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The boundary element method (BEM) is a useful tool in Diffuse Optical Imaging (DOI) when modelling large
optical regions whose parameters are piecewise constant, but is computationally expensive. We present here
an acceleration technique, the single-level Fast Multipole Method, for a highly lossy medium. The enhanced
practicability of the BEM in DOI is demonstrated through test examples on single-layer problems, where
order of magnitude reduction factors on solution time are achieved, and on a realistic three-layer model of
the neonatal head. Our experimental results agree very closely with theoretical predictions of computational
complexity. © 2011 Optical Society of America
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Numerical methods for calculating forward models of
light propagation in tissue are extensively used in Dif-
fuse Optical Imaging (DOI). These include the Finite
Element Method (FEM) [1] and Finite Volume Method
(FVM) [2], which describe the domain in terms of a vol-
ume mesh with locally varying absorption coefficient µa,
reduced scattering coefficent µ′

s and refractive index n.
Methods based on discretisation only of the boundaries
may be prefereable if the domain of interest can be de-
scribed in terms of closed regions with constant parame-
ters, including the Kirchhoff Approximation [3] and the
Boundary Element Method (BEM) [4,5].

BEM applied to DOI is based on boundary integral
equations linking density φ and current q of the form

∫
∂Ω

∂νG(r, r′)φ(r′) dS(r′)− 1

D

∫
∂Ω

G(r′−r)q(r′) dS(r′)

+ α(r)φ(r) =

∫
Ω

Q(r′)G(r′ − r) dV (r′) (1)

where the region Ω ⊂ R3 has uniform optical properties,
α is a known geometric factor, Q(r′) is a known source
and G(R), the full-space fundamental solution to the
governing equation of DOI, satisfies (D∆+κ2)G+δ = 0
and is given, in 3D, by

G(R) = exp(−ικR)/(4πR) (with R = ‖R‖), (2)

while ∂νG(r, r′) := ν(r′) · ∇G(r′ − r) is the normal
derivative of G. The wavenumber κ = κR + ικI and the
constant D are defined in terms of µa and µs, the ab-
sorption and scattering coefficients of the medium, by

κ2 +D−1[µa + ιω/c] = 0, D = [3(µa + µ′

s)]
−1

with the square root chosen such that κI < 0. For multi-
layer models (1) is written for each layer, a boundary
condition of the form φ + ℓq = J− (with J− denoting
an incoming flux) is prescribed on the external surface,
and the values of φ, q on interfaces relative to each ad-
jacent layer are linked by transmission conditions. The

BEM [4, 5] then consists in discretizing all relevant sur-
faces into boundary elements and approximating φ, q on
each element using simple shape functions, resulting in
a system of linear equations of the form

Aφ− Bq −Q = 0 (3)

After accounting for all boundary and transmission con-
ditions in (3), a matrix equation on the N remaining,
complex-valued, boundary unknowns is obtained.

One of the difficulties in using BEM for problems with
large numbers of unknowns, such as medical imaging, is
that the matrices involved are fully-populated, leading to
excessive computational requirements in memory, and,
by implication, solve time. However, recent acceleration
strategies such as the Fast Multipole Method (FMM)
[6–9] avoid storing dense matrices, and instead make use
of matrix-vector products within iterative solvers for the
system (3). Although the FMM has been applied to a va-
riety of problems, its application to the complex-valued
model used in DOI requires some special considerations,
which are described in this paper.

The FMM stems from fast summation methods ini-
tially proposed in [9] and implemented in 3D in [10],
based on multipole expansions of the relevant Green’s
function G(r − r

′) which achieves a separation of the
variables r and r

′. For this purpose, the relative position
vector R = r

′ − r is decomposed into R = r̃
′ +R0 − r̃,

with R0 = r
′

0−r0, r̃ = r−r0 and r̃
′ = r

′−r
′

0 in terms of
two poles r0, r

′

0. With these notations, G(r′−r) admits
the decomposition [7, 11]

G(r′−r) ≈ 1

4π

P∑
p=1

wp exp(−ικsp·r̃′)Tp exp(ικsp·r̃) (4)

in the so-called diagonal form, established as a conse-
quence of the Gegenbauer addition theorem [8,12], where
the transfer function Tp = T (R0, sp) is given by

Tp =
1

4π

L∑
ℓ=0

κ(−ι)ℓ+1(2ℓ+ 1)h
(2)
ℓ (κR0)Pℓ(R̂0 · sp) (5)
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Figure 1. Single-level FMM for a 2D domain. (a) Inter-
actions close to cell 1 marked in red, far marked in green
(e.g. cell 2); (b) matrix-vector multiplication scheme be-
tween cell 1 centred at r0 and cell 2 centred at r′0

with R0 = ‖R0‖ and R̂0 = R0/R0, and h
(2)
ℓ and Pℓ are

spherical Hankel functions of second kind and Legendre
polynomials, respectively [12]. Decomposition (4) is ap-
proximate in that i) an integration over the unit sphere
S2 is replaced with a P -point numerical quadrature (with
points sp ∈ S2 and weights wp), and ii) the infinite series
defining the exact transfer function T (R0, sp) is trun-
cated at level L in (5); however, (4) holds within known
error bounds on L and P if [11]

‖R−R0‖/‖R0‖ ≤ 2/
√
5 (6)

Decomposition of ∂νG is obtained in a similar way by
multiplying each summand of (4) by −ικsp ·ν(r̃′).

The separation of the variables r
′ and r achieved

by (4) allows to re-use integrations w.r.t. r′ in (1) when
changing the collocation point r; this is the main ac-
celeration mechanism behind the FMM. Decomposition
(4) can be applied recursively, but in this first report,
only the single-level FMM is considered. The latter ex-
ploits a division of the spatial region containing ∂Ω into
M cubic cells Cm (m = 1 . . .M) of equal size (Fig. 1).
Integrals in (1) may be evaluated using (4) instead of (2)
whenever r

′ and r belong to two non-adjacent cells Cm
and Cm′ . The theoretical computational complexity per
GMRES iteration of the single-level FMM for Helmholtz-
type equations is O(N3/2) [7], instead of O(N2) for the
standard BEM.

We summarise our algorithm (following [7, 8, 11]) as

1. Choose spatial grid edge length size a, and assign
elements {τj} to cells according to their midpoint

2. Build sparse matrices A0,B0 using (2) only for el-
ements and collocation points lying in the same or
adjacent cells.

3. For each element τn′ assigned to cell Cm′ , compute
excitation vectors VA

m′ ,VB
m′ with entries:

V A
m′n′(sp) = −ικ

∫
τ
n
′

exp(−ικsp ·r̃′) sp ·ν(r′) dS(r̃′)

V B
m′n′(sp) =

1

D

∫
τ
n
′

exp(−ικsp ·r̃′) dS(r̃′) (7)

4. For each collocation point rn assigned to cell Cm,
compute excitation vectors Cm, with entries:

Cmn(sp) = exp(ικsp ·r̃n) . (8)

5. For each quadrature point sp, for each pair of cells
Cm and C′

m, compute the transfer matrices T(sp),
with entries Tmm′(sp) given by (5).

6. Apply GMRES iterative solver, with each GMRES
iteration requiring matrix-vector products Aφ− Bq

(a) For each cell Cm′ , compute the far field Sm′(sp)

Sm′(sp) = VA
m′(sp)φm′ − VB

m′(sp)qm′ (9)

(b) Compute the Fourier components of the field in
each cell Cm (with summation running over cells C′

m

that are not adjacent to Cm)

Gm(sp) =
∑

m′ Tmm′(sp)Sm′(sp) (10)

(c) Compute the matrix-vector product:

(Aφ−Bq) = (A0φ−B0q)+
M∑

m=1

P∑
p=1

Gm(sp)Cm(sp) (11)

In our implementation, (sp, wp) are taken as the Lebe-
dev quadrature points and weights, specifically designed
to integrate functions on the unit sphere [13]. For the
integrals in (7), which do not involve any singularities,
simple Gaussian quadrature was used.

The Diffusion Approximation used in DOI is such that
|κI| > κR. This requires increasing the truncation level
L in (4), which in turn affects other computational pa-
rameters such as N . Published work on the FMM with
κI 6= 0 is scarce. The particular case of a lossy space has
been studied in [8] in a half-space and for small |κI|/κR

(maximum 0.32) only, while a typical value for DOI is
|κI|/κR = 9.7. However, due to the exponential decay of
|G|, low accuracy in (4) for large distances R is found to
affect only marginally the overall solution accuracy, and
in the results presented here we used (following [14]) :

L = |κa
√
3 + ln(π + κa

√
3)|+ 6 (12)

To assess the efficiency of our implementation, a se-
ries of numerical experiments were conducted on homo-
geneous spheres with increasing radius, and mesh den-
sity of 0.65 elements per mm², giving the number of
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Figure 2. Computation time as a function of number of
degrees of freedom for the FMM (blue) and BEM (red).

Figure 3. Logarithm of light intensity on cortical surface
computed from a 3-layer model

unknowns as NT = 634, 1280, 2536, 3840, 5568, 7424,
8808, 10144, 17920, 20480. Optical parameters were set
to µ′

s = 1mm−1, µa = 0.01mm−1, n = 1 and frequency
ω/2π = 100MHz. A Gaussian distribution was used as
the source term. Both a conventional BEM and the FM-
BEM models were solved for each case. The machine
used was a 3GHz processor with 32GB of RAM. Figure
2 shows the expected complexity O(N2) for former and
O(N3/2) for the latter. The L2-errror between the two
methods was less than 10−3 in all cases.

As an example of direct interest in DOI of the brain,
we constructed also a FM-BEM for the multilayer model
developed in [4]. We used a high-resolution version of the
three-layered neonate’s head, with N = 44356 [15]. This
had about three times as many unknowns as the mesh
used in [4] and the resultant dense matrices could not be
stored in memory for direct BEM. The FM-BEM solved
this problem in 220s, whereas the direct BEM for the
reduced problem with 16594 unknowns took 347 seconds.
Figure 3 shows the photon density displayed on the inner
layer (the cortical surface).

Another application of FM-BEM will be within a cou-
pled BEM-FEM approach [16], where the sparse FEM
terms can be explicitly stored and used as an extra term

in the matrix-vector calculation (11). In this implemen-
tation we considered the collocation BEM framework,
which is reflected in the simpler expression for C in con-
trast to that for V. However, a Galerkin-BEM implemen-
tation is also possible, and may improve performance due
to the symmetry properties of the resulting matrices, as
well as a simplification of the BEM-FEM coupling.

Development of an efficient FM-BEM code opens
the potential to use high resolution anatomical models
within DOI, such as in Diffuse Optical Cortical Mapping
(DOCM) [17]. Such models are readily available for ex-
ample from high resolution MRI using appriopriate anal-
ysis and segmentation tools. However, single-level FMM
becomes sub-optimal for model sizes N = O(5 104) and
beyond, so implementation of a full multilevel FMM will
be required. Finally we note that FMM can be accel-
erated efficiently using Graphics Processing Units [18],
where the difference between FM and conventional BEM
is even greater. These extensions will be reported in sub-
sequent publications.
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