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Abstract

3D images of nodular graphite cast iron samples obtained with syn-

chrotron tomography are analyzed by resorting to digital volume correla-

tion. This technique uses the material microstructure to measure displace-

ment �elds within a sample submitted to mechanical loading. Compared

to classical 2D digital image correlation, the reconstructed volumes used

by DVC tend to increase the uncertainty in the correlation calculations,

yet elastic strains of the order of 10−3 can be measured. Displacement
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�elds around the front of a fatigue crack have also been measured by an

extended version of DVC, and are used to extract stress intensity factors

(in modes I, II and III) along the crack front. The values are in good

agreement with �nite element calculations when the experimentally mea-

sured displacements prescribed on the sample boundaries are considered

as input in the numerical simulations.

Keywords: Elastic properties, full-�eld measurements, measurement uncer-

tainties, stress intensity factor, X ray tomography.
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List of notations

a constant

ap amplitude associated with mode I reference �elds

bp amplitude associated with mode II reference �elds

dj additional degrees of freedom (enriched kinematics)

E Young's modulus

f picture of the reference con�guration

g picture of the deformed con�guration

H Heaviside step function

hj enrichment function

i imaginary unit

j index

KI , KII , KIII mode I, II, and III stress intensity factors

ℓ element size

ne �nite element shape function

nj component of kinematic basis

nx, ny, nz number of nodes in the x, y and z directions

N total set of nodes

Ncut set of nodes that hold additional degrees of freedom

p index

r radius

R load ratio

u displacement vector

uj degree of freedom

v in-plane displacement

x coordinate in the reference con�guration

xj coordinate of node j in the reference con�guration

w out-of-plane displacement
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α power

ϵ, ϵ̃ average strains

η dimensionless correlation residual

θ angle

κ Kolossov's constant

µ Lamé's modulus

ν Poisson's ratio

σu standard displacement uncertainty

σ⟨u⟩ displacement uncertainty of a given surface

σϵ standard strain uncertainty

σϵ̃ standard strain uncertainty

φ local correlation residual

ϕϕϕ reference �eld of a cracked sample

Φ global correlation residual

Ω Analyzed volume

⟨•⟩ mean value of •
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1 Introduction

Among the di�erent methods available to the engineer or researcher for mea-

suring displacements in a material under mechanical loading, digital image cor-

relation (DIC), whose early developments date back to the early 1980s [1, 2, 3],

is gaining growing interest, partly because of the appealing simplicity of the

technique, namely, displacement �elds are measured by registering two images

of the surface of a specimen under di�erent loads [4]. The extension of this

technique for measuring three dimensional displacement �elds in the bulk of

samples under load is relatively recent (see for example Ref. [5] for references).

Such measurements are complementary to di�raction experiments. First they

allow one to relate directly local �uctuations in displacements to variations in

the microstructure (in a broad sense) avoiding a combined and usually rela-

tively complex use of di�raction and imaging [6]. Besides, some information

can potentially be obtained with correlation methods for amorphous and/or

non di�racting materials such as polymeric foams [7] or stone wool [8].

If the principles underlying image and volume correlations are essentially the

same, in practice several distinctions must be pointed out. First, 3D images of

a material are not as easily obtained in a non destructive way as 2D images.

Among the few techniques that provide such 3D images, X-ray tomography

using either laboratory or synchrotron X ray sources is more and more used.

Tomography images are reconstructed from a set of radiographs, a procedure

producing artifacts / noise that must be taken into account when digital volume

correlation (DVC) measurements are to be performed [9].

Second, as explained before, DVC requires the presence of a pattern in the

material microstructure. When observing surfaces, this pattern is easy to ob-

tain by spraying for instance black and white paint [4], in 3D the markers

issue is much more complex. Two di�erent methods have been employed so

far. A �rst route is to introduce arti�cially the markers in the studied mate-

rial [10, 11, 12, 13, 14], the other one is to directly use the material microstruc-

ture [15, 16, 17, 7, 8, 5]. The �rst method can in principle be applied to a variety
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of materials, provided a suitable technique for distributing homogeneously the

markers is found. However, the question of how much the presence of those ex-

trinsic features a�ects the deformation processes remains a critical issue. From

that point of view, natural markers appear more attractive, but the number of

materials presenting a relevant microstructure is restricted. So far, the deforma-

tion of quite di�erent �naturally marked� materials has been studied, namely,

trabecular bone [15, 16, 18], polystyrene foam [7], stone wool [8], wood [19], cast

iron [20, 5] and aluminum alloys [21, 17] to name a few. It must be pointed out

that in some cases [21, 10], the method consists in tracking the displacement

of the center of mass of the markers (a method called particle tracking) and is

therefore di�erent from what will be described hereafter.

When dealing with 3D images (or volumes), the pattern that is used for

measuring displacements �elds corresponds to a volume within the material,

the term Digital Volume Correlation (DVC) has been chosen and will be used

hereafter. Historically, DVC has been �rst used to characterize relatively large

displacement / strain levels such as those obtained during plastic deformation of

metallic materials [10] or elastic strains in low moduli materials [15, 7, 8]. The

elastic strains in metallic materials being quite small (typically less than 10−3),

they are quite challenging to be measured by DVC as the uncertainty levels

encountered with this technique tend to be larger than those observed in 2D-

DIC [9]. An explanation for these higher uncertainty levels is discussed herein.

It is also shown that DVC can be used to evaluate accurately elastic strains

in metallic samples under load using synchrotron X ray tomographic images.

Finally a variant of DVC, which is called eXtended DVC (or X-DVC [20, 22]),

is also described and used for measuring displacement �elds in the bulk of a

material containing a crack. This technique gives a direct evaluation of crack

opening maps and allows for the evaluation of the local crack driving force via

the extraction of stress intensity factor pro�les [22].
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2 Material

The studied material is a ferritic cast iron (3.65 wt%C, 3.2 wt%Si, 0.04 wt%Mg,

< 0.1 wt%Mn, <0.005 wt%S, 0.02 wt%P) whose microstructure consists of a fer-

ritic matrix containing a homogeneous distribution of nearly spherical graphite

nodules (volume fraction: 13 %, average inter-nodule spacing: 50 µm, average

nodule diameter: 50 µm). Those nodules have a lower X ray attenuation than

the (ferritic) iron matrix, and are therefore easily imaged by tomography; they

allow for an easy registration of the reconstructed images. Figure 1(a) shows a

reconstructed 3D image of the material in which the nodules appear dark and

the ferritic matrix in light colors. The corresponding histogram is shown in

Figure 1(b).

[Figure 1 about here.]

3 3D imaging and mechanical tests

The synchrotron tomography experiments were performed at the European Syn-

chrotron Radiation Facility (ESRF) in Grenoble (France) on beamline ID19.

The details of the tomography experimental set up of ID19 can be found in

Ref. [23]. A set of 600 radiographs (scan) was recorded during a 180-degree

rotation on a Charge Coupled Device (CCD) camera with a square array of

2048× 2048 pixels (exposure time: 3 s). This detector was coupled with a �uo-

rescent screen via optical lenses. The white beam coming from the synchrotron

ring was rendered monochromatic by a multilayered monochromator. The en-

ergy of the beam was set to 60 keV. The monochromatic beam was parallel so

that no geometric magni�cation was possible. Instead, the voxel size was the

result of the camera optics used.

Reconstruction of the tomographic data was performed with a �ltered back-

projection algorithm developed at ESRF that provided 8-bit gray scale 3D im-

ages with an isotropic voxel size. The nodule size is large enough to allow for a

relatively low voxel size to be used for tomography. This, in turn, enables for
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the observation of millimetric samples, the only limitation for the sample size

being the overall attenuation of the material that has to allow for at least 10 %

transmission of the incoming X ray beam. In practice a voxel size of 5.1 µm was

chosen so that each �nite element in the DVC analysis (see below) could contain

at least one nodule (the mean distance between nodules is of the order of 50 µm,

or 10 voxels). Therefore analyses dealing with elements whose size is greater

than 9 voxels does not need any regularization. For smaller lengths, it is possible

to perform successfully a registration (even at the voxel level). This procedure,

called voxel-scale DVC (or V-DVC), calls for a mechanical regularization [24].

The �rst experiment described in this paper consists of a tensile test on a

smooth sample (i.e., with no crack) that was loaded to a maximum level of

273 N, and then unloaded. Its cross section is equal to 1.6 × 0.8 mm2. Five

tomographic scans were acquired during which the load level was equal to 22,

150, 200, 250 and 273 N. The standard uncertainty of the load cell is equal to

5 N. In the second experiment, a specimen containing a crack has been stud-

ied during an in situ cyclic test thanks to a dedicated testing machine. This

millimetric sample (cross section: 1.6 × 1.6 mm2) has been cut out of a larger

fatigue coupon [25]. The fatigue machine was directly installed on the rotation

stage of the micro-tomography setup. The sample has been cycled in air with a

constant stress amplitude (load ratio: R = 0.1) and a frequency of 40 Hz. At the

beginning of the experiment, scans were acquired at intermediate loading steps

from the maximum to the minimum load of the �rst unloading / loading cycle

(Figure 2). Then during the in situ fatigue experiment, scans were recorded

at di�erent time intervals with the specimen held under maximum load. When

crack growth was detected in these images, another complete loading / unloading

sequence was recorded. The fatigue crack interactions with the microstructure

gives a roughness of the crack path of the order of the grain/nodule size, which

is small enough to ease further modeling. In the present case, one result will

be shown when 45,000 cycles were applied to the sample. The reference con-

�guration corresponds to the acquisition at minimum load, and the deformed
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con�guration to a scan at maximum load.

[Figure 2 about here.]

4 Digital Volume Correlation (DVC)

Volume correlation consists in registering two volumes with the help of a dis-

placement �eld (to be determined). To estimate the unknown displacement �eld

u, the quadratic di�erence φ2 = [f(x) − g(x + u(x))]2 is integrated over the

studied domain Ω

Φ2 =

∫
Ω

φ2(x)dx (1)

and minimized with respect to the degrees of freedom ui of the sought displace-

ment �eld

u(x) =
∑
j

ujnj(x) (2)

where nj(x) are the components of the chosen kinematic basis. In the present

case, a 3D �nite element kinematics is chosen [26] for the sought �elds, so

that nj correspond to shape functions, here selected as trilinear polynomials

associated with 8-node cube elements (or C8-DVC [7]). The method used herein

is therefore a Galerkin approach to digital volume correlation. Other approaches

can be found, namely, as in 2D applications, the most commonly used correlation

algorithms consist in registering locally small zones of interest in a sequence of

pictures to determine local displacement components [4]. The same type of

hypotheses are made in three-dimensional algorithms [15, 27, 16, 11]. With C8-

DVC there is only one correlation parameter to be chosen, namely, the size ℓ of

the element edge.

The second kinematic basis that will be used herein is enriched as in X-FEM

simulations [28]. The partition of unity property [29] of the shape functions ne

is used ∑
e

ne(x) = 1 (3)
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to construct the enriched approximation of each component u of the displace-

ment �eld

u(x) =
∑
j∈N

ujnj(x) +
∑

j∈Ncut

djhj(x)nj(x) (4)

where uj are the degrees of freedom associated with the standard (i.e., contin-

uous) shape functions, and Ncut the set of nodes that hold additional degrees

of freedom dj associated with the enrichment function hj(x) de�ned in [30]

hj(x) = H(x)−H(xj) (5)

where H is the Heaviside step function whose value is 0 below the crack surface

and 1 above, and xj gives the position of node j. When associated with a C8

shape functions, it is referred to as XC8-DVC [20, 22].

To evaluate the quality of the following correlation results, the normalized

correlation residual is considered

η(x) =
|φ(x)|

maxΩ(f)−minΩ(f)
(6)

and its mean value ⟨η⟩ is computed over the whole correlation volume Ω. When

the measured displacements are unknown, this quantity is the only estimator

available to assess the quality of the registration (Section 5.1), and the adequacy

of the kinematic basis to the analyzed experiment (Section 5.2).

It is to be stressed that the quality of the enriched kinematics relies on the

ability to determine precisely the support of the discontinuity, i.e., the crack

surface. To reach this goal, it revealed convenient to exploit the residual map

obtained with a continuous kinematics [22]. In that case, mismatch errors accu-

mulate on the surface of discontinuity as it violates the kinematic assumption

(i.e., continuity of the displacement �eld). An automatic procedure can then

be designed to �nd a surface which maximizes its intersection with the resid-

ual �eld, thereby providing a good approximation of the crack surface in the

reference image.
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5 Results and analyses

5.1 Tensile test on smooth sample

To illustrate the usefulness of the correlation residuals, Figure 3 shows the latter

ones at di�erent steps of the registration procedure when the �rst load level

is analyzed. In Figure 3(a) the initial di�erence |f − g| is given before the

correlation procedure has started. The microstructure is clearly visible, and

⟨η⟩ = 11.6 %. A �rst step consists in evaluating the mean rigid body translation.

The result of this �rst correction is shown in Figure 3(b). The mean correlation

residual ⟨η⟩ = 5.4 % is signi�cantly reduced. However, there are zones for

which the registration has still to be improved. Figure 3(c) shows the �nal

di�erence |f −g| at convergence. The microstructure cannot be recognized, and

⟨η⟩ = 2.9 %. This low value gives con�dence in the measured displacement �eld.

It is con�rmed when the histogram of the gray level residuals (Figure 3(d)) is

compared with that of the reference volume (Figure 1(b)).

[Figure 3 about here.]

To evaluate the performance of the correlation code, a reference volume is

considered. A constant sub-voxel displacement is applied to create an arti�-

cial volume that is registered with the reference one. The mean value is very

close to the prescribed one (i.e., a di�erence less than one thousandth of one

voxel). However, there exists a scatter characterized by a standard deviation

σu = 0.044 voxel (for 16-voxel elements) whose level is more than one order of

magnitude higher than the bias. The value of σu is not as low as what is observed

in 2D-DIC [31], but classical in DVC. Higher values are generally observed in

DVC due to reconstruction artifacts associated with tomography [32, 33, 9].

An additional cause is related to the fact that the analyzed 16-Mvoxel volume

is such that its external surface to volume ratio is of the order of ≈ 1/39 voxel−1

as compared with a ratio of external perimeter to surface ratio generally less

than ≈ 1/256 pixel−1 for 1-Mpixel pictures. Therefore, the weight of the degrees

of freedom belonging to the external faces is more important in the present case

11



than for regular pictures. Remembering that the degrees of freedom belong-

ing to an external surface have a higher uncertainty level (half of the elements

are missing for a node belonging to a face, 3/4 for an edge and 7/8 for a cor-

ner), higher surface to volume ratios will lead to higher values of uncertainty

levels [24].

Figure 4 illustrates this e�ect, namely, when only inner nodes are considered

(inner ROI), the uncertainty levels are less than when all nodes are considered.

The larger the element, the smaller the volume / surface ratio in terms of degrees

of freedom. For instance for 8-voxel elements, there are 81% inner nodes. This

value falls down to 14% for 64-voxel elements when a 144×288×400-voxel ROI

is considered. This property explains the reason for the di�erence in terms of

measurement uncertainty when only inner nodes are considered or all nodes of

the ROI. Figure 4 shows that the larger the element, the smaller the uncertainty.

This result is typical of the compromise between measurement uncertainty and

spatial resolution. A power law between the displacement uncertainty σu and

the element size ℓ

σu =
aα+1

ℓα
(7)

where a is a constant expressed in voxels, interpolates very well the results of

the uncertainty analysis. The power α is equal to 1.8 when only inner nodes are

considered, and 1.1 for all measured nodes. Parameter a is of the order of one

voxel in both cases. In the following analyses, 16-voxel C8 elements are used

(i.e., ℓ = 16 voxels).

[Figure 4 about here.]

The raw information provided by DVC is displacement �elds. Figure 5 shows

3D renderings of displacement �elds in the three directions. It is observed that

the main contribution is given by rigid body motions (translation and rotation).

However, the latter ones do not reveal the mechanical properties of the material.

A post-processing of the displacement �eld is generally required to study, say,

cracked samples [5, 25, 22] or strain �elds [7, 8, 18]. Local strains computed from
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the gradient of the measured displacement show a large level of �uctuations that

may be �ltered or smoothed at the expense of faithfulness to the measurement.

Global (mean) strains, at the level of the ROI itself, may provide an estimate

of, say, the elastic moduli. Mean strains can however be computed in di�erent

ways leading to more or less secure determinations.

[Figure 5 about here.]

A �rst way of evaluating a mean longitudinal strain is to compute the mean

displacements of the upper ⟨uu⟩ and lower ⟨ul⟩ faces of the ROI. Let nx, ny and

nz denote the number of elements in the x, y, and z directions, respectively.

The mean longitudinal strain is de�ned as

ϵl =
⟨uu⟩ − ⟨ul⟩

nzℓ
(8)

In the present case, nx = 9, ny = 18, and nz = 25. The total number of mea-

sured degrees of freedom is therefore equal to 3(nx+1)(ny+1)(nz+1) = 14, 820.

In the following uncertainty analysis, it is assumed that each measured degree of

freedom is uncorrelated with any other one. This is only a �rst approximation.

Exact results can be found in Ref. [24]. The standard uncertainty σ⟨u⟩ of ⟨uu⟩

and ⟨ul⟩ is therefore equal to

σ⟨u⟩ =
σu√

(nx + 1)(ny + 1)
(9)

so that the corresponding standard uncertainty σϵ of the mean longitudinal

strain ϵl reads

σϵ =

√
2σu

ℓnz

√
(nx + 1)(ny + 1)

(10)

In the present case, σ⟨u⟩ = 0.003 voxel, and σϵ = 1.1 · 10−5. Figure 6 shows the

stress / strain curve deduced from the analysis of the �ve scans. The identi�ed

value of Young's modulus is E = 187 GPa.

[Figure 6 about here.]

A second way of evaluating the mean strain is to use all measured points.

The corresponding displacement �eld is linearly interpolated and its �rst order
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gradient is then used to estimate the nominal strain tensor [8]. For the mean

longitudinal strain ϵ̂, its standard uncertainty becomes

σϵ̂ =
σu

ℓ
√
(nx + 1)(ny + 1)nz

6

(
nz

2 + 1
)
(nz + 1)

(11)

so that the two standard strain uncertainties are related by

σϵ̂ = σϵ

√
3nz(

nz

2 + 1
)
(nz + 1)

(12)

Equation (12) shows that for values of nz greater than 2, σϵ̂ is less than σϵ. When

nz ≫ 1, the ratio of the two uncertainties is
√

6/nz. If the level of uncertainty is

an issue, it is more desirable to use the interpolation of the whole measured �eld.

However, it has to be checked that the residuals are su�ciently low to make sure

that the interpolation is meaningful. In the present case, σϵ̂ = 5 ·10−6. Figure 6

shows the stress / strain curve deduced from the analysis of the �ve scans. The

identi�ed value of Young's modulus is E = 156 GPa. This result is in good

agreement with classical values of nodular cast iron (160± 3 GPa [34, 9]).

5.2 Fatigue test on pre-cracked sample

Figure 7 shows a 3D rendering of the three components of the displacement

�eld of the cracked sample under load obtained by X-FEM after 45,000 fatigue

cycles when measured displacements (using X-DVC) are prescribed as boundary

conditions on the top and bottom faces of the mesh.

[Figure 7 about here.]

As expected, the main opening regime of the crack is in mode I, while some

lower amplitude displacements are also recorded in mode II and III. The enriched

degrees of freedom in the X-DVC approximation are used to extract 2D maps of

the crack opening displacement (COD) for the three modes across the cracked

surface at maximum load in Figure 8. It is worth noting that the whole surface

was not enriched but only the cracked part. For mode I, the COD changes with

the applied load can be found in Ref. [25]. The details of the COD �elds are to
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be interpreted with caution as measurement uncertainties tend to be larger over

the enriched degrees of freedom of the chosen kinematics (see maps of mode

II and III CODs of Figure 8). With this point in mind, it can be concluded

that the crack is mostly open in mode I and that the enrichment was chosen

on a su�ciently large area. Moreover, an approximate determination of the

crack geometry (supporting the enrichment) may also induce spurious bias in

the evaluation of the opening. Consequently, a quantitative analysis using the

raw COD maps is likely to yield poor results in terms of, say, stress intensity

factors.

[Figure 8 about here.]

Another way of interpreting the displacements �elds measured in the bulk

of the specimen is to use them to extract the values of Stress Intensity Factors

(SIF) along the crack front. First, least squares techniques were implemented

by using 2D solutions [35, 36, 37, 38]. An alternative technique to determine

SIFs is to resort to interaction integrals [39, 40, 22]. It was utilized to analyze

the results presented in Ref. [22], but will not be used in the following. Instead,

the technique proposed by Hamam et al. [41] will be followed. It is assumed that

each of the node layers orthogonal to the mean direction of the crack front (x, y)

plane can be treated separately. For each of these planes (nearly orthogonal

to the crack front), the 3D displacement �eld is projected in a least squares

sense onto a basis that includes 2D solutions for a cracked solid (mode I and

mode II) as well as mode III asymptotic solutions. Following Williams [42], a

closed-form solution for the in-plane displacements v is derived from Kolossov-

Muskhelishvili's potentials

v(r, θ) =
∑

pmin≤p≤pmax

[apϕϕϕ
p
I(r, θ) + bpϕϕϕ

p
II(r, θ)] (13)

where ap and bp are real numbers. The reference �elds for mode I are

ϕϕϕp
I(r, θ) =

rp/2

2µ
√
2π

[
κeipθ/2 − p

2
ei(4−p)θ/2 + (

p

2
+ (−1)p)e−ipθ/2

]
(14)
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and for mode II

ϕϕϕp
II(r, θ) =

irp/2

2µ
√
2π

[
κeipθ/2 +

p

2
ei(4−p)θ/2 − (

p

2
− (−1)p)e−ipθ/2

]
(15)

where r and θ denote the in-plane coordinates associated with the usual crack

tip frame, µ Lamé's shear modulus, and κ a dimensionless elastic (or Kolossov)

coe�cient related to Poisson's ratio ν equal to (3 − ν)/(1 + ν) for plane stress

conditions, or 3−4ν for plane strain conditions (used in the sequel). The factor
√
2π is introduced to match the usual de�nitions of KI and KII SIFs [43], which

are thus equal respectively to amplitudes a1 and b1 associated with �elds ϕϕϕ1
I and

ϕϕϕ1
II .

Let us �rst note that the status of �elds ϕϕϕp
I and ϕϕϕp

II is very di�erent for p less

than or greater than 1. For p > 1, the �elds are called subsingular. They have no

impact on the crack tip. Conversely, the attached stress �elds increase with the

distance to the crack tip. Such functions are thus useful to match the vicinity of

the crack tip with the remote geometry, or boundary conditions. For p < 0, the

�elds are referred to as supersingular. Traditionally, the supersingular �elds are

ignored because their asymptotic behavior near the crack tip is non-physical

(i.e., diverging energy density). However, for the present purpose, since the

crack tip process zone is cut out from the domain of analysis, these solutions

are not rejected [41, 44]. However, it makes no sense to extrapolate them inside

the process zone. They rather characterize the (vanishing) in�uence of non-

linearities present in the process-zone in the outer elastic domain. Out-of-plane

motions w induced by mode III displacements whose canonical �eld ϕp
III reads

ϕp
III(r, θ) = rp/2 cos[p(θ − π)/2] (16)

allow one to determine KIII . In practice, in-plane solutions are considered for p

ranging between −3 and 5. The value p = −1 captures the e�ect of a shift of the

crack tip position in the plane with respect to the tip of the equivalent elastic

crack [44]. By canceling out its contribution, the equivalent crack tip position is

estimated. A length scale proportional to the process zone size [41] is obtained

when a−3 is related to a1 = KI . As all odd p < 0 functions lead to singular
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displacements at the crack tip, the displacement data at nodes whose distance

to the crack tip or to the crack mouth is less than 20 voxels are not considered

in the analysis. The result of such an extraction is illustrated in Figure 9, which

also shows for comparison purposes the results of a numerical extended �nite

element (X-FEM) calculation based on the real geometry of the crack.

[Figure 9 about here.]

From the results of Figures 7 and 8 it appears that the sample mechanical

loading does not correspond to a pure mode I opening of the crack, probably

because of slight misalignments between the loading stage and the sample. To

overcome this problem, the measured displacement �elds were prescribed on the

top and bottom surfaces of the analyzed volume. This analysis departs from

that proposed in Ref. [22] in which a uniform pressure was considered to match

the applied load. Further, the procedure detailed above is used to extract stress

intensity factors from the X-FEM displacement �eld whereas the interaction

integral was used in Ref. [22]. When this procedure is carried out, a good agree-

ment between the KI values extracted from DVC results and those resulting

from the X-FEM calculation are obtained (Figure 9). A better agreement is ob-

tained in terms of SIF pro�les with the present procedure when compared with

that proposed in Ref. [22]. The level of �uctuations in terms of stress intensity

factors is similar when X-DVC and X-FEM simulations are compared. This

result shows that the �uctuations are not caused by measurement uncertainties

alone, but also by the approximate determination of the crack geometry that

was the same in X-DVC and X-FEM calculations. Another source of �uctua-

tion might be related to the scale at which the analyses were performed and the

corresponding material microstructure, which was modeled as a homogeneous

and elastic medium.

By comparing crack opening opening displacement maps and the KI values

obtained by DVC, it has been possible to show that the crack opens at a value

of KI close to 6.5 MPa
√
m. This value, which has been consistently found

for other samples investigated with the same procedure [5, 25], is in very good
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agreement with the range of values that are given in the literature for nodular

cast iron [5]. It was also possible to clearly correlate crack growth (resp. arrest)

to crack opening (resp. closure) [25]. These e�ects are not discussed herein.

6 Conclusion

Digital volume correlation (DVC) was used to measure displacement �elds from

3D synchrotron X-ray tomographic images of cast iron specimens under me-

chanical loading. The uniform distribution of graphite nodules that are easily

imaged by tomography provides a natural pattern for performing correlation

avoiding to resort to arti�cial markers, which might have altered the mechanical

behavior of the material. Any other material presenting similar microstructural

features could in principle be studied by the same technique. In practice, those

features should present an attenuation contrast with the surrounding matrix

large enough to be imaged by X rays, and their typical size in the reconstructed

images should correspond to a few voxels1.

For the volumes used analyzed with DVC, the ratio of external surface to

volume is larger than that of external perimeter to surface of classical pictures

used in 2D correlation. This was shown to be responsible for an increase in

uncertainty levels obtained with DVC compared to 2D image correlation. How-

ever, it was possible to estimate Young's modulus of the studied material by

using DVC (i.e., elastic strains of the order of 10−3) with an accuracy that in-

creased when the whole measured �eld was used instead of the that of external

boundaries to estimate mean strains.

In the case of cracked samples, the use of X-DVC enabled for the measure-

ment of displacement �elds even close to the crack surface. Those displacement

�elds were used to extract stress intensity factors (modes I, II and III) along the

crack front. The values obtained were found in good agreement with �nite el-

1In practice the actual size of the features will depend on the voxel size i.e., on the resolution

used, which in turn is given by the dimension of the specimen whose projections should �t on

the detector used for tomography [45].
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ement calculations when the experimentally measured displacements were used

as boundary conditions.
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Figure 1: ROI (a) of the analyzed volume in Section 5.1 (144×288×400 voxels,
1 voxel ↔ 5.1 µm, 8-bit digitization) and corresponding gray level histogram
(b).
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(b)

Figure 2: Schematic illustration of the tests performed (a). A red point corre-
sponds to the acquisition of one tomographic scan. Several scans at di�erent
load levels are recorded to perform DVC measurements during the fatigue test.
Picture of the in situ testing machine mounted on the tomographic set up (b).
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Figure 3: Initial (a), with rigid body translation correction (b), and at conver-
gence (c) gray level residuals |f − g| when the �rst load level is analyzed. The
�nal histogram of gray level residuals (d) can be compared with that of the
reference volume shown in Figure 1(b).
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Figure 4: Standard displacement uncertainty σu as a function of the element size
ℓ for C8-DVC applied to the reference volume shown in Figure 1 when shifted
by 0.5 voxel in all three directions. The dashed lines correspond to a power law
interpolation [Equation (7)].
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(c)

Figure 5: 3D rendering of transverse (a,b) and longitudinal (c) displacement
�elds expressed in voxels (1 voxel ↔ 5.1 µm).
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Figure 6: Stress / strain plot for the two ways of evaluating the mean strain.
The dashed lines show a linear interpolation used to estimate the macroscopic
Young's modulus.
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(a) (b)

(c)

Figure 7: 3D rendering of the displacement �elds calculated by X-FEM in the
cracked sample under maximum load after 45,000 fatigue cycles: longitudinal
(a), in-plane (b), and out-of-plane (c) directions. The scale bar is expressed in
micrometers, the cube edge is 288-voxel long (i.e., 1.46 mm). The boundary
conditions used for the calculation correspond to the experimental displacements
obtained by X-DVC.
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Figure 8: Maps of crack opening displacement for modes I (a), II (b), and III
(c) at maximum load after 45,000 cycles. The displacements are expressed in
voxels (1 voxel ↔ 5.1 µm). The crack front is close to the lower edge.
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Figure 9: Pro�les of KI , KII and KIII along the crack front at the maximum
load of the fatigue cycle after 45,000 cycles determined experimentally by post-
processing X-DVC results, and numerically by resorting to X-FEM analyses.
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