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A general top-k algorithm for web data sources?
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Abstract. Several algorithms for top-k query processing over web data sources have
been proposed, where sources return relevance scores for some query predicate, aggre-
gated through a composition function. They assume specific conditions for the type
of source access (sorted and/or random) and for the access cost, and propose various
heuristics for choosing the next source to probe, while generally trying to refine the
score of the most promising candidate. We present BreadthRefine (BR), a generic top-k
algorithm, working for any combination of source access types and any cost settings.
It proposes a new heuristic strategy, based on refining all the current top-k candidates,
not only the best one. We present a rich panel of experiments comparing BR with
state-of-the art algorithms and show that BR adapts to the specific settings of these
algorithms, with lower cost.
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1 Introduction

Data retrieval applications accorded an increasing importance these last years to ranked
queries, compared to traditional boolean queries. This is, to a large extent, the consequence
of the great development of web applications integrating huge volumes of heterogeneous and
multimedia data: text, images, video, maps, etc. On one hand, this introduced the need for
fuzzy, approximate answers, ranked by relevance, when querying such large and heterogeneous
amount of data, on the other hand the new web data types came with intrinsic ranked
predicates: text and image similarity, location proximity, user preferences, etc.

In this context, we address the problem of processing top-k queries over a set of web
sources. A query is expressed through a set of ranked predicates over a common set of data
objects. Each predicate is independently evaluated by some web source and returns a relevance
score for any input object. A monotone aggregation function combines partial scores from each
predicate into the final object score relative to the query. The query returns objects having
the k best global scores.

Consider the example of a tourist in Paris, looking for buildings constructed around 1750,
near to his current location and similar to the one he just photographed. Objects are here
the buildings in Paris and the query consists of three ranked predicates: p1: proximity of the
construction date, p2: spatial proximity to the current location, and p3: similarity with a given
picture.

In SQL-like syntax, e.g. the one proposed by RankSQL [10], this query could be expressed
such as in Figure 1, if we consider k = 5 and a simple aggregation function based on the sum
of the individual scores.

The sources that evaluate the predicates could be, for instance:
? The original publication is available at www.springerlink.com



select ∗ from Building b
order by proximity(b.year, 1750) +

closeness(b.address, here()) +
similarity(b.image, myImage)

limit 5 ;

S1 (S-source) S2 (SR-source) S3 (R-source)

(o2, 0.4) (o3, 0.9) (o1, 0.9)
(o1, 0.3) (o1, 0.2) (o2, 0.7)
(o4, 0.25) (o4, 0.15) (o3, 0.8)
(o3, 0.2) (o2, 0.1) (o4, 0.6)

Fig. 1. Example query and sources

– S1: a database server storing historical information about buildings (for p1);
– S2: a geographic/map service (for p2);
– S3: an image database indexing fronts of buildings in Paris (for p3).

Note that the ranking predicates are dependent on the query, for instance, even if S2 always
evaluates spatial proximity between an object and a reference point, this point depends on
the query.

To execute such a query, one must access the web sources to get partial scores for objects.
The access to the web sources during query processing has the following main properties:

– Access is limited to operations allowed by the web source interface and there is no control
on the inside mechanisms. Generally, a web source may allow two kinds of access: sorted,
where each access returns the next score/object in decreasing order, and/or random,
where each access returns the score of a given object. We call S-sources sources with
sorted access only, R-sources those with random access only, and SR-sources those with
both accesses.

– Accessing web sources is expensive, the cost of accessing sources dominates the cost of
the other algorithm operations.

The naive approach would be to get all the partial scores for all the objects, then to
compute their global scores, to order them by descending score and get the first k results. In
practice, this method is very expensive and many efficient algorithms have been proposed for
various cases of access types and cost settings.

Some algorithms, such as NRA [4] and StreamCombine [6] consider only S-sources, while
algorithms such as TA [4], CA [4] and QuickCombine [5] consider only SR-sources. A third
category considers specific heterogeneous access configurations, e.g. one S-source and several
R-sources for Upper [2] and MPro [3], or several SR-sources and several R-sources for some
extensions of TA and Upper. The NC framework [14] is the only approach that addresses
any combination of access types. All these algorithms are further detailed in the related work
section.

Cost settings considered by these algorithms fall generally into two categories: (i) no dif-
ference between the cost of sorted and random accesses (NRA, StreamCombine, TA, Quick-
Combine), and (ii) random more expensive than sorted access (CA, Upper, MPro). However,
other cost settings are possible, e.g. sorted more expensive than random access. Consider for
instance the case of a source evaluating image similarity by using an index on disk for sorted
access, but keeps image descriptors in memory; random access requires here no disk access
and is faster than sorted access. Again, NC is the only attempt to adapt to any cost settings.

The general idea behind all these top-k algorithms is to maintain a list of candidate
objects and the interval [L,U ] of possible global scores for each of them. At the beginning,
the interval is obtained by aggregating the minimum / maximum source scores. Monotonicity
of the aggregation function ensures that further source accesses will refine these intervals, by
decreasing the upper bound U and increasing the lower bound L. The algorithm stops when
the score of the best k candidates cannot be exceeded by the other objects.



We illustrate the behavior of such an algorithm through the example in Figure 1. Suppose
S1 is a S-source, S2 a SR-source, S3 a R-source; scores are presented in descending order
for S/SR sources and by object id for R-sources. Individual predicate scores belong to the
[0, 1] interval, so the initial global score interval is [0, 3] for all objects. Note that we consider
algorithms without wild guesses, i.e. objects are not known in advance, they are ’discovered’
by sorted accesses. We note candidates the set of candidates and Uunseen the maximum score
of objects not yet discovered. Initially, candidates = ∅ and Uunseen = 3.

– A sorted access to S1 retrieves (o2, 0.4), so with one partial score known for o2 its global
score interval becomes [0.4, 2.4], i.e. candidates={(o2, [0.4, 2.4])}. Also Uunseen becomes
2.4 because further scores in S1 cannot exceed 0.4.

– A sorted access to S2 retrieves (o3, 0.9). This adds a new candidate (o3), lowers Uunseen

to 2.3 (because further S2 scores cannot exceed 0.9), but also lowers the maximum global
score of o2 to 2.3, because the maximum score of S2 is now 0.9. candidates={(o2, [0.4, 2.3]),
(o3, [0.9, 2.3])}.

– A random access to S2 for o2 retrieves (o2, 0.1). This changes only the global score interval
of o2. candidates={(o2, [0.5, 1.5]), (o3, [0.9, 2.3])}.

– A random access to S3 for o3 retrieves (o3, 0.8) and changes the global score interval of
o3. candidates={(o2, [0.5, 1.5]), (o3, [1.7, 2.1])}.

– A sorted access to S2 retrieves (o1, 0.2). This adds a new candidate (o1), lowers Uunseen to
1.6, but does not lower the maximal global score of the other candidates because o2 and o3
already know their S2 scores. candidates={(o2, [0.5, 1.5]), (o3, [1.7, 2.1]), (o1, [0.2, 1.6])}.

– The minimum global score of o3 exceeds both Uunseen (maximum global score of unseen
objects) and the maximum global score of all the other candidates, we can conclude that
o3 is the best (top-1) object.

Execution may continue depending on the value of k, but notice that top-k objects could be
returned without knowing their exact scores and order. Most of the existing algorithms return
exact scores for top-k and are iterative, i.e. return first top-1, then top-2, etc. However, in
many applications the exact global score is not needed (e.g. image retrieval), but only the
top-k objects with approximate ordering.

The difference between the top-k algorithms mentioned above consists in the heuristics
proposed for the choice of the next source to probe and of the candidate to refine through
random accesses. Note that all the algorithms that must select a candidate to further refine
focus on the current ”best” candidate.

Our goal is to propose a new generic top-k algorithm that works for any combination of
source access types and cost settings, and returns the set of top-k objects, possibly without
complete scoring information. This algorithm uses a new heuristic approach, that refines on
all the top-k candidates, instead of favoring only the best current candidate.

The contributions of this paper may be resumed as follows:

– We present BreadthRefine (BR), a new, generic top-k algorithm, able to adapt to any
combination of source access types and to any cost settings. To the best of our knowledge,
excepting NC [14], this is the first generic top-k algorithm for web sources. Unlike NC,
that mixes heuristics and sampling optimization, our algorithm is only based on a simple
heuristics.

– We propose a new heuristic approach, that do not focus only on the best current candidate,
but considers all the top-k candidates. Our experiments show that this heuristics produces
better results than the usual approach.

– We report a rich experimental evaluation comparing BR to existing algorithms for various
source types and cost settings, and show that BR is less expensive.



The rest of the paper is organized as follows: the next section presents related work, then
Section 3 describes the BR algorithm, Section 4 reports the experiments comparing BR to
existing algorithms, then we end with conclusions and future work.

2 Related work

Top-k query processing techniques have been largely studied in the last decade at different
levels: query model, access types, implementation structures, integration in database engines
[10][7][9], etc. The survey [8] presents a rich overview of these various approaches. In this
context, we address the problem of selection queries (no joins), for web sources with any
configuration of access types and any cost settings. We do not compare with algorithms
having additional information about objects in sources, e.g. the rank in BPA [1]. Join queries
are addressed e.g. by the J* [13] or the Rank-Join [7] algorithms.

Algorithms for top-k selection queries proposed so far focus on specific access types and
cost settings for the sources. They fit with the general method illustrated in the example of
Section 1, i.e. maintaining a list of candidates with global score interval and accessing sources
following their own heuristics.

Among the algorithms that consider only S-sources, the best known is NRA (No Random
Access) [4]. NRA consults sources following a simple round-robin strategy, with no specific
order. Such as for BR, final results may have incomplete scoring information. Efficient NRA
implementations such as LARA [11] that reduce the overhead of candidate updates are not
relevant in our context, since we ignore this overhead compared to the access time to web
sources. StreamCombine [6] is a variant of NRA that selects at each step the next source
to probe following the benefit that the source may provide. Benefit considers three factors:
(i) the importance of the source in the global score (e.g. the coefficient in the aggregation
function, for a weighted sum), (ii) the decrease of the source score (bigger decreases favor
faster algorithm termination), and (iii) the number of candidates in the current top-k not yet
seen in the source and that will consequently lower their upper bound. We adopt in BR a
similar notion of benefit for sorted sources.

Algorithms that consider only SR-sources adopt a different approach: the global score of a
candidate discovered through a sorted access is completely evaluated through random probes
of the other sources. The consequence is that candidates have exact scores, not intervals, so
there is no need to maintain a list of candidates. The termination test simply compares the
score of the k-th candidate with the threshold Uunseen.

TA (Threshold Algorithm) [4], the best known SR-source algorithm, consults sources in a
way similar to NRA, following a round-robin strategy. QuickCombine [5] is a variant of TA
that uses the same idea as StreamCombine to select the next sorted source to probe. The
benefit considers only the two first factors presented above for StreamCombine, the last one
being not relevant. CA (Combined Algorithm) [4] is a variant of TA that considers random
accesses being h times more expensive than sorted ones. It combines NRA with TA to reduce
the number of random accesses by performing h sorted accesses in each source before a
complete evaluation of the best candidate by random probes. We adopt in BR a similar idea
for taking into account the possible difference between random and sorted costs. Many other
extensions of TA have been proposed, such as TAz [2], which considers an additional set of
R-sources. TAz acts as TA for the sorted accesses, but includes the R-sources in the random
probe phase.

Algorithms with sorted access and controlled random probes, such as Upper [2] and MPro
[3], typically consider one S-source and several R-sources. The random cost exceeds the sorted



cost, but is different from one R-source to another. Both Upper and MPro consider complete
scoring of the final top-k result.

Upper maintains candidates following an estimated score. At each step, it considers can-
didate o with the highest upper score U : if U < Uunseen a sorted access is performed in order
to reduce Uunseen, otherwise a random probe for o is done. A benefit is computed for each
R-source and the best source is selected for the random probe. Two cases are considered. If
o belongs to the current top-k, the benefit is the ratio between the expected decrease δ of U
and the access cost. Otherwise, o has more chances to be out of the top-k and one computes
the decrease ∆ of U necessary to prove that o is not a top-k object. The source benefit in this
case is the ratio between min(δ,∆) and the access cost. An extension of Upper for several
SR-sources and several R-sources is presented in [12] - in this case sorted access is performed
in NRA manner over the SR-sources, while random access considers all the SR/R-sources not
yet probed.

Like Upper, MPro considers at each step the candidate with the highest upper score and
performs a random probe for it or a sorted access if Uunseen is higher. But unlike Upper, MPro
fixes for all the candidates the same order (schedule) for probing the R-sources. The best
schedule may be determined by various methods, such as sampling optimization, proposed
by the authors.

The only algorithm that aims at genericity is NC (Necessary Choices) [14], an extension
of MPro. Like BR, NC is generic and adapts to any source access type and cost settings.
NC identifies necessary choices (i.e. accesses that are necessary at a given execution state to
obtain the final result) as belonging to accesses for the current top-k upper bound candidates.
NC proposes an algorithm framework that performs only necessary accesses and defines an
algorithm called SR/G in this framework that computes for each S/SR-source a limit score.
SR/G gives priority to sorted accesses in sources that did not reach the limit score. More
precisely, the algorithm considers at each step the candidate with the highest upper score and
chooses a sorted access for it, if possible (i.e. in a sorted source that did not return the object,
nor reach its limit). If not possible, a random probe is selected following a fixed schedule, like
for MPro. Limit scores are determined by sampling optimization and simulation.

Compared to NC, BR addresses a slightly different problem, by computing top-k objects
possibly without complete scoring. Therefore necessary choices in the NC context are not
relevant for BR. We do not compare in this paper BR with NC because, source sampling
being not always possible, we only focus on fully heuristic-based top-k algorithms. Even if
NC authors claim that sampling may replaced by estimation of the source limits, our tests
indicate that NC is very sensible to the quality of this estimation. One should first define
good limit estimation heuristics for NC, which is out of the scope of this paper.

3 The BreadthRefine algorithm

Unlike top-k algorithms presented in Section 2, the BreadthRefine (BR) algorithm covers any
configuration of source access types and cost settings and proposes a new heuristic approach:
refining the scores of all the top-k candidates, instead of focusing on the best one. We first
present the BR data and query model, then the general BR algorithmic framework and several
algorithm variants in this framework.

Data and query model We consider a set of data objects O = {o1, ..., on}, a top-k multi-
criteria query q over these objects, and a set of web sources S = {S1, ..., Sm} able to evaluate
the query criteria.



Definition 1. Query: A top-k multi-criteria query q is defined by (i) a number of objects k
to return, (ii) a set of ranked predicates (criteria) Pq = {p1, ..., pm}, depending on the query,
and (iii) a monotone score aggregation function F .

Predicates pj : O → [minj ,maxj ] return for any object a score in a given interval, while
function F : Rm → R aggregates predicate scores into a global object score. Each predicate pj
is independently evaluated by source Sj.

Definition 2. Source: A source Sj is characterized by (i) its access type (S, R or SR), and
(ii) a cost per access, noted Cs(Sj) for sorted and Cr(Sj) for random access. The minimum
and maximum scores in Sj are noted minj and maxj, as mentioned in Definition 1.

The set of sources S can be partitioned following the access type in three disjoint subsets,
possibly empty: S = SS ∪ SR ∪ SSR.

A sorted source (of type S or SR) provides an access function
getNext : SS ∪ SSR → O× R∪ {nil}

returning the next couple (o, s), where o is the object with the next score in decreasing order
and s its score (if exists), or the special value nil otherwise.

A random source (of type R or SR) provides an access function
getScore:(SR ∪ SSR)×O → R

returning the score of the given object in the source.
We note score(o, Sj) the score retrieved for object o in source Sj.
We note crtmaxj the largest score that source Sj could further return. For pure random

sources Sj ∈ SR, crtmaxj = maxj (constant). For sorted sources Sj ∈ SS ∪ SSR, crtmaxj is
the score returned by the last sorted access to Sj

1 (initially crtmaxj = maxj).

Definition 3. Candidates: A candidate in the algorithm is an object that has been already
returned by a sorted access. For each candidate c, the algorithm maintains L(c) (U(c)), i.e.
the lower (upper) bound of the global score for c. L(c) (U(c)) is computed by aggregating the
scores of c in the sources where it has been already consulted, and the minimum (maximum)
score in the other sources.
L(c) = F(l1, ..., lm), lj =score(c, Sj) if c consulted in Sj, else lj = minj
U(c) = F(u1, ..., um), uj =score(c, Sj) if c consulted in Sj, else uj = crtmaxj.

We note Lk (Uk) the k-th value in decreasing order for L(c) (U(c)) among the candidates
- for less than k candidates, the value is nil.

A candidate is called viable if it still has chances to belong to the final top-k result. The
viability condition for c is U(c) ≥ Lk. It is simple to prove using monotonicity that once a
candidate becomes non-viable, it will remain non-viable and could be removed.

We note Uunseen the upper bound of the global score for any object that is not yet a
candidate. Initially, Uunseen = F(max1, ...,maxm)

The BR algorithm framework The basic idea of the BR algorithm is to maintain the
top-k candidates as a whole instead of looking only at the best candidate. Also, BR is able
to handle any kind of source access; the choice of the access type is the central issue at each
step.

Figure 2 presents the general BR framework, from which various algorithm variants may
be instantiated. BR maintains a set of candidates, initially empty, and the maximum score of
unseen objects, Uunseen.

1 We consider that an object retrieved through a sorted access in a SR-source is not further accessed
by a random access in the same source.



Framework BR(q, S)
candidates ← ∅
Uunseen ← F(max1, ...,maxm)
repeat

//choice between sorted or random access
if |candidates| < k or Uk < Uunseen or CostCondition() then

Sj ← BestSortedSource(S) //choice of a sorted source
(o, s) ← getNext(Sj) //sorted access to the selected source
Update candidates and Uunseen

else //random access
c← ChooseCandidate( candidates, k) //choice of a top-k candidate
Sj ← BestRandomSource(S, c) //choice of a random source
s← getScore(Sj , c) //random access to the selected source
Update candidates

endif
until |candidates| = k and Lk ≥ Uunseen

return candidates

Fig. 2. The BR algorithm framework

At each step, BR first chooses the type of access to be performed. Sorted access is preferred
in the following cases:

– A group of top-k candidates does not exist yet, i.e. if |candidates| < k.
– An unseen object could belong to the current upper bound top-k group, i.e. Uk < Uunseen.

A sorted access will decrease Uunseen and eliminate unseen objects from the top-k group.
– If the cost-related condition CostCondition is true. This condition enables BR to adapt

to various cost settings, e.g. to force sorted accesses when random probes are expensive.

If a sorted access is decided, the BestSortedSource function chooses the best sorted source,
then performs the sorted access2. Consequently, the candidate set and Uunseen are updated;
the update of the candidate set consists in several actions:

– Add the object to the candidate set, if it is seen for the first time.
– Update the upper and lower bounds for all the candidates. In fact, besides the retrieved

object, the update only affects the upper bound of candidates that have not been retrieved
yet in the source.

– Remove non-viable candidates.

In the case of a random access, the ChooseCandidate function chooses a candidate in the
current top-k group. Then a random source is selected with BestRandomSource, among those
not yet probed for the candidate. The source is probed and the candidate set is updated.

The algorithm ends when the candidate set is reduced to k objects (after removing non-
viable candidates) and when the unseen objects cannot change anymore the final result (Lk ≥
Uunseen). The result is the set of k candidates, with possibly incomplete scores.

BR algorithm variants By instantiating CostCondition, BestSortedSource, ChooseCandi-
date and BestRandomSource functions, one may obtain various BR algorithms. We present
three variants: BR-Cost, BR-Basic and BR-First.

2 We consider that BestSortedSource does not return a source with no more objects.



BR-Cost is the reference BR algorithm that we propose. It refines the set of top-k can-
didates in a breadth-first manner and adapts to various cost settings. BR-Cost uses weighted
sum aggregation function and employs source selection methods similar to existing algorithms.

– ChooseCandidate selects the least refined candidate (with the least random probes) from
the current upper bound top-k group.

– CostCondition aims at reducing the number of random accesses (if more expensive than
sorted ones), in a way similar to the CA algorithm. More precisely, if r is the average ratio
between the cost of random and sorted accesses, then once a random probe is processed,
the next one is possible only after at least r sorted accesses.

– BestSortedSource selects the sorted source Sj with respect to a benefit similar to the one
proposed by StreamCombine [6], i.e. Bj = coef jNjδj/Cs(Sj), where coef j is the weight
of Sj in the aggregation function, Nj the number of top-k candidates not yet seen in Sj ,
δj the expected decrease of the score in Sj and Cs(Sj) the access cost. Here Nj measures
the number of top-k objects that will be concerned by the decrease of the upper bound,
and coefj and δj the amount of this decrease.

– BestRandomSource selects the random source with respect to a benefit Bj = coef j ×
(crtmaxj −minj)/Cr(Sj). Here coef j and crtmaxj −minj measure the variation of the
candidate’s upper/lower bound when the real score will replace the upper/lower source
score.

BR-Basic is a variant of BR-Cost which does adapt to various cost settings, i.e. Cost-
Condition systematically returns false. Comparing BR-Basic with BR-Cost will reveal the
importance of cost adaptation.

BR-First is a variant of BR-Basic that uses the classical approach for choosing a candi-
date to refine, i.e. always select the best one - the highest upper bound in this case. Note that
this is still a particular case of the general BR heuristics, the best candidate belonging to the
top-k. Comparing BR-First with BR-Basic will measure the benefit of the new heuristics.

4 Experiments

In this section we report the experimental evaluation of the BR algorithms over synthetic data.
We evaluate genericity and adaptivity by comparing BR with state of the art algorithms in
their specific access type and cost configurations. We also measure the importance of the BR
heuristics and of cost adaptivity by comparing the BR algorithms variants.

Data sets We generate synthetic score lists for each source, each list representing the predi-
cate scores for a given query, as values in the [0,1] interval. Sources are independent and have
similar data distribution. The sorted access cost Cs is the same for any source, idem for the
random cost Cr. We consider three variants of data distribution:

– Uniform: values are uniformly distributed.

– Gaussian: values are generated from three overlapping Gaussian bells.

– Zipfian: values are generated from a Zipf function with 1000 distinct values and Zipfian
parameter z = 1.



Parameters and default settings All the experiments measure the execution cost, which
is the cost of all the source accesses performed during execution. More precisely, if Nsj (Nrj)
is the number of sorted (random) accesses to source Sj , then the cost of the algorithm is:

cost =
∑

Sj∈SS∪SSR

NsjCs(Sj) +
∑

Sj∈SR∪SSR

NrjCr(Sj) (1)

Each result is the average of 8 measures over different randomly generated data sources.
We consider various parameters in the experiments:

– The number of objects: 10000 (default), 20000, 40000, 60000, 80000, 100000.
– The number k of returned objects: 20, 40, 50 (default), 60, 80, 100.
– The number of S-sources Ns, of R-sources Nr and of SR-sources Nsr (default value for

each one: 3).
– The cost setting: Cr(= 5) > Cs(= 1) (default), Cr = Cs(= 1), Cr(= 1) < Cs(= 5)
– Data distribution for all the sources: uniform (default), gaussian, zipfian.

Algorithms tested Experiments are grouped by source access type in three categories, in
each case the set of algorithms adapted to this setting is considered:

– No R-sources: NRA and MPro.
– No S-sources: Upper, TAz and MPro.
– All the source types exist: MPro.

We adapted the MPro algorithm to cover all the cases as follows: sorted sources are
combined with NRA to behave as a single S-source. SR-sources may be considered by MPro
either as sorted or random, depending on the context: sorted when there are no S-sources,
random when there are no R-sources. In the case of all the source types, we considered both
settings (SR as sorted and SR as random) and reported the average cost. Also for random
probes we considered a fully heuristic variant for MPro, in which scheduling uses the same
order based on benefit as BR.

SR-sources + S-sources We compare BR-Cost, BR-Basic and BR-First with NRA and
MPro. We first vary k in two cases: Cr > Cs (default setting) and Cr = Cs. The case Cr < Cs

is not favorable to NRA and is considered later for MPro.
Figure 3(a) presents results for Cr > Cs. Cost increases with k for all the algorithms,

but BR-Cost is significantly less expensive than MPro and even than NRA, which does no
random access. The importance of considering cost settings in BR is obvious when comparing
BR-Cost with BR-Basic. Also the benefit of the BR heuristic is confirmed by BR-First which
behaves worse than BR-Basic. Figure 3(b) considers the case Cr = Cs, where BR-Cost is
the same as BR-Basic. BR-Basic/Cost is still the best, but the difference with BR-First and
MPro decreases.

Next, we vary the number of objects for the default cost settings. Figure 3(c) shows that
the cost increases almost proportionally for all the algorithms, so the above conclusions are
unchanged.

Figure 3(d) illustrates the variation of data distribution. For uniform and gaussian dis-
tributions, BR-Cost is the best algorithm and BR-Basic outperforms BR-First. Zipfian dis-
tribution, with many identical values, is a special case, but BR-Cost still have good results.
BR-Cost and NRA have almost the same cost, while differences between MPro and BR vari-
ants become insignificant.



(a) Varying k for Cr > Cs (b) Varying k for Cr = Cs

(c) Varying the number of objects (d) Varying the distribution

Fig. 3. SR + S-sources: varying k, the number of objects and the distribution

Finally, we study the impact of varying the ratio between the number of SR-sources and
of S-sources. Figure 4 reports the results for the default setting (a) and for Cr = Cs (b).
Interestingly, in both cases algorithms have best results when |SR| = |S|. In the default
setting, in all cases, BR-Cost has better cost, but it substantially outperforms the other
algorithms when |SR| > |S|. Also BR-Basic is always significantly better than BR-First, the
difference increases when |SR| < |S|. When Cr = Cs, BR-Basic/Cost, BR-First and MPro
keep the same relative performances, while NRA behave worse when |SR| > |S|.

SR-Sources + R-Sources We compare BR with Upper, TAz and MPro. For space rea-
sons, we only illustrate BR-Cost and BR-Basic, knowing that measures indicate that BR-First
remains worse than BR-Basic. Results are presented in Figure 5. TAz is systematically out-
performed by all the other algorithms and BR-Basic by BR-First. BR-Cost has globally the
best results, even if Upper and MPro are close. Upper is slightly worse than MPro in the
default setting, but scales better than MPro when the number of objects grows. Also Upper
degrades when |SR| > |R|.



(a) Cr > Cs (b) Cr = Cs

Fig. 4. SR + S-sources: varying |SR|/|S|

(a) Varying k (b) Varying the number of objects

(c) Varying distribution (d) Varying |SR|/|R|

Fig. 5. SR + R-sources



SR-Sources + S-Sources + R-Sources We compare BR-Cost, BR-Basic and BR-First
with MPro, by first varying k for all the cost settings. Figure 6(a) reports the default case
Cr > Cs. BR-Cost outperforms MPro, while BR-Basic remains better than BR-First and
similar to MPro. When Cr = Cs (subfigure b), BR-Basic/Cost is better than both MPro and
BR-First and the difference augments when Cr < Cs (subfigure c). This seems to indicate that
MPro makes more sorted accesses than BR-Basic (the difference increases when Cs grows)
and probably less random accesses.

(a) Varying k: Cr > Cs (b) Varying k: Cr = Cs

(c) Varying k: Cr < Cs (d) Varying distribution

Fig. 6. SR + S + R-sources: varying k and the distribution

Figure 6 (d) illustrates the impact of data distribution: BR-Cost remains globally the
best, while BR-First is the worse BR variant. There is little difference between BR variants
for gaussian distribution, while zipfian favors MPro compared to BR-Basic and BR-First.

Figure 7 reports the impact of the number of objects for Cr > Cs (a) and Cr < Cs (b).
In both cases, the cost augments almost proportionally for the BR variants and BR-Cost is
always better than the other algorithms. We remark that MPro scales better than BR-Basic
and BR-First when Cr > Cs and significantly worse when Cr < Cs, indicating that MPro
makes slightly less random accesses, but much more sorted accesses than BR-Basic.



(a) Cr > Cs (b) Cr < Cs

Fig. 7. SR + S + R-sources: varying the number of objects

5 Conclusion

In this paper we proposed BreadthRefine (BR), a generic top-k algorithm, able to adapt to
any combination of source access types and to any cost settings. It adopts a new heuristic
approach, by refining the scores of all the top-k candidates instead of focusing on the best one.
Experiments on synthetic data clearly indicate that BR successfully adapts to various settings,
with globally better execution cost than algorithms designed for that specific case. Comparison
with the classical approach of favoring the best candidate shows that BR’s breadth-first
heuristics produces better results.

Future work will focus on the advantages of breadth-first heuristics in approximating the
top-k final results.
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