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SUPPLEMENT TO
“ROBUST LINEAR LEAST SQUARES REGRESSION”
By JEAN-YVES AUDIBERT®', AND OLIVIER CATONI™S

This supplementary material provides the proofs of Theorems 2.1,
2.2 and 3.1 of the article “Robust linear least squares regression”.
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1. Proofs of Theorems 2.1 and 2.2. To shorten the formulae, we
will write X for ¢(X), which is equivalent to considering without loss of
generality that the input space is R? and that the functions o1, ... ,pq are
the coordinate functions. Therefore, the function fy maps an input x to
(0, x). With a slight abuse of notation, R(f) will denote the risk of this
prediction function.

Let us first assume that the matrix Q) = @Q + A is positive definite. This
indeed does not restrict the generality of our study, even in the case when
A =0, as we will discuss later (Remark 1.1).

Consider the change of coordinates

X =Q,'*x.

Let us introduce B B
R(0) = E[((0,X) - Y)?],
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2 1 Proofs of Theorems 2.1 and 2.2

so that o
R(Q)/%6) = R(6) = E[((8, X) — Y)?].
Let
0 ={QY%;0c0)}.
Consider
1 — 2
(1.1) r(f) =~ > ({0, X) —Y5)7,
=1
_ 1 — - 2
(1.2) () =~ > (0. X)) - Yh)°,
=1
(1.3) 0o = arg min R(0) + A|Q, %0
0cO
(1.4) 0 € argminr(0) + A||0]?,
0cO
(1.5) 6, = Q)% € argmin7(0) + Q0.
0cO

For o > 0, let us introduce the notation
Wi(0) = a{ (16, %) - ¥))* = (160, %) - ¥)*},
w (o) =a{ ((0.3) - ¥)* = (6. X) - V)*}.

For any #; € R% and 5 > 0, let us consider the Gaussian distribution

centered at 69
/2
pun(@0) = () exp (~510— 0l ) v
s 2

LEMMA 1.1. For any n > 0 and o > 0, with probability at least 1 —
exp(—n), for any 6, € R,

- / log{ 1~ E[W(6)] + E[W(6)?]/2} ps, (d0)
<=3 / log{l — Wi(0) + Wi(9)2/2} po, (dO) + K(po,, pa,) + 1,
=1

where K(pg,, po,) is the Kullback-Leibler divergence function :

Klparspur) = [ 108 L2 0)] o a),



PROOF. Since
- 1 —Wi(9)+Wi(9)2/2
E o <1,
(/%( )i[[l 1-E[W(O)] +E[W(6)2]/2) ~
with probability at least 1 — exp(—n)

n W) £ WH6)2)2
o8 </ (@) =g+ [W(9)2}/2>§n'

We conclude the proof using the convex inequality (see [2], [3, Proposition
1.4.2] or [1, page 159])

log (fpgo(de) exp [h(@)]) > [ po, (d9)R(8) — K(pa,, po,)-

Let us compute some useful quantities

(1'6) IC(P€27PGO) = g‘w? - 90”27
Jpo,(d0)[W (0)] = [ pg, (d6) (6 — B2, X)* + W (62)
(1.7) =W(h2) + %XW
3| X

(1.8) [P, (dO)(0 — 02, X)" = GRS
[ po,(d0)[W (0)%] = 2 [ pa, (d6)(6 — b, X)2((0 + o, X) — 2V

— 2
— 02 09,(d6) (9 — 62 + 8 — 09, K) ({6 — 02 + 02 + 60, X) — 2V

= [ 90, (d9)[0(6 — 02, X)? + 200 — 02, %) ({62, X) = Y) + W (6 2)}2
= [ pa,(d9)[02(0 = 02, X)* + 402(0 — 05, X)? (02, X) = V) + W (02)?
+ 200 — 92,7>2W(92)}
_ 30‘1’27”4 n 20‘”;”2 [20((02, %) = ¥)? + W(0)] + W ()2,
Using the fact that
20((03, X) — Y)* + W (6a) = 2a((6p, X) — Y)* + 3W (62),

and that for any real numbers a and b, 6ab < 9a® + b?, we get
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LEMMA 1.2.
(1.10)
Y12
o (a0) [ (®)] = w(os) + L
[ o, (d0)[W(8)*] = W (6:)* + 200X [2a(<90,7> —v) 4 3W(92)]
(1.11) ?ﬂgﬂ
(1.12) < 10W(03)? + M(<90,7> _ Y)2 + 4?1 X|*

g g
and the same holds true when W is replaced with W; and (X,Y) with

Another important thing to realize is that

E[IXI) = E[T(X X)) — B[Tr(Q; 2 X XTQ; )]
= E[Tr(Q;lXXT)] _ TY[Q;lE(XXT)]
(1.13) = TI"(Q;l(Q)\ — /\I)) —d— )‘TT(QKI) _ D

We can weaken Lemma 1.1 (page 2) noticing that for any real number z,

x? 22 1+ + 2?2
_ T e og1ma+ B} S (/2
T Og( x+2> Og< 1+ 24/4 )

22 22
§log<1+$+7> §$+7.

We obtain with probability at least 1 — exp(—n)
NO__ =2 9

nE[W(62)] + 7EU|X\| | = 5nE[W (62)°]

2(1%7 12 2177 |4
—E 2na ”X” ((00’Y> _ Y)2 + 2na ”2X”
B B
< Z{Wi(@) + 5Wi(62)?
i=1

o Xil? | 2021X601% )+ 2, 222 X"
+ + i) —Y)
g g )=Y) B2



+ §|’92 — 0oll* + 1.

Noticing that for any real numbers a and b, 4ab < a® + 4b%, we can then
bound

a2 W (02)% = (B — 0o, X)2((02 + 0o, X) — 2V
= (02— 00.%)?[{02 — 0. %) +2((00. X) ~ V)|
= (02 — 00, X)* + 4(02 — 60, X)* ({60, X) = Y)
+ 4(02 — 0, X)* ({60, X) — V)
< 2(0y — 0o, X)* + 8(0y — 0, X)* ({00, X) — Y)*.

THEOREM 1.3. Let us put
~ 1< —
D=-— ZHXle (let us remind that D = E[HXH2] from (1.13)),
n
i=1

By = 2B I (00, ) - v,

n

By =23 [IKHIP (00, X~ v0)?).
i=1
B = 2B| X"},

~ 2
By = > IX,
i=1

By = 10sup{B[(u, X) ({60, ) = V)] 1w € RY, luf) = 1},

. 40 K, -

By = sup{; >, X)? ({00, Xi) = Yi) s w e R, Jul = 1},
i=1

By =10 sup{E[(u,Y)ﬂ cu € RY Jjul = 1},

~ 10, —
By = sup{_ Z<U,X,->4 u e RY, [|ull = 1}’
n

i=1
With probability at least 1 — exp(—n), for any 0y € R,
nlE [W(@Q)] — |:na2(Bg + Eg) + §:| H92 — 90”2

—na®(By + By)||62 — 6o|*
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n R 2 . 2 R
<> Wilh) + %(D D)+ %(Bl +By) + "5%(32 + By) +1.

1=1

Let us now assume that #y € © aEd let us use the fact that © is a
convex set and that y = argmin, g R(0) + )\HQ;U29|]2. Introduce 6, =

arg mingepa R(0) + )\|]Q;1/29H2. As we have
— ~1/2 - —-1/2
R(0) + MQ, 2012 = 16— .17 + R(6.) + A @5, 0.

the vector fy is uniquely defined as the projection of 6, on © for the Eu-
clidean distance, and for any 0, € ©

(1.14) o 'E[W(62)] + AQ) 26212 — A Q5 60|
= R(62) — R(6o) + N|Qy 021> — A Q5 /%60
= 162 — 6.1 — (|60 — 6.2
= ||62 — 60||* + 2(02 — 69,00 — 0) > ||62 — 60>

This and the inequality

o™ Y Wi01) + nAQ 20112 = nA Q) 200l < 0
i=1

leads to the following result.
THEOREM 1.4.  With probability at least 1 — exp(—n),
N 2 s f 2
R(B) + AIGIP ~ inf [R(9) + Ao]”
= a 'E[W(01)] + AQy 6 — M@} 60

18 not greater than the smallest positive non degenerate root of the following
polynomial equation as soon as it has one

{1 — [Oz(Bg + §3) + i] }ZE — Oé(B4 + §4)ZE2

2na

n

1 ~ «Q ~ « ~
= —max(D — D,0)+ —=(By + By) + — (B2 + Bs2) + "

B g B2

PROOF. Let us remark first that when the polynomial appearing in the
theorem has two distinct roots, they are of the same sign, due to the sign of
its constant coefficient. Let Q be the event of probability at least 1 —exp(—n)
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described in Theorem 1.3 (page 5). For any realization of this event for which
the polynomial described in Theorem 1.4 does not have two distinct positive
roots, the statement of Theorem 1.4 is void, and therefore fulfilled. Let us
consider now the case when the polynomial in question has two distinct
positive roots x1 < z2. Consider in this case the random (trivially nonempty)
closed convex set

6 — {e €0 R(O) + A|6]> < inf [R(6) + X|¢] + %}

Let 03 € argmin,_g(0) + Al|0]|* and 64 € argmingee 7(6) + Al|f]]>. We
see from Theorem 1.3 that
(1.15) R(03) + N|0s]|* < R(0o) + A6y + 22,
because it cannot be larger from the construction of ©. On the other hand,
since © C O, the line segment [, 64] is such that [f3, 6,)NO C arg min,_g 7(6)+
AJ|6]|2. We can therefore apply equation (1.15) to any point of [f3,64] N ©,
which proves that [fs3,04] N O is an open subset of [f3,60,]. But it is also
a closed subset by construction, and therefore, as it is non empty and
[03,04] is connected, it proves that [fs,64] N 0 = [03,04], and thus that
04 € ©. This can be applied to any choice of 03 € argming_g (6) + A|0[?
and 04 € argmingeg r(0) + A||]|?, proving that argmingeg r(0) + A||6]|? C
arg min,, g r(0) + A||@]|? and therefore that any 4 € arg mingeg r(0) + A||6]|?
is such that

R(04) + Al64]* < jnf [R(0) + A[6]1%] + 1.
because the values between x1 and 9 are excluded by Theorem 1.3. O

The actual convergence speed of the least squares estimator 6 on © will
depend on the speed of convergence of the “empirical bounds” Ek towards
their expectations. We can rephrase the previous theorem in the following
more practical way:

THEOREM 1.5.  Let ng,n1,...,n5 be positive real numbers. With proba-
bility at least
4
1-P(D > D +mn) — Z]P(Bk — By, > i) — exp(—1s),
k=1

R(0) + A||0])? — infpeo [R(0) + X||0]|?] is smaller than the smallest non de-
generate positive root of
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(1.16) {1 — [o(2Bs +73) + 5] }a: — a(2By + ma)a

o °

g B2

where we can optimize the values of a > 0 and B > 0, since this equation
has mon random coefficients. For example, taking for simplicity

5

(0]
— (2B 2B -
+ﬁ( 1+m) + =5 ( 2+772)+na,

1
a=—,
8B3 + 4n3
no
5_ 77

we obtain

2By +ms o 16nm9(2B3 +m3)  8B1 +4m
xr — €t = +
4B3 + 2n3 n n
n 32(2B3 +13)(2B2 + m2) n 8n5(283 + 13)
n2 n ’

1.1. Proof of Theorem 2.1. Let us now deduce Theorem 2.1 from Theo-
rem 1.5. Let us first remark that with probability at least 1 —&/2

~ B
D<D+4/=2,
EN

~ B
because the variance of D is less than 2—2 For a given € > 0, let us take
n

| B
Ny = —27 = Bl7 2 = B27 n3y = Bg and Ny = B4. We get that
En

~

R (0) — infgco R (0) is smaller than the smallest positive non degenerate
root of

By
Xr — —IIZ'2

4833 BQ 1231 2883233 24 lOg(3/E)Bg
= + + +
2Bs n ne n n? n

with probability at least

4
DeE ~
- - > P(Bi > By + ).
k=1
According to the weak law of large numbers, there is n. such that for any
n = neg,

> P(By, > B+ m) < /6.

4
k=1
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Thus, increasing n. and the constants to absorb the second order terms, we
see that for some n. and any n > n., with probability at least 1 — ¢, the
excess risk is less than the smallest positive root of

B4 2 13B1 i 2410g(3/€)B3

v 2333j N n n
Now, as soon as ac < 1/4, the smallest positive root of z — az? = ¢ is
2c
——— This means that for n large enough, with probability at least
1+ +1—4ac 5 & P Y
1—e¢,

158, 251 B
R(6) — inf R () < 5n1 Slog(3/¢) By

n

which is precisely the statement of Theorem 2.1, up to some change of no-
tation.

1.2. Proof of Theorem 2.2. Let us now weaken Theorem 1.4 in order to
make a more explicit non asymptotic result and obtain Theorem 2.2. From
now on, we will assume that A = 0. We start by giving bounds on the
quantity defined in Theorem 1.3 in terms of

B= sup 11136 /BLf (X)),

fESpan{SDlv---vS@d}_{O}

Since we have
X% = Q> X|? < dB,

we get

~ 1 n — 12

d= 3 Y I%IP < an,

By = 28| X2 ((60, X) - ¥)*] < 2B R(f),
Blz—z[ux I2(460, X5) = i)°] < 24B (1),

B, = 2E[|X| } < 2d2B2,

3

) 2 ~ 14 2 »2
BQZEZ;HXZ-H < 2d°B?,

Bj = 40 sup{E[@,E?((eO,E — Y)Y tueRY |fuf = 1} < 40B R(f"),
Bs = sup{“—f ;<u,7i>2(<00,7i> ~Y)?u e RY Jull = 1} <40Br(f7),
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B, =10 sup{E[(u,X>4] cu € RY Jjul = 1} < 10B?,

n

. 1 _
B, = sup{;o ;(U,Xi>4 cueRY |ul| = 1} < 10B2.
Let us put
4y = 2dB + 4dBa|R(f*) +r(f*)] +n . 16B22al27
an an
ay = 3/4 = 40aB[R(f*) +r(f7)];
and

as = 20aB2.

Theorem 1.4 applied with 8 = na/2 implies that with probability at least
1 — 7 the excess risk R(f(®™) — R(f*) is upper bounded by the smallest
positive root of ajx — asx? = ag as soon as a% > 4agas. In particular, setting
e = exp(—n) when (1.17) holds, we have

2 2(10

R(flerm)y _ R(*) < a0 < —.
(f ) () < ay + a% —4apgay @1

We conclude that

THEOREM 1.6.  For any o > 0 and € > 0, with probability at least 1 — ¢,
if the inequality

(1.17) 80<(2+40‘[R(f*)+T(f*)])Bd+log(€‘1) N <4Bd>2)

< (5~ d0atmr) + 1)

holds, then we have
(1.18)

Rﬁ@mkﬂuwéj<

(2+4aUﬂfﬁ—%MfﬂDBd+Jmﬂé4)+ ABd\*
n n ’
where J = 8/(3ac — 160 B[R(f*) + r(f*)])
Now, the Bienaymé-Chebyshev inequality implies

P@Uﬂ—RUﬂzﬂgEVUﬁ;RUm

2

<E[Y — (X))} /nt%
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Under the finite moment assumption of Theorem 2.2, we obtain that for any
e > 1/n, with probability at least 1 — ¢,

r(f7) < R(f) + VEY — f+(X)%.

From Theorem 1.6 and a union bound, by taking

o= (803[2R(f*) + VEY — f*(X)]4>_1,

we get that with probability 1 — 2¢,

R(fem)y — R(f) §le(:aBdHog(a—l) N <4Bd>2),

n n

with J1 = 640 <2R(f*) + \/E{[Y — fH(X))*} ) This concludes the proof of
Theorem 2.2.

REMARK 1.1. Let us indicate now how to handle the case when Q is
degenerate. Let us consider the linear subspace S of R® spanned by the
etgenvectors of Q) corresponding to positive eigenvalues. Then almost surely
Span{X;,i =1,...,n} C S. Indeed for any 0 in the kernel of Q, E((O,X>2) =
0 implies that (6, X) = 0 almost surely, and considering a basis of the ker-
nel, we see that X € S almost surely, S being orthogonal to the kernel of Q.
Thus we can restrict the problem to S, as soon as we choose

5 L 2
VRS span{Xl, . ,Xn} ﬂargnban;((H,Xﬁ - YZ) ,

or equivalently with the notation X = (¢;(Xi))1<i<ni<j<a and Y = [Y;]7_;,
0 e z'mXTﬁargmein X6 —Y|?

This proves that the results of this section apply to this special choice of the
empirical least squares estimator. Since we have R = ker X @im X, this
choice is unique. Finally, we also have that inequality (2.3) of the paper still
holds by replacing d by rank(Q).

2. Proof of Theorem 3.1. We use the same notations as in Section 1.
We write X for p(X), therefore, the function fy maps an input x to (0, x).
We consider the change of coordinates

X =Q,'’x.
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Thus, from (1.13), we have E[[|X]|?] = D. We will use
R(9) = B[({6, X) - Y)?],

so that R(QY20) = E[((0, X) — Y)?] = R(fy). Let
0=1{Q)/%;0c0),

and consider
8o = arg min {E(@) + AHQ;V%H?}.

0c®

With these notations,
0= Q"0
o = E[((60, X) - V)?],
o Bl X))
X - Sup E(<u,7>2) 9

ucR4

CE(XIMY RN
E(Ix|12) D 7

, E[((6.X) - v)"]"?

K = 2 ,

and T =|©| = max ||0 — €]
0,0'co

For o > 0, we introduce

and
n

~1/2 ~1/2 1
r(0.0) = A(1Qx 017 — 12, 70'1) + —
i=1

Let 6 = Qi/zé € ©. We have

(2.1) —1'(00,0) =7'(0,00) < maxr'(0,01) <~ +maxr'(6y,0:),
0,€0 01€0
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where the quantity vy = max 7/(6,0;) — inf max 7/(f,0;) can be made
61€0 0cO 60,6
arbitrary small by a proper choice of the estimator. Using an upper bound

r'(6p,61) that holds uniformly in 61, we will control both left and right hand
sides of (2.1).

To achieve this, we will upper bound
B ~1/2 ~1/2 1 <
(22) 7'(00,00) = A(1Q5 00l — 103 612 + e 2o = Wilo)]

by the expectation of a distribution depending on 60y of a quantity that
does not depend on 61, and then use the PAC-Bayesian argument to control
this expectation uniformly in #;. The distribution depending on 6y should
therefore be taken such that for any #; € O, its Kullback-Leibler divergence
with respect to some fixed distribution is small (at least when 6; is close to
o).

Let us start with the following result.

LEMMA 2.1. Let f,g : R — R be two Lebesgue measurable functions
such that f(x) < g(z), = € R. Let us assume that there exists h € R such
that x + g(x) + ha?/2 is convex. Then for any probability distribution p on
the real line,

f( / xu(dw)> < [ atwhntan) + minfsup g ~int 5.5 Var(in)}.

PROOF. Let us put 29 = [ zp(dz) The function

x— g(z) + g(az — x0)2

is convex. Thus, by Jensen’s inequality

h

Flan) < gte) < [ ulde)|[ot0) + 5o = 0| = [ ot + § Vo),

On the other hand

fao) <sup f <sup f o+ [ [gfa)  int f](do)
= /g(:z:)u(d:n) +sup f —inf f.

The lemma is a combination of these two inequalities. O



14 2 Proof of Theorem 3.1

The above lemma will be used with f = g =1, where % is the increasing
influence function

—log(2), x < —1,
) log(1 +x+2%/2), -1 <2 <0,
Vie) = —log(l —x +22/2), 0<x<1,
log(2), x> 1.

Since we have for any x € R

z? l+o+% z?

7
the function 1 satisfies for any z € R*
2

z? x
—log 1—:13—1—? < (x) < log 1+:E+7 )

Moreover

¥(z) = ——=

=
-+ %

z(z —2)

BT L

>_2 0<az<l,

)

showing (by symmetry) that the function o + 1 (z) + 222 is convex on the
real line.

For any #' € R? and 8 > 0, we consider the Gaussian distribution with
mean @' and covariance 711

/2
por(d8) = <%> exp (—§||9 - 0’||2> .

From Lemmas 1.2 and 2.1 (with p the distribution of —W;(0) +
when 6 is drawn from py, and for a fixed pair (X;,Y;)), we can see that

Y[-Wi(61)] = ¢{/p91 (df) [_Wi(e) i @]}

< [ on oy [-wigo) + L]

+ min{log(él), Var,, [Li(9)] }

af X2

Let us compute

7

 Vary, (Ti6)) = Var,,, [J2(6) ~ 72(601)]



15

X

— [ ntas)[726) - T260)" - 5

_ _ 2 X%
= /p91 (d@) |:<9 — 91,X¢>2 + 2<9 — 91,XZ>JZ(91)] — H Bz”
2G| ALi(0y) X
(2.3) = + of )
Let £ € (0,1), and let us remark that
— EZ(Q) a<9 — 91,7»2
. < )
We get
min{log(él), Var, [Li(9)] }
- Ao X2 Li(61) 2042H7i\|4}
= minq log(4), +
< [ ta) min{log<4>,
40| XilPLi(6) | 207 Xa|7 | 40?1 X]%06 — 917702}
BE B2 BA-¢)
. 4o Y@ 2Zi 0 20(2 Y@ 4
< /pgl(dﬁ) mm{log(4), | ﬁHE ) 22 ” }
: 4042||7i||4}
4+ min< log(4), ——~ .
lstt) 27—
Let us now put a = < 2.17,b=a+a?log(4) < 8.7 and let us remark
log(4)

that

min{log(4),z} + min{log(4), y}
< log[1 + amin{log(4), z}] + log(1 + ay)
<log(1l+ az + by), r,y € Ry,

Thus

min{log(él), Var, [fz(e)] }

dac|| X2 Ls(0) 2a2|’7iH4< 2b ﬂ
+ a+——||.

< / po, (d0) log {1 + Be 52 T



16 2 Proof of Theorem 3.1

We can then remark that

() +log(1 + y) = log[exp[t)(z)] + y exp[i(2)]]
22
< log [exp[¥)(z)] + 2y] < log(l tat o+ 2y>, reR,ycRy.

2b
Thus, putting ¢ = a + ——, we get

1-¢
(2.4) o[- Wier)] < [ poy(a8) logl4:(0)]
with
af Xof* 1 af X2\ ?
AZ(O) =1 WZ(9)+T+§<—WZ(9)+T>
8acr|| X;||*L;(9) n dege®|| X4t
BE 2 ’

Similarly, we define A(#) by replacing (X;,Y;) by (X,Y). Since we have

E [exp <glog[Ai(9)] - nlog[EA(e)]ﬂ =1,

from the usual PAC-Bayesian argument, we have with probability at least
1 — ¢, for any 6; € R,

/ pm(de)(zlogmi(e)]) — 1 [ o, (@0) 0g[AO)] < Ko ) + ToB(c™)
=1

VRT
S5”91 Ol

5 +log(e™h).

From (2.2) and (2.4), with probability at least 1 —¢, for any §; € RY, we get

o X2

3

B a||7\|2>2 800 X|2Z(60) 4coa2\|7\|4>]}
<W(9)+ﬁ T T

Blif1 — boll* | log(e™") ~1/2, 112 —1/24 |12
- 2na * no +/\<HQ>\ Bol _HQA O] )

" (00, 01) < élog{1 +EU oo (d0)<—W(0) 4

N =

+
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2
aHX” f(@ )+ /001 (d@)f(@), we deduce that

Moreover from (2.3) an

v 2
o X1

[ ontan)(=wo)+ “ZE) v, [26) + w6r)

daL(6)|X]* | 202 X"
B o

PROPOSITION 2.2.  With probability at least 1 — ¢, for any 0; € RY,

=W(61)* +

(60, 01) < élog{l +E[_W(91) LW | (24 80/6)a| XIPL()

2 g
. (1+8a/s + 460)042HYH4} } Bll1 — bol? n log(e™")
B2 2no no

(1R 200l — 125 6]

S
B[00~ g0+ Loyt + 2 SIXILO)
L (+8a/c+ 46(])04”7”1 516, — 6ol log(=)
B2 2no no

+A(1Qy 200l ~ @5 6]
Using the triangular inequality and Cauchy-Schwarz’s inequality, we get
LEW(6.)%] = BL[(61 — 60, )% + 2061 — 60, %) J(80)]
SE[W(0)2) = E{ (601 — 00, %)2 + 2001 — 60, X)J00)]°}

(2.5) < {E[<91 — 60, X)"]"? 1 2E[ (6, — 90,Y>4]1/4E[J(90)4]1/4}2

01— 0y <\>
—6|PE|{ ——, X
{X”‘)l (oo ¥) |

+2\|91—90||0¢_¢ myﬂr

X4max H91 . 90”2{“91 o 60” XQmax + 20_\/_}

IN

Qmax + A max + )\

and

E[IXPZ(61)] = B{ (1101 — 00 %) + [ X117 (60))” }
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(26) < B[IX|*) {0 - 00.X) 7 + BL7600)") )
2
< /—@D{H@l — 0| % + 20\/5} .
Let us put

é(@) R(O) + 7@y 0)1%,
=4(2 + 8a/¢),
= 4(1 + 8a/& + 4cyp),

log(e7!)  cow?D?
c1kk' Do? . 2X< T (2\/_0 - H@H\/—>

n

n 1 de1kx D

5=
n

We have proved the following result.

PROPOSITION 2.3.  With probability at least 1 — ¢, for any 0; € RY,

/(6. 61) < R(6) — B(6:) + Sx/101 — 6ol (2o + 61 — bull vx]”

cla coak?D?
+ 1—/£D[\/_J—|— 161 — 6ol v/x] QT
N 31161 — 6oll? N log(&?_l)_
2na no

Let us assume from now on that §; € ©, our convex bounded parameter
set. In this case, as seen in (1.14), we have ||y — 01]|*> < R(01) — R(6). We
can also use the fact that

[Vio + 161 — bollv/x]” < 2+'0 + 2x]|61 — 60>
We deduce from these remarks that with probability at least 1 — ¢,

SO [R(6r) - o)

crakDr' o i coak®D? . log(e™1)
283 432 no

(60, 61) é{ 1+t 2V o+ yx]’ +—+

Let us assume that n > 4cikx D and let us choose

no
5_77
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o 1 <1 B 401/£XD>
2x[2vW o + |8]/x] n )

to get _ _

R(61) — R(6o)

' (6p,01) < — 5

+ 0.

Plugging this into (2.1), we get

2 0:1€0

hence
R(0) — R(fp) < 27 + 4.

Computing the numerical values of the constants when & = 0.8 gives ¢; < 95
and co < 1511.
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