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WEAK STABILITY OF THE SET OF GLOBAL SOLUTIONS TO THE

NAVIER-STOKES EQUATIONS

HAJER BAHOURI AND ISABELLE GALLAGHER

Abstract. Let G be the set of vector fields generating a global, smooth solution to the
incompressible, homogeneous three dimensional Navier-Stokes equations. We prove that
a sequence of divergence free vector fields converging in the sense of distributions to an
element of G belongs also to G – possibly after extracting a subsequence – provided the
convergence holds “anisotropically” in frequency space. Typically that excludes self-similar
type convergence. Anisotropy appears as an important qualitative feature in the analysis of
the Navier-Stokes equations: it is also shown that initial data which does not belong to G

(hence which produces a solution blowing up in finite time) cannot have a strong anisotropy
in its frequency support.

1. Introduction and statement of results

1.1. Setting of the problem. We are interested in the three dimensional, incompressible
Navier-Stokes equations

(NS)





∂tu+ u · ∇u−∆u = −∇p in R
+ × R

3

div u = 0

u|t=0 = u0 ,

where u(t, x) and p(t, x) are respectively the velocity and the pressure of the fluid at time t ≥ 0
and position x ∈ R

3.

The question of the existence of global, smooth solutions is a long-standing open problem,
and we shall only recall here a few of the many results on this question. We refer for instance
to [3] or [43] and the references therein, for recent surveys on the subject. An important
point in the study of (NS) is its scale invariance, which reads as follows: if u is a solution

of (NS) on R
+ × R

d associated with the data u0, then for any λ > 0, uλ(t, x) := λu(λ2t, λx)
is a solution on R

+ × R
d, associated with

(1.1) u0,λ(x) := λu0(λx) .

Typically in two space dimensions, L2(R2) is scale invariant, while in three space dimen-

sions, that is the case for L3(R3), or the (smaller) Sobolev space Ḣ
1
2 (R3), or again the Besov

spaces Ḃ
−1+ 3

p
p,q (R3), 1 ≤ p ≤ ∞ and 0 < q ≤ ∞. We refer to Appendix B for all necessary defi-

nitions and properties of those spaces. Note that an anisotropic space such as L2(R2; Ḣ
1
2 (R))

is also scale invariant through (1.1), but also more generally through the anisotropic scaling

(1.2) fλ,µ(x) := λf(λx1, λx2, µx3) , ∀λ, µ > 0 ,

though of course (NS) is not invariant through that transformation if λ 6= µ.

It is well-known that (NS) is globally wellposed if the initial data is small in Ḃ
−1+ 3

p
p,∞ as long

as p < ∞ (see the successive results by [44], [23], [36], [12] and [50]). Later in [40], H. Koch
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2 H. BAHOURI AND I. GALLAGHER

and D. Tataru obtained a unique global in time solution for data small enough in the larger
space BMO−1, consisting of vector fields whose components are derivatives of BMO functions.

Note that the smallness assumption is not strictly necessary in order to obtain global so-
lutions to (NS), as pointed out for instance in [13]-[15]. We also recall that in two space
dimensions, (NS) is globally wellposed as soon as the initial data belongs to L2(R2), with no
restriction on its size (see [45]); this is due to the fact that the L2(Rd) norm is controled a
priori globally in time, and this allowed J. Leray in [44] to prove the existence of global in
time weak solutions in all space dimensions.

Definition 1.1. We denote by G the set of all divergence free vector fields generating a
unique, global solution to the three dimensional Navier-Stokes equations (NS).

We recall that it is proved in [2] (see [26] for the setting of Besov spaces) that G is open for
the strong topology of BMO−1, at least if one restricts the setting to the closure of Schwartz-
class functions for the BMO−1 norm; here we address the same question for weak topology.
Clearly some restrictions have to be imposed to hope to prove such a result; indeed consider
for instance the sequence

(1.3) φn(x) := 2nφ(2nx) , n ∈ N ,

where φ is any smooth, divergence free vector field. This sequence converges to zero in the
sense of distributions as n goes to infinity, and zero belongs to G. If one could infer, by weak
stability, that φn belongs to G for large enough n, then so would φ by scale invariance and
that would solve the problem of global regularity for the Navier-Stokes equations. Note that
the same can be said of the sequence

(1.4) φ̃n(x) := φ(x− xn) , |xn| → ∞ .

Since the global regularity problem seems out of reach, we choose here to add assumptions
on the structure of the sequences converging weakly to an element of G, which in particular

forbid sequences such as φn or φ̃n which in a way are “too isotropic”.

Actually one has the following interesting and rather easy result, which highlights the role
anisotropy can play in the study of the Navier-Stokes equations. This result shows that
initial data generating a solution blowing up in finite time cannot be too anisotropic in
frequency space, meaning that the set of its horizontal and vertical frequency sizes cannot
be too separated; the threshold depends only on the norm of the initial data. The result is
proved in Appendix B: its proof relies on elementary inequalities on the Littlewood-Paley
decomposition, which are all recalled in that appendix. The notation ∆h

k∆
v
j appearing in the

statement stands for horizontal and vertical Littlewood-Paley truncations at scale 2k and 2j

respectively, and is also introduced in Appendix B.

Theorem 1. Let ρ > 0 be given. There is a constant N0 ∈ N such that any divergence free

vector field u0 of norm ρ in Ḃ
1
2
2,1(R

3) satisfying u0 =
∑

|j−k|≥N0

∆h
k∆

v
ju0 belongs to G.

Let us now define the function spaces we shall be working with. As explained above we want
to work in anisotropic spaces, invariant through the scaling (1.2). For technical reasons we
shall assume quite a lot of smoothness on the sequence of initial data: we choose the sequence

bounded in essentially the smallest anisotropic Besov space Ḃs,s′
p,q invariant through (1.2). It is

likely that this smoothness could be relaxed somewhat, but perhaps not with the method we
follow . We shall point out as we go along where those restrictions appear, see in particular
Remark 4.7 page 18.
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Definition 1.2. We define, for 0 < q ≤ ∞, the space B1
q by the (quasi)-norm

‖f‖B1
q
:=
( ∑

j,k∈Z

2(j+k)q‖∆h
k∆

v
jf‖

q

L1(R3)

) 1
q
,

where ∆h
k and ∆v

j are horizontal and vertical frequency localization operators (see Appen-

dix B).

This corresponds to the space Ḃ1,1
1,q defined in Appendix B, where the reader will also find its

properties used in this text. This norm is clearly invariant by the scaling (1.2), and is slightly

larger (if q ≤ 1) than the more classical Ḃ
0, 1

2
2,1 norm (for the role of Ḃ

0, 1
2

2,1 in the study of the

Navier-Stokes equations see for instance [17],[49]). Moreover the space B1
q is anisotropic by

essence, which as pointed out above, will be an important feature of our analysis.

Now let us define our notion of an anisotropically oscillating sequence. We shall need another
more technical assumption later, which is stated in Section 2 (see Assumption 2 page 9).

Assumption 1. Let 0 < q ≤ ∞ be given. We say that a sequence (fn)n∈N, bounded in B1
q ,

is anisotropically oscillating if the following property holds. There exists p ≥ 2 such that
for all sequences (kn, jn) in Z

N × Z
N,

(1.5) lim sup
n→∞

2jn(−1+ 2
p
)+ kn

p ‖∆h
kn∆

v
jnfn‖Lp(R3) = C > 0 =⇒ lim

n→∞
2jn−kn ∈ {0,∞} .

Remark 1.3. It is easy to see (see Appendix B) that any function f in B1
q belongs also

to Ḃ
−1+ 2

p
, 1
p

p,∞ for any p ≥ 1 hence

f ∈ B1
q =⇒ sup

(k,j)∈Z2

2j(−1+ 2
p
)+ k

p ‖∆h
k∆

v
jf‖Lp <∞ .

The left-hand side of (1.5) indicates which ranges of frequencies are predominant in the se-

quence (fn): if lim sup
n→∞

2
jn(−1+ 2

p
)+ kn

p ‖∆h
kn∆

v
jnfn‖Lp is zero for a couple of frequencies (2kn , 2jn),

then the sequence (fn)n∈N is “unrelated” to those frequencies, with the vocabulary of [30]
(see also Lemma 5.2 in this paper). The right–hand side of (1.5) is then an anisotropy
property. Indeed one sees easily that a sequence such as (φn)n∈N defined in (1.3) is pre-
cisely not anisotropically oscillating: for the left-hand side of (1.5) to hold for φn one would
need jn ∼ kn ∼ n, which is precisely not the condition required on the right-hand side of (1.5).
A typical sequence satisfying Assumption 1 is rather (for a ∈ R

3)

fn(x) := 2αnf
(
2αn(x1 − a1), 2

αn(x2 − a2), 2
βn(x3 − a3)

)
, (α, β) ∈ R

2, α 6= β

with f smooth. One of the results of this paper states that any sequence satisfying Assump-
tion 1 may be written as the superposition of such sequences, up to a small remainder term
(see Proposition 2.4 page 6).

1.2. Main results. We prove in this article that G is open for weak topology, provided the
weakly converging sequence is of the type described in Assumption 1.

Theorem 2. Let q ∈]0, 1[ be given and let (u0,n)n∈N be a sequence of divergence free vector
fields bounded in B1

q , converging towards u0 ∈ B1
q in the sense of distributions, with u0 ∈ G.

If u0 − (u0,n)n∈N is anisotropically oscillating and satisfies Assumption 2 page 9, then up to
extracting a subsequence, u0,n belongs to G for all n.

Remark 1.4. To ensure that (u0,n)n∈N is bounded in B1
q , one can for instance require that

it is bounded in a space of the type Ḃ1±ε1,1±ε2
1,1 for some ε1, ε2 > 0, see Lemma B.4 in

Appendix B.
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Remark 1.5. Assumption 2 is stated page 9, along with some comments (see in particular
Remarks 2.8 and 2.9). Its statement requires the introduction of the profile decomposition
of the sequence of initial data and it demands that some of the profiles vanish at zero. This
holds for instance if those profiles are weak limits of the corresponding translation-dilation
of the sequence (see Proposition 2.7); note that this is always the case when the sequence is
bounded in a space which scales like an Lp space, p <∞, but here in the third direction the
scaling is only like L∞ so it is a true assumption.

Remark 1.6. Theorem 2 generalizes the result of [15], where it is shown that an initial data
of the type

u0(x) +

J∑

j=1

(v
1(j)
0 + εjw

1(j)
0 , v

2(j)
0 + εjw

2(j)
0 , w

3(j)
0 )(x1, x2, εjx3)

generates a global solution if u0 ∈ G, if the profiles (v
1(j)
0 , v

2(j)
0 , 0) and w

(j)
0 are smooth enough

and divergence free, if ε1, . . . εJ > 0 are small enough, and finally under the assumption

that v
1(j)
0 (x1, x2, 0) ≡ v

2(j)
0 (x1, x2, 0) ≡ 0 and w

3(j)
0 (x1, x2, 0) ≡ 0. Those last requirements

are analogous to Assumption 2. Note that even in the case when u0 ≡ 0, such initial data

cannot be dealt with simply using Theorem 1 since it is not bounded in Ḃ
1
2
2,1. Note also that

as in [15], the special structure of (NS) is used in the proof of Theorem 2.

Remark 1.7. Theorem 2, joint with Proposition 2.4 (stated page 6), means that one can
actually consider any bounded sequence except for sequences of the type (1.3)-(1.4) and
their superpositions. Remark that superpositions of global, isotropic profiles such as (1.3)-
(1.4) were studied in [24] (see also [13] and [27]). Theorem 2 may be generalized by adding
two more sequences to u0,n, where in each additional sequence the “privileged” direction is
not x3 but x1 or x2. It is clear from the proof that the same result holds, but we choose
not to present the proof of that more general result due to its technical cost. Actually a
more interesting generalization would consist in considering more geometrical assumptions,
but that requires more work and ideas, and will not be addressed here.

Remark 1.8. One can see from the proof of Theorem 2 that the solution un(t) converges for
all times, in the sense of distributions to the solution associated with u0. In this sense the
Navier-Stokes equations are stable by weak convergence – provided of course the sequence of
initial data satisfies the assumptions of Theorem 2.

The proof of Theorem 2 enables us to infer easily the following results. The first corollary
generalizes the statement of Theorem 2 to the case when u0 /∈ G.

Corollary 1. Let (u0,n)n∈N be a sequence of divergence free vector fields bounded in the
space B1

q for some 0 < q < 1, converging towards some u0 ∈ B1
q in the sense of distributions,

with u0 − (u0,n)n∈N anisotropically oscillating and satisfying Assumption 2. Let u be the
solution to the Navier-Stokes equations associated with u0 and assume that the life span of u
is T ∗ <∞. Then for all T < T ∗, there is a subsequence such that the life span of the solution
associated with u0,n is at least T .

The second corollary deals with the case when the sequence belongs to G, with an a priori
boundedness assumption on the solution (which could actually be generalized but we choose
not to complicate things too much at this stage; see Appendix B for definitions), and infers
that the weak limit also belongs to G.

Corollary 2. Assume (u0n)n∈N is a sequence of initial data in G, such that the associate

solution un is uniformly bounded in L̃2
(
R
+; Ḃ

2
3
, 1
3

3,1

)
. If u0n converges in the sense of distribu-

tions to some u0, with u0− (u0,n)n∈N anisotropically oscillating and satisfying Assumption 2,
then u0 ∈ G.
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1.3. Notation. For all points x = (x1, x2, x3) in R
3 and all vector fields v = (v1, v2, v3), we

shall denote by

xh := (x1, x2) and vh := (v1, v2)

their horizontal parts. We shall also define the horizontal differentiation operators ∇h :=
(∂1, ∂2) and divh := ∇h·, as well as ∆h := ∂21 + ∂22 .

We shall also use the shorthand notation for function spaces X (defined on R
2) and Y (defined

on R): XhYv := X(R2;Y (R)).

Finally we shall denote by C a constant which does not depend on the various parameters
appearing in this paper, and which may change from line to line. We shall also denote
sometimes x ≤ Cy by x . y.

1.4. General scheme of the proof and organization of the paper. The main argu-
ments leading to Theorem 2 are the following: by a profile decomposition argument, the
sequence of initial data is decomposed into the sum of the weak limit u0 and a sequence
of “orthogonal” profiles, up to a small remainder term. Under Assumptions 1 and 2 and
using scaling arguments it is proved that each individual profile belongs to G; this step re-
lies crucially on the results of [14] and [15]. The mutual orthogonality of each term in the
decomposition of the initial data implies finally that the sum of the solutions associated to
each profile is itself anapproximate solution to (NS), globally in time, which concludes the
proof. The choice of the function space makes the above steps quantifiable.

The paper is organized in the following way:

• In Section 2 we provide an “anisotropic profile decomposition” of the sequence of
initial data, based on a general result, Theorem 3 stated and proved in Section 5
page 25. This enables us to replace the sequence of initial data, up to an arbitrarily
small remainder term, by a finite (but large) sum of profiles.

• Section 3 is then devoted to the construction of an approximate solution by propa-
gating globally in time each individual profile of the decomposition. The propagation
is through either the Navier-Stokes flow or transport-diffusion equations.

• In Section 4 we prove that the construction of the previous step does provide an
approximate solution to the Navier-Stokes equations, thus completing the proof of
Theorem 2, while Corollaries 1 and 2 are proved at the end of Section 4. That
section is the most technical part of the proof, as one must check that the nonlinear
interactions of all the functions constructed in the previous step are negligible. It
also relies on results proved in Appendix A, on the global regularity for the Navier-
Stokes equation (and perturbed versions of that equation) for small data and forces
in anisotropic Besov spaces.

• Finally in Appendix B we collect useful results on isotropic and anisotropic spaces
which are used in this text, and we prove Theorem 1.

2. Profile decomposition of the initial data

In this section we consider a sequence of initial data as given in Theorem 2, and write
down an anisotropic profile decomposition for that sequence. We shall constantly be using
the following scaling operators.

Definition 2.1. For any two sequences ε = (εn)n∈N and γ = (γn)n∈N of positive real numbers
and any sequence x = (xn)n∈N in R

3 we define the scaling operator

Λn
ε,γ,xφ(x) :=

1

εn
φ

(
xh − xn,h

εn
,
x3 − xn,3

γn

)
.
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Remark 2.2. The operator Λn
ε,γ,x is an isometry in the space Ḃ

−1+ 2
p
, 1
p

p,q for any 1 ≤ p ≤ ∞
and 0 < q ≤ ∞.

Then we define the notion of orthogonal cores/scales as follows (see also Section 5).

Definition 2.3. We say that two triplets of sequences (εℓ,γℓ,xℓ) for ℓ ∈ {1, 2}, where (εℓ,γℓ)
are two sequences of positive real numbers and xℓ are sequences in R

3, are orthogonal if

either
ε1n
ε2n

+
ε2n
ε1n

+
γ1n
γ2n

+
γ2n
γ1n

→ ∞ , n→ ∞

or (ε1n, γ
1
n) = (ε2n, γ

2
n) and |(x1n)

ε1,γ1
− (x2n)

ε1,γ1
| → ∞ , n→ ∞ ,

where we have denoted (xℓ)ε
k,γk

:=
(xℓ,h

εk
,
xℓ,3

γk

)
.

Note that up to extracting a subsequence, any sequence of positive real numbers can be
assumed to converge either to 0, to ∞, or to a constant. In the rest of this paper, up to
rescaling the profiles by a fixed constant, we shall assume that if the limit of any one of the
sequences εℓ,γℓ,ηℓ, δℓ is a constant, then it is one.

The main result of this section is the following.

Proposition 2.4. Under the assumptions of Theorem 2, the following holds. Let 2 ≤ p ≤ ∞
be given as in Assumption 1. For all integers ℓ there are two sets of orthogonal sequences
in the sense of Definition 2.3, (εℓ,γℓ,xℓ) and (ηℓ, δℓ, x̃ℓ) and for all α ∈ (0, 1) there are

arbitrarily smooth divergence free vector fields (φ̃h,ℓα , 0) and (−∇h∆
−1
h ∂3φ

ℓ
α, φ

ℓ
α) such that up

to extracting a subsequence, one can write

u0,n = u0 +
L̃∑

ℓ=1

Λn
ηℓ,δℓ,x̃ℓ

(
φ̃h,ℓα + r̃h,ℓα , 0

)
+

L∑

ℓ=1

Λn
εℓ,γℓ,xℓ

(
−
εℓn
γℓn

∇h∆
−1
h ∂3(φ

ℓ
α + rℓα), φ

ℓ
α + rℓα

)

+ (ψ̃h,L̃
n −∇h∆

−1
h ∂3ψ

L
n , ψ

L
n ) , div r̃h,ℓα = 0 , ‖r̃h,ℓα ‖B1

q
+ ‖rℓα‖B1

q
≤ α ,

with ψ̃h,L̃
n and ψL

n independent of α and uniformly bounded (in n and L) in B1
q , and

(2.1) lim sup
n→∞

(
‖ψ̃h,L

n ‖
Ḃ

−1+ 2
p , 1p

p,1

+ ‖ψL
n‖

Ḃ
−1+ 2

p , 1p
p,1

)
→ 0 , L→ ∞ .

Moreover the following properties hold:

(2.2) ∀ℓ ∈ N, lim
n→∞

(δℓn)
−1ηℓn ∈ {0,∞} , lim

n→∞
(γℓn)

−1εℓn = 0 ,

as well as the following stability result:

(2.3)
∑

ℓ∈N

(
‖φ̃h,ℓα ‖B1

q
+ ‖φℓα‖B1

q

)
. sup

n
‖u0,n‖B1

q
+ ‖u0‖B1

q
.

Proof of Proposition 2.4. The proof is divided into two steps. First we decompose the third
component u30,n according to Theorem 3 in Section 5, and then we decompose the horizontal

component uh0,n using both the first step and Theorem 3 again (for the divergence free part

of uh0,n).
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Step 1. Decomposition of u30,n. Let us apply Theorem 3 of Section 5 (see page 25) to

the sequence u30,n − u30. With the notation of Theorem 3, we define

εℓn := 2−j1(λℓ(n))

γℓn := 2−j2(λℓ(n))

xℓn,h := 2−j1(λℓ(n))k1(λℓ(n))

xℓn,3 := 2−j2(λℓ(n))k2(λℓ(n)) .

The orthogonality of the sequences (εℓ,γℓ,xℓ), as given in Definition 2.3, is a consequence of
the orthogonality property stated in Theorem 3 along with Remark 5.1. According to that
theorem we can write

(2.4) u30,n − u30 =

L∑

ℓ=1

Λn
εℓ,γℓ,xℓϕ

ℓ + ψL
n ,

where due to (5.10) in Theorem 3,
∑

ℓ∈N

‖ϕℓ‖B1
q
. sup

n
‖u30,n − u30‖B1

q
<∞ .

In particular ψL
n is uniformly bounded (in n and L) in B1

q ⊂ Ḃ
−1+ 2

p
, 1
p

p,q , and Theorem 3 gives

lim sup
n→∞

‖ψL
n‖

Ḃ
−1+ 2

p , 1p
p,p

→ 0 , L→ ∞ .

The result (2.1) then follows by Hölder’s inequality for sequences. Note that we have used
here the fact that q < 1.

Using horizontal and vertical frequency truncations, given any α > 0 we may further decom-
pose ϕℓ into

(2.5) ϕℓ = φℓα + rℓα , with φℓα arbitrarily smooth and ‖rℓα‖B1
q
≤ α ,

and we have, by this choice of regularization,

‖φℓα‖B1
q
+ ‖rℓα‖B1

q
≤ 2‖ϕℓ‖B1

q
.

This implies (2.3) for φℓα.

Now let us prove that
∀ℓ ∈ N, lim

n→∞
(γℓn)

−1εℓn = 0 .

Assumption 1 along with Lemma 5.2 page 28 imply that the limit of (γℓn)
−1εℓn belongs

to {0,∞}. Moreover by the divergence free condition on u0,n we have divh u
h
0,n = −∂3u

3
0,n

and since uh0,n is bounded in B1
q we infer that ∂3u

3
0,n is bounded in Ḃ0,1

1,q and ∂3u
3
0 also belongs

to Ḃ0,1
1,q . This in turn, due to Lemma 5.3, implies that

lim
n→∞

(γℓn)
−1εℓn = 0 .

Step 2. Decomposition of uh0,n. The divergence free assumption on the initial data

enables us to recover from the previous step a profile decomposition for uh0,n. Indeed there is

a two-dimensional, divergence free vector field ∇⊥
hC0,n such that

uh0,n = ∇⊥
hC0,n −∇h∆

−1
h ∂3u

3
0,n ,

where ∇⊥
h = (−∂1, ∂2). Similarly there is some function ϕ such that

uh0 = ∇⊥
h ϕ−∇h∆

−1
h ∂3u

3
0 .
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Furthermore as recalled in the previous step ∂3u
3
0,n is bounded in Ḃ0,1

1,q . This implies that the

sequence ∇⊥
hC0,n is bounded in B1

q and arguing similarly for ∇⊥
h ϕ, the profile decomposition

of Section 5 may also be applied to ∇⊥
hC0,n(x)−∇⊥

h ϕ: we get

∇⊥
hC0,n −∇⊥

h ϕ =

L∑

ℓ=1

Λn
ηℓ,δℓ,x̃ℓφ̃

h,ℓ + ψ̃h,L
n

with lim sup
n→∞

‖ψ̃L
n‖

Ḃ
−1+ 2

p , 1p
p,p

→ 0 as L → ∞ and divh φ̃
h,ℓ = 0 thanks to Lemma 5.4. Fi-

nally ηℓn/δ
ℓ
n → 0 or ∞ due to the anisotropy assumption as in the previous step. The rest of

the construction is identical to Step 1. The proposition is proved. �

Before evolving in time the decomposition provided in Proposition 2.4 we notice that it may
happen that the cores and scales of concentration (ηℓ, δℓ, x̃ℓ) appearing in the decomposition
of ∇⊥

hC0,n coincide with (or more generally are non orthogonal to) those appearing in the

decomposition of u30,n, namely (εℓ,γℓ,xℓ). In that case the corresponding profiles should be
evolved together in time. This leads naturally to the next definition.

Definition 2.5. For each ℓ ∈ N, we define κ(ℓ) by the condition (with the notation of
Definition 2.3)

(2.6) lim
n→∞

(εκ(ℓ)
ηℓ

,
γκ(ℓ)

δℓ
, (xκ(ℓ) − x̃ℓ)ε

κ(ℓ),γκ(ℓ)
)
= (λ1, λ2, a) , λ1, λ2 > 0 , a ∈ R

3 .

We also define for each L ∈ N the set

K(L) :=
{
ℓ ∈ N / ℓ = κ(ℓ̃) , ℓ̃ ∈ {1, . . . , L}

}
.

Remark 2.6. Note that for each ℓ there is at most one such κ(ℓ) by orthogonality. Moreover
up to rescaling-translating the profiles we can assume that λ1 = λ2 = 1 and a = 0.

The decomposition of Proposition 2.4 can now be written, for any L ∈ N in the following
way. The interest of the next formulation is that as we shall see, each profile is either small,
or orthogonal to all the others. In the next formula we decide, to simplify notation that

the profile φ
κ(ℓ)
α is equal to zero if (2.6) does not hold. We also have changed slightly the

remainder terms rℓα and ψL
n , without altering their smallness properties (and keeping their

notation for simplicity), due to the fact that in Definition 2.5 the ratios converge to a fixed
limit but are in fact not strictly equal to the limit. So we write

u0,n = u0 +
L∑

ℓ=1

Λn
ηℓ,δℓ,x̃ℓ

(
φ̃h,ℓα + r̃h,ℓα −

ηℓn
δℓn

∇h∆
−1
h ∂3(φ

κ(ℓ)
α + rκ(ℓ)α ), φκ(ℓ)α + rκ(ℓ)α

)

+

L∑

κ(ℓ)=1
κ(ℓ)∈K(∞)\K(L)

Λn
ηℓ,δℓ,x̃ℓ

(
φ̃h,ℓα + r̃h,ℓα −

ηℓn
δℓn

∇h∆
−1
h ∂3(φ

κ(ℓ)
α + rκ(ℓ)α ), φκ(ℓ)α + rκ(ℓ)α

)

+
L∑

ℓ=1
ℓ/∈K(∞)

Λn
εℓ,γℓ,xℓ

(
−
εℓn
γℓn

∇h∆
−1
h ∂3(φ

ℓ
α + rℓα), φ

ℓ
α + rℓα

)
(2.7)

−
∑

ℓ>L
ℓ∈K(L)

Λn
εℓ,γℓ,xℓ

(
−
εℓn
γℓn

∇h∆
−1
h ∂3φ

ℓ, φℓ
)
−
∑

ℓ>L
1≤κ(ℓ)≤L

Λn
ηℓ,δℓ,x̃ℓ

(
φ̃h,ℓα + r̃h,ℓα , 0

)

+
(
ψ̃h,L
n −∇h∆

−1
h ∂3ψ

L
n , ψ

L
n

)
.



WEAK STABILITY OF THE SET OF GLOBAL SOLUTIONS TO THE NAVIER-STOKES EQUATIONS 9

Before moving on to the time evolution of (2.7), we are now in position to state the second
assumption entering in the statement of Theorem 2.

Assumption 2. With the notation of Proposition 2.4, there is L0 such that for every L ≥ L0,
the following holds.

• Suppose there are two indexes ℓ1 6= ℓ2 in {1, . . . , L} such that the following properties
are satisfied:

(2.8)

ηℓ1n = ηℓ2n , δℓ1n → ∞ , δℓ2n → 1 or ∞ with δℓ1n /δ
ℓ2
n → ∞ ,

and (x̃ℓ1n − x̃ℓ2n )η
ℓ2
n ,δ

ℓ2
n → aℓ1,ℓ2 ∈ R

3 ,
x̃ℓ2n,3

δℓ2n
→ ak3 ∈ R .

Then one has φ̃h,ℓ(·, 0) ≡ 0.

• If u0 6≡ 0 and if there are ℓ1 6= ℓ2 ∈ {1, . . . , L} such that for i ∈ {1, 2}, ηℓin = 1

with δℓin → ∞ while x̃ℓin,h is bounded and x̃ℓin,3/δ
ℓi
n → ãℓi3 ∈ R, then φ̃h,ℓi(·,−ãℓi3 ) ≡ 0 for

each i ∈ {1, 2}.

• A similar result holds for the profiles φℓ, with the corresponding assumptions on the
scales and cores.

Proposition 2.7. With the notation of Proposition 2.4 assume the following:
• If ℓ1 6= ℓ2 in {1, . . . , L} are two indexes satisfying (2.8), then a weak limit of the

sequence ηℓ2n (uh0,n − uh0 − ψ̃h,L
n +∇h∆

−1
h ∂3ψ

L
n )(η

ℓ2
n yh + x̃ℓ2n,h, δ

ℓ2
n y3 + x̃ℓ2n,3) is φ̃

h,ℓ2(y).

• A similar result holds for εℓ2n (u30,n − u30 − ψ̃3,L̃
n −ψL

n )(ε
ℓ2
n yh + xℓ2n,h, γ

ℓ2
n y3 + xℓ2n,3), with the

corresponding assumptions on the scales and cores.

Then Assumption 2 holds.

Proof of Proposition 2.7. • We shall start by proving the result for a couple ℓ1 6= ℓ2 chosen
in {1, . . . , L} so that δℓ1n is the largest vertical scale among the vertical scales associated with
all couples satisfying (2.8).

We begin by noticing that the limit (after extraction) of
x̃ℓ1n,3

δℓ1n
is necessarily zero since

(2.9)
x̃ℓ1n,3

δℓ1n
=

(
x̃ℓ1n,3 − x̃ℓ2n,3

δℓ2n
+
x̃ℓ2n,3

δℓ2n

)
δℓ2n

δℓ1n
→ 0 .

Without loss of generality we may also assume that for the index ℓ1 we have chosen, δℓ2n is
the largest vertical scale satisfying (2.8). By the hypothesis of Proposition 2.7 we know that

the weak limit of ηℓ2n
(
uh0,n − uh0 − ψ̃h,L̃

n +∇h∆
−1
h ∂3ψ

L
n

)
(ηℓ2n yh + x̃ℓ2n,h, δ

ℓ2
n y3 + x̃ℓ2n,3) is φ̃

h,ℓ2(y).

This weak limit may be explicitly computed: noticing that for any integer k,

ηℓ2n
(
Λn
ηk,δk,x̃kφ̃

h,k
)
(ηℓ2n yh + x̃ℓ2n,h, δ

ℓ2
n y3 + x̃ℓ2n,3) = Λn

ηk

ηℓ2
, δk

δℓ2
,x̃k,ℓ2

φ̃h,k(y),

with x̃k,ℓ2n := (x̃kn − x̃ℓ2n )η
ℓ2
n ,δ

ℓ2
n , we find that the weak limit of such a term is zero except in

three situations : if k = ℓ2, if k = ℓ1, or if

(2.10) ηkn = ηℓ2n , δkn/δ
ℓ2
n → ∞ , (x̃kn − x̃ℓ2n )η

k
n,δ

k
n → ak,ℓ2 ∈ R

3 .

If k = ℓ2, then the function is simply equal to φ̃h,ℓ2(y), and if k = ℓ1 then by (2.8) the weak

limit is equal to φ̃h,ℓ1(yh + aℓ1,ℓ2h , 0). Finally if (2.10) were to hold then in particular k would
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satisfy the same properties as ℓ2 in the statement of the proposition, while δkn/δ
ℓ2
n → ∞, and

that is impossible by choice of ℓ2 as corresponding to the largest vertical scale satisfying (2.8).

So finally the weak limit of ηℓ2n
(
uh0,n − uh0 − ψ̃h,L̃

n + ∇h∆
−1
h ∂3ψ

L
n

)
(ηℓ2n yh + x̃ℓ2n,h, δ

ℓ2
n y3 + x̃ℓ2n,3)

is φ̃h,ℓ2(y) + φ̃ℓ1(yh + aℓ1,ℓ2h , 0), hence necessarily by the assumptions of Proposition 2.7, we

have that φ̃h,ℓ1(yh + aℓ1,ℓ2h , 0) ≡ 0 so the result is proved in the case of the largest possible
vertical scale.

Now we can argue by induction for the other possible ℓ1’s: suppose that ℓ1 corresponds to the
second largest for instance, then calling δℓ0n the largest one, the same argument implies that

the weak limit of the sequence ηℓ2n
(
uh0,n−u

h
0 − ψ̃

h,L̃
n +∇h∆

−1
h ∂3ψ

L
n

)
(ηℓ2n yh+ x̃

ℓ2
n,h, δ

ℓ2
n y3+ x̃

ℓ2
n,3)

is the function φ̃ℓ2(y)+ φ̃h,ℓ1(yh+a
ℓ1,ℓ2
h , 0)+ φ̃h,ℓ0(yh+a

ℓ0,ℓ2
h , 0) = φ̃ℓ2(y)+ φ̃h,ℓ1(yh+a

ℓ1,ℓ2
h , 0)

hence φ̃ℓ1(yh + aℓ1,ℓ2h , 0) ≡ 0 and by induction, the result is proved.

• The proof of the second point is very similar: we first consider ℓ1 corresponding to the
largest vertical scale among the indexes satsfying ηℓn = 1, δℓn → ∞, x̃ℓn,h → ãℓh bounded

and x̃ℓn,3/δ
ℓ
n → ãℓ3 ∈ R. If there is no other index satisfying those requirements then we notice

that the weak limit of uh0,n−u
h
0 − ψ̃

h,L̃
n +∇h∆

−1
h ∂3ψ

L
n is φ̃ℓ(yh− ã

ℓ
h,−ã

ℓ
3), while we also know

that it is zero, so the result follows. If there is a second index satisfying those requirements,
then we consider δℓ2n the next largest vertical scale (by orthogonality it cannot be equal
to δℓ1n ) and we use the assumption of Proposition 2.7, which implies that the weak limit of

the sequence (uh0,n − uh0 − ψ̃h,L̃
n +∇h∆

−1
h ∂3ψ

L
n (yh + x̃ℓ2n,h, δ

ℓ2
n y3 + x̃ℓ2n,3) is the function φ̃h,ℓ2(y)

while a direct computation gives the limit φ̃h,ℓ2(y) + φ̃h,ℓ1(yh − ãℓ1h + ãℓ2h ,−ã
ℓ
3) and again we

get the result.
The rest of the argument is as above, by induction on the size of the vertical scales.

• The proof is identical for the profiles φℓ.

Proposition 2.7 is proved. �

Remark 2.8. Assuming the hypotheses of Proposition 2.7 is actually quite natural. Indeed
for any choice of sequences of cores (xℓn,h)n∈N and of scales (ηℓn)n∈N, one has that the se-

quence ηℓn(u
h
0,n − uh0 − ψ̃h,L̃

n + ∇h∆
−1
h ∂3ψ

L
n )(η

ℓ
nyh + xℓn,h, δ

ℓ
ny3 + xn,3) converges in S ′, and

it is assumed here that the weak limit is precisely the profile φ̃h,ℓ. Note that for a profile

decomposition in the space Ḃs,s′
p,q that is obvious as soon as s < 2/p and s′ < 1/p. Here

we have s′ = 1/p so this is a true assumption (in the same way as the sequence f(xh, εx3)
does not necessarily converge weakly to zero with ε). For example the sequence provided in
Remark 1.3 satisfies Assumption 2 since there is only one profile involved. More generally
consider the sequence (with 0 6= α 6= γ, and β1, β2 6= α, β1 6= γ)

2αn
(
f1
(
2αnx1, 2

αnx2, 2
β1nx3−a3

)
+f2

(
2αnx1, 2

αnx2, 2
β2nx3

))
+2γnf3

(
2γnx1, 2

γnx2, 2
β1nx3

)
.

It clearly satisfies Assumption 1. If β2 = β1 then Assumption 2 is also satisfied. If β1 < β2 < 0
then one must have f1(·,−a3) ≡ 0 to ensure Assumption 2.

Remark 2.9. If it is assumed that the initial data is bounded also in L2(R3), then the same
arguments as those leading to Lemma 5.3 allow to infer that the vertical scales γℓn and δℓn must
all go to zero. In particular Assumption 2 is unnecessary in that case since the hypotheses
are never met.



WEAK STABILITY OF THE SET OF GLOBAL SOLUTIONS TO THE NAVIER-STOKES EQUATIONS 11

3. Time evolution of each profile, construction of an approximate solution

In this section we shall construct an approximate solution to the Navier-Stokes equations
by evolving in time each individual profile provided in Proposition 2.4 – or rather the version
written in (2.7) – either by the Navier-Stokes flow or by a linear transport-diffusion equation,
depending on the profiles. First we shall be needing a time-dependent version of the scaling
operator Λn

ε,γ,x given in Definition 2.1.

Definition 3.1. For any two sequences ε = (εn)n∈N and γ = (γn)n∈N of positive real numbers
and any sequence x = (xn)n∈N in R

3 we define the scaling operator

Λ̃n
ε,γ,xφ(t, x) :=

1

εn
φ

(
t

ε2n
,
xh − xn,h

εn
,
x3 − xn,3

γn

)
.

Next let us introduce some notation for function spaces naturally associated with the resolu-
tion of the Navier-Stokes equations. We refer to Appendix B for definitions.

Definition 3.2. We define the following function spaces, for 1 ≤ p ≤ ∞ and 0 < q ≤ ∞:

Ip,q :=

∞⋂

r=1

L̃r
(
R
+; Ḃ

−1+ 3
p
+ 2

r
p,q (R3)

)
,

Ap,q :=

∞⋂

r=1

L̃r(R+; Ḃ
−1+ 2

p
+ 2

r
, 1
p

p,q ) ,

Sp,q := L̃∞(R+; Ḃ
−1+ 2

p
, 1
p

p,q ) ∩ L̃1(R+; Ḃ
1+ 2

p
, 1
p

p,q ∩ Ḃ
−1+ 2

p
,2+ 1

p
p,q ) .

Remark 3.3. The spaces defined above are natural spaces for the resolution of the Navier-

Stokes equations: for instance Ip,∞ is associated with small data in Ḃ
−1+ 3

p
p,∞ (R3) (see [12],[50],

as well as [3]) and Sp,1 with small data in Ḃ
−1+ 2

p
, 1
p

p,1 (see Appendix A). Note that Ap,q contains
strictly Sp,q andAp1,q is embedded inAp2,q as soon as p1 ≤ p2, and similarly for Sp1,q and Sp2,q.

Remark 3.4. The operator Λ̃n
ε,γ,x is an isometry in Ap,q for all 1 ≤ p ≤ ∞ and 0 < q ≤ ∞.

That is however not the case for the space Sp,q.

Now let us consider the decomposition (2.7), and evolve each term in time so as to construct
by superposition an approximate solution to the Navier-Stokes equations with data u0,n. We
leave to Section 4 the proof that the superposition is indeed an approximate solution to (NS).

• The first term of the decomposition (2.7) is the weak limit u0 ∈ B1
q , which belongs to G by

assumption. We define u ∈ S1,1 the associate global solution.

• Let us turn to the profiles in the decomposition (2.7), namely first the terms

ϕ̃ℓ
0,n := Λn

ηℓ,δℓ,x̃ℓ

(
φ̃h,ℓα −

ηℓn
δℓn

(∇h∆
−1
h ∂3φ

κ(ℓ)
α ), φκ(ℓ)α

)

for any ℓ ∈ N. We use the notation of Appendix A, and in particular that of Theorem 4.

Lemma 3.5. Let ℓ ∈ N. There is L̃0, independent of n and α, such that the following
properties hold.

• If ℓ ≥ L̃0 and κ(ℓ) ≥ L̃0, then for all α ∈ (0, 1) and n large enough, ϕ̃ℓ
0,n belongs to G and

the associate solution ũℓn to (NS) satisfies

(3.1) ∀ℓ ≥ L̃0 s.t. κ(ℓ) ≥ L̃0 , ‖ũℓn‖S3,1 ≤ 2
(
‖φ̃h,ℓα ‖

Ḃ
− 1

3 , 13
3,1

+ ‖φκ(ℓ)α ‖
Ḃ

− 1
3 , 13

3,1

)
≤ 2c0 .

• For every ℓ ∈ N, if ηℓn/δ
ℓ
n converges to ∞ when n goes to infinity, then for all α ∈ (0, 1)
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and for n large enough ϕ̃ℓ
0,n belongs to G and the associate solution ũℓn to (NS) is bounded

in S3,1 and satisfies for all 1 ≤ r ≤ ∞ and all
1

3
≤ σ ≤

1

3
+

2

r

(3.2) ũℓn → 0 in L̃r(R+; Ḃ
− 1

3
+σ, 2

r
−σ+ 1

3
3,1 ) , n→ ∞ .

• For every ℓ ∈ N, if ηℓn/δ
ℓ
n converges to 0 when n goes to infinity, then for all α ∈ (0, 1) and

for n large enough ϕ̃ℓ
0,n belongs to G. Moreover the associate solution ũℓn to (NS) is uniformly

bounded in the space S1,1 and satisfies for all α ∈ (0, 1)

(3.3)
ũℓn = Λ̃n

ηℓ,δℓ,x̃ℓ

(
Ũh,ℓ +

ηℓn
δℓn
Uκ(ℓ),h
n , Uκ(ℓ),3

n

)
+ R̃ℓ

n , R̃ℓ
n bounded in S3,1

with R̃ℓ
n → 0 in L̃2(R+; Ḃ

2
3
, 1
3

3,1 ) ∩ L1(R+; Ḃ
5
3
, 1
3

3,1 ∩ Ḃ
2
3
, 4
3

3,1 ) , n→ ∞ ,

while Ũh,ℓ, U
κ(ℓ),3
n and

ηℓn
δℓn
Uκ(ℓ),h
n are smooth and bounded in S1,1.

Finally if φ̃h,ℓ(·, z3) ≡ φκ(ℓ)(·, z3) ≡ 0 for some z3 ∈ R, then for all s ≥ 0,

(3.4) lim sup
n→∞

∥∥Ũh,ℓ(·, z3) + Uκ(ℓ),3
n (·, z3)

∥∥
L∞(R+;Hs(R2))∩L2(R+;Ḣs+1(R2))

. α .

Proof of Lemma 3.5. • By the stability property (2.3), for all β > 0 there is L̃(β) such that

if ℓ ≥ L̃(β) and κ(ℓ) ≥ L̃(β), then

‖φ̃h,ℓα ‖B1
q
+ ‖φκ(ℓ)α ‖B1

q
≤ β .

Then if β is small enough, in particular φ̃h,ℓα is smaller than, say c0/2 in Ḃ
− 1

3
, 1
3

3,1 (by Sobolev

embeddings).

Now let α > 0 be given and let us consider the initial data (−
ηℓn
δℓn

∇h∆
−1
h ∂3φ

κ(ℓ)
α , φκ(ℓ)α ). Notice

that the only possible limit for the ratio of scales associated with φ
κ(ℓ)
α is zero by Proposi-

tion 2.4, so we can restrict our attention here to the case when ηℓn/δ
ℓ
n → 0. By construc-

tion of φ
κ(ℓ)
α in (2.5), the vector field ∇h∆

−1
h ∂3φ

κ(ℓ)
α belongs to B1

q for each given α, hence

since ηℓn/δ
ℓ
n converges to 0 when n goes to infinity, then for n large enough and for κ(ℓ) ≥ L̃(β)

∥∥∥− ηℓn
δℓn

(∇h∆
−1
h ∂3φ

κ(ℓ)
α ), φκ(ℓ)α

∥∥∥
B1
q

≤ 2β .

Finally choosing β ≤ c0/4, for ℓ ≥ L̃(β), κ(ℓ) ≥ L̃(β) and n large enough (depending on ℓ
and α) Theorem 4 applies (using also Remark 2.2) to yield that ϕ̃ℓ

0,n belongs to G and (3.1)
holds.

• If ηℓn/δ
ℓ
n converges to ∞, then we observe that φ

κ(ℓ)
α ≡ 0 (since as recalled above the only

possible limit for the ratio of scales associated with φ
κ(ℓ)
α is zero) and we have by a direct

computation

∥∥∥Λn
ηℓ,δℓ,x̃ℓ

(
φ̃h,ℓα , 0

)∥∥∥
Ḃ0

3,1

.

(
δℓn
ηℓn

) 1
3

.

In particular for n large enough the data is small in Ḃ0
3,1 so small data theory of [36] and [50]

(see also [3]) gives the result: there is a global solution to (NS) associated with that initial

data, which goes to zero (like (δℓn/η
ℓ
n)

1
3 ) in L̃∞(R+; Ḃ0

3,1)∩ L̃
1(R+; Ḃ2

3,1). By Proposition B.3
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and interpolation, it therefore goes to zero in L̃r(R+; Ḃ
− 1

3
+σ, 2

r
−σ+ 1

3
3,1 ) for all 1 ≤ r ≤ ∞ and

all σ ∈ [
1

3
,
1

3
+

2

r
], as expected.

In particular ũℓn is bounded in L̃2(R+; Ḃ
2
3
, 1
3

3,1 ) which controls the Navier-Stokes equation for

data in Ḃ
− 1

3
, 1
3

3,1 (see Theorem 4), so we get in particular that ũℓn is bounded in S3,1.

• Conversely let us suppose that ηℓn/δ
ℓ
n converges to 0. Then by (isotropic) scale and trans-

lation invariance of (NS) we can first rescale by ηℓn and translate by x̃ℓn, hence consider the
initial data

φ̃ℓ0,n(x) := Λn

1, δ
ℓ

ηℓ ,0

(
φ̃h,ℓα −

ηℓn
δℓn

(∇h∆
−1
h ∂3φ

κ(ℓ)
α ), φκ(ℓ)α

)
(x)

=

(
φ̃h,ℓα −

ηℓn
δℓn

(∇h∆
−1
h ∂3φ

κ(ℓ)
α ), φκ(ℓ)α

)
(xh,

ηℓn
δℓn
x3) .

Since ηℓn/δ
ℓ
n → 0 as n goes to infinity, we can rely on Theorem 3 in [14] which states that

as soon as ηℓn/δ
ℓ
n is small enough (depending on norms of the profiles φ̃h,ℓα , φ

κ(ℓ)
α ), then φ̃ℓ0,n

belongs to G. Furthermore according to [14] the solution to (NS) associated with φ̃ℓ0,n is of
the form

(
Ũh,ℓ +

ηℓn
δℓn
Uκ(ℓ),h
n , Uκ(ℓ),3

n

)
(t, xh,

ηℓn
δℓn
x3) + r̃ℓn(t, x)

where for each z3 ∈ R, Ũh,ℓ(·, z3) is the global solution to the two-dimensional Navier-

Stokes equations with data φ̃h,ℓα (·, z3), while U
κ(ℓ)
n is a divergence-free vector field solving

the linear transport-diffusion equation (T ε
v ) of [14] with v = Ũh,ℓ and ε = ηℓn/δ

ℓ
n, with

data
(
−∇h∆

−1
h ∂3φ

κ(ℓ)
α , φκ(ℓ)α

)
: we have, for some pressure p

κ(ℓ)
n

∂tU
κ(ℓ)
n + Ũh,ℓ · ∇hUκ(ℓ)

n −∆hU
κ(ℓ)
n −

(
ηℓn
δℓn

)2

∂23U
κ(ℓ)
n = −

(
∇h,

(ηℓn
δℓn

)2
∂3

)
pκ(ℓ)n .

Both Ũh,ℓ and U
κ(ℓ)
n are as smooth as needed.

In particular relying on [14] Proposition 3.2, and [31] (where estimates in the – more difficult –

inhomogeneous situation are obtained), we have that Ũh,ℓ, U
κ(ℓ),3
n and

ηℓn
δℓn
Uκ(ℓ),h
n are bounded

in S2,1. It is not difficult to prove also (for instance using the estimates of Appendix A) that
they are bounded in S1,1.

Furthermore r̃ℓn goes to zero in I2,1 by [14] (actually the result of [14] only states the con-

vergence to zero in L∞(R+; Ḣ
1
2 ) ∩ L2(R+; Ḣ

3
2 ) but it is clear from the proof that it can be

extended all the way to I2,1). It then suffices to unscale to the original data to find the

form (3.3), with R̃ℓ
n going to zero in I2,1. We infer in particular by Proposition B.3 and

Sobolev embeddings that R̃ℓ
n goes to zero in L̃2(R+; Ḃ

2
3
, 1
3

3,1 )∩L1(R+; Ḃ
5
3
, 1
3

3,1 ∩ Ḃ
2
3
, 4
3

3,1 ) as required.

Finally let us prove that R̃ℓ
n is bounded in S3,1. We notice that due to the above bounds, the

function ũℓn solves (NS) and is bounded in L̃2(R+; Ḃ
2
3
, 1
3

3,1 ) since that holds for the right-hand

side of (3.3) by direct inspection. By Theorem 4 this implies that ũℓn is bounded in partic-

ular in L̃∞(R+; Ḃ
− 1

3
, 1
3

3,1 ), which proves the result for R̃ℓ
n again inspecting the formula (3.3)

giving ũℓn − R̃ℓ
n and recalling that ηℓn/δ

ℓ
n → 0 as n goes to infinity.



14 H. BAHOURI AND I. GALLAGHER

To conclude suppose that φ̃h,ℓ(·, z3) ≡ φκ(ℓ)(·, z3) ≡ 0 for some z3 ∈ R. Then by con-

struction of φℓα in (2.5) and that of Ũh,ℓ recalled above, the result follows for Ũh,ℓ(t, ·, z3).

For U
κ(ℓ)
n (t, ·, z3) we get the result from Proposition 3.2 of [15].

Lemma 3.5 is proved. �

• Now let us consider Λn
εℓ,γℓ,xℓ

(
−
εℓn
γℓn

(∇h∆
−1
h ∂3φ

ℓ
α)(x), φ

ℓ
α(x)

)
, when ℓ /∈ K(∞).

Lemma 3.6. Assume ℓ /∈ K(∞). Then there is L0, independent of n such that the following

result holds. For any ℓ and for n large enough, Λn
εℓ,γℓ,xℓ

(
−
εℓn
γℓn

(∇h∆
−1
h ∂3φ

ℓ
α)(x), φ

ℓ
α(x)

)

belongs to G. Moreover the associate solution uℓn to (NS) enjoys the following properties.

• For every ℓ ≥ L0, α ∈ (0, 1) and n ∈ N large enough,

(3.5) ‖uℓn‖S3,1 ≤ 2‖φℓα‖
Ḃ

− 1
3 , 13

3,1

≤ 2c0 .

• For every ℓ ∈ N, α ∈ (0, 1) and n large enough, the sequence uℓn is uniformly bounded in

the space L̃∞(R+; Ḃ
− 1

3
, 1
3

3,1 ) ∩ L1(R+; Ḃ
5
3
, 1
3

3,1 ∩ Ḃ
2
3
, 4
3

3,1 ) and satisfies

(3.6)
uℓn = Λ̃n

εℓ,γℓ,xℓ

(
εℓn
γℓn
U ℓ,h
n , U ℓ,3

n

)
+Rℓ

n where

Rℓ
n → 0 in L̃2(R+; Ḃ

2
3
, 1
3

3,1 ) ∩ L1(R+; Ḃ
5
3
, 1
3

3,1 ∩ Ḃ
2
3
, 4
3

3,1 ) , n→ ∞ ,

and all the properties stated in Lemma 3.5 hold.

Proof of Lemma 3.6. The proof follows the lines of the proof of Lemma 3.5, and is in fact
easier. One first uses the stability property (2.3) to obtain the existence of L0 such that for
all ℓ ≥ L0, for each α ∈ (0, 1) and for n large enough,

‖(∇h∆
−1
h ∂3φ

ℓ
α, φ

ℓ
α)‖

Ḃ
0, 12
2,1

≤ c0

and Theorem 4 applies. Then we notice again that by rescaling and translation it is enough

to consider the vector field Λn

1,γ
ℓ

εℓ
,0

(
−
εℓn
γℓn

(∇h∆
−1
h ∂3φ

ℓ
α)(x), φ

ℓ
α(x)

)
, and again [14] gives the

result (recalling that εℓn/γ
ℓ
n goes to zero by Proposition 2.4). Compared with the proof of

Lemma 3.5, in this case the profile U ℓ
n is simply a solution to the heat equation in R

3 with
viscosity (εℓn/γ

ℓ
n)

2 in the third direction (see [14] system (T ε
v ), with v ≡ 0 and ε = εℓn/γ

ℓ
n).

The lemma is proved. �

In the following we define, with the notation of Lemmas 3.5 and 3.6,

(3.7)

UL
n :=

∑

1≤ℓ≤L

ũℓn +
∑

1≤κ(ℓ)≤L
ℓ>L

ũℓn +

L∑

ℓ=1

uℓn , and

RL
n :=

∑

1≤ℓ≤L

R̃ℓ
n +

∑

1≤κ(ℓ)≤L
ℓ>L

R̃ℓ
n +

L∑

ℓ=1

Rℓ
n ,

and we recall that

(3.8) ∀L , lim
n→∞

‖RL
n‖

L̃2(R+;Ḃ
2
3 , 13
3,1 )∩L1(R+;Ḃ

5
3 , 13
3,1 ∩Ḃ

2
3 ,43
3,1 )

= 0 .
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• Finally we propagate all the remaining terms in (2.7) by the heat equation: we define

(3.9) VL
n := ρLn +ΨL

n

with

ΨL
n(t) := et∆

(
(ψ̃h,L

n −∇h∆
−1
h ∂3ψ

L
n , ψ

L
n )−

∑

ℓ>L
ℓ∈K(L)

Λn
εℓ,γℓ,xℓ

(
−
εℓn
γℓn

∇h∆
−1
h ∂3φ

ℓ, φℓ
)

−
∑

ℓ>L
1≤κ(ℓ)≤L

Λn
ηℓ,δℓ,x̃ℓ

(
φ̃h,ℓα , 0

))

and

ρLn(t) := et∆
( L∑

ℓ=1

Λn
ηℓ,δℓ,x̃ℓ(r̃

h,ℓ
α −

ηℓn
δℓn

∇h∆
−1
h ∂3r

κ(ℓ)
α , rκ(ℓ)α )

+

L∑

κ(ℓ)=1
κ(ℓ)∈K(∞)\K(L)

Λn
ηℓ,δℓ,x̃ℓ(r̃

h,ℓ
α −

ηℓn
δℓn

∇h∆
−1
h ∂3r

κ(ℓ)
α ), rκ(ℓ)α )

+

L∑

ℓ=1
ℓ/∈K(∞)

Λn
εℓ,γℓ,xℓ(−

εℓn
γℓn

∇h∆
−1
h ∂3r

ℓ
α, r

ℓ
α)−

∑

ℓ>L
1≤κ(ℓ)≤L

Λn
ηℓ,δℓ,x̃ℓ(r̃

h,ℓ
α , 0)

)

We notice that by (2.5)

(3.10)

∀L ∈ N , lim sup
n→∞

‖ρLn‖S3,1 ≤ C(L)α ,

and lim sup
n→∞

(
‖ΨL,h

n ‖S3,1+S̃3,1
+ ‖ΨL,3

n ‖S3,1

)
→ 0 , L→ ∞ uniformly inα ,

where S̃3,1 :=

∞⋂

r=1

2
r⋂

σ=0

L̃r(R+; Ḃ
2
3
+σ, 2

r
−σ− 2

3
3,1 ). The presence of that space is due to terms of

the type ∇h∆
−1
h ∂3φ

ℓ and those bounds are due to (2.1) as well as the stability property (2.3)

and the fact that εℓn/γ
ℓ
n → 0. In particular

(3.11) lim sup
n→∞

(
‖ΨL

n‖
L1(R+;Ḃ

5
3 , 13
3,1 ∩Ḃ

2
3 , 43
3,1 )∩L̃2(R+;Ḃ

2
3 , 13
3,1 )

)
→ 0 , L→ ∞ uniformly in α .

4. Global regularity for the profiles superposition

Now we need to superpose each of the solutions constructed in the previous section, and
check that the superposition is indeed a good approximate solution. This will prove Theo-
rem 2, and at the end of this section we shall show how the methods developed here give
easily Corollaries 1 and 2.

4.1. Statement of the superposition result and main steps of its proof. The main
result is the following, where we use the notation of the previous section.

Proposition 4.1. For n and L large enough, α small enough and up to an extraction, we
have

(4.1) un = u+ UL
n + VL

n + wL
n ,

where wL
n belongs to S3,1 with lim

α→0
(lim sup

n→∞
‖wL

n‖S3,1) → 0 as L→ ∞.
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Remark 4.2. The choice of the function space S3,1 in the statement of Proposition 4.1 is for
convenience, we have not tried to optimize on the integrability index here and other spaces
would certainly do as well.

Remark 4.3. This proposition proves Theorem 2. Indeed the sequence (un) belongs in

particular to the space L̃2(R+; Ḃ
2
3
, 1
3

3,1 ), since the results of the previous section show that this

is the case for all the terms in the right-hand side of (4.1). But we know from Theorem 4
that this norm controls the equation so the result follows.

Proof of Proposition 4.1. Let un be the solution of (NS) associated with the data u0,n, which
a priori has a finite life span T ∗

n , and define

wL
n := un −GL

n with GL
n := u+ FL

n and FL
n := UL

n + VL
n .

The vector field wL
n satisfies, for some pressure term pLn ,

∂tw
L
n + wL

n · ∇wL
n +GL

n · ∇wL
n + wL

n · ∇GL
n −∆wL

n = −ZL
n −∇pLn , div wL

n = 0

with initial data wL
n|t=0 = 0, and where, recalling the definitions of UL

n and VL
n in (3.7)

and (3.9) respectively,

ZL
n :=

∑

ℓ 6=k

uℓn · ∇ukn +
∑

ℓ 6=k

ũℓn(11≤ℓ≤L + 1 1≤κ(ℓ)≤L
ℓ>L

) · ∇ũkn(11≤k≤L + 1 1≤κ(k)≤L
ℓ>L

)

+
∑

ℓ 6=k

(
ũℓn(11≤ℓ≤L + 1 1≤κ(ℓ)≤L

ℓ>L
) · ∇ukn + uℓn · ∇ũkn(11≤k≤L + 1 1≤κ(k)≤L

ℓ>L
)
)

+ u · ∇FL
n + FL

n · ∇u+ UL
n · ∇VL

n + VL
n · ∇UL

n + VL
n · ∇VL

n .

The proposition follows from the two following lemmas.

Lemma 4.4. Define Y := L2(R+; Ḃ
2
3
, 1
3

3,1 ) ∩ L1(R+; Ḃ
5
3
, 1
3

3,1 ∩ Ḃ
2
3
, 4
3

3,1 ). With the notation of Lem-

mas 3.5 and 3.6, there is a constant K (depending on L0, L̃0 and bounds on u0, (un) and u)

such that one can decompose GL
n = GL,1

n +GL,2
n , with the following properties: for each L ∈ N

and each α ∈ (0, 1) there is N(L,α) such that

‖GL,1
n ‖Y ≤ K for n ≥ N(L,α) ,

while for all L ∈ N there is α0 > 0 such that

∀ 0 < α ≤ α0 , ‖GL,2
n ‖Y ≤ K uniformly in n .

Lemma 4.5. Define

X := L1(R+; Ḃ
− 1

3
, 1
3

3,1 ) + L̃2(R+; Ḃ
− 1

3
,− 2

3
3,1 ) ∩ L1(R+; Ḃ

2
3
,− 2

3
3,1 ) .

We can write ZL
n = ZL,1

n + ZL,2
n + ZL,3

n with

lim sup
L→∞

‖ZL,1
n ‖X = 0 uniformly in n, α ,(4.2)

∀L, lim sup
α→0

‖ZL,2
n ‖X = 0 uniformly in n ,(4.3)

and ∀L ,∀α , lim sup
n→∞

‖ZL,3
n ‖X = 0 .(4.4)

Assume indeed for the time being that those two lemmas are true. Then we start by choos-
ing L large enough so that uniformly in α and N one has

(4.5) ‖ZL,1
n ‖X ≤

c0
12

exp
(
− 2Kc−1

0

)
uniformly in n, α



WEAK STABILITY OF THE SET OF GLOBAL SOLUTIONS TO THE NAVIER-STOKES EQUATIONS 17

with the notation of Theorem 5 stated and proved in Appendix A, and Lemma 4.5. Then
now that L is fixed we choose α ∈ (0, α0) small enough so that

(4.6) ‖ZL,2
n ‖X ≤

c0
12

exp
(
− 2Kc−1

0

)
uniformly in n

and

‖GL,2
n ‖Y ≤ K uniformly in n ,

with the notation of Lemma 4.4. Finally now that L and α are fixed we take N0 ≥ N(L,α)
so that for all n ≥ N0,

(4.7) ‖ZL,3
n ‖X ≤

c0
12

exp
(
− 2Kc−1

0

)

and

‖GL,1
n ‖Y ≤ K .

It then suffices to apply Theorem 5 in Appendix A with U = GL
n , F = ZL

n and data u0 ≡ 0,
noticing that X = X3,1 and Y ⊂ Y3,1. The result follows immediately: we get that wL

n belongs

to S3,1, and the fact that lim
α→0

(lim sup
n→∞

‖wL
n‖S3,1) → 0 as L→ ∞ is due to the fact that one can

choose the bounds in (4.5)-(4.7) as small as one want, provided L and n are large enough,
and α is small enough. �

The two coming paragraphs are devoted to the proofs of Lemmas 4.4 and 4.5, thus achieving
the proof of Theorem 2. The final paragraph of this section contains the proofs of Corollaries 1
and 2.

4.2. Study of the drift term GL
n .

Proof of Lemma 4.4. Recall that GL
n = u+FL

n = u+UL
n +VL

n with the notation of Section 3,
so since we know that u belongs to S2,1, which embeds continuously in Y, and u depends
neither on L, on α nor on n, we need to study FL

n . According to Lemmas 3.5 and 3.6 and

recalling the notation (3.7), we can split FL
n = UL

n + VL
n into FL

n := FL,1
n + FL,2

n + VL
n , with

(4.8) FL,1
n :=

∑

1≤ℓ≤L

ηℓn/δℓn→0

ũℓn +
∑

1≤κ(ℓ)≤L
ℓ>L

ηℓn/δℓn→0

ũℓn +

L∑

ℓ=1

uℓn and FL,2
n :=

L∑

ℓ=1
ηℓn/δℓn→∞

ũℓn .

The result (3.2) deals with FL,2
n , since according to (3.2), ũℓn goes to zero in Y for each ℓ as n

goes to infinity. So that term is incorporated in the term GL,1
n .

Now let us consider FL,1
n . We can decompose the sum again into several pieces, writing with

the notation of Lemmas 3.5 and 3.6, for all L > max(L0, L̃0),

L∑

ℓ=1

uℓn =

L0∑

ℓ=1

uℓn +

L∑

ℓ=L0+1

uℓn ,

∑

1≤ℓ≤L

ηℓn/δℓn→0

ũℓn =
∑

1≤ℓ≤L̃0
ηℓn/δℓn→0

ũℓn +
∑

L̃0<ℓ≤L

1≤κ(ℓ)≤L̃0
ηℓn/δℓn→0

ũℓn +
∑

L̃0<ℓ≤L

L̃0<κ(ℓ)

ηℓn/δℓn→0

ũℓn ,

and
∑

1≤κ(ℓ)≤L
ℓ>L

ηℓn/δℓn→0

ũℓn =
∑

1≤κ(ℓ)≤L̃0
ℓ>L

ηℓn/δℓn→0

ũℓn +
∑

L̃0<κ(ℓ)≤L
ℓ>L

ηℓn/δℓn→0

ũℓn .
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In all three right-hand-sides, the easiest term to deal with is the last one: indeed we can write

∥∥∥
L∑

ℓ=L0+1

uℓn +
∑

L̃0<ℓ≤L

L̃0<κ(ℓ)

ηℓn/δℓn→0

ũℓn +
∑

L̃0<κ(ℓ)≤L
ℓ>L

ηℓn/δℓn→0

ũℓn

∥∥∥
Y
.

L∑

ℓ=L0+1

‖uℓn‖Y +
∑

L̃0<ℓ

L̃0<κ(ℓ)

‖ũℓn‖Y .

Then by (3.1) and (3.5) we infer that as soon as n is large enough (depending on the choice
of L and α)

∥∥∥
L∑

ℓ=L0+1

uℓn +
∑

L̃0<ℓ.L

L̃0<κ(ℓ)

ηℓn/δℓn→0

ũℓn +
∑

L̃0<κ(ℓ).L
ℓ>L

ηℓn/δℓn→0

ũℓn

∥∥∥
Y
≤
∑

L0<ℓ

‖φℓα‖
Ḃ

− 1
3 , 13

3,1

+
∑

L̃0<ℓ

‖φ̃h,ℓα ‖
Ḃ

− 1
3 , 13

3,1

and the conclusion comes from the embedding of B1
q into Ḃ

− 1
3
, 1
3

3,1 along with the stability

property (2.3): for n ≥ N(L,α)

∥∥∥
L∑

ℓ=L0+1

uℓn +
∑

L̃0<ℓ≤L

L̃0<κ(ℓ)

ηℓn/δℓn→0

ũℓn +
∑

L̃0<κ(ℓ)≤L
ℓ>L

ηℓn/δℓn→0

ũℓn

∥∥∥
Y
.
∑

L0<ℓ

‖φℓα‖B1
q
+
∑

L̃0<ℓ

‖φ̃h,ℓα ‖B1
q
≤ C .

So

L∑

ℓ=L0+1

uℓn +
∑

L̃0<ℓ≤L

L̃0<κ(ℓ)

ηℓn/δℓn→0

ũℓn +
∑

L̃0<κ(ℓ)≤L
ℓ>L

ηℓn/δℓn→0

ũℓn is of the type GL,1
n .

Now let us estimate

L0∑

ℓ=1

uℓn and
∑

1≤ℓ≤L̃0
ηℓn/δℓn→0

ũℓn . There is of course no uniformity problem

in L and we simply use the uniform bound in Y provided in Lemmas 3.5 and 3.6. The

terms
∑

L̃0+1≤ℓ≤L
1≤κ(ℓ)≤L0
ηℓn/δℓn→0

ũℓn and
∑

1≤κ(ℓ)≤L0
ℓ>L

ηℓn/δℓn→0

ũℓn are dealt with similarly and all those three terms are also

of the type GL,1
n . Choosing GL,2

n := VL
n and using (3.10) and (3.11) concludes the proof of

Lemma 4.4. �

Remark 4.6. This argument shows that UL
n is uniformly bounded in the space S3,1.

Remark 4.7. It is important to have chosen the initial data bounded in a space of the

type Ḃs,s′
p,q with p = 1 > q (hence in particular with p = 1 = q by embedding), as it enables us

to prove easily the uniform bound on FL,1
n . As seen for instance in [27], it is indeed possible

to prove such a bound when p = q and it is not clear how to prove it in the general case,
when p 6= q. Then it is very natural to pick q ≤ 1 as explained in the introduction in order to
have a good Cauchy theory for the Navier-Stokes equations in anisotropic spaces, and finally
the choice q < 1 implies by interpolation that the remainders are small precisely in a space
where the Cauchy theory for (NS) is satisfactory (namely q = 1).



WEAK STABILITY OF THE SET OF GLOBAL SOLUTIONS TO THE NAVIER-STOKES EQUATIONS 19

4.3. Study of the forcing term.

Proof of Lemma 4.5. We recall that

ZL
n :=

∑

ℓ 6=k

uℓn · ∇ukn +
∑

ℓ 6=k

ũℓn(11≤ℓ≤L + 1 1≤κ(ℓ)≤L
ℓ>L

) · ∇ũkn(11≤k≤L + 1 1≤κ(k)≤L
ℓ>L

)

+
∑

ℓ 6=k

(
ũℓn(11≤ℓ≤L + 1 1≤κ(ℓ)≤L

ℓ>L
) · ∇ukn + uℓn · ∇ũkn(11≤k≤L + 1 1≤κ(k)≤L

ℓ>L
)
)

+ u · ∇FL
n + FL

n · ∇u+ UL
n · ∇VL

n + VL
n · ∇UL

n + VL
n · ∇VL

n .

We define

HL,1
n :=

∑

ℓ 6=k

uℓn · ∇ukn +
∑

ℓ 6=k

ũℓn(11≤ℓ≤L + 1 1≤κ(ℓ)≤L
ℓ>L

) · ∇ũkn(11≤k≤L + 1 1≤κ(k)≤L
ℓ>L

)

+
∑

ℓ 6=k

(
ũℓn(11≤ℓ≤L + 1 1≤κ(ℓ)≤L

ℓ>L

) · ∇ukn + uℓn · ∇ũkn(11≤k≤L + 1 1≤κ(k)≤L
ℓ>L

)
)
,

HL,2
n := UL

n · ∇VL
n + VL

n · ∇UL
n + VL

n · ∇VL
n and HL,3

n := u · ∇FL
n + FL

n · ∇u .

Let start by discussing HL,1
n . We shall actually only deal with
∑

1≤ℓ 6=k≤L

ũℓn · ∇ũkn =
∑

1≤ℓ 6=k≤L

div
(
ũℓn ⊗ ũkn

)
,

as all the other terms in HL,1
n can be dealt with similarly. Referring to Lemma 3.5, we know

that this term can in turn be split into two parts, defining

HL,1,1
n :=

∑

1≤ℓ 6=k≤L

ηℓn/δℓn→∞

div
(
ũℓn ⊗ ũkn + ũkn ⊗ ũℓn

)
+

∑

1≤ℓ 6=k≤L

ηℓn/δℓn+ηkn/δkn→0

div
(
R̃ℓ

n ⊗ ũkn + ũkn ⊗ R̃ℓ
n

)
,

HL,1,2
n :=

∑

1≤ℓ 6=j≤L

ηℓn/δℓn+η
j
n/δ

j
n→0

div
(
Λ̃n
ηℓ,δℓ,x̃ℓ

(
Ũh,ℓ +

ηℓn
δℓn
Uκ(ℓ),h
n , Uκ(ℓ),3

n

)

⊗ Λ̃n
ηj ,δj ,x̃j

(
Ũh,j +

ηjn

δjn
Uκ(j),h
n , Uκ(j),3

n

))
.

The first term HL,1,1
n is dealt with using product laws in anisotropic Besov spaces (see Ap-

pendix B). On the one hand we have for any j ∈ {1, 2}, by (B.4),

(4.9)

‖∂j(fg)‖
L̃1(R+;Ḃ

− 1
3 ,13

3,1 )
. ‖fg‖

L̃1(R+;Ḃ
2
3 , 13
3,1 )

. ‖f‖
L̃2(R+;Ḃ

2
3 , 13
3,1 )

‖g‖
L̃2(R+;Ḃ

2
3 , 13
3,1 )

,

and on the other hand estimate (B.5) gives

(4.10)

‖∂3(fg)‖
L̃2(R+;Ḃ

− 1
3 ,− 2

3
3,1 )

. ‖fg‖
L̃2(R+;Ḃ

− 1
3 , 13

3,1 )

. ‖f‖
L̃∞(R+;Ḃ

− 1
3 , 13

3,1 )
‖g‖

L̃2(R+;Ḃ
2
3 , 13
3,1 )

.

and by (B.4) again

(4.11)

‖∂3(fg)‖
L̃1(R+;Ḃ

2
3 ,− 2

3
3,1 )

. ‖fg‖
L̃1(R+;Ḃ

2
3 , 13
3,1 )

. ‖f‖
L̃2(R+;Ḃ

2
3 , 13
3,1 )

‖g‖
L̃2(R+;Ḃ

2
3 , 13
3,1 )

.
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So using (3.2) along with the uniform bounds provided by Lemma 3.5 gives

(4.12) ∀L, lim
n→∞

∥∥∥
∑

1≤ℓ 6=k≤L

ηℓn/δℓn→∞

div
(
ũℓn ⊗ ũkn

)∥∥∥
X
= 0 .

The terms R̃ℓ
n ⊗ ũkn are dealt with in the same way using Lemma 3.5: we find that H̃L,1,1

n

satisfies the bound (4.2).

The same product laws (using the structure of the nonlinear term) enable us to deal withHL,2
n ,

recalling that
HL,2

n := UL
n · ∇VL

n + VL
n · ∇UL

n + VL
n · ∇VL

n

using (3.10)-(3.11) to estimate VL
n , and Remark 4.6 for UL

n . To control VL
n · ∇VL

n for in-

stance, we notice that the horizontal component does not belong a priori to L̃∞(R+; Ḃ
− 1

3
, 1
3

3,1 )

(see (3.10)) but that is not a problem as in (4.10), due to the structure of the nonlin-
ear term, one of the two functions is necessarily a third component, which does belong

to L̃∞(R+; Ḃ
− 1

3
, 1
3

3,1 ). We argue similarly for all the other terms.

Next let us consider the term HL,1,2
n and prove it satisfies the bounds (4.3)-(4.4). Let us

define a typical term

U j,ℓ
n := Λ̃n

ηℓ,δℓ,x̃ℓŨ
h,ℓ ⊗ Λ̃n

ηj ,δj ,x̃j Ũ
h,j ,

and first show that

(4.13) div U j,ℓ
n is bounded in L1(R+; Ḃ1,1

1,1)∩L̃
∞(R+; Ḃ−1,1

1,1 )+L1(R+; Ḃ2,0
1,1)∩L̃

∞(R+; Ḃ0,0
1,1) .

This follows from the fact that Ũh,ℓ belongs to L2(R+; Ḃ2,1
1,1)∩ L̃

∞(R+; Ḃ1,1
1,1) (see Lemma 3.5

for that result): we know indeed that Ḃ2,1
1,1 is an algebra and that the product of two functions

in Ḃ1,1
1,1 belongs to Ḃ0,1

1,1 (see Appendix B). Since L̃2(R+; Ḃ2,1
1,1) ∩ L̃

∞(R+; Ḃ1,1
1,1) is invariant

through the action of Λ̃n
ηℓ,δℓ,x̃ℓ (see Remark 3.4) the result (4.13) follows.

Now let us prove that U j,ℓ
n goes to zero in L1(R+; Ḃ2,1

1,1)∩L̃
∞(R+; Ḃ0,1

1,1), as in (4.3)-(4.4): divU j,ℓ
n

will then go to zero in L1(R+; Ḃ1,1
1,1) ∩ L̃

∞(R+; Ḃ−1,1
1,1 ) + L1(R+; Ḃ2,0

1,1) ∩ L̃
∞(R+; Ḃ0,0

1,1) which
is contained in X .

Let us start by the L1(R+; Ḃ2,1
1,1) norm. By the equivalent formulation in terms of the heat

flow (B.3), we know that τ−2τ ′−
3
2Kh(τ)Kv(τ

′)U j,ℓ
n (t, x) is uniformly bounded in L1 in all

variables. To prove the result, by Lebesgue’s dominated convergence theorem we shall there-

fore prove the pointwise convergence of τ−2τ ′−
3
2Kh(τ)Kv(τ

′)U j,ℓ
n (t, x) to zero for almost ev-

ery (τ, τ ′, t, x), as n goes to infinity.

We shall use the well-known bounds

(4.14)
‖Kh(τ)Kv(τ

′)f(t, x)‖L∞
t,x

≤ τ−1τ ′
− 1

2 ‖f(t, x)‖L∞
t L1

x
and

‖Kh(τ)Kv(τ
′)f(t, x)‖L∞

t,x
≤ ‖f(t, x)‖L∞

t,x
,

as well as their interpolates, in the horizontal and vertical space variables: for instance
denoting Lp

hL
r
v := Lp(R2;Lr(R)) we have also

‖Kh(τ)Kv(τ
′)f(t, x)‖L∞

t,x
≤ τ−1‖f(t, x)‖L∞

t L1
hL

∞
v
.

We first notice that

‖U j,ℓ
n ‖L∞

t L1
x
≤
∥∥Λ̃n

ηℓ,δℓ,x̃ℓŨ
h,ℓ
∥∥
L∞
t L2

hL
1
v

∥∥Λ̃n
ηj ,δj ,x̃j Ũ

h,j
∥∥
L∞
t L2

hL
∞
v

≤ Cδℓn
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so the a.e. pointwise convergence of τ−2τ ′−
3
2Kh(τ)Kv(τ

′)U j,ℓ
n (t, x) to zero follows, using (4.14),

if (by symmetry in ℓ and j) either δℓn or δjn go to zero. So from now on we assume that δℓn
and δjn go to infinity or 1. Next we write

‖U j,ℓ
n ‖L∞

t L1
hL

∞
v

≤ ‖Λ̃n
ηℓ,δℓ,x̃ℓŨ

h,ℓ‖L∞
t L1

hL
∞
v
‖Λ̃n

ηj ,δj ,x̃j Ũ
h,j‖L∞

t L∞
h L∞

v

≤ C
ηℓn

ηjn

so again from now on we may assume that ηℓn = ηjn, if not the result is proved (if one or the
other ratio goes to zero). But in that case

‖U j,ℓ
n ‖L∞

t L∞
x

≤ C
1

(ηℓn)
2

hence from now on we restrict our attention to the case when ηℓn = ηjn → 0 or 1. We notice
that by the change of variables

yh :=
xh − x̃ℓn,h

ηℓn
, y3 :=

x3 − x̃ℓn,3
δℓn

, σ := (ηℓn)
−2τ , σ′ := (δℓn)

−2τ ′ , s := (ηℓn)
−2t ,

we have after an easy computation∫
τ−2τ ′−

3
2

∣∣∣Kh(τ)Kv(τ
′)U j,ℓ

n (t, x)
∣∣∣dτdτ ′dxdt=

∫
σ−2σ′−

3
2

∣∣∣Kh(σ)Kv(σ
′)Ũ j,ℓ

n (s, y)
∣∣∣dσdσ′dsdy

where

Ũ j,ℓ
n (s, y) := Ũh,ℓ(s, y)⊗ Ũh,j

(
s, yh +

x̃ℓn,h − x̃jn,h

ηjn
,
δℓn

δjn
y3 +

x̃ℓn,3 − x̃jn,3

δjn

)
,

so if δℓn = δjn then the orthogonality assumption on the cores of concentration implies the

result, so we may assume for instance that δℓn/δ
j
n goes to infinity, and since neither goes to zero,

that in particular δℓn goes to infinity. The same argument lets us assume that (x̃ℓn,h − x̃jn,h)/η
j
n

is bounded.

Next we notice that the change of variables

yh :=
xh − x̃ℓn,h

ηℓn
, y3 :=

x3 − x̃ℓn,3

δjn
, σ := (ηℓn)

−2τ, σ′ := (δjn)
−2τ ′, s := (ηℓn)

−2t ,

gives∫
τ−2τ ′−

3
2

∣∣∣Kh(τ)Kv(τ
′)U j,ℓ

n (t, x)
∣∣∣dτdτ ′dxdt=

∫
σ−2σ′−

3
2

∣∣∣Kh(σ)Kv(σ
′)Ṽ j,ℓ

n (s, y)
∣∣∣dσdσ′dsdy

where

Ṽ j,ℓ
n (s, y) := Ũh,ℓ(s, yh,

δjn
δℓn
y3)⊗ Ũh,j

(
s, yh +

x̃ℓn,h − x̃jn,h

ηjn
, y3 +

x̃ℓn,3 − x̃jn,3

δjn

)
.

So if (x̃ℓn,3 − x̃jn,3)/δ
j
n is not bounded, then for each fixed y3 the limit of Ṽ j,ℓ

n (s, y) is zero hence

we may from now on assume that (x̃ℓn,3 − x̃jn,3)/δ
j
n is bounded, and similarly for x̃jn,3/δ

j
n

and x̃ℓn,3/δ
j
n by translation invariance. Notice that repeating the argument (2.9) we get

that x̃ℓn,3/δ
ℓ
n must go to zero. According to Assumption 2, we may therefore now assume that

ϕ̃h,ℓ(·, 0) ≡ 0 ,

which implies by Lemma 3.5, (3.4), that

(4.15)
∣∣∣Ũh,ℓ

(
t, yh,

δjn
δℓn
y3
)∣∣∣ ≤

(δjn
δℓn

|y3|+ α
)
f(t, yh)



22 H. BAHOURI AND I. GALLAGHER

where f(t, yh) is a smooth function in L∞(R+;L2 ∩ L∞(R2)). We obtain finally that

‖Ṽ j,ℓ
n (·, ·, y3)‖L∞

t L1
h
.
∣∣∣α+

δjn
δℓn

∣∣∣ .

The result in L1(R+; Ḃ2,1
1,1) follows.

The same argument gives actually also the result in L̃∞(R+; Ḃ0,1
1,1) since all convergences to

zero above are uniform in t.

All other terms ofHL,1,2
n are dealt with in a similar fashion henceHL,1

n satisfies the bounds (4.3)
and (4.4).

Recalling that HL,2
n was already dealt with, let us finally consider HL,3

n with

HL,3
n := u · ∇FL

n + FL
n · ∇u .

Using the decomposition (4.8) of FL
n and the same arguments as above give

∀L, lim sup
n→∞

(
u · ∇F̃L,1

n + F̃L,1
n · ∇u

)
= 0 in L1(R+; Ḃ1,1

1,1 + Ḃ2,0
1,1) ∩ L̃

∞(R+; Ḃ−1,1
1,1 + Ḃ0,0

1,1)

where

F̃L,1
n :=

∑

1≤ℓ≤L

ηℓn/δℓn→0

ũℓn +
L∑

ℓ=1

uℓn and FL,2
n :=

L∑

ℓ=1
ηℓn/δℓn→∞

ũℓn .

while the terms FL,1
n − F̃L,1

n and FL,2
n are dealt with using the product laws (4.9)-(4.11). We

leave the details to the reader. Lemma 4.5 is proved. �

4.4. Proof of Corollaries 1 and 2.

4.4.1. Proof of Corollary 1. If the solution u associated with u0 only has a finite life span T ∗,
then we can retrace the following steps, replacing everywhere R

+ by [0, T ] for T < T ∗ and it
is obvious that the result of Corollary 1 holds as soon as n is large enough (depending on T ).

4.4.2. Proof of Corollary 2. The proof of that corollary is very close to the proof of a similar
result in the isotropic context (see [24], Theorem 2(ii)). Under the assumptions of Corollary 2,
we can apply the previous results (in particular Corollary 1) to write that as long as the
solution u associated with u0 exists, it may be decomposed into

u = un − UL
n − VL

n − wL
n ,

and we know that for all T < T ∗, denoting by L2(T ) := L̃2([0, T ]; Ḃ
2
3
, 1
3

3,1 ),

(4.16) lim
α→0

(
lim sup
n→∞

‖wL
n‖L2(T )

)
→ 0 , L→ ∞ .

Moreover we also have, for n large enough, α small enough and all L (due to the assumption
on un and to Lemma 4.4),

‖u+ wL
n‖L2(T ) ≤ C ,

uniformly in L, α and n. Next recalling that if a solution blows up at time T ∗, then its norm
in L2(T ) blows up when T goes to T ∗ (see Appendix A), we can therefore choose T < T ∗

such that
‖u‖L2(T ) ≥ 2C .

We conclude by noticing that

‖u‖L2(T ) ≤ C + ‖wL
n‖L2(T )

so choosing n and L large enough and α small enough gives a contradiction due to (4.16),
whence the result.
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5. Profile decompositions in B1
q

5.1. Introduction and statement of the theorem. After the pioneering works of P. -L.
Lions [46] and [47], the lack of compactness in critical Sobolev embeddings was investigated
for different types of examples through several angles. For instance, in [29] the lack of

compactness in the critical Sobolev embedding Ḣs(Rd) →֒ Lp(Rd) in the case where d ≥ 3
with 0 ≤ s < d/2 and p = 2d/(d−2s) is described in terms of microlocal defect measures and
in [30], it is characterized by means of profiles. More generally for Sobolev spaces in the Lq

framework, this question is treated in [35] (see also the more recent work [39]) by the use of
nonlinear wavelet approximation theory. In [6], the authors look into the lack of compactness
of the critical embedding H1

rad(R
2) →֒ L , where L denotes the Orlicz space associated to

the function φ(s) = es
2
− 1. Other studies were conducted in various works (see among

others [7, 11, 22, 51, 52, 53]) supplying us with a large amount of information on solutions
of nonlinear partial differential equations, both in the elliptic or the evolution framework;
among other applications, one can mention [5, 24, 25, 27, 37, 38, 54]. Recently in [4], the
wavelet-based profile decomposition introduced by S. Jaffard in [35] was revisited in order to
treat a larger range of examples of critical embedding of function spaces X →֒ Y including
Sobolev, Besov, Triebel-Lizorkin, Lorentz, Hölder and BMO spaces. For that purpose, two
generic properties on the spaces X and Y were identified to build the profile decomposition
in a unified way. These properties concern wavelet decompositions in the spaces X and Y
supposed to have the same scaling, and endowed with an unconditional wavelet basis (ψλ)λ∈Λ.

The first property is related to the existence of a nonlinear projector QM satisfying

lim
M→+∞

max
‖f‖X≤1

‖f −QMf‖Y = 0 .

More precisely, if f may be decomposed in the following way (the notation will be made

precise below): f =
∑

λ∈∇

dλψλ, then QMf , sometimes called the best M -term approximation,

takes the general form

(5.1) QMf :=
∑

λ∈EM

dλψλ ,

where the sets EM = EM (f) of cardinality M depend on f and satisfy EM (f) ⊂ EM+1(f).
The existence of such a nonlinear projector was extensively studied in nonlinear approxima-
tion theory and for many cases, like Sobolev spaces, it turns out that the set EM = EM (f)
can be chosen as the subset of ∇ that corresponds to theM largest values of |dλ|. It is in fact

known (see [48] for instance) that in homogeneous Besov spaces Ḃσ
r,r, we have the following

norm equivalence :

(5.2) ‖f‖Ḃσ
r,r

∼ ‖(dλ)λ∈∇‖ℓr ,

for f =
∑

λ∈∇

dλψλ with wavelets normalized in Ḃσ
r,r. Therefore, in the particular case

where X = Ḃs
p,p and Y = Ḃt

q,q, with 1
p − 1

q = s−t
d , the nonlinear projector QM defined

by (5.1), where EM = EM (f) is the subset of ∇ of cardinality M that corresponds to the M
largest values of |dλ|, is appropriate and satisfies (see [4] for instance):

(5.3) sup
‖f‖Ḃs

p,p
≤1

‖f −QMf‖Ḃt
q,q

≤ CM− s−t
d .

The second property concerns the stability of wavelet expansions in the function space X
with respect to certain operations such as “shifting” the indices of wavelet coefficients, as
well as disturbing the value of these coefficients. In practice and for most cases of interest,



24 H. BAHOURI AND I. GALLAGHER

this property derives from the fact that the X norm of a function is equivalent to the norm
of its wavelet coefficients in a certain sequence space, by invoking Fatou’s lemma.

Under these assumptions, it is proved in [4] that, as in the previous works [29] and [35],
translation and scaling invariance are the sole responsible for the defect of compactness of
the embedding of X →֒ Y .

In what follows, we shall apply the same lines of reasoning, taking advantage of an anisotropic

wavelet setting to describe the lack of compactness of the Sobolev embedding B1
q →֒ Ḃ

−1+ 2
p
, 1
p

p,p

with p > max(1, q) in terms of an asymptotic anisotropic profile decomposition. We recall that

as defined in the introduction of this paper, B1
q := Ḃ1,1

1,q . Our presentation is essentially based

on ideas and methods developed for the isotropic setting in [4]. Because of the anisotropy,
we use a two-parameter wavelet basis. More precisely, wavelet decompositions of a function
have the form

(5.4) f =
∑

λ=(λ1,λ2)∈∇

dλψλ ,

where the wavelets ψλ are assumed to be normalized in the space X = B1
q , and where

the notation λ1 = (j1, k1) ∈ Z × Z
2 (resp. λ2 = (j2, k2) ∈ Z × Z) concatenates the scale

index j1 = j1(λ1) (resp. j2 = j2(λ2)) and the space index k1 = k1(λ1) (resp. k2 = k2(λ2)) for
the horizontal variable (resp. the vertical variable). Thus the index set ∇ in (5.4) is defined
as ∇ := (Z× Z

2)× (Z × Z) and the wavelets ψλ write under the form

ψλ = ψ(λ1,λ2) = 2j1ψ(2j1 · −k1, 2
j2 · −k2)

where ψ the so-called “mother wavelet” is generated by a finite dimensional inner product of
one variable functions ψe, for e ∈ E a finite set. It is known (see for instance [8]) that wavelet
bases are unconditional bases, i.e. there exists a constant D such that for any finite subset
E ⊂ ∇ and coefficients vectors (cλ)λ∈E and (dλ)λ∈E such that |cλ| ≤ |dλ| for all λ, one has

(5.5)
∥∥∑

λ∈E

cλψλ

∥∥
B1
q
≤ D

∥∥∑

λ∈E

dλψλ

∥∥
B1
q

and similarly for Ḃ
−1+ 2

p
, 1
p

p,p . In addition B1
q and Ḃ

−1+ 2
p
, 1
p

p,p may be characterized by simple prop-

erties on wavelet coefficients: for f =
∑

λ∈∇

dλψλ =
∑

(λ1,λ2)∈∇

d(λ1,λ2)ψ(λ1,λ2) with normalized

wavelets, we have the following norm equivalences:

(5.6) ‖f‖q
B1
q
∼
∑

j1∈Z

( ∑

|λ1|=j1

(∑

j2∈Z

( ∑

|λ2|=j2

|d(λ1,λ2)|
)q)1/q)q

and

(5.7) ‖f‖
Ḃ

−1+ 2
p

p,p (R2;Ḃ
1
p
p,p(R))

∼ ‖(dλ)λ∈∇‖ℓp .

Moreover as proved in [4, 41], there exists a nonlinear projector QM of the form (5.1) such
that

(5.8) lim
M→+∞

max
‖f‖

B1
q
≤1

‖f −QMf‖
Ḃ

−1+ 2
p , 1p

p,p

= 0 .

We refer to [1, 8, 10, 18, 19, 20, 21, 28, 33, 42, 55] and the references therein for more
details on the construction of wavelet bases and on the characterization of function spaces
by expansions in such bases.
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In the sequel, for any function φ, not necessarily a wavelet, and any scale-space index λ
defined by λ = (λ1, λ2) = ((j1, k1), (j2, k2)) ∈ ∇, we shall use the notation

φλ(x) := 2j1φ(2j1xh − k1, 2
j2x3 − k2),

and to avoid heaviness, we shall define for i ∈ {1, 2} and λ = (λ1, λ2) = ((j1, k1), (j2, k2)),
by ji = ji(λ) and ki = ki(λ).

We shall prove the following theorem, characterizing the lack of compactness in the critical

embedding B1
q →֒ Ḃ

−1+ 2
p
, 1
p

p,p , p > max(q, 1). The result actually holds for many such embed-
dings, but for the sake of readability we choose to only state and prove it in this particular
case.

Theorem 3. Let (un)n≥0 be a bounded sequence in B1
q . Then, up to a subsequence extraction,

there exists a family of functions (φℓ)ℓ≥0 in B1
q and sequences of scale-space indices (λℓ(n))n≥0

for each ℓ > 0 such that for all p > max(q, 1),

un =
L∑

ℓ=1

φℓλℓ(n)
+ ψL

n , where lim sup
n→∞

‖ψL
n‖

Ḃ
−1+ 2

p , 1p
p,p

→ 0 as L→ ∞ .

The decomposition is asymptotically orthogonal in the sense that for any k 6= ℓ, as n→ +∞,
either

(5.9) |j1(λk(n))− j1(λℓ(n))|+ |j2(λk(n))− j2(λℓ(n))| → +∞

or

|k1(λk(n))− 2j1(λk(n))−j1(λℓ(n))k1(λℓ(n))|+ |k2(λk(n))− 2j2(λk(n))−j2(λℓ(n))k2(λℓ(n))| → +∞ .

Moreover, we have the following stability estimates

(5.10)

∞∑

ℓ=1

‖φℓ‖B1
q
≤ C sup

n≥0
‖un‖B1

q
,

where C is a constant which only depends on the choice of the wavelet basis.

Remark 5.1. Up to rescaling the profiles, if (5.9) does not hold then one may assume
that ji(λℓ(n)) = ji(λk(n)) for i ∈ {1, 2}.

5.2. Proof of Theorem 3. Along the same lines as in [4], the anisotropic profile decompo-
sition construction proceeds in several steps.

5.2.1. Step 1: rearrangements. According to the notation (5.4), we first introduce the wavelet

decompositions of the sequence un, namely un =
∑

λ∈∇

dλ,nψλ. Then we use the nonlinear

projector QM to write for each M > 0

un = QMun +RMun , with lim
M→+∞

sup
n>0

‖RMun‖
Ḃ

−1+ 2
p , 1p

p,p

= 0 ,

in view of (5.8) and the boundedness of the sequence un in B1
q . Noting

QMun =

M∑

m=1

dm,nψλ(m,n) ,

it is obvious that the coefficients dm,n are uniformly bounded in n and m, so up to a diag-
onal subsequence extraction procedure in n, we can reduce to the case where for all m, the
sequence (dm,n)n>0 converges towards a finite limit that depends on m,

dm := lim
n→+∞

dm,n .
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We may thus write

un =

M∑

m=1

dmψλ(m,n) + tn,M , where tn,M :=

M∑

m=1

(dm,n − dm)ψλ(m,n) +RMun .

5.2.2. Step 2: construction of approximate profiles. The profiles φℓ will be built as limits of
sequences φℓ,i resulting by the following algorithm. At the first iteration i = 1, we define

φ1,1 = d1ψ , λ1(n) := λ(1, n) , ϕ1(n) := n .

Now, supposing that after iteration step i− 1, we have constructed L− 1 functions denoted
by (φ1,i−1, . . . , φL−1,i−1) and scale-space index sequences (λ1(n), . . . , λL−1(n)) with L ≤ i, as
well as an increasing sequence of positive integers ϕi−1(n) such that

i−1∑

m=1

dmψλ(m,ϕi−1(n)) =

L−1∑

ℓ=1

φℓ,i−1
λℓ(ϕi−1(n))

,

we shall use the i-th component diψλ(i,ϕi−1(n)) to either modify one of these functions or
construct a new one at iteration i according to the following dichotomy.

(i) First case: assume that we can extract ϕi(n) from ϕi−1(n) such that for ℓ = 1, . . . , L− 1
at least one of the following holds:

(5.11) lim
n→+∞

|j1(λ(i, ϕi(n)))− j1(λℓ(ϕi(n)))| + |j2(λ(i, ϕi(n)))− j2(λℓ(ϕi(n)))| = +∞ ,

or

(5.12)
lim

n→+∞

∣∣∣k1
(
λ(i, ϕi(n))

)
− 2j1(λ(i,ϕi(n)))−j1(λℓ(ϕi(n)))k1

(
λℓ(ϕi(n))

)∣∣∣

+
∣∣∣k1
(
λ(i, ϕi(n))

)
− 2j1(λ(i,ϕi(n)))−j1(λℓ(ϕi(n)))k1

(
λℓ(ϕi(n))

)∣∣∣ = +∞ .

In such a case, we create a new profile and scale-space index sequence by defining

φL,i := diψ , λL(n) := λ(i, n) , φℓ,i := φℓ,i−1 ∀ℓ ∈ {1, . . . , L− 1} .

(ii) Second case: assume that for some subsequence ϕi(n) of ϕi−1(n) and for some ℓ belonging
to {1, . . . , L−1} neither (5.11) nor (5.12) holds. Then it follows that for i in {1, 2}, the quan-

tities ji(λℓ(ϕi(n)))−ji(λ(i, ϕi(n))) and ki
(
λ(i, ϕi(n))

)
−2ji(λ(i,ϕi(n)))−ji(λℓ(ϕi(n)))ki

(
λℓ(ϕi(n))

)

only take a finite number of values as n varies. Therefore, up to an additional subsequence
extraction, we may assume that there exists numbers a1, a2, b1 and b2 such that for all n > 0
and for i ∈ {1, 2},

ji(λ(i, ϕi(n)))− ji(λℓ(ϕi(n))) = ai ,

and
ki(λ(i, ϕi(n)))− 2ji(λ(i,ϕi(n)))−ji(λℓ(ϕi(n)))ki(λℓ(ϕi(n))) = bi .

We then update the function φℓ,i−1 according to

φℓ,i := φℓ,i−1 + di2
a1ψ(2a1 · −b1, 2

a2 · −b2) , φℓ
′,i := φℓ

′,i−1 ∀ℓ′ ∈ {1, . . . , L− 1} , ℓ′ 6= ℓ.

Up to a diagonal subsequence extraction procedure in n, it derives from this construction
that for each value of M there exists L = L(M) ≤M such that

M∑

m=1

dmψλ(m,n) =
L∑

ℓ=1

φℓ,Mλℓ(n)

with for each ℓ = 1, . . . , L

φℓ,Mλℓ(n)
=

∑

m∈E(ℓ,M)

dmψλ(m,n) ,
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and where the sets E(ℓ,M) for ℓ = 1, . . . , L form a partition of {1, . . . ,M}. Moreover,
for i ∈ {1, 2} and for any m,m′ ∈ E(ℓ,M) we have

(5.13) ji(λ(m,n)) − ji(λ(m
′, n)) = ai(m,m

′) ,

and

(5.14) ki(λ(m,n))− 2ji(λ(m,n))−ji(λ(m′,n))ki(λ(m
′, n)) = bi(m,m

′) ,

where ai(m,m
′) and bi(m,m

′) do not depend on n.

5.2.3. Step 3: construction of the exact profiles. The profiles φℓ will be obtained as the limits
in B1

q of φℓ,M as M → +∞. To this end, we shall use (5.6) and the fact that the wavelet

basis (ψλ)λ∈∇ is an unconditional basis of B1
q . So let us define for fixed ℓ and M such

that ℓ ≤ L(M) the functions gℓ,M :=
∑

m∈E(ℓ,M)

dmψλ(m) and f ℓ,M,n :=
∑

m∈E(ℓ,M)

dm,nψλ(m),

with λ(m) := λ(m, 1). In view of (5.13), (5.14) and the scaling invariance of the space B1
q ,

we have

‖f ℓ,M,n‖B1
q
=
∥∥∥

∑

m∈E(ℓ,M)

dm,nψλ(m,n)

∥∥∥
B1
q

.

Since
∑

m∈E(ℓ,M)

dm,nψλ(m,n) is a part of the expansion of un, we deduce the existence of a

constant C which depends neither on n nor on ℓ and M such that

‖f ℓ,M,n‖B1
q
≤ C .

Now, according to the first step of the proof of the theorem, the coefficients dm are the limits
of dm,n when n tends to infinity. Therefore, (5.6) and Fatou’s lemma imply that

‖gℓ,M‖B1
q
≤ lim inf

n→+∞
‖f ℓ,M,n‖B1

q
,

which ensures the convergence in B1
q of the sequence gℓ,M towards a limit gℓ as M → +∞.

Finally, since by construction the gℓ,M are rescaled versions of the φℓ,M , there exists num-
bers A1 > 0, A2 > 0, B1 ∈ R

2 and B2 ∈ R such that

φℓ,M = 2A1gℓ,M (2A1 · −B1, 2
A2 · −B2) .

Therefore φℓ,M converges in B1
q towards φℓ := 2A1gℓ(2A1 · −B1, 2

A2 · −B2) as M → +∞.

To conclude the construction, we argue exactly as in the proof of Theorem 1.1 in [4].

Finally, let us prove that the decomposition derived in Theorem 3 is stable. The argument
is again similar to the one followed in [4], we reproduce it here for the convenience of the
reader. We shall use the following property: if E1, . . . , EL are disjoint finite sets in ∇, then
for any coefficient sequence (dλ), one has

(5.15)
L∑

ℓ=1

‖
∑

λ∈Eℓ

dλψλ‖B1
q
≤ C‖

L∑

ℓ=1

∑

λ∈Eℓ

dλψλ‖B1
q
.

Such an estimate was proved in [4] for Besov spaces Ḃs
p,a(R

d) and generalizes easily to our
framework. Let us then consider for ℓ = 1, . . . , L the functions

φℓ,M,n :=
∑

m∈E(ℓ,M)

dm,nψλ(m,n) ,
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where E(ℓ,M) are the sets introduced in the second step of the proof of the decompo-
sition. These functions are linear combinations of wavelets with indices in disjoint finite
sets E1, . . . , EL (that vary with n), which implies by (5.15) that

L∑

ℓ=1

‖φℓ,M,n‖B1
q
≤ C

∥∥∥
L∑

ℓ=1

φℓ,M,n
∥∥∥
B1
q

.

Since the functions φℓ,M,n are part of the wavelet expansion of un, we deduce that

L∑

ℓ=1

‖φℓ,M,n‖B1
q
≤ C sup

n≥0
‖un‖B1

q
.

Now, by construction the sequence (φℓ,M,n)n>0 converges in B1
q towards the approximate

profiles φℓ,Mλℓ(n)
=

∑

m∈E(ℓ,M)

dmψλ(m,n) as n→ ∞. It follows that for any ε > 0 we have

L∑

ℓ=1

‖φℓ,Mλℓ(n)
‖B1

q
≤ C sup

n≥0
‖un‖B1

q
+ ε ,

for n large enough. Thanks to the scaling invariance, we thus find that

L∑

ℓ=1

‖φℓ,M‖B1
q
≤ C sup

n≥0
‖un‖B1

q
.

Letting M go to +∞, we obtain the same inequality for the exact profiles and we conclude
by letting L→ +∞. The theorem is proved. �

5.3. Some additional properties. The following result is very useful.

Lemma 5.2. Let (un)n∈N be a bounded sequence in B1
q , which does not converge strongly to

zero in B1
q and which may be decomposed with the notation of Theorem 3 into

(5.16) un =
L∑

ℓ=1

φℓλℓ(n)
+ ψL

n .

Let p ≥ 2 be given. For any ℓ ∈ {1, ..., L}, there are three constants C > 0 and (a1ℓ , a
2
ℓ ) ∈ Z

2

such that

(5.17) lim sup
n→∞

2
j1(λℓ(n))(−1+ 2

p
)+

j2(λℓ(n))

p

∥∥∥∆h
j1(λℓ(n))+a1ℓ

∆v
j2(λℓ(n))+a2ℓ

un

∥∥∥
Lp(R3)

= C .

Proof of Lemma 5.2. We start by noticing that the existence of C < ∞ satisfying (5.17) is
obvious, the only difficulty is to prove that C > 0.

• Let us first estimate one individual contribution, meaning let us show that there is Cℓ,p > 0
and (a1ℓ , a

2
ℓ ) ∈ Z

2 such that

(5.18) lim sup
n→∞

2
j1(λℓ(n))(−1+ 2

p
)+

j2(λℓ(n))

p

∥∥∥∆h
j1(λℓ(n))+a1ℓ

∆v
j2(λℓ(n))+a2ℓ

φℓλℓ(n)

∥∥∥
Lp(R3)

= Cℓ,p .

By definition ∆h
j1+a1

u = 22(j1+a1)Ψ(2j1+a1 ·)∗hu and ∆v
j2+a2

u = 2j2+a2Ψ(2j2+a2 ·)∗vu, where Ψ

is the frequency localization function introduced in Appendix B and ∗h (resp. ∗v) denotes
the convolution operator in the horizontal (resp. vertical) variable. Writing

φℓλℓ(n)
= 2j1(λℓ(n))φℓ

(
2j1(λℓ(n))(· h − xℓn,h), 2

j2(λℓ(n))(· 3 − xℓn,3)
)
,
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we easily prove that

∆h
j1(λℓ(n))+a1ℓ

∆v
j2(λℓ(n))+a2ℓ

φℓλℓ(n)
= 2j1(λℓ(n))(Ψ̃ℓ ∗ φℓ)

(
2j1(λℓ(n))(· h − xℓn,h), 2

j2(λℓ(n))(· 3 − xℓn,3)
)

where Ψ̃ℓ(x) := 22a
1
ℓ+a2ℓΨ(2a

1
ℓxh)Ψ(2a

2
ℓx3), which ensures that

(5.19) lim sup
n→∞

2j1(λℓ(n))(−1+ 2
p
)+

j2(λℓ(n))

p

∥∥∥∆h
j1(λℓ(n))

∆v
j2(λℓ(n))

un

∥∥∥
Lp(R3)

= ‖Ψ̃ℓ ∗ φℓ‖Lp(R3) 6= 0 ,

as soon as (a1ℓ , a
2
ℓ ) are conveniently chosen so that the supports of

̂̃
Ψℓ and φ̂ℓ are not disjoint.

• Next let us prove that for ℓ′ 6= ℓ

2j1(λℓ(n))(−1+ 2
p
)+

j2(λℓ(n))

p

∥∥∥∆h
j1(λℓ(n))+a1ℓ

∆v
j2(λℓ(n))+a2ℓ

φℓ
′

λℓ′ (n)

∥∥∥
Lp(R3)

→ 0 as n→ ∞ ,

when the scales j(λℓ(n)) and j(λℓ′(n)) are orthogonal, meaning 2ji(λℓ(n))−ji(λℓ′ (n)) → 0 or ∞
as n→ ∞, for i equal either to 1 or 2. Noticing that

∆h
k∆

v
j

(
φ(2k

′
xh, 2

j′x3)
)
= (∆h

k−k′∆
v
j−j′φ)(2

k′xh, 2
j′x3)

we deduce that

2j1(λℓ(n))(−1+ 2
p
)+

j2(λℓ(n))

p

∥∥∥∆h
j1(λℓ(n))+a1ℓ

∆v
j2(λℓ(n))+a2ℓ

φℓ
′

λℓ′ (n)

∥∥∥
Lp(R3)

= 2j
ℓ,ℓ′

1 (n)(−1+ 2
p
)+

j
ℓ,ℓ′

2
(n)

p

∥∥∥∆h

jℓ,ℓ
′

1 (n)+a1ℓ
∆v

jℓ,ℓ
′

2 (n)+a2ℓ
φℓ

′
∥∥∥
Lp(R3)

where

jℓ,ℓ
′

1 (n) := j1(λℓ(n))− j1(λℓ′(n)) and jℓ,ℓ
′

2 (n) := j2(λℓ(n))− j2(λℓ′(n)) .

Since φℓ
′
∈ Ḃ

−1+ 2
p
, 1
p

p,q , we deduce that

(5.20) 2j1(λℓ(n))(−1+ 2
p
)+

j2(λℓ(n))

p

∥∥∥∆h
j1(λℓ(n))+a1ℓ

∆v
j2(λℓ(n))+a2ℓ

φℓ
′

λℓ′ (n)

∥∥∥
Lp(R3)

→ 0, as n→ ∞ .

• Finally, let us regroup in (5.16) all the profiles corresponding to the same scales: namely
let us write, for a given ℓ ∈ N

un − ψL
n = uℓn,1 + uℓn,2 ,

where (up to conveniently re-ordering the profiles φℓ1λℓ1
(n), . . . , φ

ℓL
λℓL

(n)),

uℓn,1 :=

Lℓ∑

k=1

φℓkλℓk
(n) with ji(λℓk(n)) = ji(λℓ(n)) , ∀i ∈ {1, 2} ,

and on the other hand, writing to simplify ji(λℓ(n)) =: ji(n),

uℓn,2 :=

L∑

k=Lℓ+1

φℓkλℓk
(n) ,

with scales ji(λℓk(n)) orthogonal to the scale ji(n) for every k ∈ {Lℓ + 1, . . . , L}. The

result (5.20) enables us to take care of the term uℓn,2 which satisfies

2
j1(λℓ(n))(−1+ 2

p
)+

j2(λℓ(n))

p

∥∥∥∆h
j1(λℓ(n))+a1ℓ

∆v
j2(λℓ(n))+a2ℓ

uℓn,2

∥∥∥
Lp(R3)

→ 0, as n→ ∞ ,

so let us prove that

lim sup
n→∞

2j1(n)(−1+ 2
p
)+

j2(n)
p

∥∥∥∆h
j1(n)+a1ℓ

∆v
j2(n)+a2ℓ

uℓn,1

∥∥∥
Lp(R3)

= C > 0 .
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By Hölder’s inequality if 2 ≤ p ≤ ∞, we have

(5.21)

2
j2(n)

2

∥∥∥∆h
j1(n)

∆v
j2(n)

uℓn,1

∥∥∥
L2(R3)

≤

(
2j1(n)+j2(n)

∥∥∥∆h
j1(n)

∆v
j2(n)

uℓn,1

∥∥∥
L1(R3)

) p−2
2(p−1)

×

(
2j1(n)(−1+ 2

p
)+

j2(n)
p

∥∥∥∆h
j1(n)

∆v
j2(n)

uℓn,1

∥∥∥
Lp(R3)

) p
2(p−1)

and since both terms on the right-hand side are bounded, the result will follow if we prove
that

lim sup
n→∞

2
j2(n)

2

∥∥∥∆h
j1(n)+a1ℓ

∆v
j2(n)+a2ℓ

uℓn,1

∥∥∥
L2(R3)

= C > 0.

But this is a simple orthogonality argument, noticing that

(5.22)

∥∥∥∆h
j1(n)+a1ℓ

∆v
j2(n)+a2ℓ

un,1

∥∥∥
2

L2(R3)
=

Lℓ∑

k=1

‖∆h
j1(n)+a1ℓ

∆v
j2(n)+a2ℓ

φℓkλℓk
(n)‖

2
L2(R3)

+
∑

k 6=k′

(∆h
j1(n)+a1ℓ

∆v
j2(n)+a2ℓ

φℓkλℓk
(n)|∆

h
j1(n)+a1ℓ

∆v
j2(n)+a2ℓ

φ
ℓk′
λℓ

k′
(n))L2(R3) .

Indeed we know from (5.18) that

2
j2(n)

2

(
Lℓ∑

k=1

‖∆h
j1(n)+a1ℓ

∆v
j2(n)+a2ℓ

φℓkλℓk
(n)‖

2
L2(R3)

) 1
2

≥ 2
j2(n)

2 ‖∆h
j1(n)+a1ℓ

∆v
j2(n)+a2ℓ

φℓλℓ(n)
‖L2(R3)

≥ Cℓ,2 > 0(5.23)

so it is enough to prove that

(5.24) 2j2(n)
∑

k 6=k′

(∆h
j1(n)+a1ℓ

∆v
j2(n)+a2ℓ

φℓk
λℓk

(n)
|∆h

j1(n)+a1ℓ
∆v

j2(n)+a2ℓ
φ
ℓk′
λℓk′

(n)
)L2(R3) → 0 .

This is a finite sum so it suffices to prove the result for each individual term, which writes
after a change of variables

∫

R
3
(∆h

a1ℓ
∆v

a2ℓ
φℓk)(x) × (∆h

a1ℓ
∆v

a2ℓ
φℓk′ )(x+ 2j2(n)(xℓkn,h − x

ℓk′
n,h)) dx

which goes to zero when n goes to infinity, due to the orthogonality of the cores of concen-
tration (see Theorem 3), so (5.24) holds.

• Finally we need to take the remainder into account. But a reverse triangle inequality gives

trivially the result, since the remainder ψL
n may be made arbitrarily small in Ḃ

−1+ 2
p
, 1
p

p,∞ as soon
as L is large enough, uniformly in n, whereas (5.22)-(5.23) guarantee that making L larger
does not decrease the norm of the sum of the profiles.

The lemma is proved. �

Lemma 5.3. Let us consider a sequence (vn)n∈N, bounded in B1
q , which may be decomposed

with the notation of Theorem 3 into

vn =
L∑

ℓ=1

φℓλℓ(n)
+ ψL

n .

Assume moreover that lim
n→∞

2−j1(λℓ(n))+j2(λℓ(n)) ∈ {0,∞}. If (∂3vn)n∈N is bounded in Ḃ0,1
1,q ,

then

lim
n→∞

2−j1(λℓ(n))+j2(λℓ(n)) = 0 .
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Proof of Lemma 5.3. By definition of Ḃ0,1
1,q , we have

‖∂3vn‖Ḃ0,1
1,q

=
( ∑

j,k∈Z

2jq‖∆h
k∆

v
j∂3vn‖

q

L1(R3)

)1/q
<∞ uniformly in n .

In particular, for any ℓ ∈ {1, ..., L}, we have

(5.25) 2j2(λℓ(n))
∥∥∥∆h

j1(λℓ(n))
∆v

j2(λℓ(n))
∂3vn

∥∥∥
L1(R3)

<∞ uniformly in n .

Now reasoning as in the proof of Lemma 5.2 and taking into account that ∂3vn is also bounded
in Ḃ1,0

1,q , we find that there are two integers a1ℓ and a2ℓ such that

lim sup
n→∞

2j1(λℓ(n))
∥∥∥∆h

j1(λℓ(n))+a1ℓ
∆v

j2(λℓ(n))+a2ℓ
∂3φ

ℓ
λℓ(n)

∥∥∥
L1(R3)

= C > 0 ,

and for any ℓ′ 6= ℓ

2j1(λℓ(n))
∥∥∥∆h

j1(λℓ(n))+a1ℓ
∆v

j2(λℓ(n))+a2ℓ
∂3φ

ℓ′

λℓ′ (n)

∥∥∥
L1(R3)

→ 0 as n→ ∞ .

Finally, we argue as in the proof of Lemma 5.2 and write

vn = vn,1 + vn,2 + ψL
n ,

where vn,1 contains all the profiles with scale ji(λℓ(n)), meaning (up to re-ordering the pro-
files)

vn,1 :=

Lℓ∑

k=1

φℓkλℓk
(n) ,

with φℓkλℓk
(n) = 2j1(λℓ(n))φℓk

(
2j1(λℓ(n))(xh − xℓkn,h), 2

j2(λℓ(n))(x3 − xℓkn,3)
)

and where, denot-

ing ji(n) := ji(λℓ(n)),

vn,2 :=

L∑

k=Lℓ+1

φℓkλℓk
(n) ,

with scales j(λℓk(n)) orthogonal to the scale ji(n) for any k ∈ {L1 + 1, . . . , L}. Using the
same argument as in the proof of Lemma 5.2, we easily prove that for any ℓ ∈ {1, . . . , L}

2j2(λℓ(n))
∥∥∥∆h

j1(λℓ(n))+a1ℓ
∆v

j2(λℓ(n))+a2ℓ
∂3vn

∥∥∥
L1(R3)

∼ 2−j1(λℓ(n))+j2(λℓ(n)) C, as n→ ∞ ,

with C > 0, which concludes the proof of the lemma due to (5.25). �

Lemma 5.4. Let us consider (vhn = (v1n, v
2
n))n∈N a bounded sequence of vector fields in B1

q

and let us suppose, with the notation of Theorem 3, that

vhn =
L∑

ℓ=1

φ̃ℓ,hλℓ(n)
+ ψL,h

n .

If divh v
h
n = 0, then for any ℓ ∈ {1, ..., L} we have divh φ̃

ℓ,h
λℓ(n)

= 0.

Proof of Lemma 5.4. We use the notation of the proof of Lemma 5.2. Taking advantage of
the fact that the operator divh is continuous from B1

q into Ḃ0,1
1,q , we get, along the same lines

as (5.19) in the proof of Lemma 5.2 and recalling that Ḃ0,1
1,q embeds in Ḃ

2
p
−2, 1

p
p,q ,

lim sup
n→∞

2j1(λℓ(n))(
2
p
−2)2

j2(λℓ(n))

p

∥∥∥∆h
j1(λℓ(n))+a1ℓ

∆v
j2(λℓ(n))+a2ℓ

divh φ̃
ℓ,h
λℓ(n)

∥∥∥
Lp

= ‖Ψ̃ℓ ∗ divh φ̃
ℓ,h
λℓ(n)

‖Lp
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and for any ℓ′ 6= ℓ, as in (5.20),

2j2(λℓ(n))
∥∥∥∆h

j1(λℓ(n))+a1ℓ
∆v

j2(λℓ(n))+a2ℓ
divh φ̃

ℓ′

λℓ′(n)

∥∥∥
L1(R3)

→ 0 as n→ ∞ .

Moreover as in (5.24),

2−2j1(λℓ(n))2j2(λℓ(n))
∑

k 6=k′

(∆h
j1(n)+a1ℓ

∆v
j2(n)+a2ℓ

φℓkλℓk
(n)|∆

h
j1(λℓ(n))+a1ℓ

∆v
j2(λℓ(n))+a2ℓ

φ
ℓk′
λℓ

k′
(n))L2 → 0 .

Then we follow the method giving Lemma 5.2 which yields

0 = 2−2j1(λℓ(n))2j2(λℓ(n))
∥∥∥∆h

j1(λℓ(n))+a1ℓ
∆v

j2(λℓ(n))+a2ℓ
divh v

h
n

∥∥∥
2

L2(R3)

≥ 2−2j1(λℓ(n))2j2(λℓ(n))
Lℓ∑

k=1

‖∆h
j1(λℓ(n))+a1ℓ

∆v
j2(λℓ(n))+a2ℓ

divh φ̃
ℓ,h
λℓ(n)

‖2
L2(R3)

+ o(1), n→ ∞

≥ ‖Ψ̃ℓ ∗ divh φ̃
ℓ,h
λℓ(n)

‖2L2 + o(1), n→ ∞

so finally Ψ̃ℓ ∗ divh φ̃
ℓ,h
λℓ(n)

≡ 0 for all couples (a1ℓ , a
2
ℓ ), hence divh φ̃

ℓ,h
λℓ(n)

≡ 0. �

Appendix A. The (perturbed) Navier-Stokes equation in Ḃ
−1+ 2

p
, 1
p

p,1

A.1. Statement of the results. In this appendix it proved that (NS) is globally wellposed

for small data in Ḃ
−1+ 2

p
, 1
p

p,1 , using anisotropic techniques (note that in [34] such a study was

undertaken in the framework of Sobolev spaces). We also study a perturbed Navier-Stokes
equation in such spaces.

We use the following notation:

Sp,q := L̃∞(R+; Ḃ
−1+ 2

p
, 1
p

p,q ) ∩ L̃1(R+; Ḃ
1+ 2

p
, 1
p

p,q ∩ Ḃ
−1+ 2

p
,2+ 1

p
p,q ) ,

Sp,q(T ) := L̃∞
loc([0, T [; Ḃ

−1+ 2
p
, 1
p

p,q ) ∩ L̃1
loc([0, T [; Ḃ

1+ 2
p
, 1
p

p,q ∩ Ḃ
−1+ 2

p
,2+ 1

p
p,q ) ,

Xp,q := L̃1(R+; Ḃ
−1+ 2

p
, 1
p

p,q ) + L̃2(R+; Ḃ
−1+ 2

p
,−1+ 1

p
p,q ) ∩ L̃1(R+; Ḃ

2
p
,−1+ 1

p
p,q ) ,

Yp,q := L2(R+; Ḃ
2
p
, 1
p

p,q ) ∩ L1(R+; Ḃ
2
p
,1+ 1

p
p,q ∩ Ḃ

1+ 2
p
, 1
p

p,q ) .

Theorem 4. Let 1 ≤ p < ∞ be given. There is a constant c0 such that the following result

holds. Let u0 ∈ Ḃ
−1+ 2

p
, 1
p

p,1 verifying the smallness condition ‖u0‖
Ḃ

−1+ 2
p , 1p

p,1

≤ c0. Then, there

exists a unique, global solution u to (NS) in Yp,1, and it satisfies

‖u‖Yp,1 ≤ 2‖u0‖
Ḃ

−1+ 2
p , 1p

p,1

.

If the initial data belongs to Ḃ
−1+ 2

p
, 1
p

p,1 with no smallness condition, then there is a maximal

time of existence T ∗ > 0 such that there is a unique solution in Yp,1(T
∗) and if T ∗ <∞ then

(A.1) lim
T→T ∗

‖u‖
L̃2([0,T ];Ḃ

2
p , 1p
p,1 )

= ∞ .

If the initial data belongs moreover to Ḃ
−1+ 2

p
, 1
p

p,q with q < 1 then the solution belongs to the
space Yp,q(T

∗), on the same life span.

Finally if p < 4 then the spaces Yp,q can be replaced by Sp,q everywhere.
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The next result deals with a perturbed Navier-Stokes system:

(NSP)





∂tu+ u · ∇u+ U · ∇u+ u · ∇U −∆u = −∇p+ F in R
+ × R

3

div u = 0

u|t=0 = u0 .

Theorem 5. Let 1 ≤ p < 4 be given. There is a constant c0 such that the following result

holds. Consider three divergence free vector fields u0 ∈ Ḃ
−1+ 2

p
, 1
p

p,1 , F ∈ Xp,1 and U ∈ Yp,1. If

‖u0‖
Ḃ

−1+ 2
p , 1p

p,1

+ ‖F‖Xp,1 ≤ c0 exp
(
− c−1

0 ‖U‖Yp,1

)
,

then there is a unique, global solution to (NSP), in the space

L̃2(R+; Ḃ
2
p
, 1
p

p,1 ∩ Ḃ
−1+ 2

p
,1+ 1

p

p,1 ) ∩ L1(R+; Ḃ
1+ 2

p
, 1
p

p,1 ∩ Ḃ
2
p
,1+ 1

p

p,1 ) .

Remark A.1. The restriction p < 4 is certainly technical, but Theorems 4 and 5 are applied
in this text in the case p = 3 only so we have chosen not to try to lift this restriction here.

A.2. Proof of Theorem 4. We shall proceed in several steps:

(1) If u0 belongs to Ḃ
−1+ 2

p
, 1
p

p,1 , we prove that a fixed point may be performed in the Banach

space L̃2(R+; Ḃ
2
p
, 1
p

p,1 ), which implies the existence and uniqueness of a solution in that
space for small data.

(2) We then prove that the solution constructed in the previous step actually belongs
to Yp,1, and to Sp,1 if p < 4.

(3) We deduce from the estimates leading to the above steps the result for large data.

(4) We finally prove the propagation of regularity in Sp,q for q < 1.

(1) Let us start by applying a fixed point theorem in the Banach space L̃2(R+; Ḃ
2
p
, 1
p

p,1 ), to (NS)
written in integral form:

u(t) = et∆u0 −

∫ t

0
e(t−t′)∆

Pdiv (u⊗ u)(t′) dt′ ,

recalling that P := I−∇∆−1div is the Leray projector onto divergence free vector fields. We
first notice that (see Proposition B.2)

‖et∆∆h
k∆

v
ju0‖Lp . e−ct(22k+22j )‖∆h

k∆
v
ju0‖Lp ,

so one sees immediately that for any 1 ≤ r ≤ ∞ and for any 0 ≤ σ ≤ 2/r,

(A.2) ‖et∆u0‖
L̃r(R+;Ḃ

−1+ 2
p+σ,2r−σ+1

p
p,1 )

. ‖u0‖
Ḃ

−1+ 2
p , 1p

p,1

.

Now let us turn to the non linear term. Defining

B(u, u)(t) := −

∫ t

0
e(t−t′)∆

Pdiv (u⊗ u)(t′) dt′ ,

we have

2
2k
p
+ j

p ‖∆h
k∆

v
jB(u, u)(t)‖Lp .

∫ t

0
e−c(t−t′)(22k+22j)(2k + 2j)2

2k
p
+ j

p ‖∆h
k∆

v
j (u⊗ u)(t′)‖Lp dt′ .

The space Ḃ
2
p
, 1
p

p,1 is an algebra according to (B.4) so we have

(A.3) ‖u⊗ u‖
L1(R+;Ḃ

2
p , 1p
p,1 )

. ‖u‖2

L̃2(R+;Ḃ
2
p , 1p
p,1 )

.
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It follows that

(A.4) 2
2k
p
+ j

p ‖∆h
k∆

v
jB(u, u)(t)‖Lp . ‖u‖2

L̃2(R+;Ḃ
2
p , 1p
p,1 )

∫ t

0
e−c(t−t′)(22k+22j)(2k + 2j)cjk(t

′) dt′ ,

where cjk(t
′) belongs to ℓ1jk(L

1
t′) and Young’s inequality in time gives

(A.5) ‖B(u, u)‖
L̃2(R+;Ḃ

2
p , 1p
p,1 )

. ‖u‖2

L̃2(R+;Ḃ
2
p , 1p
p,1 )

.

The small data result follows classically from (A.2) and (A.5) by a fixed point in L̃2(R+; Ḃ
2
p
, 1
p

p,1 ).

(2) Now let us prove that the solution actually belongs to Yp,1. We first notice that the above

computations actually imply that the solution u belongs to L1(R+; Ḃ
1+ 2

p
, 1
p

p,1 ∩Ḃ
2
p
,1+ 1

p

p,1 ). Indeed

that holds for the term et∆u0 due to (A.2) so we just need to concentrate on the bilinear
term. We return to estimate (A.4) and consider any real number r ∈ [1,∞]. Using (A.3), we
can write for any σ ∈ R

Ijk(t) := 2k(−1+ 2
p
+σ)2j(

2
r
−σ+ 1

p
)‖∆h

k∆
v
jB(u, u)‖Lp

. ‖u‖2

L̃2(R+;Ḃ
2
p , 1p
p,1 )

∫ t

0
e−c(t−t′)(22k+22j)(2k + 2j)2k(−1+ 2

p
+σ− 2

p
)2j(

2
r
−σ+ 1

p
− 1

p
)cjk(t

′) dt′ ,

where again cjk(t
′) belongs to ℓ1jk(L

1
t′). We want to prove that Ijk(t) belongs to ℓ

1
jk(L

r
t′). We

apply a Young inequality in the time variable, which produces

(A.6) ‖Ijk‖Lr . ‖u‖2

L̃2(R+;Ḃ
2
p , 1p
p,1 )

(22k + 22j)−
1
r (2k + 2j)2k(−1+ 2

p
+σ− 2

p
)2j(

2
r
−σ+ 1

p
− 1

p
)djk ,

with djk ∈ ℓ1jk. An easy computation shows that the sequence bounding ‖Ijk‖Lr is bounded

in ℓ1jk as soon as one has 1 ≤ σ ≤ 2/r. This implies in particular that u belongs to the

space L1(R+; Ḃ
1+ 2

p
, 1
p

p,1 ∩ Ḃ
2
p
,1+ 1

p

p,1 ) as claimed.

Remark A.2. Note in passing that if 2k + 2j was replaced by 2k on the right-hand side
of (A.6), then one would recover directly the whole range 0 ≤ σ ≤ 2/r. Here we need an
extra step because of the presence of 2j .

From now on we assume that p < 4, and we want to extend this result to any degree of

integrability in time, as well as to the space L1(R+; Ḃ
−1+ 2

p
,2+ 1

p

p,1 ). Let us start with the
case r = ∞. Due to the smallness of u0 and to the result we just found, it is enough to prove
that

(A.7) ‖B(u, u)‖
L̃∞(R+;Ḃ

−1+ 2
p , 1p

p,1 )
. ‖u‖

L̃∞(R+;Ḃ
−1+ 2

p , 1p
p,1 )

‖u‖
L1(R+;Ḃ

1+ 2
p , 1p

p,1 ∩Ḃ
2
p ,1+ 1

p
p,1 )

since (A.2) takes care of et∆u0. But we have, if p < 4,

(A.8)

‖u · ∇u‖
L1(R+;Ḃ

−1+ 2
p , 1p

p,1 )
≤ ‖uh · ∇hu‖

L1(R+;Ḃ
−1+ 2

p , 1p
p,1 )

+ ‖u3∂3u‖
L1(R+;Ḃ

−1+ 2
p , 1p

p,1 )

. ‖u‖
L̃∞(R+;Ḃ

−1+ 2
p , 1p

p,1 )

(
‖u‖

L1(R+;Ḃ
1+ 2

p , 1p
p,1 )

+ ‖u‖
L1(R+;Ḃ

2
p ,1+ 1

p
p,1 )

)
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by the product laws (B.5) recalled in Appendix B, and the result follows exactly as above:
on the one hand (A.8) gives

Jjk(t) := 2k(−1+ 2
p
)2

j
p ‖∆h

k∆
v
jB(u, u)‖Lp

.

∫ t

0
e−c(t−t′)(22k+22j)2k(−1+ 2

p
)2

j
p 2−k(−1+ 2

p
)2−

j
p cjk(t

′) dt′

× ‖u‖
L̃∞(R+;Ḃ

−1+ 2
p , 1p

p,1 )

(
‖u‖

L1(R+;Ḃ
1+ 2

p , 1p
p,1 )

+ ‖u‖
L1(R+;Ḃ

2
p ,1+ 1

p
p,1 )

)
,

with cjk(t) ∈ ℓ1jk(L
1
t ), hence

‖B(u, u)‖
L̃∞(R+;Ḃ

−1+ 2
p , 1p

p,1 )
≤ ‖Jjk‖ℓ1jk((L

∞
t )

. ‖u‖
L̃∞(R+;Ḃ

−1+ 2
p , 1p

p,1 )

(
‖u‖

L1(R+;Ḃ
1+ 2

p , 1p
p,1 )

+ ‖u‖
L1(R+;Ḃ

2
p ,1+ 1

p
p,1 )

)
,

which proves (A.7). On the other hand

Kjk(t) := 2k(−1+ 2
p
)2j(2+

1
p
)‖∆h

k∆
v
jB(u, u)‖Lp

.

∫ t

0
e−c(t−t′)(22k+22j)2k(−1+ 2

p
)2j(2+

1
p
)2−k(−1+ 2

p
)2−

j
p cjk(t

′) dt′

× ‖u‖
L̃∞(R+;Ḃ

−1+ 2
p , 1p

p,1 )

(
‖u‖

L1(R+;Ḃ
1+ 2

p , 1p
p,1 )

+ ‖u‖
L1(R+;Ḃ

2
p ,1+ 1

p
p,1 )

)
,

with cjk(t) ∈ ℓ1jk(L
1
t ), hence

‖B(u, u)‖
L1(R+;Ḃ

−1+ 2
p ,2+ 1

p
p,1 )

≤ ‖Kjk‖ℓ1jk(L
1
t )

. ‖u‖
L̃∞(R+;Ḃ

−1+ 2
p , 1p

p,1 )

(
‖u‖

L1(R+;Ḃ
1+ 2

p , 1p
p,1 )

+ ‖u‖
L1(R+;Ḃ

2
p ,1+ 1

p
p,1 )

)
.

We conclude that if the initial data is small enough, then the solution belongs to Sp,1.

Remark A.3. It is easy to see, using Remark A.2 for instance, that one could add an exterior

force, small enough in L̃1(R+; Ḃ
−1+ 2

p
, 1
p

p,q ), and the small data result would be identical.

Remark A.4. Note that all the estimates can be restricted to a time interval [a, b] of R+.

Remark A.5. The L̃∞(R+; Ḃ
−1+ 2

p
, 1
p

p,1 ) norm on the right-hand side of (A.8) can be replaced

by the (smaller) L∞(R+; Ḃ
−1+ 2

p
, 1
p

p,1 ) norm. The same goes for the L̃2(R+; Ḃ
2
p
, 1
p

p,1 ) norm in (A.3),

which can be replaced by the L2(R+; Ḃ
2
p
, 1
p

p,1 ) norm. This will be useful in the proof of Theo-
rem 5.

(3) It is classical that the previous estimates can be adapted to the case of large initial data
(for instance by solving first the heat equation and then a perturbed Navier-Stokes equation,
of the same type as in the proof of Theorem 5 below) and we leave this to the reader.

(4) Now we are left with the proof of the propagation of regularity result. Again this is an
easy exercise based on the fact that Young’s inequality for sequences are true in ℓq with q > 0
so we can simply copy the above arguments.

Theorem 4 is proved. �
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A.3. Proof of Theorem 5. We shall follow the proof of Theorem 4 above, writing (NSP)
under the integral form

u(t) = et∆u0 −

∫ t

0
e(t−t′)∆

P

(
div (u⊗ u+ U ⊗ u+ u⊗ U) + F

)
(t′) dt′ .

The linear term et∆u0 and the term involving div (u⊗u) (called B(u, u) in the previous proof)
have already been dealt with and we know that in particular for any a < b and any 1 ≤ r ≤ ∞,

(A.9) ∀ 0 ≤ σ ≤
2

r
, ‖et∆u0‖

L̃r([a,b];Ḃ
−1+ 2

p+σ,2r−σ+1
p

p,1 )
. ‖u0‖

Ḃ
−1+ 2

p , 1p
p,1

.

We have as well

(A.10) ‖B(u, u)‖
L̃2([a,b];Ḃ

2
p , 1p
p,1 )

+ ‖B(u, u)‖
L1([a,b];Ḃ

2
p ,1+ 1

p
p,1 ∩Ḃ

1+ 2
p , 1p

p,1 )
. ‖u‖2

L̃2([a,b];Ḃ
2
p , 1p
p,1 )

,

and if 1 ≤ p < 4,

(A.11)

‖B(u, u)‖
L̃∞(R+;Ḃ

−1+ 2
p , 1p

p,1 )
+ ‖B(u, u)‖

L̃2(R+;Ḃ
−1+ 2

p ,1+ 1
p

p,1 )
+ ‖B(u, u)‖

L1(R+;Ḃ
−1+ 2

p ,2+ 1
p

p,1 )

. ‖u‖
L∞(R+;Ḃ

−1+ 2
p , 1p

p,1 )
‖u‖

L1(R+;Ḃ
1+ 2

p , 1p
p,1 ∩Ḃ

2
p ,1+ 1

p
p,1 )

.

Note that the estimate in L̃2(R+; Ḃ
−1+ 2

p
,1+ 1

p

p,1 ) appearing in (A.11) is a consequence of an

interpolation between the spaces L̃∞(R+; Ḃ
−1+ 2

p
, 1
p

p,1 ) and L1(R+; Ḃ
−1+ 2

p
,2+ 1

p

p,1 ).

Now let us study the term containing the force F . We define

F(t) :=

∫ t

0
e(t−t′)∆

PF (t′) dt′ , with F1 ∈ L1(R+; Ḃ
−1+ 2

p
, 1
p

p,1 ) and

F2 ∈ L̃2(R+; Ḃ
−1+ 2

p
,−1+ 1

p

p,1 ) ∩ L1(R+; Ḃ
2
p
,−1+ 1

p

p,1 ) .

On the one hand the above arguments (see the estimates of Ijk and Kjk, or simply Re-
mark A.2) enable us to write directly that for all σ ∈ [0, 2],

(A.12) ‖F‖
L̃∞([a,b];Ḃ

−1+ 2
p , 1p

p,1 )
+ ‖F‖

L1([a,b];Ḃ
−1+σ+2

p ,2−σ+1
p

p,1 )
. ‖F1‖

L1([a,b];Ḃ
−1+ 2

p , 1p
p,1 )

while for all 1 ≤ σ ≤ 2,

(A.13) ‖F‖
L̃2([a,b];Ḃ

2
p , 1p
p,1 )

+ ‖F‖
L1([a,b];Ḃ

−1+σ+2
p ,2−σ+1

p
p,1 )

. ‖F2‖
L1([a,b];Ḃ

2
p ,−1+ 1

p
p,1 )

.

On the other hand the same computations as in the proof of Theorem 4 give easily

(A.14) ‖F‖
L̃∞([a,b];Ḃ

−1+ 2
p , 1p

p,1 )∩L̃2([a,b];Ḃ
−1+ 2

p ,1+ 1
p

p,1 )
. ‖F2‖

L̃2(R+;Ḃ
−1+ 2

p ,−1+ 1
p

p,1 )
.

Finally let us turn to the contribution of U . We define

U(t) := −

∫ t

0
et∆ Pdiv (u⊗ U + U ⊗ u)(t′) dt′ .

We can write using (B.5) (and Remark A.5)

‖uh · ∇hU + u3∂3U‖
L1([a,b];Ḃ

−1+ 2
p , 1p

p,1 )
. ‖u‖

L∞([a,b];Ḃ
−1+ 2

p , 1p
p,1 )

‖U‖
L1([a,b];Ḃ

1+ 2
p , 1p

p,1 ∩Ḃ
2
p ,1+ 1

p
p,1 )

. ‖u‖
L̃∞([a,b];Ḃ

−1+ 2
p , 1p

p,1 )
‖U‖

L1([a,b];Ḃ
1+ 2

p , 1p
p,1 ∩Ḃ

2
p ,1+ 1

p
p,1 )

and using (B.5) again,

‖Uh · ∇hu+ U3∂3u‖
L1([a,b];Ḃ

−1+ 2
p , 1p

p,1 )
. ‖u‖

L̃2([a,b];Ḃ
−1+ 2

p ,1+ 1
p

p,1 ∩Ḃ
2
p , 1p
p,1 )

‖U‖
L2([a,b];Ḃ

2
p , 1p
p,1 )

.
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This enables us to write

‖U‖
L̃∞([a,b];Ḃ

−1+ 2
p , 1p

p,1 )∩L̃2([a,b];Ḃ
−1+ 2

p ,1+ 1
p

p,1 )
.
(
‖u‖

L̃∞([a,b];Ḃ
−1+ 2

p , 1p
p,1 )

‖U‖
L1([a,b];Ḃ

1+ 2
p , 1p

p,1 ∩Ḃ
2
p ,1+ 1

p
p,1 )

+‖u‖
L̃2([a,b];Ḃ

−1+ 2
p ,1+ 1

p
p,1 ∩Ḃ

2
p , 1p
p,1 )

‖U‖
L2([a,b];Ḃ

2
p , 1p
p,1 )

)
.(A.15)

Putting estimates (A.9), (A.10), (A.12), (A.13), (A.15) together we infer that

‖u‖
L̃2([a,b];Ḃ

2
p , 1p
p,1 )∩L1([a,b];Ḃ

2
p ,1+ 1

p
p,1 ∩Ḃ

1+ 2
p , 1p

p,1 )
≤ C

(
‖u‖2

L̃2([a,b];Ḃ
2
p , 1p
p,1 )

(A.16)

+‖u‖
L̃2([a,b];Ḃ

2
p , 1p
p,1 )

‖U‖
L2([a,b];Ḃ

2
p , 1p
p,1 )

+ ‖u(a)‖
Ḃ

−1+ 2
p , 1p

p,1

+ ‖F‖Xp,1

)
,

while estimates (A.9), (A.11), (A.14), (A.15) give

‖u‖
L̃∞([a,b];Ḃ

−1+ 2
p , 1p

p,1 )∩L̃2([a,b];Ḃ
−1+ 2

p ,1+ 1
p

p,1 )
≤ C

(
‖u‖

L̃∞([a,b];Ḃ
−1+ 2

p , 1p
p,1 )

‖u‖
L1([a,b];Ḃ

1+ 2
p , 1p

p,1 ∩Ḃ
2
p ,1+ 1

p
p,1 )

+‖u‖
L̃∞([a,b];Ḃ

−1+ 2
p , 1p

p,1 )
‖U‖

L1([a,b];Ḃ
1+ 2

p , 1p
p,1 ∩Ḃ

2
p ,1+ 1

p
p,1 )

+‖u‖
L̃2([a,b];Ḃ

−1+ 2
p ,1+ 1

p
p,1 ∩Ḃ

2
p , 1p
p,1 )

‖U‖
L2([a,b];Ḃ

2
p , 1p
p,1 )

+ ‖u(a)‖
Ḃ

−1+ 2
p , 1p

p,1

+ ‖F‖Xp,1

)
.(A.17)

To conclude we resort to a Gronwall-type argument (see for instance [26] for a similar ar-
gument): there exist N real numbers (Ti)1≤i≤N such that T1 = 0 and TN = +∞, such

that R+ =

N−1⋃

i=1

[Ti, Ti+1] and satisfying

(A.18) ‖U‖
L2([Ti,Ti+1];Ḃ

2
p , 1p
p,1 )

+ ‖U‖
L1([Ti,Ti+1];Ḃ

1+ 2
p , 1p

p,1 ∩Ḃ
2
p ,1+ 1

p
p,1 )

≤
1

8C
∀i ∈ {1, . . . , N − 1} .

Then suppose that

(A.19) ‖u0‖
Ḃ

−1+ 2
p , 1p

p,1

+ ‖F‖Xp,1 ≤
1

8CN(2C)N
·

By time continuity we can define a maximal time T ∈ R
+ ∪ {∞} such that

(A.20) ‖u‖
L̃2([0,T ];Ḃ

2
p , 1p
p,1 )

+ ‖u‖
L1([0,T ];Ḃ

2
p ,1+ 1

p
p,1 ∩Ḃ

1+ 2
p , 1p

p,1 )
≤

1

4C
·

If T = ∞ then the theorem is proved. Suppose now that T < +∞. Then we can define an
integer k ∈ {1, . . . , N − 1} such that

Tk ≤ T < Tk+1 ,

and plugging (A.18) and (A.20) into (A.16) we get for any i ≤ k − 1

‖u‖
L̃2([Ti,Ti+1];Ḃ

2
p , 1p
p,1 )

+ ‖u‖
L1([Ti,Ti+1];Ḃ

2
p ,1+ 1

p
p,1 ∩Ḃ

1+ 2
p , 1p

p,1 )
≤ C‖u(Ti)‖

Ḃ
−1+ 2

p , 1p
p,1

+ C‖F‖Xp,1 +
1

4
‖u‖

L̃2([Ti,Ti+1];Ḃ
2
p , 1p
p,1 )

+
1

4
‖u‖

L̃2([Ti,Ti+1];Ḃ
2
p , 1p
p,1 )

,

so finally

(A.21)

‖u‖
L̃2([Ti,Ti+1];Ḃ

2
p , 1p
p,1 )

+ ‖u‖
L1([Ti,Ti+1];Ḃ

2
p ,1+ 1

p
p,1 ∩Ḃ

1+ 2
p , 1p

p,1 )

≤ 2C
(
‖u(Ti)‖

Ḃ
−1+ 2

p , 1p
p,1

+ ‖F‖Xp,1

)
.
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From relations (A.16) and (A.17) we also get

(A.22) ‖u‖
L̃∞([Ti,Ti+1];Ḃ

−1+ 2
p , 1p

p,1 )
≤ 2C

(
‖u(Ti)‖

Ḃ
−1+ 2

p , 1p
p,1

+ ‖F‖Xp,1

)
.

Since L̃∞(R+; Ḃ
−1+ 2

p
, 1
p

p,1 ) ⊂ L∞(R+; Ḃ
−1+ 2

p
, 1
p

p,1 ), we further infer that

‖u(Ti+1)‖
Ḃ

−1+ 2
p , 1p

p,1

≤ 2C
(
‖u(Ti)‖

Ḃ
−1+ 2

p , 1p
p,1

+ ‖F‖Xp,1

)
.

A trivial induction now shows that for all i ∈ {1, . . . , k − 1},

‖u(Ti)‖
Ḃ

−1+ 2
p , 1p

p,1

≤ (2C)i−1
(
‖u0‖

Ḃ
−1+ 2

p , 1p
p,1

+ ‖F‖Xp,1

)
.

We conclude from (A.21) and (A.22) that

‖u‖
L̃2([Ti,Ti+1];Ḃ

2
p , 1p
p,1 )

+ ‖u‖
L1([Ti,Ti+1];Ḃ

2
p ,1+ 1

p
p,1 ∩Ḃ

1+ 2
p , 1p

p,1 )
≤ (2C)i

(
‖u0‖

Ḃ
−1+ 2

p , 1p
p,1

+ ‖F‖Xp,1

)

and

‖u‖
L̃∞([Ti,Ti+1];Ḃ

−1+ 2
p , 1p

p,1

≤ (2C)i
(
‖u0‖

Ḃ
−1+ 2

p , 1p
p,1

+ ‖F‖Xp,1

)

for all i ≤ k − 1. The same arguments as above also apply on the interval [Tk, T ] and yield

‖u‖
L̃2([Tk,T ];Ḃ

2
p , 1p
p,1 )

≤ (2C)N
(
‖u0‖

Ḃ
−1+ 2

p , 1p
p,1

+ ‖F‖Xp,1

)

and

‖u‖
L̃∞([Tk,T ];Ḃ

−1+ 2
p , 1p

p,1 )
≤ (2C)N

(
‖u0‖

Ḃ
−1+ 2

p , 1p
p,1

+ ‖F‖Xp,1

)
.

Then it is easy to see that (see for instance [26])

‖u‖
L̃2([0,T ];Ḃ

−1+ 2
p , 1p

p,1 )
≤ ‖u‖

L̃2([T1,T2];Ḃ
−1+ 2

p , 1p
p,1 )

+ · · ·+ ‖u‖
L̃2([Tk ,T ];Ḃ

−1+ 2
p , 1p

p,1 )

≤ N(2C)N‖u0‖
Ḃ

−1+ 2
p , 1p

p,1

+N(2C)N‖F‖Xp,1 .

Under assumption (A.19) this contradicts the maximality of T as defined in (A.20). Since
the integer N can be chosen of size equivalent to ‖U‖

L2(R+;Ḃ
2
p , 1p
p,1 )

+ ‖U‖
L1(R+;Ḃ

1+ 2
p , 1p

p,1 ∩Ḃ
2
p ,1+ 1

p
p,1 )

,

the theorem is proved. �

Remark A.6. Note that we have obtained also that u belongs to L̃∞(R+, Ḃ
−1+ 2

p
, 1
p

p,1 ).

Appendix B. Anisotropic Littlewood-Paley decomposition

In this section we recall the definition of the isotropic and anisotropic Littlewood-Paley
decompositions and associated function spaces, and give their main properties that are used
in this paper. We refer for instance to [3], [17], [32], [31], [34], [49] and [56] for all necessary
details.
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B.1. Isotropic decomposition and function spaces. Let χ̂ (the Fourier transform of χ)
be a radial function in D(R) such that χ̂(t) = 1 for |t| ≤ 1 and χ̂(t) = 0 for |t| > 2, and we
define (in d space dimensions) χℓ := 2dℓχ(2ℓ| · |). Then the frequency localization operators
used in this paper are defined by

Sℓ := χℓ ∗ · and ∆ℓ := Sℓ+1 − Sℓ =: Ψℓ ∗ · .

Now let us define Besov spaces on R
d using this decomposition. We start by defining, as

in [3],

(B.1) S ′
h :=

{
f ∈ S ′(Rd) / ‖∆jf‖L∞ → 0, j → −∞

}
.

Let f be in S ′(Rd), let p belong to [1,∞] and q to ]0,∞], and let s ∈ R, s < d/p. We say

that f belongs to Ḃs
p,q(R

d) if the sequence εℓ := 2ℓs‖∆ℓf‖Lp belongs to ℓq(Z), and we have

‖f‖Ḃs
p,q(R

d) := ‖εℓ‖ℓq(Z) .

If s = d/p and q = 1, then the same definition holds as soon as one assumes moreover
that f ∈ S ′

h — or equivalently after taking the quotient with polynomials. Finally in all other

cases then Ḃs
p,q(R

d) is defined by the above norm, after taking the quotient with polynomials
(see [9] and the references therein for a discussion).

It is well-known that an equivalent norm is given by

(B.2) ∀s ∈ R, ∀(p, q) ∈ [1,∞], ‖f‖Ḃs
p,q(R

d) =
∥∥∥t− s

2 ‖K(t)f‖Lp(Rd)

∥∥∥
Lq(R+; dt

t
)

with K(t) := t∂te
t∆. We recall also that Sobolev spaces are defined by the norm ‖ · ‖Ḃs

2,2(R
d)

and

∀s <
d

2
, ‖f‖Ḣs(Rd) :=

(∫
|ξ|2s|f̂(ξ)|2 dξ

) 1
2

where f̂ is the Fourier transform of f .

Finally it is useful, in the context of the Navier-Stokes equations, to introduce the following
space-time norms (see [16]):

‖f‖
L̃r([0,T ];Ḃs

p,q)
:=
∥∥2js‖∆jf‖Lr([0,T ];Lp(Rd))

∥∥
ℓq

or equivalently

‖f‖
L̃r([0,T ];Ḃs

p,q)
=
∥∥∥t− s

2 ‖K(t)f‖Lr([0,T ];Lp(Rd))

∥∥∥
Lq(R+; dt

t
)
.

The following proposition lists a few useful inequalities related to those spaces.

Proposition B.1. If 1 ≤ p ≤ q ≤ ∞, then

‖∂α∆jf‖Lq(Rd) . 2j(|α|+d(1/p−1/q))‖∆jf‖Lp(Rd) ,

and ‖et∆∆jf‖Lq(Rd) . e−ct22j‖∆jf‖Lq(Rd) .

Finally let us recall product laws in Besov spaces:

‖fg‖
Ḃ

s1+s2−
d
p

p,q (Rd)
. ‖f‖Ḃs1

p,q(R
d)‖g‖Ḃs2

p,q(R
d) ,

as soon as

s1 + s2 > 0 and sj <
d

p
, j ∈ {1, 2} .
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B.2. Anisotropic decomposition and function spaces. Similarly we define a three di-
mensional, anisotropic decomposition as follows. For (j, k) ∈ Z

2, we define the horizontal
decomposition as

Sh
kf := F−1

(
χ̂(2−k|ξh|)f̂(ξ)

)
and∆h

k := Sh
k+1−S

h
k , which writes F(∆h

kf) := Ψ̂(2−k|ξh|)f̂(ξ)

and the vertical decomposition as

Sv
j f := F−1

(
χ̂(2−j |ξ3|)f̂(ξ)

)
and∆v

j := Sv
j+1−S

v
j , which writes F(∆v

jf) := Ψ̂(2−j |ξ3|)f̂(ξ) .

Now let us define anisotropic Besov spaces. We define, for all (s, s′) ∈ R
2, s < 2/p, s′ < 1/p

and all p ∈ [1,∞] and q ∈]0,∞],

Ḃs,s′
p,q :=

{
f ∈ S ′ / ‖f‖

Ḃs,s′
p,q

:=
∥∥∥2ks+js′‖∆h

k∆
v
jf‖Lp

∥∥∥
ℓq
<∞

}
.

In all other cases one defines the same norm, and one needs to take the quotient with poly-
nomials. As in (B.2) an equivalent definition using the heat flow is

(B.3) ‖f‖
Ḃs,s′

p,q
=
∥∥∥t− s

2 t′−
s′

2 ‖Kh(t)Kv(t
′)f‖Lp

∥∥∥
Lq(R+×R

+; dt
t

dt′

t′
)

where Kh(t) := t∂te
t∆2

h and Kv(t) := t∂te
t∂2

3 .

As in the isotropic case we introduce the following space-time norms:

‖f‖
L̃r([0,T ];Ḃs,s′

p,q )
:=
∥∥2ks+js′‖∆h

k∆
v
jf‖Lr([0,T ];Lp)

∥∥
ℓq

or equivalently

‖f‖
L̃r([0,T ];Ḃs,s′

p,q )
=
∥∥∥t− s

2 t′−
s′

2 ‖Kh(t)Kv(t
′)f‖Lr([0,T ];Lp)

∥∥∥
Lq(R+×R

+; dt
t

dt′

t′
)
.

Notice that of course L̃r([0, T ]; Ḃs,s′
p,r ) = Lr([0, T ]; Ḃs,s′

p,r ), and by Minkowski’s inequality, we

have the embedding L̃r([0, T ]; Ḃs,s′
p,q ) ⊂ Lr([0, T ]; Ḃs,s′

p,q ) if r ≥ q.

The anisotropic counterpart of Proposition B.1 is the following.

Proposition B.2. If 1 ≤ p1 ≤ p2 ≤ ∞, then

‖∂αxh
∆h

kf‖Lp2 (R2;Lr(R)) . 2k(|α|+2(1/p1−1/p2))‖∆h
kf‖Lp1 (R2;Lr(R)) ,

‖∂αx3
∆v

jf‖Lr(R2;Lp2 (R)) . 2j(|α|+1/p1−1/p2)‖∆v
jf‖Lr(R2;Lp1(R)) ,

‖et∆∆h
k∆

v
jf‖Lq . e−ct(22k+22j)‖∆h

k∆
v
jf‖Lq .

In this paper we use product laws in anisotropic Besov spaces, which read as follows:

‖fg‖
Ḃ

s1+s2−
2
p ,s′2

p,q

. ‖f‖
Ḃ

s1,
1
p

p,1

‖g‖
Ḃ

s2 ,s
′
2

p,q

+ ‖f‖
Ḃ

s1,s
′
2

p,q

‖g‖
Ḃ

s2,
1
p

p,1

,

as soon as
1

p
≤ s′2, s1 + s2 > 0 and sj <

2

p
, j ∈ {1, 2} ,

and
‖fg‖

Ḃ
s1+s2−

2
p ,s′1+s′1−

1
p

p,q

. ‖f‖
Ḃ

s1,s
′
1

p,q

‖g‖
Ḃ

s2,s
′
2

p,q

,

as soon as

s′1 + s′2 > 0 and s′j <
1

p
, j ∈ {1, 2}

and with the same conditions on s1, s2. Finally

(B.4) ‖fg‖
Ḃ

2
p , 1p
p,1

. ‖f‖
Ḃ

2
p , 1p
p,1

‖g‖
Ḃ

2
p , 1p
p,1

,
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and if p ≥ 2,

(B.5) ‖fg‖
Ḃ

−1+ 2
p , 1p

p,1

. ‖f‖
Ḃ

−1+ 2
p , 1p

p,1

‖g‖
Ḃ

2
p , 1p
p,1

.

The following result compares some isotropic and anisotropic Besov spaces.

Proposition B.3. Let s and t be two nonnegative real numbers. Then for any (p, q) ∈ [1,∞]2

one has

‖f‖Ḃs,t
p,q

. ‖f‖Ḃs+t
p,q

.

Proof of Proposition B.3. We recall that

‖f‖q
Ḃs,t

p,q
=
∑

j,k

2ksq2jtq‖∆h
k∆

v
jf‖

q
Lp .

We separate the sum into two parts, depending on whether j < k or j ≥ k and we shall only
detail the first case (the second one is identical). We notice indeed that if j < k, then

‖∆h
k∆

v
jf‖Lp = ‖

∑

ℓ

∆ℓ∆
h
k∆

v
jf‖Lp

∼ ‖∆k∆
h
k∆

v
jf‖Lp .

It follows that ∑

j<k

2ksq2jtq‖∆h
k∆

v
jf‖

q
Lp .

∑

j<k

2ksq2jtq‖∆kf‖
q
Lp

.
∑

k

2k(s+t)q‖∆kf‖
q
Lp

and the result follows. �

Finally let us prove the following easy lemma, which explains Remark 1.4 of the introduction.

Lemma B.4. Let s1, s2 ∈ R, p ∈ [1,∞], 0 < q1 ≤ q2 ≤ ∞ be given, as well as two positive

real numbers ε1 and ε2. The space Ḃs1±ε1,s2±ε2
1,q2

is continuously embedded in Ḃs1,s2
p,q1 .

Proof. Let f be an element of Ḃs1±ε1,s2±ε2
1,q2

and let us prove that f belongs to Ḃs1,s2
p,q1 . We

write

‖f‖q1
Ḃ

s1,s2
p,q2

=
∑

j,k

2ks1q12js2q1‖∆h
k∆

v
jf‖

q1
Lp

and we decompose the sum into four terms, depending on the sign of j and k. For instance
we have

F1 :=
∑

j≤0
k≥0

2ks1q12js2q1‖∆h
k∆

v
jf‖

q1
Lp

≤
∑

j≤0
k≥0

2−kε1q12jε2q12k(s1+ε1)q12j(s2−ε2)q1‖∆h
k∆

v
jf‖

q1
Lp

and we apply Hölder’s inequality for sequences which gives

F1 . ‖f‖
Ḃ

s1+ε1,s2−ε2
1,q2

.

The other terms are dealt with similarly. �
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B.3. On the role of anisotropy in the Navier-Stokes equations. In this final short
paragraph, we shall prove Theorem 1 stated in the introduction.

Proof of Theorem 1. The proof follows from the small data theory recalled in Appendix A.

Let us first consider v0 :=
∑

j−k<−N0

∆h
k∆

v
ju0. We have

‖v0‖
Ḃ

0, 12
2,1

∼
∑

j−k<−N0

2
j
2 ‖∆h

k∆
v
ju0‖L2(R3)

∼
∑

j−k<−N0

2
j−k
2 2

k
2 ‖∆h

k∆
v
ju0‖L2(R3) ≤ C2−

N0
2 ρ

due to Proposition B.3 which states in particular that Ḃ
1
2
2,1 ⊂ Ḃ

1
2
,0

2,1 . So v0 can be made

arbitrarily small in Ḃ
0, 1

2
2,1 , for N0 large enough (depending only on ρ).

Now let us consider w0 =
∑

j−k>N0

∆h
k∆

v
ju0. We shall prove that in this case ‖w0‖L3 is small.

Indeed we know (see for instance [3]) that Ḃ0
3,1 ⊂ L3, and moreover we have as soon as N0 is

large enough (depending only on the choice of the Littlewood-Paley decomposition)

‖∆ℓw0‖L3 ∼
∥∥ ∑

k−ℓ<−N0

∆h
k∆

v
ℓu0
∥∥
L3 .

It follows that

‖∆ℓw0‖L3 ≤
∑

k−ℓ<−N0

‖∆h
k∆

v
ℓu0‖L3

≤ C
∑

k−ℓ<−N0

2
k
3 2

ℓ
6‖∆h

k∆
v
ℓu0‖L2

by Bernstein’s inequalities (see Proposition B.2, applying successively the inequalities for
the horizontal and the vertical truncations). So using Proposition B.3 again which states in

particular that Ḃ
1
2
2,1 ⊂ Ḃ

0, 1
2

2,1 , we get

‖∆ℓw0‖L3 ≤ C
∑

k−ℓ<−N0

2
k−ℓ
3 2

ℓ
2 ‖∆h

k∆
v
ℓu0‖L2 ≤ C2−

N0
3 ρcℓ ,

where cℓ is a sequence in the unit ball of ℓ1(Z). So again if N0 is large enough (depending

only on ρ) then we find that w0 is small in Ḃ0
3,1 hence in L3.

To conclude we can start by solving (NS) associated with the data w0 which yields a global,
unique solution w that by Proposition B.3 belongs to Y3,1, with norm smaller than 2‖w0‖L3

(by small data theory, as soon as N0 is large enough). Then since Ḃ
0, 1

2
2,1 embeds in Ḃ

− 1
3
, 1
3

3,1 we
can apply Theorem 5 with F = 0 and U = w which solves the perturbed equation satisfied
by u−w globally in time, as soon as N0 again is large enough. That proves the theorem. �

Remark B.5. Contrary to Theorem 2, the proof of Theorem 1 does not require the special
structure of the nonlinear term in (NS) as it reduces to checking that the initial data is small
in an adequate scale-invariant space.
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[49] M. Paicu, Équation anisotrope de Navier-Stokes dans des espaces critiques, Revista Matematica

Iberoamericana 21(1) (2005), pages 179-235.
[50] F. Planchon. Asymptotic behavior of global solutions to the Navier-Stokes equations in R3, Revista

Matematica Iberoamericana, 14(1) (1998), pages 71-93.
[51] I. Schindler and K. Tintarev, An abstract version of the concentration compactness principle, Revista

Math Complutense, 15(2) (2002), pages 417-436.
[52] S. Solimini, A note on compactness-type properties with respect to Lorentz norms of bounded subset of

a Sobolev space, Annales de l’IHP Analyse non linéaire, 12(3) (1995), pages 319-337.
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