
HAL Id: hal-00624134
https://hal.science/hal-00624134

Submitted on 15 Sep 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Polychronous interpretation of synoptic, a domain
specific modeling language for embedded flight-software

Loïc Besnard, Thierry Gautier, Julien Ouy, Jean-Pierre Talpin, Jean-Paul
Bodeveix, Alexandre Cortier, Marc Pantel, Martin Strecker, Gérald Garcia,

Ana-Elena Rugina, et al.

To cite this version:
Loïc Besnard, Thierry Gautier, Julien Ouy, Jean-Pierre Talpin, Jean-Paul Bodeveix, et al.. Poly-
chronous interpretation of synoptic, a domain specific modeling language for embedded flight-software.
FM 09 - Workshop on Formal Methods for Aerospace, Nov 2009, Eindhoven, Netherlands. pp.80-87,
�10.4204/EPTCS.20.9�. �hal-00624134�

https://hal.science/hal-00624134
https://hal.archives-ouvertes.fr

M. Bujorianu and M. Fisher (Eds.):

Workshop on Formal Methods for Aerospace (FMA)

EPTCS 18, 2010, pp. 80–87, doi:10.4204/EPTCS.18.9

c© SPaCIFY Project

This work is licensed under the

Creative Commons Attribution License.

Polychronous Interpretation of Synoptic, a Domain Specific

Modeling Language for Embedded Flight-Software

L. Besnard, T. Gautier, J. Ouy, J.-P. Talpin, J.-P. Bodeveix, A. Cortier,
M. Pantel, M. Strecker, G. Garcia, A. Rugina, J. Buisson, F. Dagnat

L. Besnard, T. Gautier, J. Ouy, J.-P. Talpin

INRIA Rennes - Bretagne Atlantique / IRISA, Campus de Beaulieu, F-35042 Rennes Cedex, France

{Loic.Besnard, Thierry.Gautier, Julien.Ouy, Jean-Pierre.Talpin}@irisa.fr

J.-P. Bodeveix, A. Cortier, M. Pantel, M. Strecker

IRIT-ACADIE, Université Paul Sabatier, 118 Route de Narbonne, F-31062 Toulouse Cedex 9, France

{bodeveix, cortier, pantel, strecker}@irit.fr

G. Garcia

Thales Alenia Space, 100 Boulevard Midi, F-06150 Cannes, France

gerald.garcia@thalesaleniaspace.com

A. Rugina

EADS Astrium, 31 rue des Cosmonautes, Z.I. du Palays, F-31402 Toulouse Cedex 4, France

Ana-Elena.RUGINA@astrium.eads.net

J. Buisson, F. Dagnat

Institut Télécom / Télécom Bretagne, Technopôle Brest Iroise, CS83818, F-29238 Brest Cedex 3, France

{jeremy.buisson, Fabien.Dagnat}@telecom-bretagne.eu

The SPaCIFY project, which aims at bringing advances in MDE to the satellite flight software indus-

try, advocates a top-down approach built on a domain-specific modeling language named Synoptic.

In line with previous approaches to real-time modeling such as Statecharts and Simulink, Synoptic

features hierarchical decomposition of application and control modules in synchronous block dia-

grams and state machines. Its semantics is described in the polychronous model of computation,

which is that of the synchronous language SIGNAL.

1 Introduction

In collaboration with major European manufacturers, the SPaCIFY project aims at bringing advances in

MDE to the satellite flight software industry. It focuses on software development and maintenance phases

of satellite lifecycle. The project advocates a top-down approach built on a Domain-Specific Modeling

Language (DSML) named Synoptic. The aim of Synoptic is to support all aspects of embedded flight-

software design. As such, Synoptic consists of heterogeneous modeling and programming principles

defined in collaboration with the industrial partners and end users of the SPaCIFY project.

Used as the central modeling language of the SPaCIFY model driven engineering process, Synoptic

allows to describe different layers of abstraction: at the highest level, the software architecture models the

http://dx.doi.org/10.4204/EPTCS.18.9
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

SPaCIFY Project 81

functional decomposition of the flight software. This is mapped to a dynamic architecture which defines

the thread structure of the software. It consists of a set of threads, where each thread is characterized by

properties such as its frequency, its priority and its activation pattern (periodic, sporadic).

A mapping establishes a correspondence between the software and the dynamic architecture, by

specifying which blocks are executed by which threads. At the lowest level, the hardware architecture

permits to define devices (processors, sensors, actuators, busses) and their properties.

Finally, mappings describe the correspondence between the dynamic and hardware architecture on

the one hand, by specifying which threads are executed by which processor, and describe a correspon-

dence between the software and hardware architecture on the other hand, by specifying which data is

carried by which bus for instance. Figure 1 depicts these layers and mappings.

Figure 1: Global view: layers and architecture mappings

The aim is to synthesize as much of this mapping as possible, for example by appealing to internal or

external schedulers. However, to allow for human intervention, it is possible to give a fine-grained map-

ping, thus overriding or bypassing machine-generated schedules. Anyway, consistency of the resulting

dynamic architecture is verified by the SPaCIFY tool suite, based on the properties of the software and

dynamic model.

At each step of the development process, it is also useful to model different abstraction levels of the

system under design inside a same layer (functional, dynamic or hardware architecture). Synoptic offers

this capability by providing an incremental design framework and refinement features.

To summarize, Synoptic deals with data-flow diagrams, mode automata, blocks, components, dy-

namic and hardware architecture, mapping and timing.

The functional part of the Synoptic language allows to model software architecture. The correspond-

ing sub-language is well adapted to model synchronous islands and to specify interaction points between

these islands and the middleware platform using the concept of external variables.

Synchronous islands and middleware form a Globally Asynchronous and Locally Synchronous (GALS)

system.

Software architecture The development of the Synoptic software architecture language has been

tightly coordinated with the definition of the GeneAuto language [1]. Synoptic uses essentially two

types of modules, called blocks in Synoptic, which can be mutually nested: data-flow diagrams and

82 Polychronous interpretation of Synoptic

mode automata. Nesting favors a hierarchical design and enables viewing the description at different

levels of detail.

By embedding blocks in the states of state machines, one can elegantly model operational modes:

each state represents a mode, and transitions correspond to mode changes. In each mode, the system may

be composed of other sub-blocks or have different connection patterns among components.

Apart from structural and behavioral aspects, the Synoptic software architecture language allows to

define temporal properties of blocks. For instance, a block can be parameterized with a frequency and a

worst case execution time which are taken into account in the mapping onto the dynamic architecture.

Synoptic is equipped with an assertion language that allows to state desired properties of the model

under development. We are mainly interested in properties that permit to express, for example, coherence

of the modes (“if component X is in mode m1, then component Y is in mode m2” or “. . . can eventually

move into mode m2”). Specific transformations extract these properties and pass them to the verification

tools.

The main purpose of this paper is to describe a formal semantics of Synoptic, expressed in terms

of the synchronous language SIGNAL [2, 3]. SIGNALis based on “synchronized data-flow” (flows with

synchronization): a process is a set of equations on elementary flows describing both data and control.

The SIGNAL formal model provides the capability to describe systems with several clocks (polychronous

systems) as relational specifications. A brief overview of the abstract syntax of Synoptic is provided in

Section 2. Then Section 3 describes the interpretation of each one of these constructions in the model of

the SIGNAL language.

2 An overview of Synoptic

Blocks are the main structuring elements of Synoptic. A block block xA defines a functional unit of

compilation and of execution that can be called from many contexts and with different modes in the

system under design. A block x encapsulates a functionality A that may consist of sub-blocks, automata

and data-flows. A block x is implicity associated with two signals x.trigger and x.reset. The signal

x.trigger starts the execution of A. The specification A may then operate at its own pace until the next

x.trigger is signaled. The signal x.reset is delivered to x at some x.trigger and forces A to reset its state

and variables to initial values.

(blocks) A,B ::= block xA | dataflow xA | automaton xA | A ||B

Data-flows inter-connect blocks with data and events (e.g. trigger and reset signals). A flow can

simpliy define a connection from an event x to an event y, written event x → y, combine data y and z

by a simple operation f to form the flow x, written data y f z → x or feed a signal y back to x, written

data y$initv → x. In a feedback loop, the signal x is initially defined by x0 = v. Then, at each occurrence

n > 0 of the signal y, it takes its previous value xn = yn−1. The execution of a data-flow is controlled by

its parent clock. A data-flow simultaneously executes each connection it is composed of every time it is

triggered by its parent block.

(data f low) A,B ::= data y$initv → x | data y f z → x | event x → y | A ||B

Actions are sequences of operations on variables that are performed during the execution of automata.

An assignment x = y f z defines the new value of the variable x from the current values of y and z by the

function f . The skip stores the new values of variables that have been defined before it, so that they

SPaCIFY Project 83

become current past it. The conditional if x thenAelseB executes A if the current value of x is true and

executes B otherwise. A sequence A;B executes A and then B.

(action) A,B ::= skip | x = y f z | if x thenAelseB | A;B

Automata schedule the execution of operations and blocks by performing timely guarded transitions.

An automaton receives control from its trigger and reset signals x.trigger and x.reset as specified by its

parent block. When an automaton is first triggered, or when it is reset, its starts execution from its initial

state, specified as initial stateS. On any state S : doA, it performs the action A. From this state, it may

perform an immediate transition to new state T , written S →on x T , if the value of the current variable

x is true. It may also perform a delayed transition to T , written S ։
on x T , that waits the next trigger

before to resume execution (in state T). If no transition condition applies, it then waits the next trigger

and resumes execution in state S. States and transitions are composed as A ||B. The timed execution of

an automaton combines the behavior of an action or a data-flow. The execution of a delayed transition or

of a stutter is controlled by an occurrence of the parent trigger signal (as for a data-flow). The execution

of an immediate transition is performed without waiting for a trigger or a reset (as for an action).

(automaton) A,B ::= stateS : doA | S →on x T | S ։
on x T | A ||B

3 Polychronous interpretation of Synoptic

The model of computation on which Synoptic relies is that of the polychronous data-flow language

SIGNAL. This section describes how Synoptic programs are interpreted into this core language.

3.1 A brief introduction to SIGNAL

In SIGNAL, a process P consists of the composition of simultaneous equations x = f (y,z) over signals

x,y,z. A delay equation x = y$initv defines x every time y is present. Initially, x is defined by the value v,

and then, it is defined by the previous value of y. A sampling equation x = ywhenz defines x by y when z

is true. Finally, a merge equation x = ydefaultz defines x by y when y is present and by z otherwise. An

equation x = y f z can use a boolean or arithmetic operator f to define all of the nth values of the signal x

by the result of the application of f to the nth values of the signals y and z. The synchronous composition

of processes P ||Q consists of the simultaneous solution of the equations in P and in Q. It is commutative

and associative. The process P/x restricts the signal x to the lexical scope of P.

P,Q ::= x = y f z | P/x | P ||Q (process)

In SIGNAL, the presence of a value along a signal x is an expression noted ˆx. It is true when x is present.

Otherwise, it is absent. Specific processes and operators are defined in SIGNAL to manipulate clocks

explicitly. We only use the simplest one, xˆ =y, that synchronizes all occurrences of the signals x and y.

3.2 Interpretation of blocks

The execution of a block is driven by the trigger t of its parent block. The block resynchronizes with

that trigger every time, itself or one of its sub-blocks, makes an explicit reference to time (e.g. a skip for

an action or a delayed transition S ։ T for an automaton). Otherwise, the elapse of time is sensed from

outside the block, whose operations (e.g., on ci), are perceived as belonging to the same period as within

84 Polychronous interpretation of Synoptic

[ti, ti+1[. The interpretation implements this feature by encoding actions and automata using static single

assignment. As a result, and from within a block, every non-time-consuming sequence of actions A;B or

transitions A → B defines the value of all its variables once and defines intermediate ones in the flow of

its execution.

3.3 Interpretation of data-flow

Data-flows are structurally similar to SIGNAL programs and equally combined using synchronous com-

position. The interpretation [[A]]rt = 〈〈P〉〉 of a data-flow (Fig. 2) is parameterized by the reset and trigger

signals of the parent block and returns a process P (the input term A and the output term P are marked by

[[A]] and 〈〈P〉〉 for convenience). A delayed flow data y$initv → x initially defines x by the value v. It is

reset to that value every time the reset signal r occurs. Otherwise, it takes the previous value of y in time.

[[dataflow f A]]rt =〈〈[[A]]rt ||
(

∏x∈in(A) xˆ = t
)

〉〉

[[data y$initv → x]]rt =〈〈x = (vwhenr)default(y$initv) ||(xˆ =y)〉〉
[[data y f z → x]]rt =〈〈x = y f z〉〉

[[event y → x]]rt =〈〈x = wheny〉〉
[[A ||B]]rt =〈〈[[A]]rt || [[B]]rt〉〉

Figure 2: Interpretation of data-flow connections

In Fig. 2, we write ∏i≤n Pi for a finite product of processes P1 || . . .Pn. Similarly,
∨

i≤n ei is a finite

merge e1 default . . .en.

A functional flow data y f z → x defines x by the product of (y,z) by f . An event flow event y → x

connects y to define x. Particular cases are the operator ?(y) to convert an event y to a boolean data and

the operator ˆ(y) to convert the boolean data y to an event. We write in(A) and out(A) for the input and

output signals of a data-flow A.

By default, the convention of Synoptic is to synchronize the input signals of a data-flow to the parent

trigger. It is however, possible to define alternative policies. One is to down-sample the input signals at

the pace of the trigger. Another is to adapt or resample them at that trigger.

3.4 Interpretation of actions

The execution of an action A starts at an occurrence of its parent trigger and shall end before the next

occurrence of that event. During the execution of an action, one may also wait and synchronize with

this event by issuing a skip . A skip has no behavior but to signal the end of an instant: all the newly

computed values of signals are flushed in memory and execution is resumed upon the next parent trigger.

Action x! sends the signal x to its environment. Execution may continue within the same symbolic instant

unless a second emission is performed: one shall issue a skip before that. An operation x = y f z takes the

current value of y and z to define the new value of x by the product with f . A conditional if x thenAelseB

executes A or B depending on the current value of x.

As a result, only one new value of a variable x should at most be defined within an instant delimited

by a start and an end or a skip. Therefore, the interpretation of an action consists of its decomposition in

static single assignment form. To this end, we use an environment E to associate each variable with its

definition, an expression, and a guard, that locates it (in time).

SPaCIFY Project 85

An action holds an internal state s that stores an integer n denoting the current portion of the actions

that is being executed. State 0 represents the start of the program and each n > 0 labels a skip that

materializes a synchronized sequence of actions.

The interpretation [[A]]s,m,g,E = 〈〈P〉〉n,h,F of an action A (Fig. 3) takes as parameters the state variable

s, the state m of the current section, the guard g that leads to it, and the environment E. It returns a

process P, the state n and guard h of its continuation, and an updated environment F . We write use
g
E(x)

for the expression that returns the definition of the variable x at the guard g and def
g
E(x) for storing the

final values of all variables x defined in E (i.e., x ∈ V (E)) at the guard g.

use
g
E(x)= i f x ∈ V (E) then〈〈E(x)〉〉else〈〈(x$init0)wheng〉〉

defg(E)=∏x∈V (E)

(

x = use
g
E(x)

)

Execution is started with s = 0 upon receipt of a trigger t. It is also resumed from a skip at s = n with a

trigger t. Hence the signal t is synchronized to the state s of the action. The signal r is used to inform the

parent block (an automaton) that the execution of the action has finished (it is back to its initial state 0).

An end resets s to 0, stores all variables x defined in E with an equation x = use
g
E(x) and finally stops (its

returned guard is 0). A skip advances s to the next label n + 1 when it receives control upon the guard

e and flushes the variables defined so far. It returns a new guard (s$init0) = n+1 to resume the actions

past it. An action x! emits x when its guard e is true. A sequence A;B evaluates A to the process P and

passes its state nA, guard gA, environment EA to B. It returns P ||Q with the state, guard and environment

of B. Similarly, a conditional evaluates A with the guard gwhenx to P and B with gwhen notx to Q. It

returns P ||Q but with the guard gA defaultgB. All variables x ∈ X , defined in both EA and EB, are merged

in the environment F .

[[doA]]rt =〈〈(P ||sˆ = t ||r = (s = 0))/s〉〉where〈〈P〉〉n,h,F = [[A; end]]s,0,((spre0)=0), /0

[[end]]s,n,g,E =〈〈s = 0wheng ||defg(E)〉〉0,0, /0

[[skip]]s,n,g,E =〈〈s = n+1wheng ||defg(E)〉〉n+1,((spre0)=n+1), /0

[[x!]]s,n,g,E =〈〈x = 1wheng〉〉n,g,E

[[x = y f z]]s,n,g,E =〈〈x = e〉〉n,g,Ex⊎{x 7→e} wheree = 〈〈 f (use
g
E(y),use

g
E(z))wheng〉〉

[[A;B]]s,n,g,E =〈〈P ||Q〉〉nB,gB,EB
where〈〈P〉〉nA,gA,EA

= [[A]]s,n,g,E
and 〈〈Q〉〉nB,gB,EB

= [[B]]s,nA,gA,EA

[[if x then A else B]]s,n,g,E =〈〈P ||Q〉〉nB,(gA defaultgB),(EA⊎EB)

where〈〈P〉〉nA,gA,EA
=[[A]]s,n,(gwhenuse

g
E (x)),E

and 〈〈Q〉〉nB,gB,EB
= [[B]]s,nA,(gwhennotuse

g
E (x)),E

Figure 3: Interpretation of timed sequential actions

In Fig. 3, we write E ⊎F to merge the definitions in the environments E and F . For all variables

x ∈ V (E)∪V (F) in the domains of E and F ,

(E ⊎F)(x) =

E(x), x ∈ V (E)\V (F)
F(x), x ∈ V (F)\V (E)
E(x)defaultF(x), x ∈ V (E)∩V (F)

Note that an action cannot be reset from the parent clock because it is not synchronized to it. A sequence

of emissions x!;x! yields only one event along the signal x because they occur at the same (logical) time,

as opposed to x!; skip ;x! which sends the second one during the next trigger.

86 Polychronous interpretation of Synoptic

3.5 Interpretation of automata

An automaton describes a hierarchic structure consisting of actions that are executed upon entry in a

state by immediate and delayed transitions. An immediate transition occurs during the period of time

allocated to a trigger. Hence, it does not synchronize to it. Conversely, a delayed transition occurs

upon synchronization with the next occurrence of the parent trigger event. As a result, an automaton

is partitioned in regions. Each region corresponds to the amount of calculation that can be performed

within the period of a trigger, starting from a given initial state.

Notations We write →A and ։A for the immediate and delayed transition relations of an automaton

A. We write pred→A
(S) = {T |(T,x,S) ∈ R} and succ→A

(S) = {T |(S,x,T) ∈ R} (resp. pred
։A

(S) and

succ։A
(S)) for the predecessor and successor states of the immediate (resp. delayed) transitions →A

(resp. ։A) from a state S in an automaton A.Finally, we write ~S for the region of a state S. It is defined

by an equivalence relation.

∀S,T ∈ S (A), ((S,x,T) ∈→A) ⇔~S = ~T

For any state S of A, written S ∈ S (A), it is required that the restriction of →A to the region ~S is acyclic.

Notice that, still, a delayed transition may take place between two states of the same region.

Interpretation An automaton A is interpreted by a process [[automatonxA]]rt parameterized by its

parent trigger and reset signals. The interpretation of A defines a local state s. It is synchronized to the

parent trigger t. It is set to 0, the initial state, upon receipt of a reset signal r and, otherwise, takes the

previous value of s′, that denotes the next state. The interpretation of all states is performed concurrently.

We give all states Si of an automaton A a unique integer label i = ⌈Si⌉ and designate with ⌈A⌉ its

number of states. S0 is the initial state and, for each state of index i, we call Ai its action i and xi j the

guard of an immediate or delayed transition from Si to S j.

[[automatonxA]]rt =
〈〈
(

t ˆ =s ||s = (0whenr)default(s′ $init0) ||
(

∏Si∈S (A) [[Si]]
s
))

/ss′〉〉

The interpretation [[Si]]
s of all states 0 ≤ i < ⌈A⌉ of an automaton (Fig. 4) is implemented by a series of

mutually recursive equations that define the meaning of each state Si depending on the result obtained for

its predecessors S j in the same region. Since a region is by definition acyclic, this system of equations

has therefore a unique solution.

The interpretation of state Si starts with that of its actions Ai. An action Ai defines a local state

si synchronized to the parent state s = i of the automaton. The automaton stutters with s′ = s if the

evaluation of the action is not finished: it is in a local state si 6= 0.

Interpreting the actions Ai requires the definition of a guard gi and of an environment Ei. The guard

gi defines when Ai starts. It requires the local state to be 0 or the state Si to receive control from a

predecessor S j in the same region (with the guard x ji).

The environment Ei is constructed by merging these Fj returned by its immediate predecessors S j.

Once these parameters are defined, the interpretation of Ai returns a process Pi together with an exit guard

hi and an environment Fi holding the value of all variables it defines.

Upon evaluation of Ai, delayed transition from Si are checked. This is done by the definition of a

process Qi which, first, checks if the guard xi j of a delayed transition from Si evaluates to true with Fi. If

so, variables defined in Fi are stored with defhi
(Fi).

SPaCIFY Project 87

All delayed transitions from Si to S j are guarded by hi (one must have finished evaluating i before

moving to j) and a condition gi j, defined by the value of the guard xi j. The default condition is to stay in

the current state s while si 6= 0 (i.e. until mode i is terminated).

Hence, the next state from i is defined by the equation s′ = s′i. The next state equation of each state

is composed with the other to form the product ∏i<⌈A⌉ s′ = s′i that is merged as s′ =
∨

i<⌈A⌉ s′i.

∀i < ⌈A⌉, [[Si]]
s = (Pi ||Qi ||si ˆ = when(s = i) ||s′ = s′i)/si where

〈〈Pi〉〉n,hi,Fi
= [[Ai]]

si,0,gi,Ei

Qi = ∏(Si,xi j,S j)∈։A

(

defhi when(useFi
(xi j))(Fi)

)

Ei =
⊎

S j∈pred→A
(Si) Fj

gi = 1when(si $init0 = 0)default
(

∨

(S j,x ji,Si)∈→A
(useE(x ji))

)

gi j = hi when(useFi
(xi j)), ∀(Si,xi j,S j) ∈ ։A

s′i = (swhensi 6= 0)default
(

∨

(Si,xi j,S j)∈։A
(jwhengi j)

)

Figure 4: Recursive interpretation of a mode automaton

4 Conclusion

Synoptic has a formal semantics, defined in terms of the synchronous language SIGNAL. On the one

hand, this allows for neat integration of verification environments for ascertaining properties of the sys-

tem under development. On the other hand, a formal semantics makes it possible to encode the meta-

model in a proof assistant. In this sense, Synoptic will profit from the formal correctness proof and subse-

quent certification of a code generator that is under way in the GeneAuto project. Moreover, the formal

model of SIGNAL is the basis for the Eclipse-based polychronous modeling environment SME [3, 4].

SME is used to transform Synoptic diagrams and generate executable C code.

References

[1] A. Toom, T. Naks, M. Pantel, M. Gandriau and I. Wati: GeneAuto: An Automatic Code Generator for a safe

subset of SimuLink/StateFlow. European Congress on Embedded Real Time Software (ERTS’08), Société des

Ingénieurs de l’Automobile, (2008).

[2] P. Le Guernic, J.-P. Talpin and J.-C. Le Lann: Polychrony for system design. Journal for Circuits, Systems and

Computers, Special Issue on Application Specific Hardware Design, World Scientific, (2003).

[3] Polychrony and SME. Available at http://www.irisa.fr/espresso/Polychrony.

[4] C. Brunette, J.-P. Talpin, A. Gamatié and T. Gautier: A metamodel for the design of polychronous systems.

The Journal of Logic and Algebraic Programming, 78, Elsevier, (2009).

http://www.irisa.fr/espresso/Polychrony

	Introduction
	An overview of Synoptic
	Polychronous interpretation of Synoptic
	A brief introduction to Signal
	Interpretation of blocks
	Interpretation of data-flow
	Interpretation of actions
	Interpretation of automata

	Conclusion

