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A unified framework for reactive control of wheeled mobile manipulators

V. Padois, J.-Y. Fourquet, P. Chiron

Abstract— In this paper, we give an overview of the work
we have conducted toward a unified modeling framework for
wheeled mobile manipulators (WMM). Where most work in the
literature often provide models, sometimes simplified, of a given
type of WMM, we give an extensive description of the obtention
of explicit kinematic and dynamic models of those systems.
This modeling framework is particularly well suited for reactive
control approaches which, in the case of mobile manipulation
missions, are necessary to handle the complexity of the tasks
to be fulfilled, the dynamic aspect of the extended workspace
and the uncertainties on the knowledge of the environment.
We thus also provide a flexible reactive framework allowing
the sequencing of operational tasks whose natures are different
but also an on-line switching mechanism between constraints
that are to be satisfied using the system redundancy.

I. INTRODUCTION

From manipulators executing highly specific and simple
tasks in structured environments, robotics missions have
evolved towards the service domain where robots are ex-
pected to explore (partially) unknown dynamic environments,
interact with human beings or manipulate hazardous prod-
ucts. Examples of field or service robotics applications are
numerous and they all involve robots whose workspace
capacities have to be extended and whose control architecture
and strategies must ensure good overall performances in
complex missions. The complexity of those missions lies in
the fact that an extension of the workspace of robots leads to
a partial knowledge of the environment but also in the fact
that a complex mission is often an aggregation or sequence
of different types of tasks: trajectory tracking, motion in
dynamic environment, contact interaction, compliant motion.
To fulfil such missions, robotic systems are required to
combined both locomotion and manipulation capacities and
such systems are called mobile manipulators.

The physical aspect of mobile manipulators varies with the
type of mobile manipulation mission that is considered. The
main differences between those systems of a same family
consist in the locomotion mean that is used. Apart from
very specific application such as underwater applications
where submarine-like locomotion is used, we can divide
mobile manipulators into two large families: legged systems
such as humanoid robots and wheeled systems. The need of
humanoid-like robot is mostly associated to service missions
for which the social aspect of the interaction is of great
importance. To this social aspect of the interaction, one
must add the need of adaptation to environments primarily
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designed for human beings. When those two characteristics
are not present in the features of the mission to accomplish,
the locomotion problem can be partially simplified by the
use of wheeled mobile platforms whose design and control is
less demanding. Moreover, in several cases, wheeled mobile
platforms are more suitable than legged type robots whose
locomotion properties are restricted especially in terms of
speed and load. This paper focuses on this latter type of
mobile manipulators: wheeled mobile manipulators (WMM),
especially those evolving on flat grounds, i.e. whose platform
are not characterised by high terrain clearance capabilities.
We name WMM any system combining a wheeled mobile
platform and one or several manipulators (classically arms).

Those systems have the following characteristics:

• wheeled mobile platforms, and by extension WMM, are
nonholonomic systems;

• WMM are often kinematically redundant with respect
to the task to be achieved;

• the mass properties, and thus the dynamic properties,
of the wheeled platform and those of the manipulator(s)
are very different.

To these characteristics, one has to add the constraints associ-
ated to the control of robots and robotic mission themselves:

• joint limits avoidance;
• rated input for the actuators;
• singular configurations avoidance;
• obstacle avoidance;
• tip-over of the system and skidding /slipping of wheels.

From this set of constraints and characteristics, different
approaches have been developed to control WMM. A first
class of approach is inherited from the control schemes
that have been developed for manipulators. Those control
schemes have been extended to WMM in order to account
for their specificities. Among those approaches, we can
distinguish the pioneer work of H. SERAJI [1] who proposed
an extension of kinematic based control laws to the case of
a mobile manipulator equipped with a unicycle-like wheeled
platform and a manipulator. The innovation of this work was
to consider the system without making any explicit difference
between the two subsystems and thus to offer an implicit

coordination control scheme, extending the concept of redun-
dancy to the whole system and not only the manipulator. If
for a given problem, one might want to use a trivial explicitly
coordinated control scheme of a mobile manipulator, the
most generic framework to control mobile manipulators is
clearly to consider an implicit coordination of the system.
This framework allows to define the control problem without
explicitly defining the wheeled platform trajectory thus not
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restricting the set of solutions to a very restricted subset
corresponding to a specific platform trajectory. This implicit
coordination approach was extended to dynamic model based
control schemes by Y. YAMAMOTO and X. YUN in [2]
where they showed that the dynamic coupling between the
two subsystems does not require to be fully compensated to
achieve good tracking performances. Implicitly coordinated
approaches to the force control problem of WMM has also
been tackled using the dynamic models for some specific
type of WMM (see [3] for example). Finally, reactive motion
has been studied for WMM in the case of omnidirectional
and unicycle wheeled platform using a dynamical model.
This was the framework of O. Brock et al. in [4]. H.
TANNER et al. also provide in [5] some results for navigation
with obstacles but from the planning point of view and
considering multiple WMM coordination.

If those studies provide some major developments for the
control of WMM, they do not offer a general framework
for the modelling of those systems. A unification of the
kinematic modelling of those system is proposed by B.
BAYLE et al. in [6]. This work is based on the generic
classification of wheeled mobile platforms presented in [7]
by G. CAMPION et al.. M. FRUCHARD et al. also provide
in [8] a general kinematic control approach based on the
transverse function approach that was initially developed for
wheeled mobile robots ([9]).

Regarding a generic dynamic model for WMM, no previ-
ous work has been done to propose a unified expression of
this model. Of course, most of the studies of WMM based on
a dynamic model provide an expression of this model in the
specific case of a given robot. The goal of this paper is thus
to provide an explicit formulation of the dynamic model of
any kind of WMM that can be used for torque based control
for reactive mission execution. We put an emphasis on the
reactivity which is, given the set of constraints to satisfy at
any time, the complexity of the missions and the uncertainty
on the plan execution, a necessary feature of the control of
WMM.

This paper is organised in four sections. We recall in
the first section the basics of the generic configuration
description of WMM. In the second section, we derive a
generic dynamic formulation of WMM and its connections
to reactive control approaches after having presented the
generic kinematic modelling of those systems that was
proposed in [10]. In the third section, the reactive control
framework of WMM that we implemented both in simulation
and experimentally, in the case of robotic missions based
on tasks sequencing, is introduced. We finally conclude this
study by the perspectives and needs of future work regarding
the reactive control of WMM.

II. CONFIGURATION DESCRIPTION OF WHEELED MOBILE

MANIPULATORS

Model based control approaches require a clear definition
of the configuration parameters of the system whose models
are derived. The configuration description of a mechanical
system is a well known concept. However, it is of interest to

take time to clarify this “simple” notion in the case of the
configuration description of WMM.

Configuration of a wheeled mobile manipulator

Considering the four classical types of wheels (fixed,
centered, off-centered, Swedish) and using the notations
introduced in [7] (cf. figure 1), one can intuitively define
the configuration of a wheeled mobile manipulator evolving
on a planar surface as the configuration of the holonomic
arm mounted on the mobile platform, the location of the
wheeled mobile platform in the world reference frame and
the configuration of each wheel with respect to the platform.
For the sake of conciseness, we here focus on the one arm
case but extending the following models to the multiple arms
case (i.e. multiple operational points case) is straightforward.
We then have:

q =
[

qt
m ξt

p ϕt βt ]t
,

where:
• qm is the configuration of the manipulator mounted on

the platform. Using the modified version of the D.-H.
parameters ([11]), the nm components of qm can be
naturally chosen as the nm joint parameters thus leading
to a minimal representation of the configuration of the
manipulator;

• ξp =
[

x y ϑ
]t

is the vector of location of the
platform (whose size is denoted mp = 3) with respect
to the world reference frame R = (O, "x, "y,"z);

• ϕ =
[

ϕt
f ϕt

c ϕt
oc ϕt

s

]t
is the vector of the N =

Nf + Nc + Noc + Ns spinning angles of the Nf fixed
wheels, Nc centred wheels, Noc off-centred wheels and
Ns Swedish wheels respectively;

• β =
[

βt
oc βt

c

]t
is the vector of the NS = Nc +Noc

steering angles of the Nc centred wheels and Noc off-
centred wheels respectively.

The configuration of a WMM is thus defined by a vector
q of size n = nm + mp + N + NS . However, apart from
classical revolute and prismatic joints, a WMM is subject to
rolling without slipping conditions which are joint equations
of a specific type. We hereafter describe those conditions.

Rolling without slipping conditions

The rolling without slipping conditions of a wheel rep-
resent the fact that we consider perfect joint of the wheel
with the ground, i.e. no slipping of the wheel in its vertical
plane and no skidding in its orthogonal plane. Using the
configuration description, they can respectively be written,
for a given wheel:

[

−Sαβγ Cαβγ bCβγ

]

R(ϑ)T ξ̇p + rCγ ϕ̇ = 0,
(1)

and:
[

Cαβ Sαβ b′ + bSβ

]

R (ϑ)T
ξ̇p + b′β̇ = 0 , (2)

where (2) does not apply to Swedish wheels, Cαβ and
Sαβ are short notations respectively for cos (α+ β) and
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Fig. 1. Configuration description of wheeled planar platforms.

sin (α+ β). R (ϑ) represents the rotation matrix of angle
ϑ around "z.

Those joint equations are most of the time non inte-
grable, i.e. nonholonomic. In the specific cases where some
combinations of those equations can be integrated, they are
often kept as complementary joint equations. This choice
can be justified in the practical cases where pure rolling
without slipping is never completely respected and thus
basing the knowledge of some configuration parameters on
this assumption might lead to a drift of the reconstructed
(not directly measured by physical sensors) parameters.

III. UNIFIED KINEMATIC AND DYNAMIC MODELLING OF

WHEELED MOBILE MANIPULATORS

Given a WMM, the task is expressed in terms of a
trajectory to follow, a point to reach or a force to exert
for the end-effector of the manipulator. This operational
point is associated to a set of operational coordinates whose
size is associated to the type of task to fulfil: constrained
location, constrained position etc. The vector of operational
coordinates of the manipulator is written ξ and its size is
denoted m. The direct kinematics model of the WMM can
then be written:

ξ = f
(

ξp,qm

)

, (3)

where f is a set of nonlinear functions, independently of the
type of platform.

After differentiation of (3), we get:

ξ̇ = J (q) q̇. (4)

J(q) is the m × n Jacobian matrix of the WMM.
Equation (4) is not sufficient to fully describe the system’s

differential kinematics. One needs to also take the rolling
without slipping joint equation of the wheels. Those equa-
tions can be written in the synthetic form:







J1f

J1c (βc)
J1d (βd)

J1s







R (ϑ)T
ξ̇p +







J2f

J2c

J2d

J2s







ϕ̇ = 0, (5)





C1f

C1c (βc)
C1d (βd)



R (ϑ)T
ξ̇p +





ONf×Nd

ONc×Nd

C2d



 β̇d = 0. (6)

One can easily deduce that:

• J1 =
[

JT
1f J1c (βc)

T
J1oc (βd)

T
JT

1s

]T
is a

(N × mp) matrix;
• J2 =

[

JT
2f JT

2c JT
2oc JT

2s

]T
is a diagonal, con-

stant, (N × N) matrix;

• C1 =
[

CT
1f C1c (βc)

T
C1oc (βd)

T
]T

is a ((N −

Ns) × mp) matrix;
• and C2 =

[

O O CT
2oc

]T
is a diagonal, constant,

((N − Ns) × Noc) matrix;
(5) and (6) can then be compactly written as:

D (qp) q̇ = 0. (7)

D (qp) has (h̄+hc) rows with h̄ the number of nonholonomic
constraints and hc the number of holonomic constraints kept
as complimentary joints equations (table I).

In order to be able to control the system without violating
the rolling without slipping assumption, it is necessary to
find the subset of q̇ such that (7) is always satisfied.

A. Mobility analysis

An analysis of matrix D (qp) leads to the conclusion that
for a motion of a WMM to be possible, conditions to be
respected are only related to the velocity of the wheeled
platform. Especially, for a possible motion of the platform
to exist, the following constraint, extracted from D (qp), has
to be met:

C1fc (βc) R (ϑ)T
ξ̇p = 0, (8)

where:
C1fc (βc) =

[

C1f

C1c (βc)

]

.
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D (qp) =

2

6

6

6

6

4

Om×m Om×mp Om×N Om×Noc Om×Nc

ON×m J1R (ϑ)T J2 ON×Noc ON×Nc

ONf×m C1f ONf×N ONf×Noc ONf×Nc

ONc×m C1c (βc) R (ϑ)T
ONc×N ONc×Noc ONc×Nc

ONoc×m C1oc (βoc) R (ϑ)T
ONoc×N C2oc ONoc×Nc

3

7

7

7

7

5

.

TABLE I

DETAILED DESCRIPTION OF MATRIX D (qp).

This condition on the movement of the platform is such
that ξ̇p is constrained to evolve in a subspace of the space
of possible planar velocity. The size of this subspace is
denoted δmobp ≤ mp and called the degree of mobility

of the platform. δmobp is dependent on the platform type
and it is shown in [7] that there are actually a limited
number of wheeled platform types such that δmobp $= 0,
i.e. such that the platform can move. Considering the set of
feasible wheeled platform type described in [7] (i.e. wheeled
platform such that rank (C1fc (βc)) < mp), constraint (8)
requires to choose ξ̇p in the range of N (C1fc (βc)), Given,
Σ (βc) a (mp × δmobp) matrix whose column are a basis of
N (C1fc (βc)), any ξ̇p chosen as:

ξ̇p = R (ϑ)Σ (βc)umobp, (9)

will satisfy constraint (8). umobp is any vector of size δmobp

and is named the mobility command of the wheeled platform.
From relation (9), we can then deduce the values of the
velocity ϕ̇ and β̇oc that will lead to the complete satisfaction
of constraint (7):

ϕ̇ = −J−1
2 J1Σ (βc)umobp, (10)

and:
β̇oc = −C−1

2ocC1dΣ (βc)umobp. (11)

Constraint (7) does not give any guidance for the determi-
nation of β̇c, but among the set of feasible wheeled platform
type, one can demonstrate that the number of components
of β̇c that can be steered independently cannot be more that
2. This number is called the degree of steerability of the
wheeled platform and is denoted δst. The δst independent
components of β̇c form the steerability command ust of the
wheeled platform. The steering velocity of any other centred
wheel can be determined from this steerability command
vector (see [12]).

Regarding the manipulator, its mobility command can be
simply chosen as:

umobm = q̇m. (12)

The sum of δmob + δst is called the degree of manoeu-

vrability δman of the WMM. Given the restriction on the
type of feasible wheeled platform, it is equal to the degree
of freedom ndof of the system [13]:

δman = ndof .

Considering wheeled platform with no more than two
steerable wheels (any other case can be deduced from this

one), the subset of q̇ satisfying (7) are thus related to the
command of the WMM by the relation:

q̇ = S (qp)u, (13)

where u =
[

ut
mobm ut

mobp ut
st

]t
and:

S (qp) =









Im Om×δmobp
Om×δst

Omp×m R (ϑ) Σ (βc) Omp×δst

ON×m −J−1
2 J1Σ (βc) ON×δst

ONoc×m −C−1
2ocC1ocΣ (βc) ONoc×δst

Oδst×m Oδst×δmobp
Iδst









.

One can easily check that we have D (qp)S (qp) = 0 for
any q. An analysis of the number of joint equations that are
actually nonholonomic can be determined by studying the
span of the vector fields generated by the columns of S (qp)
(details can be found in [7] and examples in the case of
WMM in [13]).

B. Kinematic model

From this subset of generalised velocities, we can now
write the kinematic model in a form that can be used to
control the system. One first needs to notice that there is no
kinematic connection between ξ̇ and β̇c. Thus, even if we do
not deal with the problem of designing the proper steerability
command for the WMM in this paper, it is of importance to
notice that the full kinematic model description of a WMM
is extended to the following relation:

ż = B (q) q̇, (14)

where:
z =

[

ξ
βc

]

,

and:
B (q) =

[

J (q)
Oδst×(n−δst) Iδst

]

. (15)

Plugging (13) in (14), we get:

ż = B̄ (q)u, (16)

where:
B̄ (q) = B (q)S (qp) , (17)

which can also be written:

B̄ (q) =

[

J̄ (q) Om×δst

Oδst×δmob
Iδst

]

,

with:
[

J̄ (q) Om×δst

]

= J (q)S (qp) .
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In the kinematic redundant case (i.e. δmob > m), an
inverse kinematic model-based controller can be used:

u = B̄ (q)% ż +
(

Indof
− B̄ (q)% B̄ (q)

)

u0, (18)

with B̄ (q)% a weighted pseudo-inverse of B̄ (q), ż the
desired operational and steering velocity and u0 any vector.
B̄ (q)% is given by:

B̄ (q)% =

[

J̄ (q)% Oδmob×δst

Oδst×m Iδst

]

.

Access to the system redundancy is given by the term
(

Indof
− B̄ (q)% B̄ (q)

)

u0. u0 can be chosen using gradient
descent techniques to locally minimize any potential function

P (q) used to represent a constraint that has to be satisfied
by the system at a given time. To locally minimize P (q),
we have to ensure that Ṗ (q) ≤ 0. Ṗ (q) can be expressed
as:

Ṗ (q) = ∇
tP (q) q̇,

where ∇P (q) is the gradient of function P (q). In order not
to provide any operational effects and to be compliant with
the complementary joint equations, q̇ has to be chosen as:

q̇ = S (qp)
(

Indof
− B̄ (q)% B̄ (q)

)

u0.

We thus have:

Ṗ (q) = ∇
tP (q) S (qp)

(

Indof
− B̄ (q)% B̄ (q)

)

u0.

Given the idempotency property of matrix projectors such
as

(

Indof
− B̄ (q)% B̄ (q)

)

, choosing u0 as:

u0 = −K
(

∇
tP (q) S (qp)

(

Inddl
− B̄ (q)& B̄ (q)

))t
,

where K is a positive definite matrix, leads to Ṗ (q) ≤
0. One has to notice that when the operational task
to be achieved and the potential function to be op-
timized are not compatible, the projection of u0 into
(

Indof
− B̄ (q)% B̄ (q)

)

will lead to 0. The operational task
has a greater priority than the optimisation of the potential
function. The priority concept can be extended to multiple
potential functions optimized at the same time. The basics of
this prioritisation technique can be found in [14]. In the case
of WMM, the redundancy degree of the system is not high
enough to efficiently optimize multiple potential functions
at the same time. However those techniques make a lot of
sense with highly redundant robots such as humanoids. In
that specific case, the constraints associated to the potential
functions can be highly critical and the operational task can
be given a priority lower than the priority of the potential
functions.

C. Dynamic model

When interaction forces are involved and/or compliant
behaviour is desired, the use of a dynamic model of the
system is required in order to correctly compensate for the
natural dynamic of the system. The implicit and explicit
formulation of the dynamics of manipulators is a widely
treated subject. Regarding WMM, some papers propose a

dynamic modelling in the specific case of a given system
(see for example [15] or [3]) and H. TANNER et al. in [16]
propose a formulation of the dynamic model of the WMM
using KANE’s approach. However, this work does not give
access to a formulation that can be directly used for control
purposes. We propose here to derive such an explicit dynamic
model based on LAGRANGE formulation. We only partially
cover the topic of the dynamic modelling of nonholonomic
systems and [17] (among others) can be used as a complete
reference book.

The LAGRANGE formulation of the dynamic of a mechan-
ical system can be summarised by the following formula:

d

dt

(
∂T (q, q̇, t)

∂q̇i

)

−

(
∂T (q, q̇, t)

∂qi

)

= Qi, (1 ≤ i ≤ n),

(19)
or:

Pi = Qi, (1 ≤ i ≤ n),

with Pi = d
dt

(
∂T (q,q̇,t)

∂q̇i

)

−
(
∂T (q,q̇,t)

∂qi

)

.

This results from the expression of the virtual power
principle, expressed in terms of the kinetic energy T (q, q̇, t)
of the system. Briefly, we can say that:

• Pi is the force applied to the system which is due to its
motion and which is associated to coordinate qi;

• Qi is the sum of any other force acting on the system
and associated to coordinate qi.

However relation (19) does not account for the complemen-
tary joint equations and any virtual velocity q̇% compatible
with the complementary joint equations is such that:

D (q) q̇% = 0. (20)

The virtual power principle also leads to the following
results:

(P − Q)t
q̇% = 0. (21)

Relations (20) and (21) leads to the conclusion that q̇%

has to be orthogonal to the h̄ + hc rows of D (q) and also
orthogonal to vector (P − Q). The latter can thus be written
as a linear combination of D (q) rows:

Pi − Qi =
h̄+hc∑

j=1

λjDji, (1 ≤ i ≤ n) ,

where λj are h̄ + hc scalars (historically known as LA-
GRANGE multipliers).

A complete dynamic description of the system is thus
given by:

Pi = Qi +
h̄+hc∑

j=1

λjDji, (1 ≤ i ≤ n).

Computing the kinetic energy of the system and computing
the components of P , the dynamic equation of a WMM can
always be written in the form:

A (q) q̈ + C (q, q̇) q̇ = Q + D (q)t
λ. (22)
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A (q) is the n × n symmetric, positive definite, inertia
matrix of the system. C (q, q̇) is the n × n CORIOLIS and
centrifugal matrix of the system. Q can be written as the
sum of four terms Q = Qa + Qg + Qd + Qext, where:

• Qa = MΓ, the actuation forces acting on the system.
We do not provide here any analysis of the actuation
of WMM (see [7]) but assuming a non under-actuated
system with na actuators, Γ is the actual vector of
actuation torques (actually force or torque) and M is
a (n × na) matrix such that Mik = 1 if coordinate qi is
directly actuated by actuator k and Mik = 0 otherwise;

• Qg = −g (q), the vector of gravity forces acting on the
system;

• Qd, the vector of force disturbances due to friction-like
effects in the mechanism;

• Qext, the vector of external interaction forces.
Regarding Qext, the location ξcl

of the interaction/contact
on the WMM can be related to the configuration by a
geometrical relation:

ξcl
= gcl

(q) ,

that can be differentiated leading to a kinematic relation of
the type:

ξ̇cl
= Jcl

(q) q̇.

The kineto-static principle of equivalence allows to compute
Qext, the equivalent generalised force associated to this
contact force at ξcl

, as a function of the contact forces fcl
.

We thus have:
Qext = −Jcl

(q)t
fcl

.

We do not make here any assumption about the compati-
bility between the contact force applied at ξc and the motion
of the controlled system. We rather focus on the specific case
where this contact interaction occurs at the end-effector of
the WMM but also assume some resistive torque for the
steering axes of the steerable wheels. This latter assumption
is realistic when the contact point of the wheels with the
ground is actually more a line than a point thus leading to
some amplified resistive friction effects of the ground on the
wheels with respect to the steering axis. In that specific case,
we have Jc (q) = B (q) and thus:

Qext = −B (q)t
fc.

From here, the dynamic equation of motion can be written:

A (q) q̈+ C (q, q̇) q̇ + g (q) + B (q)t
fc = MΓ + D (q)t

λ.
(23)

D (q)t
λ is actually the projection of the reaction forces at

each joint whose equation has been chosen as a complemen-
tary joint equation. Assuming that only the rolling without
slipping joint equation have been kept as complementary
joint equations, λ precisely represents the vector of the
tangential reaction forces (collinear with plane (O, "x, "y)) of
the wheels on the ground. If the non slipping assumption is
not realistic (that can be the case in outdoor, non-structured
ground applications) and using a friction model, one can lead
a study of the slipping/skidding conditions for the system

based on (23). In some applications, this assumption is valid
and one may want to restrict the study to those motions that
do not violate the constraints. To do so, one can eliminate the
term D (q)t

λ in (23) by multiplying both sides by S (q)t.
This leads to:

S (q)t
A (q) q̈ + S (q)t

C (q, q̇) q̇+
S (q)t

g (q) + S (q)t
B (q)t

fc = S (q)t
MΓ.

(24)

The rolling without slipping conditions are supposed to be
respected and thus q̇ and q̈ are restricted to:

q̇ = S (q)u and q̈ = Ṡ (q)u + S (q) u̇.

Plugging into (24), we get the reduced dynamic model of
the WMM or constraints consistent dynamic model:

Ā (q) u̇ + C̄ (q, q̇)u + ḡ (q) + B̄ (q)t
fc = Γ̄, (25)

where:
• Ā (q) is the ndof × ndof , symmetric, positive definite,

constraint consistent inertia matrix of the system. It can
be decomposed as:

Ā (q) =

[

Am (qm) Āp/m (q)
Āp/m (q)t

Āp (q) + Āmp (q)

]

,

with:
– Am (qm) the nm × nm inertia matrix of the ma-

nipulator;
– Āp (q) the (ndof − nm)× (ndof − nm) constraint

consistent inertia matrix of the wheeled platform
without accounting for the presence of the manip-
ulator;

– Āmp (q) the (ndof − nm)×(ndof − nm) constraint
consistent inertia matrix term representing the in-
fluence of the presence of the manipulator on the
wheeled platform;

– Āp/m (q) the nm× (ndof − nm) constraint consis-
tent inertia matrix representing the influence of the
platform acceleration on the manipulator inertial
properties.

• C̄ (q, q̇) is the ndof ×ndof constraint consistent matrix
of the Coriolis and centrifugal effects of the system
which can also be decomposed in terms of manipulator,
platform and mutual effects;

• Γ̄ = M̄Γ, with M̄ = S (q)t
M .

Given any (u, u̇) computed from (18) and any consistent
fc (consistent with ξ̇ in terms of controlled operational
direction), one can compute the needed torque Γop to fully
compensate for the dynamic effects of the desired motion of
the system:

Γ̄op = Ā (q) u̇ + C̄ (q, q̇)u + ḡ (qb) + B̄ (q)t
fc,

and:

Γop = M̄%
(

Ā (q) u̇ + C̄ (q, q̇)u + ḡ (qb) + B̄ (q)t
fc

)

.

(26)
Assuming that the system is not under-actuated, (26) leads

to an actuation torque that perfectly compensate for the
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dynamic effects of the system providing that the weighting
matrix for the weighted pseudo-inverse of matrix B̄ (q) is
chosen as the inertia matrix Ā of the system (see [18] and
[13] for a proof in the case of any type of WMM). In the
case of force-based potential functions to locally optimize,
access to the redundancy is also given in the torque space:

Γ̄ = Γ̄op +
(

Indof
− B̄ (q)t

B̄ (q)t[1,2]
)

Γ̄0.

B̄ (q)t[1,2] (see [19] for a complete definition of
[1, 2]−generalised inverses) actually has to be chosen as
an inertia matrix weighted pseudo-inverse in order to fully
compensate for the system dynamic.

This framework can be extended to the operational space
formulation of O. KHATIB that was primarily developed for
manipulators. Details of this extension are given in [13].

IV. REACTIVE CONTROL FOR WHEELED MOBILE

MANIPULATORS

Using model-based actuation torque or velocity compu-
tation as presented in section III, we have developed a
framework allowing a reactive execution of complex mobile
manipulation missions based on the sequencing of opera-
tional space tasks for the WMM. This was validated in
simulation using a Matlab/Simulink simulator developed to
simulate the dynamics of the WMM, test different control
laws and implement our framework for reactive control. We
also implemented this framework using the Genom control
architecture of the LAAS Laboratory in Toulouse (France)
on a real robot: H2Bis + GT6a (see[20],[21]).

A. Framework description

We consider missions based on the sequencing of opera-
tional tasks whose nature can be different: free-space motion,
constrained motion, force interaction. A mission can then
be represented as a state machine where each state or mode
represents a specific operational task. The possible transitions
between states are described and transition conditions are
mainly based on sensors information. This allows to describe
a large number of missions.

Regarding the operational trajectories, they can either be
pre-planned or generated on-line. The actuators’ inputs are
then computed based either on inverse kinematics or on
both inverse kinematics and dynamics. In both cases, the
computed input can be written:

c = cop
︸︷︷︸

operational task

+
(

Indof
− E (q)% E (q)

)

c0
︸ ︷︷ ︸

cred : redundancy

,

where, in the kinematic case, c = u, cop = B̄(q)%ż, E (q) =
B̄(q) and c0 = u0. In the torque formulation (dynamic or
even static when neglecting inertial effects), we have c = Γ̄,
cop = Γ̄op, E (q) = B̄(q)t% and c0 = Γ̄0.

B. Actuator input

Considering the case where redundancy is formulated in
the kinematic framework, rated input actuators (in terms of
velocity and acceleration) have to be respected. To do so,
we first have to ensure that the operational task term is such
that:

|cop| ≤ cmax, (27)

where cmax is the vector of maximum velocities for the
actuators of the system. This constraint can be easily met
when designing the input trajectories. We then have to find
the largest positive value of a real αs such that we have:

|cop + αscred| ≤ cmax.

This allows to scale down (or eventually up) the redun-
dancy term in order the constraint on maximum velocities
to be respected. It also keeps the direction of descent of the
gradient method used to compute c0, when it is chosen as a
potential function to locally optimize. αs can be computed
as:

min

((
|cmax,i.sign (cred,i) − cop,i|

|cred,i|

)

i=1...ndof

,αsmax

)

.

This lead to a value of αs between 0 and αsmax . αsmax

is an upper limit used not to over amplify the redundancy
term. It can for example be chosen using Armijo’s rule. A
similar reasoning process can be led to respect the constraints
on maximum acceleration. However in that case, it is also
important to choose C2-class potential functions so that
∇Pi (q) and ∇Ṗi (q) are continuous functions.

C. Active constraint

The criticalities of the constraints listed in Introduction can
be different given the type of task to be executed. Moreover,
those constraints are not always active. For example, the
obstacle avoidance constraint has to be respected at any time.
However, it is not be necessary to take it into account when
far from obstacles. The same reasoning can be applied to
any type of constraint and we thus designed a deterministic
arbitration mechanism that at each time evaluates the crit-
icality, with respect to the current executed task, of each
potential function associated to the constraints and chooses
which constraint is of greater importance at a given time.
To avoid fast switching between two antagonist constraints,
activation and deactivation thresholds for a given constraint
can be chosen differently. Reactive and smooth (in terms
of continuity of the control signals) switches between the
constraints and the associated function to locally optimize
using redundancy are then accordingly operated. A simple
way to obtain smooth transition is to design a switching
function βs (t) linearly varying between 0 and 1, 0 being
the value of the function when the transition starts and 1
its value when the transition ends. The transition potential
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function is thus respectively given by:

P(t) =







Pold(t)
Pnew(t)β(t)2 + Pold(t)

(

1 − β(t)2
)

Pnew(t)
.

In order to ensure an efficient optimisation of the potential
function associated to a given constraint, one has to make
sure that the ratio cred

c0
is not too small and that αs is not

to small. The first case corresponds to a situation where the
operational task to be achieved and the potential function to
be optimized are not compatible. In that case, O. BROCK

et al. propose in [4] to release some operational constraints
momentarily in order to respect the constraints associated
to the potential function. The second case occurs when
the operational trajectories are very demanding in terms
of actuation in which case the scaling of the redundancy
term can lead to a drastic reduction of the efficiency of the
optimized function. We use a threshold based mechanism
(threshold on αs value) leading to the modification of the
operational trajectories in terms of speed of execution. This
allows to redistribute the actuation capacities of the system.
In case of pre-planned trajectories, no complete re-planning
is necessary and a simple adaptation of the original plan is
sufficient. When trajectories are generated on-line, they are
filtered using a low pass filter that is designed with varying
parameters so that the constraints on the actuators inputs are
met and so that the actuation power of the system can be
redistributed. The direction of the operational movement is
kept identical, only the speed of execution is reduced.

V. CONCLUSION

In this paper we have presented a unified framework for
the reactive control of wheeled mobile manipulators dedi-
cated to the execution of complex robotic missions composed
of different types of operational tasks that are dynamically
sequenced.

This framework is mainly based on model-based control
strategies and relies on the generic kinematic and dynamic
modeling of WMM. These models give access to the redun-
dancy of the system. This redundancy allows, using local
optimisation techniques, the satisfaction of the internal and
external constraints associated to the control of such sys-
tems. Arbitration and switching between critical constraints,
scaling of the actuators’ inputs and operational trajectories
offer the required flexibility in the realisation of a complex
robotic mission.

Further developments will be conducted especially to fully
integrate and automate the design of the steering wheels’
control within the proposed framework. In the case of
outdoor applications, the rolling without slipping assumption
may be too strong and we will also try to extend this
framework to the case where a friction model of the couple
wheel/ground might be useful in order to correctly model
the dynamic behaviour of the WMM and thus correctly
compensate for it.
Web resources: Movies of the simulation and experimental results
can be found at http://www.stanford.edu/~vpadois/
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