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INFLUENCE OF FURNITURE ON THE 60 GHz RADIO PROPAGATION  

IN A RESIDENTIAL ENVIRONMENT 

S. Collonge, G. Zaharia and G. El Zein 

 

At millimeter-waves, the home furniture and objects dimensions can be equal or superior to the 

wavelength. A comparison between propagation measurements conducted within a residential 

house for two configurations, furnished and empty, underscores the influence of the furniture on 

the millimeter-waves propagation. 

 

1. Introduction 

The 60 GHz frequency band is a good candidate for future high data rate and short-range 

communications within indoor environments [1]. The wavelength (λ ≈ 5 mm) is small in 

comparison with many objects dimensions in residential environments. Furniture and objects 

present many rough and smooth reflective surfaces and many diffracting edges. They are then 

likely to contribute to the propagation phenomena in furnished environments. In most of 

propagation studies, however, measurement environments are rarely furnished, and ray-tracing 

tools do not take into account the presence of the furniture. To our knowledge, only [2] compares 

wideband channel characteristics between an empty and a furnished room around 60 GHz. This 

comparison was performed in a rectangular room, with some basic pieces of furniture (tables, 

chairs, cupboards), in an office environment. 

This letter compares the results of 60 GHz propagation measurements conducted within a 

residential house for two configurations: furnished (FC) and empty (EC). 

2. Measurement setup 
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A. Equipment 

The measurement campaigns were conducted by using a channel sounder based on the sliding 

correlation technique [3]. This sounder evaluates the complex impulse response (CIR) with a 

2.3 ns temporal resolution and a 40 dB relative dynamic within a 500 MHz bandwidth. The width 

of the observation window of the CIR can be chosen up to 1 µs. This width was set to 200 ns.  

Three antennas were used: a horn, with a 22.4 dB gain and 12° Half Power Beamwidth (HPBW), 

and two patches, with a 58° HPBW, a 4.3 dB gain for the first one, and a 2.2 dB gain for the 

second one. 

B. Environment 

The measurements were performed in a typical European residential house (Fig. 1). The first floor 

dimensions were about 10.5×9.5×2.5 m (Fig. 2). The outer walls were 38 cm-thick (breeze blocks 

and plasterboard). The main internal wall was 17 cm-thick brick and plaster, and the others were 

7 cm-thick plasterboard. The ceiling was made of concrete, and the floor was tiled. One found 

wooden stairs, a fireplace, carpets, curtains, double-glazing, and houseplants. Most of the 

furniture was made of wood.  

C. Measurement scenarios 

The transmitter (Tx) was placed in a corner of the main room, near the ceiling (2.2 m) and 

slightly tilted toward the ground (“TX1” in Fig. 2). Two receiver (Rx) locations were chosen in 

line of sight (LOS) and two others in non-LOS (NLOS), i.e. in adjacent rooms. For both FC and 

EC, the measurements were performed exactly at the same locations (to within about 1 cm). 

The Tx antenna was always the first patch. The horn and the other patch were used successively 

in each Rx location, in vertical and then horizontal polarization. Therefore, for each Rx position, 

four antennas configurations were considered. Thanks to a motorized positioning system, the Rx 
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antenna was rotated over 360° for angles of arrival (AOA) analysis, by a step of 6° for the horn 

and 12° for the patch. This rotation was repeated along a 10 λ length linear track by a step of λ (a 

similar method was used in [4]). The Rx antenna had a null elevation angle. Nobody was present 

in the house during the measurements, except the operator who kept still behind the Tx antenna. 

3. Comparison between EC and FC 

A. Definitions 

The received power (Pr) and several broadband characteristics – 90% delay window (DW90), 75% 

coherence bandwidth (Bc75) [5], number of paths (Nbpaths) – were computed for each 

measurement point. The number of paths was computed with the help of a detection algorithm of 

the local maxima of the CIR module. A 25 dB threshold under the most powerful path was used 

to reject insignificant paths. A spatial mean calculation along the linear track was performed to 

suppress the channel small-scale variations, and the positioning errors between FC and EC. Thus, 

we focused on the local mean characteristics. The difference between EC and FC was then 

evaluated and expressed in dB and in % as follows: 
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where _ ( )iAPC fur α  and _ ( )iAPC emp α  are the values of a propagation characteristic C with 

respect to the angle of arrival α, respectively for FC and EC. Index A (Antenna) can be H (Horn) 

or P (Patch). Index P (Polarization) can be V (Vertical) or H (Horizontal). Index i indicates the 

Rx position number. A positive ε value means an increase of the considered characteristic when 

the furniture is added. 
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As an example, Fig. 3 shows 1_ ( )HVPr fur α , 1_ ( )HVPr emp α  and _1 ( ) ( )Pr HV dBε α . This kind of 

graphic can be correlated with the house plan. This makes it possible to better understand the 

influence of furniture. 

We will focus on the LOS/NLOS differences because they are stronger than those of antennas 

configurations. We define several parameters to analyze the variations of the propagation 

characteristics. First, the 10th and 90th percentiles (P10 and P90) are computed from the 

Cumulative Distribution Functions (CDF) of the _ ( ) ( )C iAP dBε α  values. The percentiles are 

averaged over all the antennas configurations and positions, and listed in Table 1. These values 

give an overview of the spread of the variations between FC and EC. Two other parameters  are 

defined: the mean global variations (ε) and the mean “distances” (δ) between FC and EC, shown 

in Table 2 and calculated as follows:  

( )_ _ ( ) _ ( ) _ ( ) _ ( )
1 ( ) ( ) ( ) ( )
4C i C iHV dB C iHH dB C iPV dB C iPH dBε ε α ε α ε α ε α= + + +

( )_ _ ( ) _ ( ) _ ( ) _ ( )
1 ( ) ( ) ( ) ( )
4C i C iHV dB C iHH dB C iPV dB C iPH dBδ ε α ε α ε α ε α= + + +  

( )_ _1 _ 2
1
2C los C Cε ε ε= +  ( )_ _3 _ 4

1
2C nlos C Cε ε ε= +  

( )_ _1 _ 2
1
2C los C Cδ δ δ= +  ( )_ _3 _ 4

1
2C nlos C Cδ δ δ= +  

The ε values allow an overview of the global variation of the propagation characteristics, for a 

given Rx position ( _C iε ) and for each visibility situation ( _C losε  and _C nlosε ). The ε values can be 

negative or positive. 
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B. Results 

Fig. 4 shows the CDF of 75 _ 2 ( ) ( )Bc HV dBε α . The wide spread of the CDF can be noticed: about from 

-10 up to 10 dB. More than 30% of the |ε| values exceed 3 dB around 0 dB. Globally, the 

maximum variations of Pr (averaged over the antenna configurations) are –7.9 dB up to +4.1 dB 

when the furniture is added. These maximum variations spread from –92 % up to +350 % for 

Bc75. 

Table 1 shows that these wide variations affect all the propagation characteristics, especially Pr 

and Bc75. For these two characteristics, the inter-percentile range P90-P10 is greater than 7 dB. 

To look closer into the phenomenon, we consider the Rx1 case. Fig. 3 shows 1_ ( )HVPr fur α , 

1_ ( )HVPr emp α  and _1 ( ) ( )Pr HV dBε α . From 1_ ( )HVPr emp α , four main directions of arrival can be 

distinguished:  

- α1 = 252°: AOA of the direct path; 

- α2 = 102° and α3 = 306°: AOA of two first order reflected paths; 

- α4 = 57°: AOA of a second order reflected path.  

When the furniture is added, _1 ( ) ( )Pr HV dBε α  values show that Pr decreases by more than 5 dB for 

all of these AOA. For the direct path AOA, 1_1 ( ) ( ) 5.74Pr HV dBε α = −  dB. The combining of reflected 

paths (particularly one path on the floor) with the direct one explains this variation. When the 

furniture is added, the direct path is not affected, but the number of reflected paths grows, and 

thus the link budget is modified. In the other directions of arrival, Pr is constant or increases. The 

broadband characteristics, such as Bc75 (Fig. 5), and Nbpaths (Fig. 6) show that the frequency 

selectivity of the channel increases for the four main AOAs when the furniture is added. Bc75 

decreases, sometimes dramatically (example: 75 2_1 ( ) ( ) 16.7Bc HV dBε α = −  dB in Fig. 5). Nbpaths 
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increases by about 5 dB, from 1-2 paths to 4-5 paths. In the other AOAs, one can notice the 

opposite variation, or a null variation. 

The _1Cε  values follow the variations of the main AOAs: _1 0.98Prε = −  dB, 75 _1 0.360Bcε = −  dB 

(–8.0%), and _1 0.210pathsNbε = +  dB (+5.0%) . This means the variation of the four main AOAs is 

not compensated by the opposite variation of the other AOAs. Similar observations are possible 

for Rx2, the other LOS position. 

For NLOS situations, the broadband characteristics inversely vary (Table 2): 

75 _ 0.353Bc nlosε = +  dB (+8.3%), and _ 0.679pathsNb nlosε = −  dB (-14.5%). The Pr variation, however, 

is negative, as for LOS situations: _ 0.91Pr nlosε = −  dB. 

The δ values present the mean absolute difference between the two configurations. Table 2 shows 

that this absolute difference is similar in LOS and in NLOS situations. 

4. Discussion 

Compared to EC, the received power in FC is lower, and the channel frequency selectivity is 

higher in LOS situations and lower in NLOS situations. These results indicate that the presence of 

furniture noticeably increases the energy dispersion within the Tx room (LOS situations). The 

furniture surfaces and edges create more wave paths ( _ 0.346pathsNb losε = +  dB or +8.3%) in more 

directions, entailing less powerful paths (globally _ 1.77Pr losε = −  dB), greater delay spreads 

( 90 _ 0.092DW losε = +  dB or +2.2%), and lower coherence bandwidths ( 75 _ 0.598Bc losε = −  dB or 

12.9%− ). Similar observations are reported in [2] for the number reflected rays and for DW90. 

Moreover, the furniture hides parts of the walls and the floor, which are “quasi-specular” 

reflectors and which greatly contribute to the propagation within an empty room. Due to the 
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furniture, the Pr angular repartition is then more diffuse; in contrast, for EC this repartition is 

more concentrated in several main directions of arrival.  

When the antennas are in different rooms (NLOS), most of the received energy comes from 

doors, as underscored in [6], because the propagation loss caused by the walls is very important. 

In NLOS situations, the following phenomenon is observed when the furniture is added: the 

channel frequency selectivity decreases ( 75 _ 16.2%Bc nlosε = + , 90 _ 14.5%DW nlosε = + ), and Pr 

decreases ( _ 0.91Pr nlosε = −  dB). This phenomenon can be interpreted as follows: in EC, the 

probability that powerful indirect paths going through doors exist is higher, because the walls and 

the floor are clear. Therefore, in adjacent rooms, Nbpaths is globally higher in EC. In FC, Nbpaths is 

higher in the Tx room but these paths convey little energy and eventually arrive in an adjacent 

room under the sounder noise level (-120 dBm).  

5. Conclusion 

Propagation measurements at 60 GHz were conducted in a residential environment for two 

configurations: with and without furniture. The results underscore the influence of the furniture. 

When ray-tracing tools neglecting the furniture are used or when measurements campaigns are 

performed in empty environments, one commits some errors if the results are used to describe 

realistic propagation conditions. The ε, δ, and percentile values can be seen as estimations of 

these errors. In these cases, the channel frequency selectivity within a room is underestimated, 

and it is overestimated for inter-rooms links. In both visibility situations, the received power is 

overestimated. The strongest erroneous estimations are noticed on the main directions of arrival. 

Despite the practical difficulties, it would be interesting to investigate other environments to 

complete these results. 
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Figure captions: 

Fig. 1: Photography of the measurement environment 

Fig. 2: First floor of the measurement environment  

Fig. 3: Comparison of the received power between FC and EC (Rx1, horn antenna, vertical 

polarization, LOS) 

 (a): Pr_fur1HV(α) and Pr_emp1HV(α) 

------ Pr_emp1HV(α) (Empty House) 

—— Pr_fur1HV(α) (Furnished House) 

 (b): εPr_1HV(α) 

------ 0 reference 

—— εPr_1HV(α) 

Fig. 4: Cumulative Distribution Function (CDF) of εBc75_2HV (dB) (Rx2, horn antenna, vertical 

polarization, LOS) 

Fig. 5: Comparison of Bc75 between FC and EC (Rx1, horn antenna, vertical polarization, LOS) 

 (a): Bc75_fur1HV(α) and Bc75_emp1HV(α) 

------ Bc75_emp1HV(α) (Empty House) 

—— Bc75_fur1HV(α) (Furnished House) 

 (b): εBc75_1HV(α) 

------ 0 reference 

—— εBc75_1HV(α) 

Fig. 6: Comparison of Nbpaths between FC and EC (Rx1, horn antenna, vertical polarization, 

LOS) 
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 (a): Nbpaths_fur1HV(α) and Nbpaths_emp1HV(α) 

------ Nbpaths_emp1HV(α) (Empty House) 

—— Nbpaths_fur1HV(α) (Furnished House) 

 (b): εNbpaths_1HV(α) 

------ 0 reference 

—— εNbpaths _1HV(α) 

Table 1: 10th and 90th percentiles of the CDFs of εC_iAP(α) for all propagation characteristics (PC) 

(P10: probability (PC < P10) = 0.1) 

Table 2: εC_los, ε C_nlos, δ C_los and δ C_nlos values ( ( )(0.1 )
(%) 100 (10 1)dBεε ×= ⋅ − ).  
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Figure 1: 
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Figure 2: 
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Figure 3: 

 

(a) (b) 
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Figure 4: 
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Figure 5: 
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Figure 6: 
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Table 1: 

LOS NLOS  P10 (dB) P10 (%) P90 (dB) P90 (%) P10 (dB) P10 (%) P90 (dB) P90 (%) 
Pr -1.78 -33.60 5.88 286.8 -3.44 -54.73 5.14 226.7 
Bc75 -3.19 -51.98 5.61 263.9 -5.39 -71.08 4.00 151.0 
DW90 -3.20 -52.12 2.40 73.62 -1.50 -29.19 2.98 98.38 
Nbpaths -2.54 -44.33 1.51 41.71 -0.65 -13.94 1.92 55.53 
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Table 2: 

εlos εnlos δlos δnlos  
(dB) (%) (dB) (%) (dB) (%) (dB) (%) 

Pr -1.77 -33.4 -0.91 -19.0 2.75 88.28 2.81 91.04 
Bc75 -0.598 -12.9 +0.653 +16.2 2.48 77.16 2.56 80.15 
DW90 +0.092 +2.2 -0.679 -14.5 1.64 45.71 1.43 39.00 
Nbpaths +0.346 +8.3 -0.679 -14.5 1.26 33.54 1.05 27.28 
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