The Geographical Study of Anopheline Densities on a Small Space, using Satellite Imagery and Geographical Information Systems

Julie Vallée, Laurence Marrama, Didier Fontenille, Alioune Badara Ly, Jean-Francois Trape, Fatoumata Diene Sarr, Christophe Rogier, Adama Tall, Pierre Nabeth

To cite this version:

HAL Id: hal-00624606
https://hal.science/hal-00624606
Submitted on 19 Sep 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
THE GEOGRAPHICAL STUDY OF ANOPHELINE DENSITIES ON A SMALL SPACE, USING SATELLITE IMAGERY AND GEOGRAPHICAL INFORMATION SYSTEMS.

Julie Vallée 1,2, Laurence Marrama 1, Didier Fontenille 3, Alioune Badara Ly 1, Jean-Francois Trape 4, Fatoumata Diene Sarr 1, Christophe Rogier 1,5, Adama Tall 1 and Pierre Nabeth 1

1 Unité d’Epidémiologie, Institut Pasteur, BP 220, Dakar, Sénégal.
2 UR178 CTEM, Institut de Recherche pour le Développement, P.O. Box 5992, Vientiane, Laos.
3 Laboratoire de Lutte Contre les Insectes Nuisibles, Institut de Recherche pour le Développement, 91, av. Agropolis, BP 5045, 34032 Montpellier, France.
4 Laboratoire de paludologie, Institut de Recherche pour le Développement, BP 1386, Dakar, Sénégal.
5 IMTSSA-IFR48, BP46, Parc du Pharo, 13998 Marseille-Armées, France.

E-mail: Julie Vallée (valleej@yahoo.fr), Laurence Marrama (marrama@pasteur.sn), Didier Fontenille (Didier.Fontenille@mpl.ird.fr), Alioune Badara Ly (ly@pasteur.sn), Jean-Francois Trape (Jean-Francois.Trape@ird.sn), Fatoumata Diene Sarr (fdsarr@pasteur.sn), Christophe Rogier (christophe.rogier@wanadoo.fr), Adama Tall (tall@pasteur.sn) and Pierre Nabeth (nabeth@pasteur.sn).

ABSTRACT:

To predict the spatial distribution of anophelines in the Dielmo village (located in the southeastern part of Senegal), we used residual fauna collected from 104 different rooms during four separate trips conducted in 1994 and 1995. Thanks to Generalized Estimating Equations, we were able to identify factors influencing the distribution of Anopheles in the village. Several variables, such as the number of persons sleeping in the room, population density around the hut, construction materials, presence of mosquito nets, were found to be significant, while many spatial variables relevant to the scale of a region (vegetation index, distance to larval sites…) were not found to be significant on the village level. As a result, it became clear that it is difficult to correctly predict the anopheline density for each house even with precise spatial data created with Satellite imagery and Geographical Information Systems (GIS). This work highlights the complexity of the geographical study of anopheline density and its limits on a small space.

KEY WORDS: Malaria, transmission, anopheles, GIS, Remote sensing, scale, Dielmo, Senegal
1. INTRODUCTION

Satellite imagery and Geographical Information Systems (GIS) analysis techniques have been used to identify areas at risk of vector-borne diseases, such as malaria, but, most of the time, they were carried out at a regional scale (Beck, 1994; Salem, 1994; Roberts, 1996; Thomson, 1996; Beck, 1997; Connor, 1997; Manguin, 1999; Beck, 2000; Thomas, 2000).

A longitudinal epidemiological and entomological follow-up began in 1990 to evaluate malaria infections and the mechanisms of protective immunity in a population living in Dielmo, a village in Senegal. Every month, an average entomological inoculation rate is calculated for the entire village and analyses are based on the assumption that the person’s level of exposure to infected bites is identical (Rogier, 1993; Trape, 1994; Rogier, 1996; Rogier, 1999; Sokhna, 2000).

However, variations in anopheles densities may be important within a same village (Smith, 1995; Minakawa, 2002). In Dielmo, we demonstrated with analysis of variance that anopheline densities collected by hut are significantly different (Vallee, personal communication). To predict anopheline densities in the different huts in Dielmo village, we used spatial data. Our aim was to test the relevance of spatial data (issued from Satellite imagery and Geographical Information Systems techniques) applied to a small area.

2. MATERIALS AND METHODS

2.1 Study Area

Dielmo (13°45’N, 16°25’W), a village of about 300 inhabitants, is situated 280 km on the southeast of Dakar in the Sahelo-Soudanian region of Senegal (Map 1).

The Nema, a small and permanent river, borders the village and its marshy banks provide breeding sites to anopheles throughout the year. Malaria is holo-endemic (parasite prevalence > 75% among infants) and transmission is high and perennial, reaching its peak during the rainy season (approximately 200 infected bites/person/year).

In Dielmo, the major vectors transmitting malaria are An. funestus, and An. gambiae that account respectively for 63% and 36% of anopheles captured on humans (Konate, 1994; Fontenille, 1997).

We used a GPS (Global Positioning System) to localize every house and produce an accurate map of the village. To remedy to the GPS inaccuracy which is within the scope of 10 meters, we choose to combine the use of GPS with a Quickbird satellite image that has a very fine spatial resolution (61 cm in panchromatic and 2.44 meters in multispectral).

2.2 Data

We collected morning residual fauna of An. funestus and An. gambiae in 104 different rooms of Dielmo village by pyrethrum indoor spray collection. Anopheles were gathered once during each mission in December 1994, March 1995, June 1995 and September 1995. Data consisted in 273 observations: only 33 rooms were surveyed 4 times.

For every room, the following data have been collected: number of people sleeping in the room, roofing materials, wall materials, presence of space between the wall and roof, presence of at least a hole of 25 cm² in the wall, the use of fumigations and mosquito nets.

Thanks to the Quickbird satellite image (captured on March 9, 2004) that has a very fine spatial resolution, we calculated the vegetation index (NDVI for Normalized Difference Vegetation Index). To take into consideration the environment surrounding each habitation, we calculated the average vegetation density within the radiuses of 50 meters and 100 meters around each habitation (Map 2) and within a 25 meters thick polygon linking each house to the nearest point of the Nema River.

We localized cattle existing in 1995 and we separated two categories of cattle to distinguish them with many animals. Following the same way than person density, we estimated the presence of livestock within the radiuses of 50 meters and 100 meters around each hut, as well as between the studied hut and the Nema River.
Map 2: Calculated average vegetation densities around a habitation* based on the NDVI index.
* For this habitation, the average vegetation density is 0.194 within a radius of 50 meters around the hut and 0.284 within 100 meters, indicating a low vegetation density close to the hut.

2.3 Statistical analysis to predict anopheline densities

We used the Generalized Estimating Equations (GEE) to test the predictor variables’ pertinence for the whole of the 273 available entomological observations which are repeated data, meaning that we had several observations (between 1 and 4) of a same variable (number of anophiles) for each room. (Liang, 1986; Zeger, 1986)

The variable to be explained was on one hand, the number of *An. funestus*, and on the other hand, the number of *An. gambiae* caught in a room. We replaced these variables with their square roots to correspond with a distribution model of Poisson.

To evaluate the prediction’s quality, we established groups of anopheline densities based on square roots. We compared, for each observation (among the 273), the predicted number of anopheles with the corresponding observed number of anophiles. The prediction is said correct if the predicted number is affected in the same group than the observed number. Then we calculated the number of predictions that are correctly affected.

3. RESULTS

3.1 Variables influencing the anopheline densities

We obtained two GEE models, one for each species of anopheles, containing only the variables significantly associated to the number of anopheles (tables 1 and 2).

| Variables | Coef. | Std. Err. | z | P>|z| | IRR | IRR² |
|-----------|-------|-----------|------|-----|-----|------|
| mission 1 | Ref. | | | | | |
| mission 2 | 1.056 | 0.11357 | 9.3 | <0.001 | 2.87 | 8.26 |
| mission 3 | 0.771 | 0.12059 | 6.3 | <0.001 | 2.16 | 4.67 |
| mission 4 | 0.975 | 0.11500 | 8.4 | <0.001 | 2.65 | 7.03 |
| Persons /room | 0.087 | 0.0193 | 4.5 | <0.001 | 1.09 | 1.19 |
| Pop. 50m radius | 0.005 | 0.0019 | 3 | 0.003 | 1.00 | 1.01 |
| Space | 0.378 | 0.09314 | 4 | <0.001 | 1.46 | 2.13 |
| Mosquito net | -0.289 | 0.10036 | -2.8 | 0.004 | 0.74 | 0.56 |

Table 1: Model obtained for square root of *An. gambiae*

| Variables | Coef. | Std. Err. | z | P>|z| | IRR | IRR² |
|-----------|-------|-----------|------|-----|-----|------|
| mission 1 | Ref. | | | | | |
| mission 2 | -0.21 | 0.0908 | -2 | 0.019 | 0.80 | 0.65 |
| mission 3 | -0.560 | 0.1048 | -5 | <0.001 | 0.57 | 0.32 |
| mission 4 | -0.637 | 0.1022 | -6 | <0.001 | 0.52 | 0.27 |
| Persons /room | 0.076 | 0.0247 | 3.1 | 0.002 | 1.07 | 1.16 |
| Pop. 50m radius | 0.005 | 0.0024 | 2.1 | 0.034 | 1.00 | 1.01 |
| Hay | 0.369 | 0.1072 | 3.4 | 0.001 | 1.44 | 2.09 |
| Mosquito net | -0.334 | 0.1300 | -3 | 0.01 | 0.71 | 0.51 |

Table 2: Model obtained the square root of *An. funestus*

The Incidence Rate Ratio (IRR) measures the relative risk for the transformed variable (square root of mosquitoes). The IRR2 gives the value of risk relating to the variable of interest (number of mosquitoes).

There is an important “mission” effect. With regards to mission 1 (December 1994), missions 2 (March 1995), 3 (June 1995) and 4 (September 1995) multiplied the number of *An. gambiae* by 8.3, 4.7 and 7 and divide the number of *An. funestus* by 1.4, 3.3 and 2.5. The “person/room” effect is also significant. An additional person sleeping in a room multiplied the total number of vectors, whether *An. gambiae* or *An. funestus*, by 1.2. An additional person within a radius of 50 meters multiplied by 1.012 the number of *An. gambiae* and by 1.01 the number of *An. funestus*. This multiplying coefficient is very low, but should be compared with the number of persons within 50 meters from the hut (varying between 4 and 96), which gives therefore weight to this variable, or up to 2.6 times more vectors because of this variable alone. The presence of a space between the wall and roof (the architectural variable retained for *An. gambiae*) multiplied the number of Anopheles by 2.1. For *An. funestus*, the roofing material is more pertinent as a roof made of hay multiplied the number of Anopheles by 2.1. The use of mosquito nets (in good condition) divided the number of *An. gambiae* by 1.8 and the number of *An. funestus* by 2. However, use of fumigation is not a
variable significantly associated to the number of mosquitoes. We tested the relevance of other spatial variables but without significant results. Distance to the Nema, vegetation density within 50 and 100 meters from houses, as well as vegetation density between the Nema and habitations, the number of persons between habitations and the Nema and the presence if livestock within 50 and 100 meters from habitations and between the Nema and habitations are not significantly associated with the number of collected *Anopheles*.

3.2 Quality of prediction of anopheline densities

Based on coefficients affected to each significant variable, we have attempted to predict the number of *Anopheles* collected in a specific hut during a given mission. The percentage of correctly affected observations at 41% is low (table 3). It was therefore not possible, based on the selected variables, to project the *Anopheles* densities in a relevant manner.

<table>
<thead>
<tr>
<th>Difference in affection</th>
<th>An. gambiæ</th>
<th>An. funestus</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>112 (41%)</td>
<td>110 (41%)</td>
</tr>
<tr>
<td>1</td>
<td>136 (50%)</td>
<td>138 (50%)</td>
</tr>
<tr>
<td>2</td>
<td>24 (9%)</td>
<td>24 (9%)</td>
</tr>
<tr>
<td>3</td>
<td>1 (0%)</td>
<td>1 (0%)</td>
</tr>
<tr>
<td>Total</td>
<td>273 (100%)</td>
<td>273 (100%)</td>
</tr>
</tbody>
</table>

Table 3: Percentage of observations correctly affected to the groups of densities

4. DISCUSSION AND CONCLUSION

The coefficient of common correlation helps to appreciate the hut’s proper effect. The value of correlation is 0.1886 for the model performed on the square roots of *An. gambiæ* and 0.2814 for the one performed on the square roots of *An. funestus*, which means that the hut’s residual effect explains the 3.5% (0.18862) and 7.9% (0.28142) of the variability of the number of collected *Anopheles*. If the variables explain all the data’s variability, the proper effect of the hut should be null. This means that some variables describing the hut are missing in our model, particularly for *An. funestus*.

To predict the anopheline distribution at the regional scale, it is usual to take into consideration the distance between breeding sites and habitations in urban areas (Trape, 1994; Salem, 1994) as well as in rural areas (Beck, 1994, Fontenille, 1997; Thomas, 2000; Hii, 1997)

At village scale, in Kenya (Minakawa, 2002) and in Uganda (Staedke, 2003) distance from a house to its nearest larval habitats showed a significant correlation with anopheline densities. Our study did not demonstrate the relevance of this variable, maybe because Dielmo is a very limited space; every hut is < 300 m from the stream. A study in Sri Lanka using small distance categories (<250m/>500m) from stream can’t reach statistical significance (Van der Hoeck, 1998).

Landscape description with remotely sensed data may allow locating habitats (un)favorable to *Anopheles* and predicting anopheline densities (Beck, 1997, Wekesa, 1996; Grillot, 2000; Eisele, 2003). In our study, we calculated Normalized Difference Vegetation Index (NDVI) from satellite imagery with high spatial resolution, but could not prove its relevance to the *Anopheles* density over a limited space such as Dielmo village. As shown by an article synthesizing the potential of remote sensing for human health (Herbreteau, 2005), many studies used the NDVI index (a quantitative variable that is quite commonly used to describe the type of landscape and vegetation density) at a scale that is inappropriate to qualify the environment of a vector.

Even if some variables proved to be significant, it is not possible to estimate the distribution of *Anopheles* based on these variables only. This study raises the more theoretical question on the limitations of a health geography analysis: Is the geography of anopheline densities relevant over such a limited space as Dielmo?

REFERENCES

Rogier C, Trape JF, 1993, Malaria attacks in children exposed to high transmission: who is protected. Transactions of the Royal Society of Tropical Medicine and Hygiene 87 : 245-246
Thomas CJ, Lindsay SW, 2000. Local-scale variation in malaria infection amongst rural Gambian children estimated by satellite remote sensing. Transactions of the Royal Society of tropical Medecine and Hygiene 94 : 159-163

5. ACKNOWLEDGEMENTS

Acknowledgments: We thank Maps Geosystem and Digital Globe for having graciously made available the Quickbird image. We also thank Florence Fournet for her advices.