cut), but we will stop when we can extract the
result;

– on the methodology for obtaining the bound: we will use the assumption that
the proof has a conclusion !W ⊸ !k+2B and we will make a finer analysis
of the size increase.

Now let us state the key Lemma that we will use:

Lemma 2 (Size bound). Let R be a proof-net with:

– only exponential and weakening cuts at depth 0,
– k cuts at depth 0.

Let R′ be the proof-net obtained by reducing R at depth 0. Then we have:

|R′|1 ≤ |R|k0 · |R|1.

So if we have a bound on the number k of cuts, we obtain a polynomial bound on
the size of the proof-net R′ after reduction at depth 0. In any case we can bound
k by |R|0, but then we basically recover the usual exponential bound [Gir98].



cut
cut

cut

w

w w

⊗

cut cut

cut

w

w℘

h

cut

cut

w

w

∀

cut

cut

w

w

µ

cut

wh

cut

w? ? ! w w. . .

. . .

Fig. 6. Reduction steps: weakening steps (3/4).

Proof. We say a contraction node of R at depth 0 is active if it is above a cut
node. We denote by |R|a the number of active nodes of R at depth 0. Observe
that we have |R|a + 1 ≤ |R|0.

We will prove the following statement by induction on k:

|R′|1 ≤ (|R|a + 1)k · |R|1.



cut cut

cut

h ⊗

w h

cut
cut

cut

℘h

h h

cut

cut
h

h

∃

cut

cut
h

h

µ

cut
cut

cut

h

h h

?c

cut

!h w w. . . h

. . .

? ?

Fig. 7. Reduction steps: h-steps (4/4).

If k = 0 the result is trivial. Assume now the result valid for k and consider
R with k + 1 exponential cuts at depth 0.

First let us consider the case where there is a weakening cut among these
k + 1 cuts. We then reduce it persistently, following the weakening steps and
h-steps of Fig. 6-7, and we end up with a proof-net R′ such that: |R′|a ≤ |R|a,
|R′|1 ≤ |R|1 and R′ has k cuts at depth 0. We can then apply the induction
hypothesis to R′ and easily conclude.

Now, consider the case where we have k + 1 exponential cuts. Using the
correctness criterion one can check (e.g. as in [BP01]) that R admits a special
cut c, that is to say an exponential cut for which the box B corresponding to the



! node does not have any cut below its auxilliary ports. We completely reduce the
cut c, that is to say we reduce c and hereditarily all the cuts of its exponential
tree until performing box-box or axiom reduction steps. The increase of size
at depth 1 is due to the duplications of the box B , which is copied at most
|R|a times. Note that no active node is created during these reduction steps,
because c is a special cut. We obtain in this way a proof-net R′ such that:
|R′|1 ≤ (|R|a + 1) · |R|1, |R

′|a ≤ |R|a and R′ has k cuts at depth 0.
Besides, by induction hypothesis we have that R′ can be reduced to R′′ which

is normal at depth 0 and:

|R′′|1 ≤ (|R′|a + 1)k · |R′|1.

Combining the inequalities we thus get:

|R′′|1 ≤ (|R|a + 1)k+1 · |R|1.

We conclude by using the fact that |R|a + 1 ≤ |R|0. ⊓⊔

We will need another result:

Lemma 3 (Readback). Let R be a proof-net of conclusion B which only has
exponential cuts at depth 0.

Given R, one can in constant time decide whether it reduces to true or false.

Proof. We have B = ∀α.α ⊸ α ⊸ α. Consider the conclusion B and the axiom
α⊥, α introducing the r.h.s. litteral α of this B. This axiom node N is at depth
0.

Consider the second conclusion α⊥ of this axiom. Let us assume for a contra-
diction that it is above a cut formula A and call c′ the corresponding cut. Now,
if A was of the form !A′ (resp. ?A′) for some A′, then the formula A would need
to be introduced by a !-node (respectively by an auxilliary door of a box), and
so N would be included in a box, which would contradict the fact that it is at
depth 0. Therefore A is not of the form !A′ or ?A′. So c is is not an exponential
cut, hence a contradiction.

So the second conclusion α⊥ of the axiom is not above a cut; hence it must
be above a conclusion. The only conclusion of the proof-net is B, and thus this
α⊥ litteral is one of the two occurrences of α⊥ in ∀α.(α⊥℘α⊥℘α). If it is the
leftmost (resp. rightmost) occurrence of α⊥ then the result of the reduction will
be true (resp. false). So we do not need to reduce R to know the resulting value;
this can be done in constant time. ⊓⊔

Finally we get:

Proposition 1 (P soundness). Let R be a normal proof-net of conclusion
!W ⊢ !2B. Then there exists a polynomial P such that:

any proof-net obtained by cutting R with a proof-net representing a word of
length n can be evaluated in time bounded by P (n).



Proof. First, note that there exists a constant a such that for any n, for any
binary word w of length n, w can be represented by a proof-net Rw of size
|Rw| ≤ a · n.

Now, let us examine the structure of R at depth 0. If ?W⊥ is obtained by
a weakening it is trivial. Otherwise there is an integer k ≥ 1 and a proof-net S
of conclusion ⊢ W⊥, . . . ,W⊥, !B with k formulas W⊥ such that: R is obtained
from S by applying a promotion box and a certain number k′ of contraction
rules on ?W⊥ formulas.

Now let Rw be a proof-net representing a word w, and let T be the proof-
net obtained by cutting R with a box enclosing Rw. The proof-net T can be
reduced in at most 2k′ steps (at depth 0) into a proof-net T ′ consisting in a box
containing S cut with k copies of Rw. Therefore |T ′| ≤ |R|+ k · |Rw|.

Then, since W = ∀α.!(α ⊸ α) ⊸ !(α ⊸ α) ⊸ !(α ⊸ α), by applying k
quantification reduction steps and 2k multiplicative reduction steps (at depth
1) we get a proof-net T ′′ with not cut at depth 0 and only exponential and
weakening cuts at depth 1. Note that there are at most 3k exponential cuts at
depth 1 and that |T ′′| ≤ |T ′| ≤ |R|+ k · |Rw|.

Now by applying Lemma 2 to T ′′ at depth 1, we get that by reducing T ′′

at depth 1 we obtain T (3) with no cut at depths 0, 1 and such that |T (3)|2 ≤
|T ′′|3k1 · |T ′′|2 ≤ (|R|+ k · |Rw|)

3k+1. The important point to notice here is that
(3k + 1) does not depend on n.

Finally we perform on T (3), at depth 2, reduction of all cuts but exponential
cuts. These only make the size decrease, by Lemma 1, and so the number of
steps is bounded by |T (3)|2. We obtain in this way a proof-net T (4) of conclusion
!2B, which:

– does not have any cut at depths 0 and 1,
– only has exponential cuts at depth 2.

By Lemma 3, applied here at depth 2, the result can then be computed in
constant time. So on the whole the computation has been carried out in a number
of steps which is polynomial in |Rw|, hence polynomial in n.

Moreover, as the size of each intermediary proof-net in the reduction sequence
is polynomially-bounded w.r.t. n, each reduction step can be performed in poly-
nomial time (on a Turing machine), hence the whole reduction is performed in
polynomial time. ⊓⊔

Proposition 2 (k-EXP soundness). Let R be a normal proof-net of conclusion
!W ⊢ !k+2B. Then there exists a polynomial P such that:

any proof-net obtained by cutting R with a proof-net representing a word of

length n can be evaluated in time bounded by 2
P (n)
k .

Proof. We will proceed in a way generalizing the proof of Prop. 1, but we first
need for that an intermediary lemma:

Lemma 4. Let R be a normal proof-net of conclusion !W ⊢ !k+2B and 2 ≤ i ≤
k + 2. Then there exists a polynomial Q such that:



consider S a proof-net obtained by cutting R with a proof-net representing a

word of length n; then one can in at most 2
Q(n)
i−2 steps reduce S into a proof-net

S′ of size inferior to 2
Q(n)
i−2 and with not cut at depth inferior or equal to i − 1,

and only exponential cuts at depth i.

Proof. We proceed by induction on i.

In the case where i = 2: we proceed as in the proof of Prop. 1; the arguments
used are still valid in the case of a proof-net of conclusion !W ⊢ !k+2B and so
we obtain a bound of the form P (n).

Now, assume the property is true for i ≤ k + 1 and let us show it for i + 1.

By induction hypothesis one has obtained in 2
Q(n)
i−2 steps a proof-net S′ of size

inferior to 2
Q(n)
i−2 and with not cut at depth inferior or equal to i − 1, and only

exponential cuts at depth i. We reduce the exponential cuts at depth i following
the strategy of the proof of Lemma 1, that is to say by reducing special cuts.
The number of steps performed at depth i is then bounded by |S′|i, and at each
step the size of the proof-net at depth i decreases, and its size at depth (i + 1)
at most doubles. Let us call S′′ the resulting proof-net, which does not have any

cut at depth inferior or equal to i. We thus have |S′′| ≤ |S′| ·2|S
′|i ≤ 2

Q(n)
i−2 ·2

Q(n)
i−1 .

Therefore there is a polynomial Q′ such that |S′′| ≤ 2
Q′(n)
i−1 . Finally we reduce

all non-exponential cuts at depth i, which makes the size decrease and takes
less than |S′′| steps. The induction hypothesis is thus valid for i+ 1 and we are
done. ⊓⊔

Let us come back to the proof of Prop. 2. Call S the proof-net obtained
by cutting R with a proof-net representing a word of length n. It has a single
conclusion, of type !k+2B. Now, we apply Lemma 4 with i = k + 2 and thus

obtain in at most 2
Q(n)
k reduction steps a proof-net S′ of size inferior to 2

Q(n)
k ,

with no cut at depth inferior or equal to k+1, and only exponential cuts at depth
k + 2. Therefore the proof-net S′ consists of k + 2 boxes applied to a proof-net
T ′ such that: T ′ has a single conclusion of type B and only exponential cuts at
depth 0. By Lemma 3 one can in constant time decide whether T ′, and thus S′,
evaluates to true or false.

Therefore, on the whole after at most 2
Q(n)
k reduction steps one can decide

the result of the evaluation of S. Moreover as 2
Q(n)
k also bounds the size of the

intermediary proof-nets in the reduction sequence, this provides a bound on the
time needed to evaluate S. ⊓⊔

4 Extensional completeness

To prove the extensional completeness results we will need another datatype
using type fixpoints, that of Scott binary words :

WS = µβ.∀α.(β ⊸ α) ⊸ (β ⊸ α) ⊸ (α ⊸ α).



Scott words have already been used in several works on implicit complexity
[DLB06,BT10,RV10]. One can easily define terms for the basic operations on
binary words over the type WS:

cons0 = λw.λs0.λs1.λx.(s0 w) : WS ⊸ WS

cons1 = λw.λs0.λs1.λx.(s1 w) : WS ⊸ WS

nil = λs0.λs1.λx.x : WS

tail = λw.(w id id nil) : WS ⊸ WS

where id = λx.x.
For this datatype we can define a term:

case : ∀α.(WS ⊸ α) ⊸ (WS ⊸ α) ⊸ α ⊸ (WS ⊸ α)

case = λF0.λF1.λa.λw.(w F0 F1 a)

Remark 3. Actually Scott words can also be typed in elementary affine logic,
without fixed points, e.g. with the following type: ∀P.(P ⊸ ∀X.((P ⊸ X ⊸

P ) ⊸ P ) ⊸ P ). However it is not clear if one could define a case function in
this setting.

We define the following type representing the configurations of a one-tape
Turing machine over a binary alphabet, with n states:

Config = WS ⊗B⊗WS ⊗Bn

Given an element of this type: the first component represents the left part of the
tape, in reverse order; the second component represents the symbol scanned by
the head ; the third component represents the right part of the tape; the fourth
part represents the current state.

Lemma 5. Let q be a polynomial over one variable, with coefficients in N. We
have:

1. there exists a proof of !N ⊸ !N representing the function q(n);
2. for any k ≥ 1, there exists a proof of !N ⊸ !k+1N representing the function

2
q(n)
k .

Proof. Actually these encodings do not use type fixpoints and can be done in
elementary linear logic.

1. Recall that addition and multiplication on tally integers can both be repre-
sented by proofs of conclusions N ⊸ N ⊸ N. It follows that any polynomial
can be represented by a proof of conclusion !N ⊸ !N.

2. By using the proof for multiplication one defines a proof representing the
doubling function, double, with typeN ⊸ N. By iterating this function, that
is to say with the proof corresponding to the term exp = λn.(n double 1), of
type N ⊸ !N, one represents the function 2n.
By composing k times EXP we obtain a term expk of type N ⊸ !kN repre-
senting the function 2nk . Finally by composing the term expk with the term

of type !N ⊸ !N representing q(n), one gets a term of type !N ⊸ !k+1N

representing the function 2
q(n)
k .



⊓⊔

Lemma 6. Let M be a one-tape deterministic Turing machine. One can define
terms:

init : WS ⊸ Config,

step : Config ⊸ Config,

accept? : Config ⊸ B,

such that:

– given a binary word, init produces the corresponding initial configuration of
the machine,

– the term step computes one step of the machine on a given configuration,
– given a configuration, the term accept? returns true (resp. false) if its state

is accepting (resp. rejecting).

The terms init and accept? are easy. The term step can be constructed based on
the transition function of M, by doing a case distinction, using the term case,
as in [DLB06] (Sect.7, Lemma 4).

Remark 4. The configuration type of (Asperti Roversi 2002) in LAL does not use
type fixpoints and can be directly adapted in EAL (replacing the § connective
by !). Let us denote here this EAL type by ConfigC, as it is defined by using
a Church encoding of binary words, while Config is defined by using the Scott
encoding:

ConfigC = ∀α.!(α ⊸ α) ⊸ !(α ⊸ α) ⊸ !(α ⊸ α ⊸ (α⊗ α⊗Bn)),

where Bn is for representing the state of the machine.
Note that ConfigC allows to define a function stepC with the analogous

type ConfigC ⊸ ConfigC. However the corresponding term accept?C has type
ConfigC ⊸ !B. It does not seem possible to give a term for this purpose of type
ConfigC ⊸ B.

This is why we are considering here EALµ with type fixpoints, so as to be
able to use Scott binary words.

Proposition 3 (Extensional completeness).

1. Let f be a function representing a predicate of P. There exists a proof of
conclusion !W ⊢ !2B representing f .

2. Consider k ≥ 1 and let f be a function representing a predicate of k-EXP.
There exists a proof of conclusion !W ⊢ !k+2B representing f .

Proof. Let us first prove statement 1.
Let M be a one-tape deterministic machine over a binary alphabet, of poly-

nomial time q(n), computing f . We represent its configurations with the type
Config and we know by Lemma 6 that there is:



– a proof step of conclusion Config ⊸ Config representing one step of exe-
cution on a configuration.

– a proof init of conclusion W ⊢ Config for producing the initial configura-
tion, and a proof accept? of conclusion Config ⊢ B for deciding whether a
configuration is accepting or not.

Moreover by Lemma 5 (1), the polynomial q can be represented by a proof of
!N ⊸ !N. Note also that there is a proof length of conclusion W ⊢ N giving
the length (as a tally integer) of a word.

Now, using step and iteration on N, one can define a proof of conclusion
N, !Config ⊢ !Config, which given an integer n and a configuration c, will
produce the configuration c′ obtained by n computation steps starting from
c. Using the representation of the polynomial q we also obtain a proof π of
!N, !2Config ⊢ !2Config, which given an integer n and a configuration c, pro-
duces the configuration c′ obtained by q(n) computation steps starting from
c.

Now, the requested proof is obtained by composing the following construc-
tions:

– use duplication !W ⊸ !W ⊗ !W, length and the coercion W ⊸ !W to
obtain !W ⊸ !N⊗ !2W,

– compose it with id⊗ init to obtain !W ⊸ !N⊗ !2Config,
– compose it with the proof π described above, to get !W ⊸ !2Config,

– finally compose with accept? to obtain a proof of !W ⊸ !2B.

The resulting proof represents the computation of the machine M, hence the
predicate f .

For showing statement 2. it is sufficient to adapt the previous proof by replac-
ing the polynomial q(n), bounding the time of the Turing machine, by a function

2
q(n)
k , and to use Lemma 5 (2) saying that there is a proof of type !N ⊸ !k+1N

representing 2
q(n)
k . ⊓⊔

Finally, together the results of Propositions 1, 2 and 3 establish Theorem 1.

Remark 5. Observe that proofs of type !W ⊢ !2W do not correspond to polyno-
mial time functions. Indeed, one can easily define a proof wdouble of conclusion
W ⊸ W which doubles the length of a word. By using iteration on words, ap-
plied here to this wdouble proof, one gets a proof wexp of conclusion W ⊢ !W,
which, given a word of length n, produces a word of length 2n. Applying the !
rule one thus obtains a proof of !W ⊢ !2W with the same behaviour.

To characterize the complexity class FP of polynomial time functions, one
could use the type !W ⊸ !2WS, where WS is the type of Scott binary words.
However a drawback of this characterization is that the proofs representing these
functions could not be composed, because of the mismatch on the input and
output types.



Remark 6. The proof of the previous theorem could be adapted in EAL (without
fixpoint) instead of EALµ, by using the type ConfigC of Remark 4, instead of
Config. But as we have the type accept?C : ConfigC ⊸ !B, we would thus get
in the end the type !W ⊸ !3B for the simulation of a polynomial time machine.
This in turn would not provide a P soundness result.

5 Conclusion and future work

Elementary linear logic was up to now considered as a simple variant of ele-
mentary linear logic with good structural properties but of limited interest for
complexity. We have shown here that, provided one adds to it type fixpoints,
it is expressive enough to characterize P, EXP and a time hierarchy inside the
elementary class. An interesting feature is that this provides a single type sys-
tem in which one characterizes different complexity classes with the same term
calculus, simply by considering terms of different types.

Several questions remain open. Is it possible to obtain the same result without
type fixpoint? Could one also characterize in this system PSPACE and other space
complexity classes in a way similar to [Lei02]? It would also be interesting to
examine whether one could re-prove in this purely logical framework the classical
hierarchy results, like P 6= EXP, by carrying out a diagonalisation argument.
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