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Abstract

In the language of mathematical chemistry, Fibonacci cubes can be defined as the resonance

graphs of fibonacenes. Lucas cubes form a symmetrization of Fibonacci cubes and appear as

resonance graphs of cyclic polyphenantrenes. In this paper it is proved that the Wiener index

of Fibonacci cubes can be written as the sum of products of four Fibonacci numbers which in

turn yields a closed formula for the Wiener index of Fibonacci cubes. Asymptotic behavior of

the average distance of Fibonacci cubes is obtained. The generating function of the sequence of

ordered Hosoya polynomials of Fibonacci cubes is also deduced. Along the way, parallel results

for Lucas cubes are given.



1 Introduction

In this paper we are interested in the Wiener index and more general distance properties of

Fibonacci and Lucas cubes. Fibonacci cubes were introduced as interconnection networks [15]

and later studied from many aspects, see the recent survey [17]. From our point of view it is

important that Fibonacci cubes also play a role in mathematical chemistry: Fibonacci cubes are

precisely the resonance graphs of fibonacenes which in turn form an important class of hexagonal

chains [19]. (For related results about resonance graphs, known also as Z-transformation graphs,

see [21, 24, 29, 30].) Moreover, Lucas cubes also found chemical applications in [31].

The Wiener index of a graph is the first and (one of) the most studied invariant(s) in

mathematical chemistry, see for instance extensive surveys [9, 10] and recent papers [2, 3, 6, 8,

26, 27]. An equivalent approach to the Wiener index is to investigate the average distance of a

graph, which is indeed frequently done in pure mathematics, cf. [7, 14]. ¿From the recent papers

on the Wiener index we point out that [8] contains many new results on the Wiener index of

fibonacenes, the class of graphs that made Fibonacci cubes appealing in chemistry! Hence an

investigation of the Wiener index and related invariants of Fibonacci cubes seems well justified.

We wish to add that results similar to ours were very recently obtained by Došlić in [11]

while studying conjugated circuits in benzenoid chains. In particular, Fibonacci numbers con-

volved with themselves play a role here and there, and an average Kekulé structure of an n-ring

fibonacene contains approximately 2nϕ(2ϕ + 1)/5 conjugated hexagons, where ϕ = 1+
√

5
2 is the

golden ration.

The paper is organized as follows. In the next section concepts and results needed are given.

Then, in Section 3, we prove that the Wiener index of Fibonacci cubes can be written as the

sum of products of four Fibonacci numbers and use this result to deduce a closed formula for the

Wiener index of Fibonacci cubes. Hence the Wiener index of Fibonacci cubes can be obtained in

constant time which improves a result from [23] that computes it in O(log Fn) time. In addition,

we also determine the asymptotic behavior of the average distance of Fibonacci cubes and obtain

parallel results for Lucas cubes. In Section 4 we consider the Hosoya polynomial and obtain the

generating function of the sequence of ordered Hosoya polynomials of Fibonacci cubes as well

as the corresponding generating function for Lucas cubes. To make the paper of a reasonable

length, we only indicate some of numerous possible uses of these generating functions.



2 Preliminaries

The distance in this paper is the usual shortest-path distance—the number of edges on a shortest

path between vertices. The Wiener index W (G) of a connected graph G is the sum of distances

over all unordered pairs of vertices of G. The vertex set of the d-cube Qd, also called a hypercube

of dimension d, is the set of all binary strings of length d, and two vertices are adjacent if they

differ in precisely one position.

A Fibonacci string of length n is a binary string b1b2 . . . bn with bi · bi+1 = 0 for 1 ≤ i < n.

The Fibonacci cube Γn (n ≥ 1) is the subgraph of Qn induced by the Fibonacci strings of length

n. For convenience we also consider the empty string and set Γ0 = K1. Call a Fibonacci string

b1b2 . . . bn a Lucas string if b1 · bn = 0. Then the Lucas cube Λn (n ≥ 1) is the subgraph of Qn

induced by the Lucas strings of length n. We also set Λ0 = K1.

Let {Fn} be the Fibonacci numbers: F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2 for n ≥ 2. Let

Fn be the Fibonacci strings of length n. Let F0
n and F1

n be the strings of Fn that end with,

respectively, 0 and 1.

A subgraph G of a graph H is an isometric subgraph if the distance between any vertices

of G equals the distance between the same vertices in H. Isometric subgraphs of hypercubes

are partial cubes. The dimension of a partial cube G is the smallest integer d such that G is an

isometric subgraph of Qd. Many (chemically) important classes of graphs are partial cubes, in

particular trees, median graphs, benzenoid graphs, phenylenes, grid graphs and bipartite torus

graphs. In addition, Fibonacci and Lucas cubes are partial cubes as well, see [16].

Let a partial cube G of dimension k be given together with its isometric embedding into Qk.

Then for i = 1, 2, . . . , k and χ = 0, 1, the semicube W(i,χ) is defined as follows:

W(i,χ)(G) = {u = u1u2 . . . uk ∈ V (G) | ui = χ} .

For a fixed i, the pair W(i,0)(G),W(i,1)(G) of semicubes is called a complementary pair of

semicubes. It should be pointed out that since the embedding of G into Qk is unique (modulo

permutation of coordinates), see [25], the definition of the semicubes does not depend on the

embedding. The following result from [18] that computes the Wiener index of a partial cube

from the orders of their complementary pairs of semicubes will be our starting point in Section 3:



Theorem 2.1 Let G be a partial cube of dimension k isometrically embedded into Qk. Then

W (G) =
k∑

i=1

|W(i,0)(G)| · |W(i,1)(G)| .

The Hosoya polynomial [1, 28] (also known as the Wiener polynomial) H(G, x) of a connected

graph G is the distance counting polynomial:

H(G, x) =
∑

{u,v}
xd(u,v) .

We refer to [4] for several polynomials related to the Hosoya polynomial: edge-Wiener polyno-

mial, Schultz polynomial, and Gutman polynomial. Sometimes it is more convenient to consider

ordered Hosoya polynomial [20], that is, the counting polynomial of the distances among ordered

pairs of vertices:

H(G, x) =
∑

(u,v)∈V (G)×V (G)

xd(u,v) .

For example, when using Cartesian product, ordered polynomials are more adapted because we

have the simple relation H(G¤G′, x) = H(G, x) · H(G′, x). The two polynomials are easily

linked as follows:

2H(G, x) = H(G, x)− |V (G)| = H(G, x)−H(G, 0) .

3 Wiener index

We begin by expressing the Wiener index of Fibonacci cubes with Fibonacci numbers:

Theorem 3.1 For any n ≥ 0,

W (Γn) =
n∑

i=1

Fi Fi+1 Fn−i+1 Fn−i+2 .

Proof. The result holds for n = 0 because W (Γ0) = 0. Let n ≥ 1 and recall that Γn is a partial

cube. Moreover, the dimension of Γn is n, hence by Theorem 2.1 we have

W (Γn) =
n∑

i=1

|W(i,1)(Γn)| · |W(i,0)(Γn)| .

Consider the set W(i,1)(Γn), where 2 ≤ i ≤ n − 1. Let b = b1 . . . bn ∈ W(i,1)(Γn), then bi = 1

which implies that bi−1 = 0 and bi+1 = 0. It follows that for 2 ≤ i ≤ n − 1, |W(i,1)(Γn)| =

|Fi−2| · |Fn−i−1|. Furthermore, |W(1,1)(Γn)| = |W(n,1)(Γn)| = |Fn−2|.



Similarly, |W(i,0)(Γn)| = |Fi−1| · |Fn−i| for 2 ≤ i ≤ n − 1 and |W(1,0)(Γn)| = |W(n,0)(Γn)| =

|Fn−1|. Therefore,

W (Γn) =
n−1∑

i=2

(|Fi−2| · |Fn−i−1| · |Fi−1| · |Fn−i|) + 2|Fn−2| · |Fn−1|

=
n∑

i=1

Fi Fn−i+1 Fi+1 Fn−i+2 ,

where we have used that for any j, |Fj | = Fj+2. ¤

Note that the sequence {W (Γn)}∞n=0 is the convolution of {FiFi+1}∞i=0 with {Fi+1Fi+2}∞i=0.

In order to obtain a closed formula for W (Γn) we will apply the appealing theory of Greene

and Wilf presented in [12]. They studied the existence of closed formulas for expressions of the

form
n−1∑

j=0

G1(a1n + b1j + c1)G2(a2n + b2j + c2) · · ·Gk(akn + bkj + ck) ,

where each sequence {Gi(n)} is a sequence that satisfies a linear recurrence. Fibonacci num-

bers are of course such a sequence. Then it follows from [12, Theorem 2] that the sum
∑n−1

i=0 Fi Fn−i+1 Fi+1 Fn−i+2 can be expressed as a linear combination of F 2
n , F 2

n+1, FnFn+1,

nF 2
n , nF 2

n+1, and nFnFn+1. Furthermore, [12, Theorem 3] implies that if a linear combination

of the six monomials and the sum agree for n = 0, 1, . . . , 5, then they agree for all n. Since the

values of
∑n−1

i=0 Fi Fn−i+1 Fi+1 Fn−i+2 for n = 0, 1, . . . , 5 are 0, 0, 2, 10, 39, 136, the values of the

linear combination aF 2
n + b F 2

n+1 + c FnFn+1 + dnF 2
n + e nF 2

n+1 + f nFnFn+1 must be



0 1 0 0 0 0
1 1 1 1 1 1
1 4 2 2 8 4
4 9 6 12 27 18
9 25 15 36 100 60
25 64 40 125 320 200







a
b
c
d
e
f




=




0
0
2
10
39
136




whose solution is

{a, b, c, d, e, f} = { 4
25

, 0,−23
25

,
4
25

,
6
25

,
9
25
} .

Hence
∑n−1

i=0 Fi Fn−i+1 Fi+1 Fn−i+2 = 4
25F 2

n + 4
25nF 2

n − 23
25FnFn+1 + 9

25nFnFn+1 + 6
25nF 2

n+1. Note

that W (Γn) =
∑n

i=1 FiFn−i+1Fi+1Fn−i+2 = FnFn+1 +
∑n−1

i=0 FiFn−i+1Fi+1Fn−i+2 therefore:

Theorem 3.2 For any n ≥ 0,

W (Γn) =
4(n + 1)F 2

n

25
+

(9n + 2)FnFn+1

25
+

6nF 2
n+1

25
.



The first values of the sequence {W (Γn)} are 0, 1, 4, 16, 54, 176, 548, . . .

For a (connected) graph G, its average distance µ(G) is defined as

µ(G) =
1(|V (G)|
2

)W (G) .

Theorem 3.2 yields the asymptotic behavior of the average distance of Fibonacci cubes:

Corollary 3.3

lim
n→∞

µ(Γn)
n

=
2
5

.

Proof. From Binet’s formula for the Fibonacci numbers it follows that

lim
n→∞

Fn+1

Fn
= ϕ =

1 +
√

5
2

.

Then Theorem 3.2 and the fact that |V (Γn)| = Fn+2 imply:

lim
n→∞

µ(Γn)
n

= 2
(

4
25ϕ4

+
9

25ϕ3
+

6
25ϕ2

)
=

2
5

.

¤

Obtaining the Wiener index of Lucas cubes is significantly simpler than the Wiener index of

Fibonacci cubes. The intrinsic reason for it is that in Lucas cubes all the coordinates of vertices

are equivalent, while in Fibonacci cubes the first and the last coordinate behave differently from

the other coordinates.

Theorem 3.4 For any n ≥ 1, W (Λn) = nFn−1 Fn+1.

Proof. We again use the fact that Lucas cubes are partial cubes [16] and hence Theorem 2.1

can be applied, that is,

W (Λn) =
n∑

i=1

|W(i,1)(Λn)| · |W(i,0)(Λn)| .

Considering Lucas strings on a circle we infer that |W(i,1)| · |W(i,0)| does not depend of i. So we

may assume that i = 1. There are |Fn−3| Lucas strings whose first coordinate is 1, and there

are |Fn−1| Lucas strings whose first coordinate is 0. ¤

Using Binet’s formula and Theorem 3.4 we obtain a result for the average distance of Lucas

cubes parallel to Fibonacci cubes:

Corollary 3.5

lim
n→∞

µ(Λn)
n

=
2
5

.



4 Hosoya polynomial

In this section we make a more general approach and consider the ordered Hosoya polynomial

of Fibonacci cubes H(Γn, x) and its generating function

f(x, z) =
∑

n≥0

H(Γn, x)zn =
∑

n,k≥0

fn,kx
kzn ,

where fn,k is the number of pairs of vertices (u, v) ∈ V (Γn)× V (Γn) such that d(u, v) = k.

Theorem 4.1 The generating function of the sequence of ordered Hosoya polynomials of Γn is

f(x, z) =
∑

n≥0

H(Γn, x)zn =
1 + z + xz(1− z)

1− z − z2 + xz(−1− z + z2)
.

Proof. For i, j ∈ {0, 1}, let f ij
n,k be the number of (u, v) ∈ V (Γn)× V (Γn) such that d(u, v) = k

where u ends with i and v ends with j. Let us consider the generating polynomials f ij(x, z) =
∑

n,k≥0 f ij
n,kx

kzn. Then, having in mind the empty string,

f(x, z) = 1 + f00(x, z) + f01(x, z) + f10(x, z) + f11(x, z) . (1)

By symmetry,

f01(x, z) = f10(x, z) . (2)

If u and v end with 1 then they are the concatenation of an arbitrary Fibonacci string of Fn−2

with 01 thus f11
n,k = fn−2,k for n ≥ 2. Using the initial conditions f11

1,0 = 1 and f11
1,1 = f11

0,0 = 0

we obtain by a standard computation that

f11(x, z) = z2f(x, z) + z . (3)

If u and v end with 0 then they are both the concatenation of an arbitrary Fibonacci string of

Fn−1 with 0 thus f00
n,k = fn−1,k for n ≥ 1. Using the initial condition f00

0,0 = 0 we obtain

f00(x, z) = zf(x, z) . (4)

For n ≥ 2, if u ends with 1 and v ends with 0, then u is the concatenation of a Fibonacci

string of F0
n−1 with 1, and v is the concatenation of a string of F0

n−1∪F1
n−1 with 0. Therefore

f10
n,k = f00

n−1,k−1 + f01
n−1,k−1. Using the initial conditions f10

1,1 = 1 and f10
1,0 = f10

0,0 = 0 we obtain

by summation that

f10(x, z)− xz = xzf00(x, z) + xzf10(x, z)



and thus

f10(x, z) =
xzf00(x, z) + xz

1− xz
=

xz2f(x, z) + xz

1− xz
. (5)

Using the symmetry (2), by substitution of the expressions (3), (4) and (5) in (1) we obtain the

relation

f(x, z)(1− z − 2xz2

1− xz
− z2) = 1 + z +

2xz

1− xz

thus the theorem. ¤

Theorem 4.1 can be applied in many different ways, let us mention some of them. By

definition of H(G, x) we have that H(G, 0) = |V (G)|. Furthermore, it is well-know that

H
′(G, 1) = 2W (G), cf. [5, 13].

Theorem 4.1 gives that f(0, z) = 1+z
1−z−z2 and we can recognize the generating function of the

sequence {Fi+2}∞i=0, the number of vertices of Γn. Furthermore, ∂f(x,z)
∂x |x=1 = 2z

(1−2z−2z2+z3)2
.

The generating function of the sequence {FiFi+1}∞i=0, the terms of which are known as golden

rectangle numbers, is z/(1− 2z− 2z2 + z3) [22, sequence A001654]. We have thus an alternative

proof that the sequence {W (Γn)}∞n=0 is the convolution of {FiFi+1}∞i=0 with {Fi+1Fi+2}∞i=0.

A remarkable property of f(x, z) is that partial derivations are easy to compute which leads

us to the following:

Corollary 4.2 Let k ≥ 1. The generating function of the sequence {fn,k}∞n=0 of number of pairs

of vertices of Γn at distance k is

∑

n≥0

fn,kz
n =

2z(z + z2 − z3)k−1

(1− z − z2)k+1
.

Proof. By direct computation we have

∂f(x, z)
∂x

=
2z

(1− z − z2 + xz(−1− z + z2))2

and
∂(1− z − z2 + xz(−1− z + z2))

∂x
= z3 − z2 − z .

Therefore it is easy to prove by induction that for any k ≥ 1

∂kf(x, z)
∂xk

=
2(k!)z(z + z2 − z3)k−1

(1− z − z2 + xz(−1− z + z2))k+1
.



We have thus
∂kf(x, z)

∂xk
|x=0 =

2(k!)z(z + z2 − z3)k−1

(1− z − z2)k+1
.

On the other hand, from f(x, z) =
∑

n,k′≥0 fn,k′x
k′zn we have for any fixed k,

∂kf(x, z)
∂xk

=
∑

n≥0


k!fn,k + k!

∑

k′≥k+1

fn,k′x
k′−k


 zn

The value for x = 0 implies the corollary. ¤

We continue with Lucas cubes:

Theorem 4.3 The generating function of the sequence of ordered Hosoya polynomials for Λn

is

`(x, z) =
∑

n≥0

H(Λn, x)zn =
1 + 2x2z3 − 3x2z4 + z2(1 + x)2

1− z − x2z3 + x2z4 − z2(1 + x)2
.

To prove this result, let us first return to Fibonacci cubes. Let gn,k be the number of

(u, v) ∈ V (Γn)× V (Γn) such that d(u, v) = k where v begins with 0. For i, j ∈ {0, 1} let gij
n,k be

the number of (u, v) ∈ V (Γn)× V (Γn) such that d(u, v) = k where u ends with i, v begins with

0 and ends with j. Let us consider the generating polynomials g(x, z) =
∑

n,k≥0 gn,kx
kzn and

gij(x, z) =
∑

n,k≥0 gij
n,kx

kzn.

Lemma 4.4 The generating functions of gn,k and g01
n,k are

g(x, z) =
1

1− z − z2 + xz(−1− z + z2)
− 1 ,

g01(x, z) =
xz2

(1− xz)
(g(x, z) + 1) +

x2z2

1− x2z2
.

Proof. Assume throughout the proof that v begins with 0. In parallel to the general case we

have

g(x, z) = g00(x, z) + g01(x, z) + g10(x, z) + g11(x, z) . (6)

Assume n ≥ 3. If u and v end with 1 then they are the concatenation of a string of Fn−2

with 01, arbitrary for u, beginning with 0 for v. Thus g11
n,k = gn−2,k. Using the initial values

g11
2,0 = 1, g11

2,1 = g11
2,2 = g11

1,0 = g11
1,1 = g11

0,0 = g0,0 = 0 we obtain

g11(x, z) = z2g(x, z) + z2 . (7)



Assume n ≥ 2. If u and v end with 0 then they are both the concatenation of Fibonacci strings

of Fn−1 with 0, arbitrary for u, beginning with 0 for v. Thus g00
n,k = gn−1,k. Using the initial

values g00
1,0 = 1, g00

1,1 = g00
0,0 = g0,0 = 0 we get

g00(x, z) = zg(x, z) + z . (8)

Assume n ≥ 2. If u ends with 1 and v ends with 0, then u is the concatenation of a Fibonacci

string of F0
n−1 with 1, and v is the concatenation with 0 of a string of F0

n−1∪F1
n−1 beginning

with 0. Therefore g10
n,k = g00

n−1,k−1 + g01
n−1,k−1. By a symmetrical argument we have g01

n,k =

g00
n−1,k−1 + g10

n−1,k−1. Therefore

g10
n,k + g01

n,k = 2g00
n−1,k−1 + g10

n−1,k−1 + g01
n−1,k−1 (n ≥ 2) (9)

and

g10
n,k − g01

n,k = −(g10
n−1,k−1 − g01

n−1,k−1) (n ≥ 2) . (10)

The initial values being

g10
1,1 = 1, g01

0,1 = g01
1,0 = g01

0,0 = g10
1,1 = g10

0,0 = 0 . (11)

Using these initial conditions and (9) we obtain by summation

g10(x, z) + g01(x, z)− xz = 2xz2g(x, z) + 2xz2 + xz(g10(x, z) + g10(x, z))

thus

g10(x, z) + g01(x, z) =
2xz2

1− xz
(g(x, z) + 1) +

xz

1− xz
. (12)

By substitution in (6) of (7), (8) and (12) we obtain

g(x, z) = zg(x, z) + z2g(x, z) +
2xz2

1− xz
(g(x, z) + 1) +

xz

1− xz
+ z + z2

thus the expression of g(x, z).

¿From (10) and the initial values (11) we obtain that g01
n,k−g10

n,k = 0 for k 6= n and g01
n,n−g10

n,n =

(−1)n when n ≥ 1, therefore

g01(x, z)− g10(x, z) =
−xz

1 + xz
. (13)

¿From (13), (12) and g01(x, z) = g10(x,z)+g01(x,z)+(g01(x,z)−g10(x,z))
2 we obtain the expression for

g01(x, z). ¤



Proof. (Theorem 4.3) Let `n,k be the number of (u, v) ∈ V (Λn)× V (Λn) such that d(u, v) = k

and like previously consider `ij
n,k and the generating functions `(x, z) and `ij(x, z). We have

again

`(x, z) = 1 + `00(x, z) + `01(x, z) + `10(x, z) + `11(x, z) . (14)

If u and v end with 0 then u and v are arbitrary vertices of F0
n and thus

`00(x, z) = f00(x, z) = zf(x, z) . (15)

Assume n ≥ 2. If u and v end with 1 then they begin with 0 and thus u = 0u′01, v = 0v′01

where u′ and v′ are arbitrary strings of F0
n−2 or the empty string if n = 2. Furthermore `11

n,k = 0

when n ≤ 1. We have thus

`11(x, z) = z2(f00(x, z) + 1) = z3f(x, z) + z2 . (16)

Assume n ≥ 2. If u ends with 0 and v ends with 1, then u is the concatenation with 0 of a

string of F0
n−1∪F1

n−1, and v is the concatenation with 1 of a string of F0
n−1 beginning with 0.

Therefore `01
n,k = g00

n−1,k−1 + g10
n−1,k−1 = g01

n,k. Notice that, when n ≤ 1, `01
n,k = 0 = g01

n,k, therefore

`10(x, z) = `01(x, z) = g01(x, z) . (17)

By substitution in (14) of (15), (16), (17) and using the values of f(x, z) (Theorem 4.1) and

g01(x, z) (Lemma 4.4) we obtain the value of `(x, z). ¤

Notice that `(0, z) = 1+z2

1−z−z2 and we can recognize the generating polynomial of V (Λn).

Furthermore
1
2

∂`(x, z)
∂x

|x=1 =
z2

(
4− 7z + 4z2

)

(1− 2z − 2z2 + z3)2

is thus the generating function of W (Λn). The sequence {FiFi+2}i=0 appears in [22] as sequence

A059929 with generating function k(z) =
∑

i=0 FiFi+2z
i = (2z−z2)/((1+z)(1−3z+z2)). Then

zk(z) =
∑

i=0 FiFi+2z
i+1 = (2z2−z3)/((1+z)(1−3z+z2)) whose derivate is

∑
i=1 iFi−1Fi+1z

i =
z(4−7z+4z2)

(1−2z−2z2+z3)2
. We thus find an alternative proof that W (Λn) = nFn−1Fn+1.

Acknowledgements
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