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Abstract

The purpose of this note is to provide a tight bound on the set chromatic number of a graph in
terms of its chromatic number. Namely, for all graphs G, we show that χs(G) > dlog2 χ(G)e+ 1,
where χs(G) and χ(G) are the set chromatic number and the chromatic number of G, respectively.
This answers in the affirmative a conjecture of Gera, Okamoto, Rasmussen and Zhang.

1 Introduction
There is a plethora of work devoted to neighbor-distinguishing vertex (or edge) colorings in graphs.
Essentially, given a function f defined on the set of vertices of a graph the goal is to obtain a
vertex coloring (or an edge coloring) such that f(u) 6= f(v) whenever u and v are two adjacent
vertices. (Obviously, the values taken by f depends on the coloring used.) This approach to
graph coloring permits to gather in a synthetic framework several variants of colorings such as set
colorings, metric colorings and sigma colorings. An interesting line of research is to estimate how
these notions relate to each others and, in particular, how they behave with respect to the (usual)
chromatic number of a graph. We refer the reader to the survey by Chartrand, Okamoto and
Zhang [2] for further information.

The notion of a set coloring was first introduced by Chartrand, Okamoto, Rasmussen and
Zhang [1]. Given a graph G = (V,E) and a (not necessarily proper) k-coloring c : V → {1, 2, . . . , k}
of its vertices, let

NC(v) := {c(u) | (u, v) ∈ E}
be the neighborhood color set of a vertex v ∈ V . The coloring c is set neighbor-distinguishing, or
simply a set coloring, if NC(u) 6= NC(v) for every pair (u, v) of adjacent vertices in G.

The minimum number of colors, k, required for such a coloring is the set chromatic number
χs(G) of G. Note that χs(G) 6 χ(G) for every graph G. Moreover, the set chromatic number is
bounded from below by the logarithm of the clique number as follows.
Theorem 1 ([1]). For every graph G,

χs(G) > 1 + dlog2 ω(G)e. (1)

A natural strengthening of (1) would be to replace the clique number with the chromatic
number. In particular, if χ(G) = ω(G) then

χs(G) > 1 + dlog2 χ(G)e, (2)

and Gera, Okamoto, Rasmussen and Zhang [3] showed that (2) is tight, in a strong sense.
Theorem 2 ([3]). For each pair (a, b) of integers such that 2 6 a 6 b 6 2a−1, there exists a
perfect graph G with χs(G) = a and χ(G) = b.
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Furthermore, they conjectured that (2) holds for all graphs G. The purpose of this note is to
confirm this conjecture.
Theorem 3. For all graphs G,

χ(G) 6 2χs(G)−1.

2 Proof of Theorem 3
Before starting the proof, notice that for every complete graph Kn with n > 2,

χs(Kn) = χ(Kn) = n.

This fact allows us to proceed by double induction: an ascending induction on the number of
vertices of the graph and, for a fixed number of vertices, a descending induction on the number of
edges.

Let G = (V,E) be a graph with n > 2 vertices and m edges. The assertion of Theorem 3
holds if n = 2 or m =

(
n
2

)
(that is, G is complete). So we assume now that n > 2, m <

(
n
2

)
and

χ(H) 6 2χs(H)−1 for all graphs H with either less than n vertices or exactly n vertices and more
than m edges.

We shall study the structure of G under the additional assumption that χ(G) > 2χs(G)−1.
This will allow us to exhibit a proper coloring of G using at most 2χs(G)−1, thereby obtaining a
contradiction and concluding the proof.

First, notice that for any two non-adjacent vertices u and v of G,

χs(G) < χs(G+ uv). (3)

Indeed, if there exists a pair (u, v) of vertices violating (3), then

χ(G) 6 χ(G+ uv) 6 2χs(G+uv)−1 6 2χs(G)−1,

which contradicts our assumption on G.
Now, set a := χs(G) and let c : V → {1, . . . , a} be a set coloring. We consider the a color

classes V1, . . . , Va where Vi is the set of vertices assigned color i.
We observe that no two vertices u and v in a same color class can have the same neighborhood

color set. This follows from the definition of a set coloring if u and v are adjacent, so suppose
that u and v are not adjacent. Consider the graph G′ that results from identifying the vertices u
and v of G into a new vertex z. Note that the vertex coloring of G′ naturally induced by c (that
is, with z being assigned color i) is a valid set coloring of G′, so χs(G) > χs(G′). However, as
χ(G) 6 χ(G′), the induction hypothesis applied to G′ yields that χ(G) 6 2χs(G′)−1 6 2χs(G)−1; a
contradiction.

We are now in a position to describe the structure of the color classes. We assert that for each
i ∈ {1, . . . , a}, the subgraph Hi of G induced by the vertices in Vi is either a clique or a clique
and an isolated vertex.

We prove the assertion in two steps. Fix i ∈ {1, . . . , a}. First, we show that for every two
non-adjacent vertices u and v in Vi, it holds that i /∈ NC(u) ∩ NC(v), that is one of u and v
has no neighbors in Vi. Indeed, as reported earlier the graph G′ := G + uv has set chromatic
number at least a+ 1, so that c is not a set coloring of G′. Consequently, NCG′ (u) 6= NCG(u) or
NCG′ (v) 6= NCG(v) hence i /∈ NC(u) ∩NC(v), as wanted.

Now, to prove the assertion, assume that Vi does not induce a clique in G. What precedes
implies that there is a vertex v ∈ Vi that has no neighbors in Vi. If two vertices u and w in Vi \{v}
are not adjacent then, similarly, we may assume that u has no neighbors in Vi. We now prove that
every neighbor of u in G is also a neighbor of v. By symmetry of the roles played by u and v, this
would imply that u and v have the same neighborhood, hence the same neighborhood color set; a
contradiction. So let x be a neighbor of u in G and assume that x is not adjacent to v. Note that
x ∈ Vj for some j 6= i and i ∈ NC(x) \NC(v). Let G′ be the graph obtained from G by adding
the edge xv. We know that c cannot be a set coloring of G′. Moreover, NCG′ (x) = NCG(x) and
i /∈ NCG′(v) = NCG(v) ∪ {j}. Consequently, we infer that v has a neighbor y in G such that
NCG(y) = NCG′(v). However, i ∈ NCG(y) yet i /∈ NCG′(v). This contradiction finishes the
proof of the assertion.
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We can now exhibit a proper coloring of G using at most 2a−1 colors, which will complete the
proof of Theorem 3.

We color the vertices of G using the alphabet {0, 1}a−1. Let 0 be the zero vector and let
ej := 1 · · · 101 · · · 1 where the zero is in position j. Call a vertex of Type 1 if v ∈ Vi but i 6∈ NC(v),
and of Type 2, otherwise. Now, we define a coloring χ, which is related to the characteristic vector
of the neighborhood color set. Let v be a vertex of G, so v ∈ Vi for some i ∈ {1, . . . , a}. If v is of
Type 1, let

χ(v) :=
{

0 if i = a

ei if i 6= a.

Suppose that v is of Type 2. If v ∈ Va then for each j ∈ {1, . . . , a− 1} let

χ(v)j :=
{

1 if j ∈ NC(v)
0 if j 6∈ NC(v).

Otherwise, that is, if v is of Type 2 and v ∈ Vi with i < a, then for each j ∈ {1, . . . , a− 1} let

χ(v)j :=


1 if j 6= i and j ∈ NC(v)
0 if j 6= i and j 6∈ NC(v)
1 if j = i and a ∈ NC(v)
0 if j = i and a 6∈ NC(v).

We now show that χ is a proper coloring of G.
First note that the coloring χ is proper on each part Vi, since two (adjacent) vertices in Vi

have different neighborhood color sets (both containing i). Furthermore, any two vertices of Type
1 are assigned distinct vectors by χ. Now, let u ∈ Vi and v ∈ Vj be two adjacent vertices with
i 6= j. Suppose first that u is of Type 1 but v is of Type 2. Then χ(v)i = 1 and χ(u)i = 0 if i 6= a,
whereas χ(u)j = 1 and χ(v)j = 0 if i = a. Finally, assume that both u and v are of Type 2. As c
is a set coloring of G, there must exist ` ∈ NC(u)4NC(v). If ` 6= a, then χ(u)` 6= χ(v)` since
` /∈ {i, j}. If ` = a, we may assume without loss of generality that a 6∈ NC(u). Then χ(u)i = 0
while χ(v)i = 1 since u and v are adjacent. Thus, the coloring χ is proper, which concludes the
proof of Theorem 3.
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