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Abstract

In the language of mathematical chemistry, Fibonacci cubes can be defined as the resonance
graphs of fibonacenes. Lucas cubes form a symmetrization of Fibonacci cubes and appear as
resonance graphs of cyclic polyphenantrenes. In this paper it is proved that the Wiener index
of Fibonacci cubes can be written as the sum of products of four Fibonacci numbers which in
turn yields a closed formula for the Wiener index of Fibonacci cubes. Asymptotic behavior of
the average distance of Fibonacci cubes is obtained. The generating function of the sequence of
ordered Hosoya polynomials of Fibonacci cubes is also deduced. Along the way, parallel results

for Lucas cubes are given.



1 Introduction

In this paper we are interested in the Wiener index and more general distance properties of
Fibonacci and Lucas cubes. Fibonacci cubes were introduced as interconnection networks [15]
and later studied from many aspects, see the recent survey [17]. From our point of view it is
important that Fibonacci cubes also play a role in mathematical chemistry: Fibonacci cubes are
precisely the resonance graphs of fibonacenes which in turn form an important class of hexagonal
chains [19]. (For related results about resonance graphs, known also as Z-transformation graphs,
see [21, 24, 29, 30].) Moreover, Lucas cubes also found chemical applications in [31].

The Wiener index of a graph is the first and (one of) the most studied invariant(s) in
mathematical chemistry, see for instance extensive surveys [9, 10] and recent papers [2, 3, 6, 8,
26, 27]. An equivalent approach to the Wiener index is to investigate the average distance of a
graph, which is indeed frequently done in pure mathematics, cf. [7, 14]. ;From the recent papers
on the Wiener index we point out that [8] contains many new results on the Wiener index of
fibonacenes, the class of graphs that made Fibonacci cubes appealing in chemistry! Hence an
investigation of the Wiener index and related invariants of Fibonacci cubes seems well justified.

We wish to add that results similar to ours were very recently obtained by Dosli¢ in [11]
while studying conjugated circuits in benzenoid chains. In particular, Fibonacci numbers con-
volved with themselves play a role here and there, and an average Kekulé structure of an n-ring
fibonacene contains approximately 2np(2¢ + 1)/5 conjugated hexagons, where ¢ = 1+72\/5 is the
golden ration.

The paper is organized as follows. In the next section concepts and results needed are given.
Then, in Section 3, we prove that the Wiener index of Fibonacci cubes can be written as the
sum of products of four Fibonacci numbers and use this result to deduce a closed formula for the
Wiener index of Fibonacci cubes. Hence the Wiener index of Fibonacci cubes can be obtained in
constant time which improves a result from [23] that computes it in O(log F},) time. In addition,
we also determine the asymptotic behavior of the average distance of Fibonacci cubes and obtain
parallel results for Lucas cubes. In Section 4 we consider the Hosoya polynomial and obtain the
generating function of the sequence of ordered Hosoya polynomials of Fibonacci cubes as well
as the corresponding generating function for Lucas cubes. To make the paper of a reasonable

length, we only indicate some of numerous possible uses of these generating functions.



2 Preliminaries

The distance in this paper is the usual shortest-path distance—the number of edges on a shortest
path between vertices. The Wiener index W (G) of a connected graph G is the sum of distances
over all unordered pairs of vertices of G. The vertex set of the d-cube Q4, also called a hypercube
of dimension d, is the set of all binary strings of length d, and two vertices are adjacent if they
differ in precisely one position.

A Fibonacci string of length n is a binary string b1bs ... b, with b; - b;51 =0 for 1 < ¢ < n.
The Fibonacci cube Ty, (n > 1) is the subgraph of @,, induced by the Fibonacci strings of length
n. For convenience we also consider the empty string and set I'o = K;. Call a Fibonacci string
b1by . ..by a Lucas string if by - b, = 0. Then the Lucas cube A, (n > 1) is the subgraph of @,
induced by the Lucas strings of length n. We also set Ag = K;.

Let {F,} be the Fibonacci numbers: Fy =0, F} = 1, F,, = F,,_1 + F,,_9 for n > 2. Let
F» be the Fibonacci strings of length n. Let FY and F! be the strings of F,, that end with,
respectively, 0 and 1.

A subgraph G of a graph H is an isometric subgraph if the distance between any vertices
of GG equals the distance between the same vertices in H. Isometric subgraphs of hypercubes
are partial cubes. The dimension of a partial cube G is the smallest integer d such that G is an
isometric subgraph of Q4. Many (chemically) important classes of graphs are partial cubes, in
particular trees, median graphs, benzenoid graphs, phenylenes, grid graphs and bipartite torus
graphs. In addition, Fibonacci and Lucas cubes are partial cubes as well, see [16].

Let a partial cube G of dimension k be given together with its isometric embedding into Q.

Then for i =1,2,...,k and x = 0,1, the semicube W; ) is defined as follows:
W(i,x)(G) ={u=wug...ur € V(GQ) | uv; = x}.

For a fixed 4, the pair W(; ) (G), W(;1)(G) of semicubes is called a complementary pair of
semicubes. It should be pointed out that since the embedding of G into @ is unique (modulo
permutation of coordinates), see [25], the definition of the semicubes does not depend on the
embedding. The following result from [18] that computes the Wiener index of a partial cube

from the orders of their complementary pairs of semicubes will be our starting point in Section 3:



Theorem 2.1 Let G be a partial cube of dimension k isometrically embedded into Q. Then

k
W(G) = Z |W(i,0)(G)| ) |W(¢,1)(G)‘ :
i=1

The Hosoya polynomial [1, 28] (also known as the Wiener polynomial) H(G, x) of a connected

graph G is the distance counting polynomial:

H(G,z) = Z )|
{u,v}

We refer to [4] for several polynomials related to the Hosoya polynomial: edge-Wiener polyno-
mial, Schultz polynomial, and Gutman polynomial. Sometimes it is more convenient to consider
ordered Hosoya polynomial [20], that is, the counting polynomial of the distances among ordered

pairs of vertices:

H(G,x) = Z g dwv) |
(u,0)EV(G)xV(G)

For example, when using Cartesian product, ordered polynomials are more adapted because we
have the simple relation H(GUOG',x) = H(G,z) - H(G',z). The two polynomials are easily
linked as follows:

2H(G,x) = H(G,z) — |V(G)| = H(G, z) — H(G,0).
3 Wiener index

We begin by expressing the Wiener index of Fibonacci cubes with Fibonacci numbers:

Theorem 3.1 For any n >0,

n
W(Ty) = FiFip1 Fois1 Faiya.
i=1

Proof. The result holds for n = 0 because W (I'g) = 0. Let n > 1 and recall that I', is a partial

cube. Moreover, the dimension of '), is n, hence by Theorem 2.1 we have

n

W(ly) = Z Wiy (L)l - W0y (L)l -
=1

Consider the set W(; 1)(I'y), where 2 <i <n —1. Let b = by...b, € W(; 1)(T',), then b; = 1
which implies that b;_1 = 0 and b;y1 = 0. It follows that for 2 <7 < n — 1, [W;1)(T'n)| =
| Fi—a| - [Fn—i-1]. Furthermore, [W(1 1)(T'n)| = [Wn1)(T'n)| = [Fr—2|.



Similarly, [W; 0)(I'n)| = [Fi1| - [Fa—il for 2 < i <n —1 and [Wy 0)(Tn)| = Wi 0)(Tn)| =
| Fr—1]. Therefore,

n—1

W(Tn) = > (1Fiel - 1Famical - 1 Fical - |Fumil) + 21 Fucal - | Fai

i—2
n

= E Fi Fy_ip1 Fip1 Fr_igo,
i=1

where we have used that for any j, |F;| = Fjo. O

Note that the sequence {W(I'y,)}72 is the convolution of {FjFj1}:°, with {Fit1Fi12}5%.
In order to obtain a closed formula for W(I'),) we will apply the appealing theory of Greene
and Wilf presented in [12]. They studied the existence of closed formulas for expressions of the
form .
Z Gi(ain +bij + c1)Ga(agn + baj + c2) - - Gr(agn + brj + i),
§=0
where each sequence {G;(n)} is a sequence that satisfies a linear recurrence. Fibonacci num-
bers are of course such a sequence. Then it follows from [12, Theorem 2| that the sum
szol Fi Fh_iv1 Fip1 Fl—ip2 can be expressed as a linear combination of F Fn—l—l’ FoFoi1,
nE2, nk? 1, and nFy, Fyy 1. Furthermore, [12, Theorem 3] implies that if a linear combination
of the six monomials and the sum agree for n = 0,1,...,5, then they agree for all n. Since the
values of Zn:l FiFy i1 Fip1 Fjqo for n=10,1,...,5 are 0,0, 2,10, 39, 136, the values of the
linear combination a F + bFQJrl +cFyFhi1 + an2 +e nF2+1 + fnF,Fyy1 must be

01 0 0 0 0\ /a 0
11 1 1 1 1 b 0
1 4 2 2 8 4 |[c] |2
4 9 6 12 21 18| |d| | 10
9 25 15 36 100 60 | |e 39
25 64 40 125 320 200/ \f 136

whose solution is

23 4 6 9
b,c,d, = - — = =1
ta.be.d,e.f) = {25” 2% % % %)
Hence Y0 F; Fp_iy1 Fiy1 Foino = e F2 + enF2 — BF,Foi1 + 2nF,Foi1 + 2nF2 . Note

that W(T) = Y0 FiFy i1 Fiv1 Foive = FpuFoy1 + 3070 FiFy_iy1Fiy1Fy o therefore:

Theorem 3.2 For any n > 0,

4(n+1)F? N (9n + 2)F, Fpiq N 6nF?
25 25 25




The first values of the sequence {W(I',)} are 0, 1,4, 16,54, 176,548, . ..

For a (connected) graph G, its average distance p(G) is defined as

wG) = (,VSG”)W(G»
2

Theorem 3.2 yields the asymptotic behavior of the average distance of Fibonacci cubes:

Corollary 3.3

T 2
lim () = -,

n—oo 1 5

Proof. From Binet’s formula for the Fibonacci numbers it follows that

. P 1++5
lim — =¢p= .
n—00 n 2

Then Theorem 3.2 and the fact that |V(I'),)| = F,4+2 imply:

r 4 2
lim 400y L
n—oo n 250% 2503 252 5

n

Obtaining the Wiener index of Lucas cubes is significantly simpler than the Wiener index of
Fibonacci cubes. The intrinsic reason for it is that in Lucas cubes all the coordinates of vertices
are equivalent, while in Fibonacci cubes the first and the last coordinate behave differently from

the other coordinates.
Theorem 3.4 For anyn > 1, W(A,) =nF,_1 Fyy1.

Proof. We again use the fact that Lucas cubes are partial cubes [16] and hence Theorem 2.1

can be applied, that is,
W(Ay,) = Z Wiy (An)| - Wi 0)(An)]| -
i=1

Considering Lucas strings on a circle we infer that [W; 1y| - [W(; 0)| does not depend of i. So we
may assume that ¢ = 1. There are |F,,_3| Lucas strings whose first coordinate is 1, and there

are |F,—1| Lucas strings whose first coordinate is 0. O

Using Binet’s formula and Theorem 3.4 we obtain a result for the average distance of Lucas

cubes parallel to Fibonacci cubes:

Corollary 3.5




4 Hosoya polynomial

In this section we make a more general approach and consider the ordered Hosoya polynomial

of Fibonacci cubes H (I, z) and its generating function

ZHFn,x ankxz

n>0 n,k>0

where f, . is the number of pairs of vertices (u,v) € V(I'y) x V(I'y) such that d(u,v) = k.

Theorem 4.1 The generating function of the sequence of ordered Hosoya polynomials of Ty, is

— 1 1—
_ ZH(Fnax)Zn _ +2z+xz( z) .
= 1—z—224+22(—1— 2+ 22)

Proof. For i,j € {0, 1}, let ffljk be the number of (u,v) € V(I',) x V(') such that d(u,v) =k
where u ends with 7 and v ends with j. Let us consider the generating polynomials f¥(z,z) =

>on >0 fgk,x z™. Then, having in mind the empty string,
fla,2) =1+ [P, 2) + £ (2, 2) + [0, 2) + £ (2, 2). (1)

By symmetry,
oM, 2) = [P, 2). (2)
If w and v end with 1 then they are the concatenation of an arbitrary Fibonacci string of F,,_o

with 01 thus = fu_2x for n > 2. Using the initial conditions ft o=1and f1 1= 01}) =0

we obtain by a standard computation that

f(a,2) =22 f(2,2) + 2. (3)

If v and v end with 0 then they are both the concatenation of an arbitrary Fibonacci string of

Fn_1 with 0 thus foo = fn—1, for n > 1. Using the initial condition fo o = 0 we obtain

f00($72) :Zf(.CC,Z). (4)

For n > 2, if w ends with 1 and v ends with 0, then u is the concatenation of a Fibonacci
string of 70 | with 1, and v is the concatenation of a string of F9_;UF} ; with 0. Therefore
,{Ok = 391 b_1 T fn 1 k—1- Using the initial conditions f1 1 =1and f1 0= 0 0 = 0 we obtain

by summation that

PO, 2) — 2z = 22§ (2, 2) + 2211z, 2)



and thus

2zf%z, 2) + 1z w2 f(x,2) + a2z
1—2xz B 1—xz '

Oz, 2) = (5)

Using the symmetry (2), by substitution of the expressions (3), (4) and (5) in (1) we obtain the

relation
2x22 2xz

flx,2)(1—2z— — 2 =14z+

1—2zz 1—xz

thus the theorem. O

Theorem 4.1 can be applied in many different ways, let us mention some of them. By
definition of H(G,z) we have that H(G,0) = |V(G)|. Furthermore, it is well-know that
H'(G,1) = 2W(G), cf. [5, 13].

Theorem 4.1 gives that f(0,2) = —2=2, and we can recognize the generating function of the

1—z—22
sequence {F;2}2°,, th ber of verti f I',,. Furth 9f(@,2) _
q it2}2g, the number of vertices of T',,. Furthermore, 522 () =

2z
(1—22—222+423)2"

The generating function of the sequence {F;Fj 1}, the terms of which are known as golden
rectangle numbers, is z/(1 — 2z — 222 + 23) [22, sequence A001654]. We have thus an alternative
proof that the sequence {W(I';,)}5°, is the convolution of {F;Fj1}:2, with {Fij1Fiy2}i2,.

A remarkable property of f(x,z) is that partial derivations are easy to compute which leads

us to the following:

Corollary 4.2 Let k > 1. The generating function of the sequence { f, 1 }oo of number of pairs

of vertices of I'y, at distance k is

n 22(z+ 22— 23)F1
an,kz = 2\ k+1
(1—2z—22)
n>0
Proof. By direct computation we have
of(zx,z) 2z
or  (1—z2—224z2(—1— 2+ 22))?

and

o1 —z— 22 -1- 2
(1—z—2"4xz(—1 Z+z)):z3—22—z.
Ox

Therefore it is easy to prove by induction that for any k > 1

O f(w,z) 2(kN)z(z + 22 — 23)k1

Ok (1—2z—22+x2(—1— 2+ 22))kt1"




We have thus
ok f(x,2) oo = 2(kN)z(z + 22 — 23)k1
orgk =0 (1 — 2z — 22)kt1

On the other hand, from f(z,2) =}, 15 fn’k/xk'/z" we have for any fixed k,

oF /
7f(x72) = Z k'fn,k + k‘ Z fn7k/[Ek —k Zn

oxk
n>0 K >k+1

The value for z = 0 implies the corollary. O
We continue with Lucas cubes:

Theorem 4.3 The generating function of the sequence of ordered Hosoya polynomials for A,

15

— 1+ 22223 — 30224 + 22(1 + 2)?
Uz,2) =3 H(Ap,2)2" = :
) n>0 (o )2 1—z—a223 + 2224 — 22(1 + x)?

To prove this result, let us first return to Fibonacci cubes. Let g, be the number of
(u,v) € V(I'y,) x V(T'y,) such that d(u,v) = k where v begins with 0. For 4,5 € {0,1} let ggk be
the number of (u,v) € V(I',) x V(I'y,) such that d(u,v) = k where u ends with ¢, v begins with

0 and ends with j. Let us consider the generating polynomials g(z,z) = Zm@o gn,kxkz” and

g9 (x,2) = > k>0 gg’kxkz”.

Lemma 4.4 The generating functions of g, and gg}k are

1
S l-z—22+x2(—1— 2+ 22)
2 2.2

01 Tz Tz
= — 1 —.
9 (0,2) = 0D H )+ T

g(z, 2) -1,

Proof. Assume throughout the proof that v begins with 0. In parallel to the general case we
have

g(l’, Z) = 900(‘777 Z) + 901(‘T7 Z) + 910(x7 Z) + 911('7;72) : (6)

Assume n > 3. If u and v end with 1 then they are the concatenation of a string of F,,_o

with 01, arbitrary for u, beginning with 0 for v. Thus gi’lk = gn—2,- Using the initial values
930 =1, 931 = 935 = gy = 911 = 940 = 90,0 = 0 we obtain

gt (2, 2) = 2Pg(x,2) + 27 (7)



Assume n > 2. If u and v end with 0 then they are both the concatenation of Fibonacci strings
of F,_1 with 0, arbitrary for u, beginning with 0 for v. Thus gg’ok = gn—1,k- Using the initial

00 _ 00 _ 00 _ _
values g7 g =1, 971 = 950 = go,0 = 0 we get

g%z, 2) = zg(x,2) + 2. (8)

Assume n > 2. If u ends with 1 and v ends with 0, then u is the concatenation of a Fibonacci
string of F0_; with 1, and v is the concatenation with 0 of a string of FO_;UF._; beginning
with 0. Therefore g}l?k = 920—1,k—1 + ggl_Lk_l. By a symmetrical argument we have gg}k =

00 10
In—1k—1 T n=1k—1- Therefore

10 01 00 10 01
In.k + Ink = 2gn—1,k—1 + In—1k-1 + In—1k-1 (n 2 2) (9)

and
10 01 10 01
gn,k - gn,k = _(gn—l,k—l - gn—l,k—l) (n > 2) : (10)

The initial values being
gia =1, g1 = 9% = 90 = 911 = 9o = 0. (11)
Using these initial conditions and (9) we obtain by summation
g%z, 2) + ™ (z, 2) — z2 = 222°%g(x, 2) + 222° 4+ 22(¢'%(x, 2) + ¢*°(z, 2))

thus
2x22 Tz

9@, 2) + " (2,2) = T (9(,2) + 1) +

By substitution in (6) of (7), (8) and (12) we obtain

(12)

1—az’

2122 Tz

(9(z,2) +1) + + 242

g(x, Z) = Zg($, Z) + 229(1‘, Z) +

1—2zz 1—xz

thus the expression of g(z, z).

;From (10) and the initial values (11) we obtain that g°

n}k—g}l?k =0fork #nandg? —gl0 =

n,n_gn,n

(—1)" when n > 1, therefore

—Iz
Ol(sz) _glo(sz) = 1+zz (13)

g

;From (13), (12) and g% (x,z2) = glO(x7z)+901(x7z)+2(901(x7z)_910(z72)) we obtain the expression for

9" (@, 2). m



Proof. (Theorem 4.3) Let £,, ;;, be the number of (u,v) € V(A,) x V(Ay) such that d(u,v) =k
and like previously consider E;j , and the generating functions ¢(z,z) and ¢ (z,z). We have
again

Oz, 2) =140, 2) + Oz, 2) + 0%, 2) + M (z, 2). (14)
If u and v end with 0 then u and v are arbitrary vertices of F2 and thus
(02, 2) = [P, 2) = 2f(x,2). (15)

Assume n > 2. If u and v end with 1 then they begin with 0 and thus v = 0u/01, v = 0001
where u’ and v’ are arbitrary strings of F0_, or the empty string if n = 2. Furthermore E}llk =0

when n < 1. We have thus
Mz, 2) = 22(f,2) + 1) = 2 f(z,2) + 22 (16)

Assume n > 2. If u ends with 0 and v ends with 1, then u is the concatenation with 0 of a
string of F)_JUFL ,, and v is the concatenation with 1 of a string of Fo_,; beginning with 0.

Therefore ﬁglk = ggo_l w1t 97{00—1 el = g?llk. Notice that, when n <1, Zglk, =0= gglk, therefore
Mz, 2) = 0z, 2) = "z, 2) . (17)

By substitution in (14) of (15), (16), (17) and using the values of f(z,z) (Theorem 4.1) and

g% (7, z) (Lemma 4.4) we obtain the value of £(z, z). O
Notice that £(0,z) = lfzrf; and we can recognize the generating polynomial of V(A,).
Furthermore
10(z, 2) ey = 22 (4 -7z +42%)
2 9r (1 — 2z — 222 + 23)?

is thus the generating function of W(A,,). The sequence {F;F;12}i—o appears in [22] as sequence
A059929 with generating function k(z) = 3", F;Fi422' = (22—2%)/((1+2)(1 —32+2%)). Then

zk(2) =Y o FiFiy22"™ = (222—23) /((142)(1—32+22)) whose derivate is >, iFj_1 Fj412° =
z(4—7z+4z2)

ECEEEwe We thus find an alternative proof that W(A,,) = nF,_1F,4+1.
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