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Abstract 

Detecting gene-gene interactions or epistasis in studies of human complex diseases is a big 

challenge in the area of epidemiology. To address this problem, several methods have been 

developed, mainly in the context of data dimensionality reduction. One of these methods, 

Model-Based Multifactor Dimensionality Reduction, has so far mainly been applied to case-

control studies. In this study, we evaluate the power of Model-Based Multifactor 

Dimensionality Reduction for quantitative traits to detect gene-gene interactions (epistasis) 

in the presence of error-free and noisy data. Considered sources of error are genotyping 

errors, missing genotypes, phenotypic mixtures and genetic heterogeneity. Our simulation 

study encompasses a variety of settings with varying minor allele frequencies and genetic 

variance for different epistasis models.  On each simulated data, we have performed Model-

Based Multifactor Dimensionality Reduction in two ways: with and without adjustment for 

main effects of (known) functional SNPs. In line with binary trait counterparts, our 

simulations show that the power is lowest in the presence of phenotypic mixture or genetic 

heterogeneity compared to scenarios with missing genotypes or genotyping errors. In 

addition, empirical power estimates reduce even further with main effects corrections, but at 

the same time, false positive percentages are reduced as well. In conclusion, phenotypic 

mixtures and genetic heterogeneity remain challenging for epistasis detection, and careful 

thought must be given to the way important lower-order effects are accounted for in the 

analysis.  

Keywords: Model-Based Multifactor Dimensionality Reduction, gene-gene interactions, 

quantitative traits, complex diseases, noisy data 
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Introduction 

Understanding the effects of genes on the development of complex diseases and traits in 

human is a major aim of genetic epidemiology. These kinds of diseases are controlled by 

complex molecular mechanisms characterized by the joint action of several genes which 

could have different effect sizes. In this context, traditional methods within a regression 

paradigm involving single markers have limited use and more advanced and efficient 

methods are needed to identify gene-gene interactions and epistatic patterns of 

susceptibility. One of these methods is the Multifactor Dimensionality Reduction method 

(MDR)
1
, which nicely tackles the dimensionality problem involved in interaction detection 

by pooling multi-locus genotypes into two groups of risk based on some threshold value. 

Those cells with a case/control ratio equal to or above the threshold are labeled as High risk 

and the remaining cells as Low risk. Although MDR has been widely and successfully used 

for interaction detection (e.g., URL: http://compgen.blogspot.com/2006/05/mdr-

applications.html), it suffers from some major drawbacks, including that important 

interactions could be missed due to pooling too many cells together or that proposed MDR 

analyses will only reveal at most one significant epistasis model, selection being based on 

computationally demanding cross-validation and permutation strategies. To overcome the 

aforementioned hurdles, Calle et al. (2008)
2,3

 developed Model-Based MDR (MB-MDR) 

for dichotomous traits and unrelated individuals, hereby providing the basis for a flexible 

framework to detect gene-gene interactions. The method has been made available via an R 

package mbmdr. The principal difference between MDR and MB-MDR is that MB-MDR 

merges multi-locus genotypes exhibiting some significant evidence of High or Low risk, 

based on association testing or modeling, rather than on comparison with a threshold value. 

In addition, those multi-locus genotypes that either show no evidence of association or have 

no sufficient sample size contribute to an additional MB-MDR category, that of ‗No 



4 
 

Evidence for risk‘. Note that despite the fact that Lou et al.(2007)
4
 recognized in part the 

necessity to adjust for covariates and to extend MDR to quantitative traits, issues related to 

significance assessment remain, as explained in detail by Cattaert et al.(2010).
5
 

Although a beta-version of MB-MDR for quantitative traits has already been applied by 

Mahachie John et al. (2010)
6
, its power under several conditions, including the presence of 

error sources or noise (e.g., genotyping errors, missing genotypes, phenotypic mixtures and 

genetic heterogeneity) has never been investigated. The aim of the current study is to 

evaluate the power of MB-MDR for quantitative traits to detect gene-gene interactions, for a 

variety of simulated scenarios. We will restrict attention to 2-order interactions, although 

MB-MDR can be used to highlight gene-gene interactions of any order.  

Methods 

MB-MDR: Model-Based Multifactor Dimensionality Reduction 

The three steps of the MB-MDR strategy used for this simulation study are summarized 

below and visualized in Figure 1. For more general details, we refer to Cattaert et al. 

(2010).
5
  

MB-MDR Step 1: Multi-locus cell prioritization 

For every pair of markers, data is organized in a 2-way table, with 9 genotype cells. Each 2-

locus genotype cell, jc , in such a table, is assigned to one of three risk categories, High risk 

)(H , Low risk )(L  or No Evidence for risk )(O , as a result of association tests on each of 

the individual 2-locus genotype cells with the response variable Y . Cell-dependent testing 

for H , L , O  labeling is done with a Student‘s t test, at the liberal significance level of 

0.10, since the power to detect association using individual cells is likely to be limited. If for 

a 2-locus cell, the Student‘s t-test, comparing the cell‘s mean with the mean of the 
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remaining 8 cells is not significant at 0.10, the cell is labeled as O . The sign of the Student‘s 

t-test statistic is used to distinguish between H and L: a positive (negative) sign refers to risk 

H )(L .  

MB-MDR Step 2: Association test on lower-dimensional construct 

The result of the first step is thus a new categorical variable X  with values H , L  and O , 

which captures information about the importance of the pair of markers with respect to the 

trait. A new association test is subsequently performed now for the new construct X  on .Y  

In particular, we consider the maximum of HW  and LW , which are Student‘s t-tests  for 

comparing H versus  OL,   means or  L  versus  OH ,   means, respectively.  

MB-MDR Step 3: Significance assessment 

Once the dimensionality reduction procedure has been implemented and tests for 

association have been performed, for every pair of markers in the data, a single test result 

 LH WW ,  per marker pair is obtained. Because the test statistics are obtained after 

combining cells according to X, using information about the trait Y , HW  and LW  will no 

longer be t-distributed. In fact, these tests are expected to generate inflated type I errors. We 

therefore assess significance of max LH WW ,  per marker-pair, by adopting a permutation-

based strategy (999 replicates) that corrects for multiple testing (over all marker pairs) and 

adequately controls FWER at α=5%.  In particular, we implement the step-down maxT 

adjusted p-values approach , as outlined Westfall and Young (1993).
7
  

FIGURE 1: ABOUT HERE 

Adjustment for main effects 

Some interactions can be identified simply because of highly significant lower-order effects, 

and are therefore not genuine. That is why we also consider MB-MDR adjusted analyses in 
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the following way: with and without adjustment for main effects of functional SNPs. Main 

effects are adjusted for in MB-MDR by first regressing them out in a data preparation step 

and then considering the residuals from the regression model as new traits. Two extreme 

ways of correcting are considered: the additive model and the co-dominant model.  When 

adjusting for main effects in the presence of genetic heterogeneity, we take into account that 

different functional pairs are relevant for heterogeneous sub-populations.  

Data Simulation 

Each of 500 data sets in a simulation setting consists of 1500 unrelated individuals with 10 

SNPs (in linkage equilibrium), 2 of which are functional. The minor allele frequencies of a 

non-functional marker SNPj are fixed at ,10,…3,=j0.05,3)-(j+0.1= jp  whereas the 

minor allele frequencies of the functional SNPs (SNP1, SNP2) are taken to be equal, and 

varying as 0.5} 0.25, {0.1,),(=) ( ppp,p,p 21 . All SNPs are assumed to be in Hardy-

Weinberg Equilibrium.  

Two epistasis models that incorporate varying degrees of epistasis are considered: Model 27 

and Model 170 of Evans et al. (2006)
8
, hereafter referred to as M27 and M170, respectively. 

In order to increase the phenotypic mean, M27 requires an individual to have at least one 

copy of the increaser allele at both loci whereas M170 requires an individual to be 

heterozygous at one locus and homozygous at the other. As p increases, the contribution to 

the total genetic variance of epistasis variance relative to main effects variances increases 

for M170 (decreases for M27) (Cattaert et al. 2010-Table 1).
5
 The phenotypic means for 

these epistasis models only take two values, µL (Low phenotypic mean) and µH (High 

phenotypic mean). The total phenotypic variance 
2

tot ,  i.e. the sum of genetic variance at 

both loci 
22

12 main   (the minor allele frequencies for the functional SNPs are taken to be 

the same), epistasis variance 
2

epi , and environmental variance 
2

env , is fixed at 1. As a 
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consequence, the total genetic variance, defined as 2

12 + 2

epi , has an interpretation of a 

broad heritability measure. Throughout this document it will further be referred to as g
2
, to 

clearly indicate that the interpretation as a heritability is due to the imposed normalization 

constraints. The parameter g
2
 is varied as 0.1} 0.05, 0.03, 0.02, {0.01,2 g . Explicit 

formulae for these variance components can be obtained from Evans et al (2006).
8
 

In addition, 1000 null data sets are generated under the most general null hypothesis of no 

association between any of the 10 SNPs and the trait (i.e., g
2
=0, no main effects and no 

epistasis).  

Introducing noise 

Apart from simulating error-free data, we also simulate different error-sources to investigate 

their impact on the performance of MB-MDR. These involve introducing 5% and 10% 

missing genotypes (MG5 and MG10), 5% and 10% genotyping error (GE5 and GE10), 25% 

and 50% phenotypic mixtures (PM25 and PM50) and 50% genetic heterogeneity (GH). It is 

important to realize that the foregoing derivations of variance decomposition relate to a 

population as whole. When generating sources of error, estimates of variability will no 

longer tend to the estimates at the population level. In other words, the actual genotypic 

variance will no longer equal g
2
. Missing genotypes (MG5 and MG10) and genotyping 

errors (GE5 and GE10) are also introduced in the null data, leading to a total of 255 

simulation settings, so as to be able to assess the impact of these on MB-MDR‘s type I error 

control in the presence of noise. 

In particular, scenarios MG5 and MG10 are generated by selecting genotypes completely at 

random from the original data and by setting them to missing. This introduces different per-

individual and per-SNP percentages of missingness, reducing the effective sample size, yet 

maintaining the validity of the variance components estimates. 

Typo 1 
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As in Ritchie et al. (2003)
9
, genotyping error is simulated using a directed-error model.

10
 

This model postulates that there is a larger probability for the minor allele to be consistently 

mis-genotyped (over-represented). In this study, either 5% (GE5) or 10% (GE10) of the 

available genotypes in the original data set are sampled. From these, homozygous genotypes 

for the common allele become heterozygous and heterozygous genotypes for the rare allele 

become homozygous.  The effect of adding genotyping errors to the original data is that the 

actual genetic contribution 
2

gen   to the trait variance is reduced compared to the assumed 

genetic variance g
2
, of the simulation setting

 
due to the additional variability (noise) 

introduced into the system (Table 1).  

TABLE 1: ABOUT HERE 

Genetic heterogeneity is simulated such that there are actually two different two-locus 

combinations increasing/decreasing the phenotypic mean. Half of the individuals have one 

pair of functional SNPs (SNP1 and SNP2), and the other half have the other pair of 

functional SNPs (SNP3 and SNP4). Introducing the notations GL (GH) as the multi-locus 

genotypes leading to a Low (High) phenotypic mean, traits are simulated according to the 

distributions specified below: 

 

 

 

Minor allele frequencies of all 4 functional SNPs are taken to be equal, i.e., 

0.5} 0.25, {0.1,p . 

Phenotypic mixing in genetics may occur when a percentage of individuals with high 

phenotypic mean have genotype combinations that are consistent with low phenotypic 

mean.   

 2,~
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In particular, a mixing proportion of  1,0w  of phenotypic mixture, trait values are 

simulated according to  

 

with mixing proportion either 25% (PM25) or 50% (PM50), and π, the probability of a multi-

locus genotype giving rise to a high phenotypic mean µH. 

 

Results 

 

The impact of not correcting for lower-order effects 

Table 2 gives an overview of MB-MDR empirical type I error rates in the presence and 

absence of noise (MG and GE). We observe that MB-MDR empirical type I error percentages 

are close to the nominal type I error percentage of 5%, when no correction for main effects is 

performed.  When we adjust for main effects, type I error percentages are further reduced and 

seem to drop below the theoretical value. Similar trends are observed when genotyping errors 

and missing genotypes are introduced in the data. 

TABLE 2: ABOUT HERE 

  

Power estimates of MB-MDR to detect the correct interacting pair, SNP1 x SNP2 (in the 

absence of genetic heterogeneity) from error-free and noisy data are shown in Figure 2. The 

actual numerical results of the power profiles plotted in Figure 2 are presented in Table S1. 

This table also includes the corresponding empirical power estimates related to main effects 

adjusted analyses. 

In the absence of any adjustment for lower order genetic effects (i.e., main effects), we notice 

that power profiles largely follow the same trajectory, except in the presence of 50% 

phenotypic mixture (PM50). For all scenarios of p, power increases with increasing g
2 

(Figure 

2 and Table S1).  Moreover, the power of MB-MDR (ranging from 54% to 100%, p=0.1, 38% 

       22 ,,w-1~ envHenvL NwNY
LGg

 


,             22 ,11,-1w~ envHenvL NwNY
HGg
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to 100%, p=0.25, 33% to 100%, p=0.5  under M170 and from 44% to 100%, p=0.1, 43% to 

100%, p=0.25,  39% to 100%, p=0.5 under M27 for error-free data; Table S1) is hardly 

affected by introducing small percentages of missing genotypes (MG5 in Figure 2), 

irrespective of the epistasis model under investigation. Power estimates for MG5 range from 

42% to 100%, p=0.1, 33% to 100%, p=0.25, 28% to 100%, p=0.5 and from 33% to 100%, 

p=0.1, 34% to 100%, p=0.25, 31% to 100%, p=0.5 under M170 and M27, respectively (Table 

S1). For MG10, power obviously reduces further, but not in a dramatic way compared to 

MG5: power estimates reduce to a minimum of 31%, p=0.1, 25%, p=0.25, 25%, p=0.5 and to 

a minimum of 31%, p=0.1, 28%, p=0.25, 22%, p=0.5 for M170 and M27, respectively). 

When 5% genotyping errors are introduced in the population, systematically lower power 

curves are obtained than in the presence of randomly missing genotypes. However, high 

percentages of genotyping error (GE10) or high percentages of phenotypic mixture (PM50) 

generally lead to the lowest power performance of MB-MDR (Figure 2). For model M170 

power estimates in the presence of 10% genotyping errors are in the range of 12% to 100%, 

p=0.1, 8% to 100%, p=0.25, 12% to 100%, p=0.5 and in the range of 9% to 100%, p=0.1, 

20% to 100%, p=0.25, 26% to 100% , p=0.5 for model M27 (Table S1). High percentages of 

phenotypic mixture have a negative impact on MB-MDR power, which is also indicated by 

the minimally observed empirical power estimates for PM50. Power estimates for the latter 

are in the range of 3% to 98%, p=0.1, 3% to 97%, p=0.25, 2% to 95%, p=0.5 for M170 and in 

the range of 3% to 95%, p=0.1, 2% to 97%, p=0.25, 3% to 95%, p=0.5 for M27.  

FIGURE 2: ABOUT HERE 

Not surprisingly, there is a higher chance of identifying epistasis models for analyses without 

main effects correction as compared to analyses that do account for lower-order effects. The 

latter epistasis models usually involve other SNPs pairing with one of the functional SNPs 

(results not shown) and should therefore be considered as false positives. Empirically 
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estimated false positive percentages, for a variety of scenarios, excluding GH settings, are 

reported in Table S2 (―No Correction‖ versus ―Main Effects Correction‖ estimates). For 

error-free data, and no adjustments for main effects, the false positive percentage of MB-

MDR of identifying a significant epistasis model not involving the actual functional pair of 

SNPs ranges from 28% to 100%, p=0.1, 6% to 53%, p=0.25, 6% to 7%, p=0.5 for M170 and 

from 15% to 99%, p=0.1, 26% to 100%, p=0.25, 38% to 100%, p=0.5 for M27. When main 

effects are accounted for in error-free data, the false positive percentage ranges from 3% to 

39%, p=0.1, 3% to 12%, p=0.25, 3% to 6%, p=0.5 under M170 and from 3% to 7%, p=0.1, 

3% to 21%, p=0.25, 2% to 98%, p=0.5 under M27 (Table S2). In general, Table S2 shows 

that irrespective of how the main effects adjustment is performed (using an additive or 

codominant model) and irrespective of the type of noisiness introduced, false positive 

percentages are typically lower than their ‖uncorrected‖ counterparts. 

The impact of appropriately correcting an epistasis analysis for lower-order effects 
 

Profiles for the empirical power estimates of MB-MDR to detect the correct two functional 

loci from error-free data with (additive and co-dominant) main effects correction and without 

main effects adjustment are plotted in Figure 3. Here, we observe that the power to identify 

the correct causal pair is reduced when a main effects correction is performed, with the lowest 

power levels obtained for codominant correction. The discrepancy between additive and 

codominant main effects adjustment is particularly pronounced for M27 and p=0.5. For M170 

and p=0.5, the nature of the lower-order effects adjustment has virtually no influence on 

power. Power profiles for different sources of noise, according to main effects adjustment 

method, are given in Figure S1-i (missing genotypes), Figure S1-ii (genotyping errors) and 

Figure S1-iii (phenotypic mixture). The empirical power estimates used to generate Figures 

S1 are also presented in Table S1. Here, drawing conclusions is more subtle, although 
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generally speaking, empirical power estimates are smaller with co-dominant correction as 

opposed to additive correction.  

FIGURE 3: ABOUT HERE 

Numerical values on the effect of using different main effects adjustments on the false 

positive percentage to identify incorrect two-locus models can be derived from Table S2. For 

error-free data, the false positive percentages after additive main effects correction range from 

5% to 39%, p=0.1, 5% to 12%, p=0.25, 3% to 6%, p=0.5 for M170 and from 4% to 7%, 

p=0.1, 4% to 21%, p=0.25, 9% to 98%, p=0.5 for M27. Using co-dominant coding to adjust 

for lower order effects, the false positive percentages range from 3% to 6%, p=0.1, 3% to 4%, 

p=0.25 or p=0.5 for M170 and from 3% to 6%, p=0.1, 3% to 3%, p=0.25 and from 2% to 4%, 

p=0.5 for M27. In fact, the practice of correcting an MB-MDR epistasis analysis using a 

codominant main effects model has the tendency to be over-conservative (Table S2).  

 

 

Genetic heterogeneity 

TABLE 4: ABOUT HERE 

So far, we have not yet discussed the performance of MB-MDR for quantitative traits in the 

presence of genetic heterogeneity. Figure 4 shows empirical power curves to identify true 

genetic interactions in the presence of GH in a variety of simulation settings. Results are 

shown for MB-MDR analysis without main effects correction (Figure 4, row 1 for M170 and 

row 3 for M27) and with main effects correction (additive coding) adjustment (Figure 4, row 

2 for M170 and row 4 for M27).  As in non-GH settings, power estimates are larger when no 

correction for main effects is performed than when main effects are accounted for, with 

generally the most severe power loss observed for codominant main effects correction.  

However, when the contribution of main effects to the total genetic variance is ignored, false 

positive percentages rise as well, ranging from 7% to 100% for M27 and from 4% to 97% for 
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M170. When we adjust for main effects (additive coding), power estimates to identify the first 

pair (SNP1 x SNP2) drop to less than 50% for both M27 and M170, with the exception of 

M170. For the latter, and a genetic variance of 0.1, MB-MDR power is estimated to be 95% 

and 92% for p=0.25 and 0.5, respectively. Under a codominant correction, power estimates 

drop to less than 7% for both models with the exception of p=0.25 or 0.5 and g
2
=0.05 or 0.1. 

For the latter, power is estimated to be 15% and 26% for M170 and M27, respectively when 

p=0.1 and g
2
=0.1. For M27, power=31%, p=0.25 and g

2
=0.1. For M170, p=0.25 or 0.5, power 

estimates are around 30% and 88% for g
2
=0.05 and 0.1, respectively. Detailed information 

about empirical power estimates are given in Table S6. 

 

Discussion 

Understanding the effects of genes on the development of complex diseases is a major aim of 

genetic epidemiology. Several studies have indicated that MDR has good power to identify 

gene-gene interactions in both simulated and real-life data.
9
  Although MB-MDR has profiled 

itself as a promising extension of MDR accommodating study designs that are more complex 

than unrelated case-control settings
2,3,5,6

, a thorough investigation of its full potential, under a 

variety of real-life distorting factors, such as missing genotypes, genotyping errors, 

phenotypic mixtures and last but not least genetic heterogeneity, has never been carried out in 

the context of quantitative traits. This study has evaluated the power of MB-MDR for 

quantitative traits and unrelated individuals, in identifying gene-gene interactions for two 

different epistasis models. Scenarios with and without noisy data, as well as epistasis 

screening with and without lower-order effects adjustments have been considered. Although 

our simulations only involved 10 SNPS, conclusions about observed patterns largely remain 

the same when increasing the number of genetic markers (results not shown). Note that, an 

increasing number of SNPs, will lead to an increasing number of interacting pairs, resulting in 

an elevated multiple testing burden, and hence resulting in reduced power. A first important 

R1 
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finding is that MB-MDR adequately deals with one of the most major concerns in genetic 

association analysis studies (especially those targeting higher-order gene-gene interactions), 

namely avoiding that the overall type I rate is out of control (Table 2). The apparent slightly 

conservative results obtained when MB-MDR screening explicitly accounts for lower-order 

main effects, are not surprising. Indeed, under the general null hypothesis of no genetic 

association, adjusting for main effects involves over-fitting and hence unnecessary over-

correction. However, all the empirical estimates of the MB-MDR type I error rate in Table 2 

fall within the interval [0.025,0.075], satisfying  Bradley‘s (1978)
11

 liberal criterion of 

robustness. This criterion requires that the type I error rates are controlled for any level α of 

significance, if the empirical type I error rate ̂  is contained in the interval  5.1ˆ5.0  . 

Note that we remark that, since MB-MDR assesses global significance using resampling-

based maxT adjusted p-values, the FWER will always be weakly controlled at 5%, provided 

the assumptions of the Westfall and Young approach
7
  are attained.  

A second important finding is that MB-MDR‘s power performance under different scenarios 

can be largely explained by the quantification of the actual genetic variance 
2

gen  and by the 

decomposition of the total genetic variance into contributions of main effects and epistasis, 

and/or by the decomposition of main effects into additive and dominance variance. Empirical 

decompositions based on classical variance components analysis of Sham (1998)
12

, are 

reported in Tables S3 for M170 and S4 for M27 in the absence of GH, and in Tables S5 in the 

presence of GH. Each of these estimates is based on simulation setting‘s sample size (750 000 

individuals).  These results support our theoretically derived variance components, which are 

summarized in Table 3 (details to be provided elsewhere). 

In particular, the observed lowest power performances of non-GH settings for GE10 and 

PM50 can be explained by the fact that over-representation of the minor allele as well as 

introducing phenotypic mixture result in a loss of actual genetic variance (Table 1) and 
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therefore a loss of power. The theoretical results, indicating that a 50% reduction in total 

genetic variability is established when 50% phenotypic mixture is introduced in error-free 

data (Table 1) are supported by our empirical results (e.g., Tables S3 for M170 and S4 for 

M27, comparing σ
2

gen with g
2
.  

When 50% genetic heterogeneity is present, theory supports our empirical results in that the 

total actual genetic variance due to the two causal pairs of markers is twice the total actual 

genetic variance due to a single pair (Tables S5). Moreover, since we have introduced two 

possible genetic routes for an individual to be genetically predisposed for the trait of interest 

under GH (route 1 via SNP1xSNP2 or route 2 via SNP3xSNP4), the actual genetic variance 

in the pooled data will be half the genetic variance in the error-free data (see also Tables S5-ii 

for M170 and S5-iv for M27). The total genetic variance due to a single causal pair 

approximates g
2
/4 (Table S5-i and S5-iii), which is due to the fact that the 2 pairs have the 

same minor allele frequencies. Therefore, the theoretical genetic variance is split between the 

two pairs and thereafter between the 2 SNPs. MB-MDR was shown to be rather robust in the 

presence of missing genotypes and genotyping error. Note that MB-MDR that MB-MDR 

handles missing genotypes by using all available cases for the SNP pair under investigation. 

Hence, no individuals with missing data are a priori removed from the analysis, except when 

functional SNPs that are adjusted for in regression models have (partially) missing 

information.   

A third finding is that accounting for important lower-order genetic effects in epistasis 

screening should be made standard. There is a debate about how to best model and test for 

both main effects and interactions or for interactions only when epistasis is present.
13

 

Although a fully non-parametric screening approach (e.g., such as MDR) is beautiful in that it 

does not require specifying particular genetic models, there is still a need to adjust for lower-

order genetic effects via a parametric paradigm when targeting significant gene-gene 
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interaction models.  The Model-Based MDR (MB-MDR) offers a flexible framework to make 

these adjustments. For MDR-like applications other than MB-MDR this is far from obvious. 

For instance, MDR for binary traits, Ritchie et al. (2003)
9
 does not accommodate taking 

corrective measures for lower order effects. Although significant main effects can be filtered 

out prior to an MDR screening, this happens at the cost of missing out on genuinely true 

interactions. 

Furthermore, examining the decomposition of the total genetic variance has shed more light 

on the scenarios in which an adjusted MB-MDR analysis is warranted. For instance, when the 

minor allele frequency of the causal loci is 0.5, model M170 is a pure epistatic model (Table 

S3: empirical estimates 
22

genepi   approximate 1). Hence in this scenario the effects of 

correcting for main effects are taken to the extreme. Clearly, any correction for lower-order 

effects would be an over-correction. On the other hand, since there is no true evidence for 

main effects in this model, any adjustment for main effects will only remove a small portion 

of the variability (Table S3: M170, p=0.5; empirical estimates of 
22

genmain   are close to 

zero), resulting in false positives for the corrective analysis that are similar to those for the un-

corrective analysis (Table S2: M170, p=0.5; empirical estimates close to 5% also when not 

adjusting for main effects). In effect, the contribution of main effects becomes increasingly 

important with increasing p for M27 (≈32%, p=0.1, ≈61%, p=0.25 and ≈85%, p=0.5) and the 

reverse holds for M170 (≈59%, p=0.1, ≈11%, p=0.25 and ≈0%, p=0.5) (Table 3, Table S3 and 

Table S4).  

For model M170 and GH scenarios involving p either 0.25 or 0.5 for the causal pairs, the 

epistatic variance explains a relatively large proportion of the total genetic variance in the data 

(
22

genepi  >87%; Table S5-ii), and correcting for main effects therefore has little effect on 

power. In contrast, for Model M170 and p=0.1 for the causal pairs, main effects do make an 
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important contribution to the total genetic variance (
22

genmain  > 57%; Table S5-i and Table 

S5-ii) compared to epistasis effects, which translates into a severe empirical power loss  and 

power is dramatically reduced when proper accountancy for lower order effects is being made 

(Figure 4).  

Summarizing, dealing with phenotypic mixtures and genetic heterogeneity will remain 

challenging for epistasis screening methods, for some time to come. Our empirical results 

suggest that more work is needed to better accommodate these particularities.  Benefits may 

be gained from identifying the trait-specific factors (genetic or non-genetic) that best 

characterize mixed phenotypic populations. For genetic heterogeneity, the genes in which the 

loci are present can be part of different etiological pathways leading to the same disease or be 

part of the same pathway.  According to Heidema et al. (2006)
14

, irrespective of the biological 

mechanism that gives rise to genetic heterogeneity, the association of the loci with the disease 

will be reduced if the total sample is used for measuring the association, as was done in this 

study. A method that is not robust in the presence of genetic heterogeneity will most likely 

suffer from a decrease in power to detect genetic effects. As our main effects corrective 

analyses have suggested, a way forward may be to use methods to identify the latent classes 

and to adapt the epistasis screening accordingly.  

Finally, any epistasis screening should properly account for lower-order effects in order to be 

able to claim that an identified interaction involves a significant epistatic contribution to the 

total genetic variance. 

Software 

The implementation of MB-MDR used in this manuscript was coded in C++. It is available 

upon request from the first author (jmahachie@ulg.ac.be). 
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Titles and legends to figures 

 Figure 1 Graphical presentation of the key steps involved in MB-MDR analysis 

Figure 2 Empirical power estimates of MB-MDR as the percentage of analyses where the 

correct interaction (SNP1 x SNP2) is significant at the 5% level, for error-free and noise-

induced simulation settings. Results are shown for MB-MDR analysis without main effects 

adjustment and simulated scenarios other than GH 
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Figure 3 Empirical power estimates of MB-MDR as the percentage of analyses where the 

correct interaction (SNP1 x SNP2) is significant at the 5% level, for error-free simulation 

settings. Legend: no main effects adjustment (—), main effects adjustment via additive coding 

(…), and co-dominant coding (---) 

Figure 4 Empirical power estimates of MB-MDR as the percentage of analyses where the 

correct interactions (SNP1 x SNP2) and/or (SNP3 xSNP4) are significant at the 5% level, in the 

presence GH. First 2 rows: MB-MDR without and with main effects correction for model 

M170 respectively. Last 2 rows: MB-MDR without and with main effects correction for model 

M27 respectively. Main effects are corrected for via additive coding. Different definitions for 

power are adopted: power to identify both interacting pairs SNP1 x SNP2 and SNP3 x SNP4 

(cyan); power to identify SNP1 x SNP2 (black); power to identify SNP3 x SNP4 (magenta), 

power to identify at least one of the interactive pairs (coral) 

 

Supplementary Material 

 

Figure S1-i Empirical power estimates for MB-MDR as the percentage of analyses where the 

correct interaction (SNP1 x SNP2) is significant at the 5% level, in the presence of 5% or 10% 

missing genotypes. Legend: no main effects adjustment (—), main effects adjustment via 

additive coding (…), and co-dominant coding (---) 

Figure S1-ii Empirical power estimates for MB-MDR as the percentage of analyses where the 

correct interaction (SNP1 x SNP2) is significant at the 5% level, in the presence of 5% or 10% 

genotyping errors. Legend: no main effects adjustment (—), main effects adjustment via 

additive coding (…),and co-dominant coding (---) 



21 
 

Figure S1-iii Empirical power estimates for MB-MDR as the percentage of analyses where the 

correct interaction (SNP1 x SNP2) is significant at the 5% level, in the presence of 25% or 50% 

phenotypic mixture. Legend: no main effects adjustment (—), main effects adjustment via 

additive coding (…), and co-dominant coding (---) 

Table 1 Proportion σ
2
gen / g

2
 of the total genetic variance in error-free data that is due to genetics 

in the error-prone data, exhibiting either 5% (GE5) or 10% (GE10) genotyping errors, or 25% 

(PM25) or 50% (PM50) phenotypic mixture.  

Model p GE PM 

 
 

5% 10% 25% 50% 

 0.1 0.673 0.494 0.563 0.250 

M27 0.25 0.857 0.742 0.563 0.250 

 0.5 0.926 0.858 0.563 0.250 

 0.1 0.667 0.489 0.563 0.250 

M170 0.25 0.701 0.507 0.563 0.250 

 0.5 0.740 0.546 0.563 0.250 

 

Table 2 Type I error percentages for data generated under the general null hypothesis of no 

genetic association in the absence and presence of noise  

MG5(MG10) = 5% (10%) missing genotypes and  GE5(GE10)=5%(10%) genotyping errors 

 

 

    

Main  Effects Correction 

p Noisiness No Correction Additive Codominant 

0.1 None 0.055 0.055 0.049 

0.25 None 0.051 0.038 0.036 

0.5 None 0.054 0.039 0.030 

0.1 MG5 0.046 0.039 0.038 

0.25 MG5 0.051 0.034 0.036 

0.5 MG5 0.052 0.044 0.047 

0.1 MG10 0.046 0.041 0.041 

0.25 MG10 0.054 0.043 0.043 

0.5 MG10 0.048 0.045 0.038 

0.1 GE5 0.051 0.037 0.037 

0.25 GE5 0.048 0.038 0.036 

0.5 GE5 0.038 0.035 0.031 

0.1 GE10 0.049 0.037 0.032 

0.25 GE10 0.049 0.033 0.031 

0.5 GE10 0.054 0.039 0.039 
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Table 3 Theoretically derived proportions of the genetic variance in error-prone or error-free 

data due to main effects (additive and dominance) or epistasis.  Results are presented for 5% and 

10% GE scenarios.  “Other” scenarios refer to error-free settings, MG5, MG10, PC25, PC50 and 

GH50. 

  

  
 22

genmain     

22

genepi 

 
 

Model p GE5 GE10 Other GE5 GE10 Other 

 0.1 0.373 0.420 0.319 0.627 0.580 0.681 

M27 0.25 0.635 0.659 0.609 0.365 0.341 0.391 

 0.5 0.865 0.873 0.857 0.135 0.127 0.143 

 0.1 0.650 0.701 0.581 0.350 0.299 0.419 

M170 0.25 0.139 0.161 0.118 0.861 0.839 0.882 

 0.5 0.000 0.000 0.000 1.000 1.000 1.000 

   
22

mainadd   
  

22

maindom 

 

 

Model p GE5 GE10 Other GE5 GE10 Other 

 0.1 0.957 0.979 0.947 0.043 0.021 0.053 

M27 0.25 0.865 0.884 0.857 0.135 0.116 0.143 

 0.5 0.680 0.698 0.667 0.320 0.302 0.333 

 0.1 0.837 0.898 0.780 0.163 0.102 0.220 

M170 0.25 0.447 0.502 0.400 0.553 0.498 0.600 

 0.5 0.957 0.979 0.947 0.043 0.021 0.053 
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APPENDIX: Supplementary Material 

 

Table S1 Empirical power of MB-MDR to detect the correct two functional loci, excluding 

scenarios of simulated genetic heterogeneity 

 
 Model 27 Model 170 

 No 

Correction 

Main Effects Correction No 

Correction 

Main Effects Correction 

p g2 Noisiness Additive Codominant Additive Codominant 

  None 0.446 0.056 0.018 0.542 0.006 0.006 

  MG5 0.338 0.018 0.004 0.414 0.014 0.004 

  MG10 0.308 0.012 0.004 0.312 0.008 0.000 

 0.01 GE5 0.180 0.012 0.002 0.194 0.000 0.000 

  GE10 0.094 0.000 0.000 0.116 0.000 0.000 

  PM25 0.152 0.016 0.010 0.180 0.004 0.002 

  PM50 0.034 0.000 0.000 0.028 0.000 0.000 

  None 0.904 0.264 0.146 0.930 0.144 0.072 

  MG5 0.862 0.240 0.108 0.908 0.096 0.046 

  MG10 0.784 0.190 0.068 0.800 0.070 0.040 

 0.02 GE5 0.620 0.092 0.030 0.666 0.050 0.004 

  GE10 0.366 0.018 0.010 0.444 0.006 0.002 

  PM25 0.506 0.084 0.018 0.554 0.010 0.010 

  PM50 0.134 0.012 0.006 0.126 0.002 0.000 

  None 0.996 0.592 0.384 0.996 0.392 0.182 

  MG5 0.990 0.526 0.272 0.992 0.348 0.182 

  MG10 0.960 0.412 0.240 0.976 0.244 0.102 

0.1 0.03 GE5 0.912 0.232 0.070 0.922 0.136 0.008 

  GE10 0.648 0.084 0.060 0.748 0.054 0.002 

  PM25 0.834 0.210 0.096 0.856 0.094 0.046 

  PM50 0.286 0.038 0.016 0.284 0.006 0.004 

  None 1.000 0.884 0.842 1.000 0.904 0.554 

  MG5 1.000 0.850 0.774 1.000 0.790 0.442 

  MG10 1.000 0.772 0.684 1.000 0.680 0.370 

 0.05 GE5 0.994 0.598 0.488 1.000 0.488 0.098 

  GE10 0.940 0.272 0.238 0.970 0.198 0.026 

  PM25 0.990 0.562 0.346 1.000 0.314 0.168 

  PM50 0.598 0.150 0.050 0.664 0.034 0.030 

  None 1.000 1.000 1.000 1.000 1.000 0.958 

  MG5 1.000 0.992 0.998 1.000 1.000 0.928 

  MG10 1.000 0.990 0.994 1.000 0.996 0.844 

 0.1 GE5 1.000 0.978 0.978 1.000 0.982 0.638 

  GE10 1.000 0.876 0.874 1.000 0.750 0.310 

  PM25 1.000 0.904 0.874 1.000 0.942 0.662 

  PM50 0.950 0.478 0.266 0.986 0.220 0.114 
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Table S1 Continued  

 
 Model 27 Model 170 

 No 

Correction 

Main Effects Correction No 

Correction 

Main Effects Correction 

p g2 Noisiness Additive Codominant Additive Codominant 

  None 0.424 0.038 0.024 0.376 0.300 0.180 

  MG5 0.340 0.042 0.030 0.332 0.266 0.154 

  MG10 0.284 0.018 0.010 0.248 0.184 0.082 

 0.01 GE5 0.298 0.012 0.010 0.232 0.184 0.084 

  GE10 0.198 0.018 0.006 0.084 0.070 0.032 

  PM25 0.146 0.010 0.000 0.144 0.112 0.048 

  PM50 0.024 0.002 0.000 0.026 0.014 0.006 

  None 0.912 0.178 0.138 0.908 0.864 0.710 

  MG5 0.836 0.150 0.108 0.846 0.780 0.616 

  MG10 0.780 0.130 0.104 0.766 0.714 0.532 

 0.02 GE5 0.840 0.136 0.088 0.674 0.626 0.440 

  GE10 0.696 0.078 0.050 0.428 0.342 0.210 

  PM25 0.480 0.046 0.040 0.440 0.384 0.250 

  PM50 0.116 0.012 0.006 0.110 0.080 0.040 

  None 0.998 0.500 0.444 0.992 0.990 0.952 

  MG5 0.984 0.426 0.356 0.992 0.984 0.936 

  MG10 0.970 0.306 0.252 0.972 0.960 0.856 

0.25 0.03 GE5 0.980 0.310 0.242 0.922 0.886 0.752 

  GE10 0.930 0.212 0.130 0.728 0.668 0.484 

  PM25 0.796 0.122 0.096 0.788 0.722 0.546 

  PM50 0.224 0.016 0.006 0.234 0.182 0.090 

  None 1.000 0.878 0.838 1.000 1.000 1.000 

  MG5 1.000 0.822 0.784 1.000 1.000 1.000 

  MG10 1.000 0.740 0.678 1.000 1.000 0.998 

 0.05 GE5 1.000 0.730 0.630 0.998 1.000 0.994 

  GE10 1.000 0.546 0.384 0.978 0.964 0.906 

  PM25 0.992 0.434 0.362 0.990 0.978 0.934 

  PM50 0.580 0.078 0.054 0.588 0.528 0.328 

  None 1.000 1.000 1.000 1.000 1.000 1.000 

  MG5 1.000 1.000 1.000 1.000 1.000 1.000 

  MG10 1.000 0.996 0.996 1.000 1.000 1.000 

 0.1 GE5 1.000 1.000 0.992 1.000 1.000 1.000 

  GE10 1.000 0.986 0.982 1.000 1.000 1.000 

  PM25 1.000 0.960 0.932 1.000 1.000 1.000 

  PM50 0.970 0.342 0.288 0.970 0.954 0.878 
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Table S1 Continued  

 

 Model 27 Model 170 

 No 

Correction 

Main Effects Correction No 

Correction 

Main Effects Correction 

p g2 Noisiness Additive Codominant Additive Codominant 

  None 0.386 0.050 0.000 0.332 0.256 0.206 

  MG5 0.306 0.034 0.002 0.284 0.206 0.152 

  MG10 0.222 0.024 0.000 0.252 0.168 0.124 

 0.01 GE5 0.272 0.022 0.000 0.188 0.128 0.096 

  GE10 0.260 0.015 0.000 0.116 0.068 0.028 

  PM25 0.140 0.020 0.002 0.100 0.058 0.032 

  PM50 0.034 0.006 0.000 0.024 0.012 0.008 

  None 0.848 0.200 0.000 0.850 0.798 0.770 

  MG5 0.780 0.152 0.000 0.792 0.728 0.668 

  MG10 0.732 0.110 0.000 0.700 0.632 0.606 

 0.02 GE5 0.782 0.132 0.000 0.612 0.540 0.454 

  GE10 0.740 0.092 0.000 0.374 0.284 0.212 

  PM25 0.400 0.044 0.002 0.426 0.346 0.288 

  PM50 0.098 0.012 0.000 0.088 0.052 0.036 

  None 0.978 0.460 0.016 0.984 0.988 0.978 

  MG5 0.978 0.354 0.004 0.974 0.960 0.948 

  MG10 0.926 0.266 0.000 0.942 0.910 0.898 

0.5 0.03 GE5 0.966 0.344 0.004 0.898 0.860 0.832 

  GE10 0.956 0.246 0.002 0.680 0.616 0.516 

  PM25 0.704 0.116 0.000 0.780 0.688 0.618 

  PM50 0.224 0.020 0.000 0.200 0.138 0.098 

  None 1.000 0.832 0.034 1.000 1.000 1.000 

  MG5 1.000 0.768 0.026 0.998 0.998 0.998 

  MG10 1.000 0.714 0.024 0.998 1.000 1.000 

 0.05 GE5 1.000 0.738 0.012 0.998 1.000 0.998 

  GE10 0.998 0.658 0.006 0.958 0.948 0.916 

  PM25 0.982 0.366 0.008 0.968 0.952 0.950 

  PM50 0.514 0.078 0.000 0.466 0.358 0.294 

  None 1.000 0.998 0.316 1.000 1.000 1.000 

  MG5 1.000 0.998 0.286 1.000 1.000 1.000 

  MG10 1.000 0.994 0.168 1.000 1.000 1.000 

 0.1 GE5 1.000 0.998 0.266 1.000 1.000 1.000 

  GE10 1.000 0.988 0.142 1.000 1.000 1.000 

  PM25 1.000 0.902 0.052 1.000 1.000 1.000 

  PM50 0.946 0.338 0.004 0.950 0.928 0.912 
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Table S2 False positive percentage of analyses with identified significant epistasis models other 

than the correct two functional interacting loci, in the absence of GH. Estimates exceeding 0.05 

are highlighted in bold.  

 
 Model 27 Model 170 

 No 

 

Correction 

Main Effects Correction No 

 

Correction 

Main Effects Correction 

p g2 Noisiness 
Additive Codominant Additive Codominant 

  None 0.148 0.038 0.034 0.278 0.062 0.056 

  MG5 0.124 0.046 0.044 0.216 0.046 0.040 

  MG10 0.126 0.050 0.044 0.200 0.034 0.032 

 0.01 GE5 0.114 0.046 0.044 0.146 0.046 0.044 

  GE10 0.102 0.048 0.038 0.154 0.058 0.048 

  PM25 0.082 0.050 0.054 0.142 0.038 0.040 

  PM50 0.064 0.046 0.046 0.086 0.044 0.038 

  None 0.282 0.048 0.044 0.556 0.054 0.032 

  MG5 0.290 0.048 0.038 0.534 0.034 0.020 

  MG10 0.242 0.040 0.030 0.470 0.054 0.040 

 0.02 GE5 0.224 0.034 0.038 0.374 0.050 0.034 

  GE10 0.182 0.038 0.032 0.286 0.028 0.030 

  PM25 0.156 0.042 0.038 0.286 0.044 0.044 

  PM50 0.084 0.044 0.034 0.120 0.052 0.046 

  None 0.534 0.042 0.032 0.792 0.092 0.052 

  MG5 0.436 0.026 0.024 0.766 0.038 0.024 

  MG10 0.432 0.046 0.042 0.742 0.088 0.066 

0.1 0.03 GE5 0.338 0.058 0.050 0.608 0.052 0.036 

  GE10 0.232 0.034 0.030 0.436 0.042 0.032 

  PM25 0.240 0.042 0.034 0.434 0.054 0.038 

  PM50 0.122 0.044 0.044 0.182 0.050 0.042 

  None 0.754 0.036 0.034 0.986 0.160 0.038 

  MG5 0.750 0.022 0.018 0.988 0.100 0.030 

  MG10 0.694 0.048 0.034 0.970 0.096 0.038 

 0.05 GE5 0.682 0.054 0.056 0.920 0.062 0.032 

  GE10 0.514 0.034 0.022 0.754 0.076 0.062 

  PM25 0.480 0.050 0.040 0.776 0.080 0.038 

  PM50 0.184 0.048 0.038 0.288 0.060 0.042 

  None 0.990 0.072 0.056 1.000 0.394 0.050 

  MG5 0.988 0.050 0.030 1.000 0.340 0.030 

  MG10 0.970 0.066 0.048 1.000 0.302 0.042 

 0.1 GE5 0.944 0.068 0.050 1.000 0.172 0.044 

  GE10 0.884 0.050 0.036 0.996 0.078 0.030 

  PM25 0.822 0.050 0.036 0.992 0.158 0.038 

  PM50 0.404 0.034 0.036 0.690 0.060 0.036 
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Table S2 Continued  

  

 

 

 

 Model 27 Model 170 
 No 

 

Correction 

Main Effects Correction No 

 

Correction 

Main Effects Correction 

p g2 Noisiness 
Additive Codominant Additive Codominant 

  None 0.260 0.044 0.034 0.060 0.050 0.026 

  MG5 0.212 0.044 0.036 0.074 0.056 0.048 

  MG10 0.218 0.060 0.048 0.076 0.070 0.048 

 0.01 GE5 0.250 0.060 0.052 0.088 0.066 0.060 

  GE10 0.210 0.032 0.026 0.052 0.038 0.042 

  PM25 0.158 0.042 0.044 0.060 0.046 0.038 

  PM50 0.082 0.048 0.048 0.072 0.044 0.038 

  None 0.556 0.048 0.032 0.108 0.048 0.034 

  MG5 0.522 0.050 0.038 0.092 0.058 0.042 

  MG10 0.534 0.050 0.036 0.092 0.058 0.044 

 0.02 GE5 0.518 0.066 0.046 0.094 0.052 0.040 

  GE10 0.452 0.066 0.056 0.080 0.044 0.032 

  PM25 0.268 0.056 0.040 0.076 0.052 0.040 

  PM50 0.128 0.040 0.030 0.054 0.048 0.032 

  None 0.850 0.064 0.028 0.122 0.056 0.034 

  MG5 0.786 0.054 0.028 0.134 0.056 0.042 

  MG10 0.728 0.052 0.040 0.110 0.054 0.044 

0.25 0.03 GE5 0.738 0.072 0.036 0.106 0.048 0.030 

  GE10 0.694 0.050 0.026 0.120 0.056 0.030 

  PM25 0.492 0.018 0.018 0.074 0.038 0.028 

  PM50 0.198 0.058 0.042 0.064 0.040 0.032 

  None 0.992 0.098 0.034 0.242 0.082 0.044 

  MG5 0.976 0.078 0.032 0.208 0.062 0.028 

  MG10 0.964 0.078 0.038 0.190 0.064 0.034 

 0.05 GE5 0.984 0.076 0.024 0.206 0.070 0.034 

  GE10 0.934 0.066 0.020 0.176 0.056 0.038 

  PM25 0.786 0.054 0.026 0.132 0.058 0.034 

  PM50 0.354 0.062 0.046 0.086 0.046 0.040 

  None 1.000 0.212 0.028 0.528 0.120 0.032 

  MG5 1.000 0.196 0.040 0.502 0.110 0.032 

  MG10 1.000 0.178 0.036 0.462 0.078 0.022 

 0.1 GE5 1.000 0.216 0.040 0.412 0.112 0.036 

  GE10 0.998 0.154 0.040 0.358 0.088 0.040 

  PM25 0.992 0.108 0.044 0.286 0.090 0.032 

  PM50 0.748 0.052 0.028 0.122 0.058 0.042 
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Table S2 Continued 

 

 

 Model 27 Model 170 
 No 

 

Correction 

Main Effects Correction No 

 

Correction 

Main Effects Correction 

p g2 Noisiness 
Additive Codominant Additive Codominant 

  None 0.378 0.088 0.022 0.056 0.046 0.036 

  MG5 0.324 0.056 0.022 0.044 0.034 0.024 

  MG10 0.308 0.066 0.026 0.058 0.068 0.048 

 0.01 GE5 0.362 0.066 0.030 0.058 0.048 0.042 

  GE10 0.322 0.077 0.026 0.038 0.022 0.014 

  PM25 0.210 0.084 0.036 0.044 0.032 0.034 

  PM50 0.112 0.052 0.036 0.046 0.038 0.028 

  None 0.772 0.216 0.036 0.074 0.054 0.044 

  MG5 0.750 0.168 0.026 0.052 0.032 0.030 

  MG10 0.692 0.130 0.028 0.044 0.050 0.038 

 0.02 GE5 0.744 0.140 0.036 0.032 0.026 0.022 

  GE10 0.684 0.130 0.038 0.054 0.042 0.032 

  PM25 0.420 0.100 0.036 0.050 0.044 0.034 

  PM50 0.160 0.062 0.034 0.064 0.052 0.054 

  None 0.954 0.376 0.042 0.044 0.034 0.028 

  MG5 0.948 0.284 0.046 0.060 0.042 0.036 

  MG10 0.910 0.242 0.054 0.064 0.030 0.028 

0.5 0.03 GE5 0.924 0.270 0.038 0.052 0.034 0.030 

  GE10 0.912 0.224 0.032 0.052 0.038 0.034 

  PM25 0.648 0.154 0.026 0.046 0.038 0.032 

  PM50 0.270 0.088 0.044 0.044 0.040 0.030 

  None 0.998 0.608 0.028 0.058 0.056 0.040 

  MG5 1.000 0.576 0.036 0.042 0.032 0.024 

  MG10 0.998 0.522 0.042 0.038 0.028 0.036 

 0.05 GE5 1.000 0.594 0.042 0.060 0.042 0.030 

  GE10 1.000 0.500 0.038 0.034 0.038 0.036 

  PM25 0.968 0.314 0.042 0.048 0.042 0.036 

  PM50 0.458 0.124 0.040 0.036 0.032 0.026 

  None 1.000 0.978 0.028 0.056 0.038 0.030 

  MG5 1.000 0.956 0.036 0.054 0.046 0.034 

  MG10 1.000 0.928 0.040 0.048 0.044 0.040 

 0.1 GE5 1.000 0.982 0.024 0.052 0.040 0.028 

  GE10 1.000 0.912 0.032 0.054 0.038 0.028 

  PM25 1.000 0.732 0.026 0.050 0.036 0.030 

  PM50 0.884 0.288 0.034 0.036 0.028 0.028 
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Table S3 Empirical variance decomposition for model M170, in the absence of GH. Whereas g2 

represents the total genetic variance corresponding to error-free data, 
2

gen now refers to the 

empirical total genetic variance.  

 
 

p 
 

g2 
 

Noisiness 
2

add  
22

mainadd   
2

main  
22

genmain   
2

epi  
22

genepi   

 

2

gen  

  None 0.005 0.803 0.006 0.592 0.004 0.408 0.011 

  MG5 0.005 0.755 0.006 0.576 0.004 0.424 0.010 

  MG10 0.005 0.820 0.006 0.575 0.004 0.425 0.010 

 0.01 GE5 0.003 0.828 0.004 0.633 0.002 0.367 0.006 

  GE10 0.003 0.910 0.003 0.702 0.001 0.298 0.005 

  PM25 0.003 0.803 0.004 0.601 0.002 0.399 0.006 

  PM50 0.001 0.790 0.001 0.566 0.001 0.434 0.002 

  None 0.009 0.772 0.012 0.581 0.008 0.419 0.020 

  MG5 0.009 0.785 0.012 0.593 0.008 0.407 0.020 

  MG10 0.009 0.789 0.012 0.581 0.008 0.419 0.020 

 0.02 GE5 0.007 0.834 0.008 0.648 0.005 0.352 0.013 

  GE10 0.006 0.912 0.007 0.709 0.003 0.291 0.010 

  PM25 0.005 0.787 0.006 0.577 0.005 0.423 0.011 

  PM50 0.002 0.794 0.003 0.578 0.002 0.422 0.005 

  None 0.013 0.772 0.017 0.590 0.012 0.410 0.030 

  MG5 0.013 0.772 0.017 0.561 0.013 0.439 0.030 

  MG10 0.014 0.787 0.018 0.588 0.013 0.412 0.031 

0.1 0.03 GE5 0.011 0.837 0.013 0.651 0.007 0.349 0.020 

  GE10 0.009 0.894 0.010 0.682 0.005 0.318 0.015 

  PM25 0.007 0.779 0.010 0.572 0.007 0.428 0.017 

  PM50 0.003 0.799 0.004 0.576 0.003 0.424 0.008 

  None 0.023 0.770 0.030 0.580 0.021 0.420 0.051 

  MG5 0.024 0.800 0.030 0.589 0.021 0.411 0.050 

  MG10 0.022 0.767 0.029 0.576 0.021 0.424 0.050 

 0.05 GE5 0.018 0.841 0.021 0.649 0.011 0.351 0.032 

  GE10 0.015 0.899 0.016 0.685 0.007 0.315 0.024 

  PM25 0.013 0.777 0.017 0.592 0.011 0.408 0.028 

  PM50 0.006 0.786 0.007 0.567 0.005 0.433 0.012 

  None 0.045 0.783 0.057 0.583 0.041 0.417 0.098 

  MG5 0.046 0.792 0.058 0.582 0.041 0.418 0.099 

  MG10 0.047 0.793 0.059 0.593 0.041 0.407 0.100 

 0.1 GE5 0.037 0.835 0.044 0.654 0.023 0.346 0.068 

  GE10 0.031 0.896 0.034 0.705 0.014 0.295 0.049 

  PM25 0.026 0.782 0.033 0.581 0.024 0.419 0.056 

  PM50 0.011 0.783 0.014 0.577 0.010 0.423 0.025 
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Table S3Continued 

 

 

 

 

 

p 
 

g2 
 

Noisiness 2

add  
22

mainadd   
2

main  
22

genmain   
2

epi  
22

genepi   

 

2

gen  

  None 0.000 0.429 0.001 0.103 0.009 0.897 0.010 

  MG5 0.000 0.460 0.001 0.100 0.009 0.900 0.010 

  MG10 0.000 0.329 0.001 0.142 0.009 0.858 0.010 

 0.01 GE5 0.000 0.436 0.001 0.135 0.006 0.865 0.007 

  GE10 0.000 0.454 0.001 0.166 0.004 0.834 0.005 

  PM25 0.000 0.436 0.001 0.113 0.005 0.887 0.006 

  PM50 0.000 0.441 0.000 0.126 0.002 0.874 0.002 

  None 0.001 0.408 0.002 0.117 0.018 0.883 0.020 

  MG5 0.001 0.414 0.002 0.124 0.017 0.876 0.020 

  MG10 0.001 0.391 0.003 0.148 0.017 0.852 0.019 

 0.02 GE5 0.001 0.473 0.002 0.142 0.012 0.858 0.014 

  GE10 0.001 0.556 0.002 0.158 0.009 0.842 0.010 

  PM25 0.000 0.395 0.001 0.107 0.010 0.893 0.011 

  PM50 0.000 0.361 0.001 0.130 0.005 0.870 0.005 

  None 0.001 0.410 0.004 0.121 0.026 0.879 0.030 

  MG5 0.001 0.355 0.003 0.113 0.027 0.887 0.030 

  MG10 0.001 0.379 0.003 0.117 0.026 0.883 0.030 

0.25 0.03 GE5 0.001 0.455 0.003 0.132 0.018 0.868 0.021 

  GE10 0.001 0.485 0.003 0.172 0.013 0.828 0.015 

  PM25 0.001 0.450 0.002 0.110 0.015 0.890 0.016 

  PM50 0.000 0.377 0.001 0.124 0.007 0.876 0.007 

  None 0.002 0.414 0.006 0.118 0.044 0.882 0.050 

  MG5 0.002 0.389 0.006 0.120 0.044 0.880 0.050 

  MG10 0.003 0.452 0.006 0.115 0.045 0.885 0.051 

 0.05 GE5 0.002 0.474 0.005 0.147 0.030 0.853 0.035 

  GE10 0.002 0.547 0.004 0.160 0.021 0.840 0.025 

  PM25 0.001 0.407 0.003 0.124 0.024 0.876 0.028 

  PM50 0.001 0.389 0.001 0.118 0.011 0.882 0.013 

  None 0.005 0.407 0.011 0.114 0.088 0.886 0.100 

  MG5 0.005 0.403 0.011 0.113 0.089 0.887 0.100 

  MG10 0.004 0.367 0.011 0.115 0.088 0.885 0.100 

 0.1 GE5 0.004 0.454 0.010 0.139 0.060 0.861 0.070 

  GE10 0.004 0.508 0.008 0.155 0.044 0.845 0.052 

  PM25 0.003 0.400 0.007 0.121 0.049 0.879 0.056 

  PM50 0.001 0.366 0.003 0.120 0.022 0.880 0.025 
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Table S3 Continued 

 

 

 

 

 

 

 

 

 

 

 

p 
 

g2 
 

Noisiness 
2

add  
22

mainadd   
2

main  
22

genmain   
2

epi  
22

genepi   

 

2

gen  

  None 0.000 0.374 0.000 0.000 0.010 1.000 0.010 

  MG5 0.000 0.778 0.000 0.001 0.010 0.999 0.010 

  MG10 0.000 0.758 0.000 0.001 0.011 0.999 0.011 

 0.01 GE5 0.000 0.795 0.000 0.000 0.007 1.000 0.007 

  GE10 0.000 0.591 0.000 0.002 0.005 0.998 0.005 

  PM25 0.000 0.363 0.000 0.002 0.006 0.998 0.006 

  PM50 0.000 0.898 0.000 0.002 0.002 0.998 0.002 

  None 0.000 0.318 0.000 0.001 0.020 0.999 0.020 

  MG5 0.000 0.516 0.000 0.000 0.020 1.000 0.020 

  MG10 0.000 0.461 0.000 0.001 0.020 0.999 0.020 

 0.02 GE5 0.000 0.885 0.000 0.001 0.015 0.999 0.015 

  GE10 0.000 0.768 0.000 0.001 0.011 0.999 0.011 

  PM25 0.000 0.424 0.000 0.002 0.011 0.998 0.011 

  PM50 0.000 0.795 0.000 0.001 0.005 0.999 0.005 

  None 0.000 0.197 0.000 0.000 0.030 1.000 0.030 

  MG5 0.000 0.649 0.000 0.000 0.031 1.000 0.031 

  MG10 0.000 0.850 0.000 0.000 0.031 1.000 0.031 

0.5 0.03 GE5 0.000 0.248 0.000 0.000 0.022 1.000 0.022 

  GE10 0.000 0.893 0.000 0.001 0.016 0.999 0.016 

  PM25 0.000 0.906 0.000 0.000 0.017 1.000 0.017 

  PM50 0.000 0.228 0.000 0.001 0.008 0.999 0.008 

  None 0.000 0.561 0.000 0.000 0.050 1.000 0.050 

  MG5 0.000 0.552 0.000 0.000 0.050 1.000 0.050 

  MG10 0.000 0.974 0.000 0.000 0.050 1.000 0.050 

 0.05 GE5 0.000 0.851 0.000 0.000 0.037 1.000 0.037 

  GE10 0.000 0.852 0.000 0.000 0.027 1.000 0.027 

  PM25 0.000 0.899 0.000 0.000 0.027 1.000 0.027 

  PM50 0.000 0.675 0.000 0.001 0.012 0.999 0.012 

  None 0.000 0.979 0.000 0.000 0.100 1.000 0.100 

  MG5 0.000 0.881 0.000 0.000 0.100 1.000 0.100 

  MG10 0.000 0.863 0.000 0.000 0.100 1.000 0.100 

 0.1 GE5 0.000 0.924 0.000 0.000 0.075 1.000 0.075 

  GE10 0.000 0.756 0.000 0.000 0.055 1.000 0.055 

  PM25 0.000 0.918 0.000 0.000 0.056 1.000 0.056 

  PM50 0.000 0.850 0.000 0.000 0.026 1.000 0.026 
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Table S4 Empirical variance decomposition for model M27, in the absence of GH.  

Whereas g2 represents the total genetic variance corresponding to error-free data, 
2

gen now refers 

to the empirical total genetic variance.  

 
 

p 
 

g2
 

 

Noisiness 2

add  
22

mainadd   
2

main  
22

genmain   
2

epi  
22

genepi   

 

2

gen  

  None 0.003 0.948 0.003 0.324 0.007 0.676 0.010 

  MG5 0.003 0.954 0.003 0.298 0.007 0.702 0.010 

  MG10 0.003 0.941 0.003 0.314 0.007 0.686 0.010 

 0.01 GE5 0.002 0.964 0.002 0.363 0.004 0.637 0.006 

  GE10 0.002 0.984 0.002 0.407 0.003 0.593 0.005 

  PM25 0.002 0.947 0.002 0.318 0.004 0.682 0.006 

  PM50 0.001 0.937 0.001 0.345 0.002 0.655 0.003 

  None 0.006 0.953 0.006 0.309 0.013 0.691 0.020 

  MG5 0.006 0.954 0.006 0.322 0.014 0.678 0.020 

  MG10 0.006 0.939 0.006 0.308 0.014 0.692 0.021 

 0.02 GE5 0.005 0.969 0.005 0.372 0.009 0.628 0.014 

  GE10 0.004 0.981 0.004 0.408 0.006 0.592 0.010 

  PM25 0.003 0.963 0.004 0.330 0.007 0.670 0.011 

  PM50 0.002 0.971 0.002 0.332 0.003 0.668 0.005 

  None 0.009 0.951 0.009 0.320 0.020 0.680 0.030 

  MG5 0.009 0.942 0.010 0.313 0.021 0.687 0.031 

  MG10 0.009 0.952 0.010 0.321 0.020 0.679 0.030 

0.1 0.03 GE5 0.007 0.943 0.007 0.368 0.012 0.632 0.020 

  GE10 0.006 0.979 0.006 0.408 0.009 0.592 0.015 

  PM25 0.005 0.960 0.005 0.322 0.011 0.678 0.017 

  PM50 0.002 0.926 0.002 0.308 0.005 0.692 0.007 

  None 0.015 0.953 0.016 0.312 0.034 0.688 0.050 

  MG5 0.016 0.945 0.017 0.324 0.035 0.676 0.051 

  MG10 0.015 0.945 0.016 0.311 0.035 0.689 0.050 

 0.05 GE5 0.012 0.953 0.013 0.372 0.021 0.628 0.034 

  GE10 0.010 0.985 0.010 0.419 0.014 0.581 0.025 

  PM25 0.008 0.938 0.009 0.313 0.019 0.687 0.028 

  PM50 0.004 0.932 0.004 0.319 0.009 0.681 0.013 

  None 0.030 0.943 0.031 0.314 0.068 0.686 0.100 

  MG5 0.031 0.946 0.033 0.326 0.068 0.674 0.101 

  MG10 0.030 0.942 0.032 0.316 0.070 0.684 0.102 

 0.1 GE5 0.024 0.953 0.025 0.366 0.043 0.634 0.068 

  GE10 0.020 0.979 0.021 0.416 0.029 0.584 0.049 

  PM25 0.016 0.946 0.017 0.314 0.038 0.686 0.055 

  PM50 0.007 0.941 0.008 0.313 0.017 0.687 0.025 
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Table S4 Continued 

 

 
 

p 
 

g2
 

 

Noisiness 
2

add  
22

mainadd   
2

main  
22

genmain   
2

epi  
22

genepi   

 

2

gen  

  None 0.005 0.856 0.006 0.605 0.004 0.395 0.010 

  MG5 0.005 0.855 0.006 0.630 0.004 0.370 0.010 

  MG10 0.005 0.845 0.006 0.624 0.004 0.376 0.010 

 0.01 GE5 0.005 0.865 0.006 0.649 0.003 0.351 0.009 

  GE10 0.004 0.900 0.005 0.667 0.002 0.333 0.007 

  PM25 0.003 0.867 0.004 0.623 0.002 0.377 0.006 

  PM50 0.001 0.861 0.001 0.571 0.001 0.429 0.003 

  None 0.010 0.865 0.012 0.617 0.008 0.383 0.020 

  MG5 0.011 0.869 0.012 0.625 0.007 0.375 0.020 

  MG10 0.010 0.851 0.012 0.613 0.007 0.387 0.019 

 0.02 GE5 0.010 0.856 0.011 0.637 0.006 0.363 0.018 

  GE10 0.009 0.892 0.010 0.658 0.005 0.342 0.015 

  PM25 0.006 0.859 0.007 0.624 0.004 0.376 0.011 

  PM50 0.003 0.871 0.003 0.628 0.002 0.372 0.005 

  None 0.016 0.852 0.019 0.609 0.012 0.391 0.031 

  MG5 0.016 0.864 0.019 0.610 0.012 0.390 0.030 

  MG10 0.015 0.861 0.018 0.606 0.012 0.394 0.030 

0.25 0.03 GE5 0.014 0.870 0.017 0.642 0.009 0.358 0.026 

  GE10 0.013 0.885 0.015 0.652 0.008 0.348 0.022 

  PM25 0.009 0.864 0.010 0.610 0.007 0.390 0.017 

  PM50 0.004 0.853 0.005 0.623 0.003 0.377 0.007 

  None 0.026 0.855 0.031 0.609 0.020 0.391 0.050 

  MG5 0.026 0.855 0.030 0.605 0.020 0.395 0.050 

  MG10 0.026 0.851 0.030 0.611 0.019 0.389 0.050 

 0.05 GE5 0.024 0.864 0.028 0.641 0.015 0.359 0.043 

  GE10 0.022 0.873 0.025 0.666 0.012 0.334 0.037 

  PM25 0.015 0.864 0.017 0.605 0.011 0.395 0.028 

  PM50 0.007 0.856 0.008 0.618 0.005 0.382 0.012 

  None 0.052 0.861 0.060 0.609 0.039 0.391 0.099 

  MG5 0.053 0.862 0.062 0.609 0.040 0.391 0.102 

  MG10 0.052 0.853 0.061 0.611 0.039 0.389 0.100 

 0.1 GE5 0.046 0.855 0.054 0.632 0.031 0.368 0.085 

  GE10 0.044 0.885 0.049 0.656 0.026 0.344 0.075 

  PM25 0.029 0.856 0.033 0.599 0.022 0.401 0.056 

  PM50 0.013 0.858 0.016 0.612 0.010 0.388 0.025 
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Table S4 Continued 

 

 
 

p 
 

g2
 

 

Noisiness 2

add  
22

mainadd   
2

main  
22

genmain   
2

epi  
22

genepi   

 
2

gen  

  None 0.006 0.667 0.009 0.844 0.002 0.156 0.010 

  MG5 0.006 0.698 0.009 0.845 0.002 0.155 0.010 

  MG10 0.006 0.662 0.009 0.854 0.001 0.146 0.010 

 0.01 GE5 0.005 0.693 0.008 0.874 0.001 0.126 0.009 

  GE10 0.005 0.705 0.008 0.875 0.001 0.125 0.009 

  PM25 0.003 0.653 0.005 0.851 0.001 0.149 0.006 

  PM50 0.001 0.708 0.002 0.857 0.000 0.143 0.002 

  None 0.012 0.675 0.017 0.852 0.003 0.148 0.020 

  MG5 0.011 0.655 0.017 0.863 0.003 0.137 0.020 

  MG10 0.011 0.660 0.017 0.846 0.003 0.154 0.020 

 0.02 GE5 0.011 0.697 0.016 0.859 0.003 0.141 0.018 

  GE10 0.010 0.702 0.015 0.877 0.002 0.123 0.017 

  PM25 0.006 0.667 0.010 0.850 0.002 0.150 0.011 

  PM50 0.003 0.677 0.004 0.859 0.001 0.141 0.005 

  None 0.017 0.664 0.026 0.855 0.004 0.145 0.030 

  MG5 0.017 0.680 0.026 0.865 0.004 0.135 0.030 

  MG10 0.017 0.679 0.025 0.856 0.004 0.144 0.030 

0.5 0.03 GE5 0.016 0.683 0.024 0.870 0.004 0.130 0.027 

  GE10 0.016 0.717 0.022 0.870 0.003 0.130 0.026 

  PM25 0.009 0.661 0.014 0.864 0.002 0.136 0.016 

  PM50 0.004 0.646 0.007 0.866 0.001 0.134 0.008 

  None 0.028 0.669 0.042 0.854 0.007 0.146 0.049 

  MG5 0.029 0.669 0.043 0.858 0.007 0.142 0.050 

  MG10 0.028 0.659 0.042 0.851 0.007 0.149 0.050 

 0.05 GE5 0.027 0.669 0.040 0.871 0.006 0.129 0.046 

  GE10 0.026 0.693 0.038 0.876 0.005 0.124 0.043 

  PM25 0.016 0.678 0.024 0.858 0.004 0.142 0.028 

  PM50 0.007 0.659 0.011 0.856 0.002 0.144 0.013 

  None 0.058 0.672 0.086 0.862 0.014 0.138 0.100 

  MG5 0.057 0.669 0.085 0.855 0.014 0.145 0.099 

  MG10 0.057 0.667 0.085 0.856 0.014 0.144 0.100 

 0.1 GE5 0.055 0.682 0.080 0.864 0.013 0.136 0.093 

  GE10 0.052 0.701 0.074 0.875 0.011 0.125 0.085 

  PM25 0.032 0.663 0.049 0.861 0.008 0.139 0.056 

  PM50 0.014 0.665 0.021 0.855 0.004 0.145 0.025 
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Table S5-i  Empirical variance decomposition of the total genetic variance due to (SNP1,SNP2) in 

model M170,  for several GH settings.  

Whereas g
2 represents the total genetic variance corresponding to error-free data, 

2

, pairgen now 

refers to the empirical total genetic variance due to a single interactive pair.  

 

 

p1 p2 g2 
2

add  
22

mainadd   
2

main  
2

,

2

pairgenmain   
2

epi  
2

,

2

pairgenepi   

 
2

, pairgen  

  0.01 0.001 0.789 0.001 0.552 0.001 0.448 0.003 

  0.02 0.002 0.789 0.003 0.562 0.002 0.438 0.005 

0.1 0.1 0.03 0.004 0.793 0.005 0.596 0.003 0.404 0.008 

  0.05 0.006 0.770 0.008 0.604 0.005 0.397 0.013 

  0.1 0.012 0.782 0.015 0.582 0.012 0.418 0.026 

  0.01 0.000 0.436 0.000 0.133 0.002 0.867 0.003 

  0.02 0.000 0.329 0.001 0.112 0.005 0.888 0.005 

0.25 0.25 0.03 0.000 0.382 0.001 0.117 0.007 0.883 0.008 

  0.05 0.000 0.398 0.001 0.119 0.011 0.881 0.012 

  0.1 0.001 0.393 0.003 0.109 0.022 0.891 0.025 

  0.01 0.000 0.527 0.000 0.001 0.003 0.999 0.003 

  0.02 0.000 0.490 0.000 0.001 0.005 0.999 0.005 

0.5 0.5 0.03 0.000 0.764 0.000 0.000 0.007 1.000 0.007 

  0.05 0.000 0.770 0.000 0.002 0.013 1.000 0.013 

  0.1 0.000 0.991 0.000 0.000 0.025 1.000 0.025 
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Table S5-ii Empirical variance decomposition of the total genetic variance due to (SNP1,SNP2) 

and (SNP3,SNP4) in model M170,  for several GH settings.  

Whereas g2 represents the total genetic variance corresponding to error-free data, 
2

2, pairsgen now 

refers to the empirical total genetic variance due the two causal marker pairs. 

 

p1 p2 g2 2

add  
22

mainadd   
2

main  
2

2,

2

pairsgenmain   
2

epi  
2

2,

2

pairsgenepi   

 

2

2, pairsgen  

  0.01 0.002 0.770 0.003 0.568 0.002 0.432 0.005 

  0.02 0.004 0.789 0.006 0.569 0.004 0.431 0.010 

0.1 0.1 0.03 0.007 0.795 0.009 0.594 0.006 0.407 0.015 

  0.05 0.012 0.771 0.015 0.593 0.011 0.408 0.026 

  0.1 0.023 0.781 0.029 0.583 0.021 0.417 0.050 

  0.01 0.000 0.405 0.001 0.132 0.004 0.868 0.005 

  0.02 0.000 0.386 0.001 0.117 0.009 0.883 0.010 

0.25 0.25 0.03 0.001 0.360 0.002 0.119 0.013 0.881 0.015 

  0.05 0.001 0.416 0.003 0.117 0.022 0.883 0.025 

  0.1 0.002 0.396 0.006 0.112 0.044 0.888 0.050 

  0.01 0.000 0.794 0.000 0.002 0.005 0.998 0.005 

  0.02 0.000 0.719 0.000 0.001 0.010 0.999 0.010 

0.5 0.5 0.03 0.000 0.603 0.000 0.000 0.014 1.000 0.014 

  0.05 0.000 0.694 0.000 0.001 0.026 0.999 0.026 

  0.1 0.000 0.777 0.000 0.000 0.050 1.000 0.050 
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Table S5-iii Empirical variance decomposition of the total genetic variance  due to (SNP1,SNP2) 

in model M27,  for several GH settings.  

Whereas g
2 represents the total genetic variance corresponding to error-free data, 

2

, pairgen now 

refers to the empirical total genetic variance due to a single interactive pair.  

 

p1 p2 g2 2

add  
22

mainadd   
2

main  
2

,

2

pairgenmain   
2

epi  
2

,

2

pairgenepi   

 

2

, pairgen  

  0.01 0.001 0.956 0.001 0.320 0.002 0.680 0.003 

  0.02 0.001 0.947 0.002 0.287 0.004 0.713 0.005 

0.1 0.1 0.03 0.002 0.934 0.002 0.293 0.006 0.707 0.008 

  0.05 0.004 0.955 0.004 0.338 0.008 0.662 0.013 

  0.1 0.008 0.940 0.008 0.324 0.017 0.676 0.025 

  0.01 0.001 0.853 0.002 0.557 0.001 0.443 0.003 

  0.02 0.003 0.859 0.003 0.607 0.002 0.393 0.005 

0.25 0.25 0.03 0.004 0.856 0.005 0.615 0.003 0.386 0.007 

  0.05 0.006 0.857 0.007 0.605 0.005 0.395 0.012 

  0.1 0.013 0.845 0.016 0.604 0.010 0.396 0.026 

  0.01 0.001 0.669 0.002 0.849 0.000 0.151 0.003 

  0.02 0.003 0.671 0.004 0.868 0.001 0.132 0.005 

0.5 0.5 0.03 0.004 0.645 0.007 0.869 0.001 0.131 0.008 

  0.05 0.007 0.662 0.011 0.863 0.002 0.137 0.013 

  0.1 0.014 0.667 0.021 0.855 0.004 0.145 0.025 
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Table S5-iv Empirical variance decomposition of the total genetic variance due to (SNP1,SNP2) 

and (SNP3,SNP4) in model M27,  for several GH settings.  

Whereas g2 represents the total genetic variance corresponding to error-free data, 
2

2, pairsgen now 

refers to the empirical total genetic variance due the two causal marker pairs. 

p1 p2 g2 2

add  
22

mainadd   
2

main  
2

2,

2

pairsgenmain   
2

epi  
2

2,

2

pairsgenepi   

 

2

2, pairsgen  

  0.01 0.002 0.953 0.002 0.314 0.004 0.686 0.005 

  0.02 0.003 0.953 0.003 0.307 0.007 0.693 0.010 

0.1 0.1 0.03 0.004 0.939 0.005 0.307 0.011 0.693 0.015 

  0.05 0.008 0.948 0.008 0.322 0.017 0.678 0.025 

  0.1 0.015 0.935 0.016 0.323 0.034 0.677 0.050 

  0.01 0.003 0.868 0.003 0.603 0.002 0.398 0.005 

  0.02 0.005 0.861 0.006 0.625 0.004 0.375 0.010 

0.25 0.25 0.03 0.008 0.856 0.009 0.609 0.006 0.391 0.015 

  0.05 0.013 0.858 0.015 0.610 0.010 0.391 0.025 

  0.1 0.026 0.847 0.031 0.607 0.020 0.393 0.050 

  0.01 0.003 0.675 0.004 0.851 0.001 0.149 0.005 

  0.02 0.006 0.666 0.008 0.845 0.002 0.155 0.010 

0.5 0.5 0.03 0.009 0.656 0.013 0.867 0.002 0.133 0.015 

  0.05 0.014 0.659 0.022 0.858 0.004 0.142 0.025 

  0.1 0.028 0.665 0.042 0.852 0.007 0.149 0.050 
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Table S6 Power of MB-MDR to detect different power definitions from genetic heterogeneity 

settings (Pair1=SNP1 x SNP2, Pair2=SNP3 x SNP4), and false positives, FP (any pair that is not 

strictly a functional pair). Considered analyses methods are MB-MDR without main effects 

correction, with additive or codominant lower order effects adjustment. False positive 

percentages higher than 0.05 are highlighted in bold.  
  Model M27 Model M170 

 p1 p2 g2 Pair1 Pair2 

Pair1  

or  

Pair2 

Pair 1  

and  

Pair2 

 

FP Pair1 Pair2 

Pair1 

or  

Pair2 

Pair1 

 and  

Pair2 

 

FP 

   0.01 0.014 0.022 0.036 0.000 0.074 0.018 0.022 0.040 0.000 0.110 

  0.02 0.102 0.144 0.234 0.012 0.130 0.138 0.108 0.224 0.022 0.172 

0.1 0.1 0.03 0.296 0.306 0.508 0.094 0.212 0.294 0.298 0.512 0.080 0.380 

  0.05 0.650 0.572 0.852 0.370 0.336 0.690 0.688 0.906 0.472 0.688 

  0.1 0.936 0.958 0.994 0.900 0.742 0.976 0.980 1.000 0.956 0.968 

  0.01 0.020 0.016 0.036 0.000 0.116 0.016 0.020 0.036 0.000 0.072 

  0.02 0.100 0.094 0.186 0.008 0.200 0.096 0.078 0.168 0.006 0.076 

0.25 0.25 0.03 0.226 0.266 0.442 0.050 0.368 0.224 0.196 0.378 0.042 0.066 

  0.05 0.564 0.596 0.830 0.330 0.628 0.510 0.546 0.792 0.264 0.112 

  0.1 0.980 0.964 1.000 0.944 0.962 0.960 0.972 1.000 0.932 0.202 

  0.01 0.020 0.044 0.064 0.000 0.148 0.016 0.022 0.038 0.000 0.052 

  0.02 0.070 0.072 0.134 0.008 0.278 0.074 0.072 0.138 0.008 0.062 

0.5 0.5 0.03 0.206 0.174 0.332 0.048 0.520 0.162 0.172 0.306 0.028 0.054 

  0.05 0.490 0.488 0.750 0.228 0.810 0.494 0.430 0.710 0.214 0.036 

  0.1 0.938 0.958 0.996 0.900 1.000 0.954 0.918 1.000 0.872 0.080 

   0.01 0.002 0.002 0.004 0.000 0.024 0.002 0.000 0.002 0.000 0.030 

  0.02 0.006 0.006 0.012 0.000 0.036 0.002 0.002 0.004 0.000 0.038 

0.1 0.1 0.03 0.040 0.024 0.064 0.000 0.036 0.002 0.012 0.014 0.000 0.036 

  0.05 0.096 0.106 0.192 0.010 0.014 0.030 0.034 0.062 0.002 0.060 

  0.1 0.476 0.482 0.718 0.240 0.058 0.280 0.286 0.494 0.072 0.128 

  0.01 0.000 0.000 0.000 0.000 0.030 0.012 0.006 0.018 0.000 0.042 

  0.02 0.008 0.004 0.012 0.000 0.028 0.078 0.040 0.116 0.002 0.048 

0.25 0.25 0.03 0.012 0.016 0.028 0.000 0.044 0.152 0.168 0.284 0.036 0.036 

  0.05 0.056 0.066 0.118 0.004 0.042 0.438 0.496 0.740 0.194 0.028 

  0.1 0.348 0.346 0.586 0.108 0.074 0.954 0.962 0.998 0.918 0.056 

  0.01 0.000 0.004 0.004 0.000 0.054 0.006 0.006 0.012 0.000 0.030 

  0.02 0.008 0.008 0.016 0.000 0.064 0.044 0.038 0.076 0.006 0.042 

0.5 0.5 0.03 0.016 0.014 0.030 0.000 0.118 0.108 0.112 0.204 0.016 0.036 

  0.05 0.066 0.048 0.110 0.004 0.180 0.430 0.336 0.606 0.160 0.026 

  0.1 0.312 0.356 0.572 0.096 0.500 0.920 0.898 0.994 0.824 0.054 

   0.01 0.000 0.000 0.000 0.000 0.016 0.000 0.000 0.000 0.000 0.024 

  0.02 0.000 0.004 0.004 0.000 0.036 0.002 0.000 0.002 0.000 0.026 

0.1 0.1 0.03 0.016 0.008 0.024 0.000 0.024 0.004 0.008 0.012 0.000 0.032 

  0.05 0.036 0.042 0.078 0.000 0.010 0.024 0.030 0.054 0.000 0.028 

  0.1 0.260 0.264 0.454 0.070 0.028 0.154 0.162 0.294 0.022 0.028 

  0.01 0.000 0.000 0.000 0.000 0.014 0.000 0.000 0.000 0.000 0.034 

  0.02 0.006 0.006 0.012 0.000 0.018 0.036 0.030 0.066 0.000 0.038 

0.25 0.25 0.03 0.008 0.012 0.020 0.000 0.030 0.072 0.070 0.136 0.006 0.022 

  0.05 0.044 0.032 0.072 0.004 0.026 0.296 0.316 0.540 0.072 0.018 

  0.1 0.310 0.280 0.514 0.076 0.028 0.874 0.854 0.976 0.752 0.014 

  0.01 0.000 0.000 0.000 0.000 0.024 0.002 0.006 0.008 0.000 0.022 

  0.02 0.000 0.000 0.000 0.000 0.018 0.024 0.016 0.038 0.002 0.028 

0.5 0.5 0.03 0.000 0.000 0.000 0.000 0.014 0.078 0.064 0.132 0.010 0.032 

  0.05 0.002 0.000 0.002 0.000 0.018 0.324 0.296 0.526 0.094 0.014 

  0.1 0.010 0.014 0.024 0.000 0.018 0.894 0.876 0.992 0.778 0.038 
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