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In this paper a concentration inequality is proved for the deviation in the ergodic theorem in the case of discrete time observations of diffusion processes. The proof is based on the geometric ergodicity property for diffusion processes. As an application we consider the nonparametric pointwise estimation problem for the drift coefficient under discrete time observations.

Introduction

We consider the process (y t ) t≥0 governed by the stochastic differential equation dy t = S(y t ) dt + σ(y t )dW t , 0 ≤ t ≤ T , (1.1) where (W t , F t ) t≥0 is a standard Wiener process, y 0 is a initial condition and ϑ = (S, σ) are unknown functions. For this model we consider the pointwise estimation problem for the function S at a fixed point x 0 ∈ R (i.e. S(x 0 )), on the basis of the discrete time observations of the process (1.1), i.e.

(y

t j ) 1≤j≤N , (1.2) 
where t j = jδ, N = [T /δ] and δ is some positive fixed observation frequency which will be specified later. Usually, for this problem one uses kernel estimators S N (x 0 ) defined as

S N (x 0 ) = N k=1 ψ h,x 0 (y t k ) ∆y t k N k=1 ψ h,x 0 (y t k ) ∆t k , ψ h,x 0 (y) = 1 h Ψ y -x 0 h , (1.3) 
where Ψ(y) is a kernel function which equals to zero for |y| ≥ 2 and will be specified later, 0 < h < 1 is a bandwidth, ∆y t k = y t k -y t k-1 and ∆t k = δ. Main difficulty in this estimator is that the denominator is random. Therefore, to obtain the convergence rate for this estimator we have to study the behavior of the denominator, more precisely, one needs to show that N k=1 ψ h,x 0 (y t k )∆t k ≈ π ϑ (ψ h,x 0 )hT as T → ∞ , where π ϑ (ψ h,x 0 ) = R ψ h,x 0 (y) q ϑ (y) dy (1.4) and q ϑ is the ergodic density defined in (2.2). Unfortunately, the ergodic theorem does not permit to obtain this kind of result because the times t k and the bandwidth h depend on T . Usually one obtains such properties through concentration inequalities for the deviation in the ergodic theorem, i.e. one needs to study the limit behavior of the deviation

D T (φ) = N k=1 φ(y t k ) -π ϑ (φ) ∆t k (1.5)
for some functions φ which can be dependent on T , for example, φ(•) = ψ h,x 0 (•).

More precisely, we need to show, that for any ε > 0 and for any m > 0, uniformly over ϑ, lim

T →∞ T m P ϑ |D T (ψ h,x 0 )| > εT = 0 , (1.6) 
where P ϑ is the law of the process (y t ) t≥0 under the coefficients ϑ = (S, σ). Usually, to get properties of type (1.6) one needs to establish an exponential inequality for the deviations (1.5).

There are a number of papers devoted to concentration inequalities for functions of independent random variables (we refer the reader to [START_REF] Boucheron | Concentration inequalities using the entropy method[END_REF] and references therein), for functions of dependent random variables (see [START_REF] Dedecker | A new covariance inequality and applications[END_REF], [START_REF] Dedecker | New dependence coefficients. Examples and applications to statistics[END_REF], [START_REF] Maume-Deschamps | Concentration inequalities and estimation of conditional probabilities[END_REF]). For Markov chains such inequalities were obtained in [START_REF] Bertail | Sharp bounds for the tails of functionals of Markov chains[END_REF]. For continuous time Markov processes an exponential concentration inequality was obtained in [START_REF] Cattiaux | Deviation bounds for additive functionals of Markov process[END_REF] (see also references therein). Some applications of concentration inequalities to statistics are presented in [START_REF] Massart | Some applications of concentration inequalities to statistics[END_REF]. Concentration inequalities for diffusion processes are given in [START_REF] Galtchouk | Uniform concentration inequality for ergodic diffusion processes[END_REF], [START_REF] Pergamenshchikov | On large deviation probabilities in ergodic theorem for singularly perturbed stochastic systems[END_REF], [START_REF] Yu | On large deviations for diffusion processes with measurable coefficients[END_REF].

For statistical applications, we need uniform upper bounds for the tail distribution over functions φ like to the exponential bounds in [START_REF] Galtchouk | Uniform concentration inequality for ergodic diffusion processes[END_REF]. We can not apply directly the method from [START_REF] Galtchouk | Uniform concentration inequality for ergodic diffusion processes[END_REF], since there it is based on the continuous times version of the Ito formula. In this paper we apply this approach through uniform (over the functions S) geometric ergodicity. We recall (see [START_REF] Meyn | Markov Chains and Stochastic Stability[END_REF]), that the geometric ergodicity yields a geometric rate in the convergence

lim t→∞ E ϑ (g(y t )|y 0 = x) = π ϑ (g)
for any integrable functions g and any initial value x ∈ R. Here E ϑ denotes the expectation with respect to the distribution P ϑ . In [START_REF] Galtchouk | Geometric ergodicity for families of homogeneous Markov chains[END_REF] through the Lyapunov functions method it is shown that the process (1.1) is geometrically ergodic uniformly over functions ϑ = (S, σ) from the functional class Θ defined in (2.1).

The paper is organized as follows. In the next section we formulate the main results. In Section 3 we introduce all the necessary parameters. In Section 4 we show a concentration inequality in ergodic theorem for the continuous observations of the process (1.1). In Section 5 we announce the uniform geometric ergodic property for the process (1.1). In Section 6 we give the Burkhölder inequality for dependent random variables. In Section 7 we prove all main results. The Appendix contains the proofs of some auxiliary results.

Main results

First we describe the functional class Θ for functions ϑ = (S, σ) defined in [START_REF] Galtchouk | Geometric ergodicity for families of homogeneous Markov chains[END_REF]. We start with some real numbers x * ≥ 1, M > 0 and L > 1 for which we denote by Σ L,M the class of functions S from C 1 (R) such that sup

|x|≤x * |S(x)| + | Ṡ(x)| ≤ M and -L ≤ inf |x|≥x * Ṡ(x) ≤ sup |x|≥x * Ṡ(x) ≤ -L -1 .
Furthermore, for some fixed numbers 0 < σ min ≤ σ max < ∞, we denote by V the class of the functions σ from C 2 (R) such that

σ min ≤ inf x∈R min (|σ(x)| , | σ(x)| , |σ(x)|) ≤ sup x∈R max (|σ(x)| , | σ(x)| , |σ(x)|) ≤ σ max . Finally, we set Θ = Σ L,M × V . (2.1)
It should be noted (see, for example, [START_REF] Gihman | Stochastic differential equations[END_REF]), that for any ϑ = (S, σ) ∈ Θ, the equation (1.1) has a unique strong solution which is a ergodic process with the invariant density q ϑ defined as

q ϑ (x) = R σ -2 (z) e S(z) dz -1 σ -2 (x) e S(x) , (2.2) 
where S(x) = 2

x 0 S 1 (v)dv and S 1 (x) = S(x)/σ 2 (x). Now we describe the functional classes for the functions φ. First, for any parameters ν 0 > 0 and ν 1 > 0 we set

V ν 0 ,ν 1 = {φ ∈ C(R) : |φ| 1 ≤ ν 0 , |φ| * ≤ ν 1 } , (2.3) 
where |φ| 1 = R |φ(y)| dy and |φ| * = sup y∈R |φ(y)|.

For any function φ from C 2 (R) we denote by L ϑ (φ) the generator operator for the process (1.1), i.e.

L ϑ (φ)(y) = S(y) φ(y) + σ 2 (y) 2 φ(y) .
Using this notation, we set

µ(φ) = sup ϑ∈Θ L ϑ (φ) * and µ(φ) = sup ϑ∈Θ | π ϑ (φ)| , (2.4) 
where π ϑ (φ) = π ϑ (L ϑ (φ)). Now for any vector ν = (ν 0 , ν 1 , ν 2 , ν 3 , ν 4 ) from R 5 + we set

K ν = φ ∈ V ν 0 ,ν 1 : φ * ≤ ν 2 , µ(φ) ≤ ν 3 , µ(φ) ≤ ν 4 .
(2.5)

Theorem 2.1. For any vector ν = (ν 0 , ν 1 , ν 2 , ν 3 , ν 4 ) from R 5 + and any 0 < δ ≤ 1 there exist positive parameters z 0 = z 0 (δ, ν), γ = γ(δ, ν) and κ = κ(δ, ν) such that sup

T ≥1 sup z≥z 0 sup φ∈K ν sup ϑ∈Θ e z min(κz , γ) P ϑ |D T (φ)| ≥ z √ N ≤ 4 , (2.6) 
where the parameters z 0 , γ and κ are defined in (3.5)-(3.6).

Now we apply this theorem to the pointwise estimation problem, i.e. for the functions ψ h,x 0 defined in (1.3). To this end we assume that the frequency δ in the observations (1.2) is of the following form

δ = δ T = 1 T l T , (2.7) 
where the function l T is such that for any m > 0 lim

T →∞ l T T m = 0 and lim T →∞ l T ln T = +∞ . (2.8) 
Further, let ǫ = ǫ T be a positive function satisfying the following properties lim

T →∞ ǫ T = 0, lim T →∞ l T T ǫ T = 0 and lim T →∞ ǫ 5 T l T ln T = +∞ . (2.9)
We can take, for example, for some ι > 0 l T = ln 1+6ι (T + 1) and ǫ T = 1 ln ι (T + 1) .

Theorem 2.2. Assume that the kernel function Ψ in (1.3) is two continuously differentiable. Moreover, assume that the functions δ T and l T satisfy the properties (2.7) and (2.9). Then there exist coefficients

z * 0 = z * 0 (Ψ) > 0 and γ * = γ * (Ψ) > 0 such that lim sup T →∞ e aγ * l T sup a≥a * sup h≥T -1/2 sup ϑ∈Θ P ϑ |D T (ψ h,x 0 )| ≥ a T ≤ 4 , (2.10) 
where a * = z * 0 /l T , the parameters z * 0 and γ * are given in Section 3. This theorem implies immediately the following Corollary 2.1. Assume, that all conditions of Theorem 2.2 hold. Then, for any m > 0, lim sup

T →∞ T m sup a≥a * sup h≥T -1/2 sup ϑ∈Θ P ϑ |D T (ψ h,x 0 )| ≥ a T = 0 .

Now we study the deviation (1.5) for the function

χ h,x 0 (y) = 1 h χ y -x 0 h , (2.11) 
where χ(y) = 1 {|y|≤1} .

Theorem 2.3. Assume that the parameter δ has the form (2.7). Then, for any m > 0, and for any function ǫ T , satisfying the condtions (2.8) and (2.9) lim

T →∞ T m sup h≥T -1/2 sup ϑ∈Θ P ϑ |D T (χ h,x 0 )| ≥ ǫ T T = 0 .
(2.12)

Remark 2.1. It is well known that to obtain the optimal rate in the estimation problem for a differentiable function S in the process (1.1) one needs to choose the bandwidth h as

h = T -1/(2α+1)
with the regularity parameter α ≥ 1. This means that, really for the pointwise estimation problem, h ≥ T -1/3 . But in the quadratic risk one needs to choose the parameter h as h = T -1/2 (see [START_REF] Galtchouk | Sequential nonparametric adaptive estimation of the drift coefficient in diffusion processes[END_REF]- [START_REF] Galtchouk | Asymptotically efficient sequential kernel estimates of the drift coefficient in ergodic diffusion processes[END_REF], [START_REF] Galtchouk | Adaptive sequential estimation for ergodic diffusion processes in quadratic metric[END_REF]).

Parameters

In this section we introduce all necessary constants and parameters. First, we set

υ 1 = e β 2 1 /(4β 2 )
and

υ 2 = π/β 2 e β 2 1 /(4β 2 ) , (3.1) 
where β 1 = 2M/σ 2 min and β 2 = 1/Lσ 2 max . Moreover, as we will see in Appendix, the ergodic density (2.2) is uniformly bounded by q * , where

q * = σ 2 max σ 2 min e β 1 x * +β 2 1 /(4β 2 ) . (3.2) 
Now we set

r = r(ν 0 ) = 2ν 0 σ 2 min (1 + υ 1 + q * (x * + υ 2 )) e x * β 1 , (3.3) 
where the parameter ν 0 is defined in (2.3). Now using this function we set

κ 0 = κ 0 (ν 0 ) = 1 108 r 2 (3ρ 2 + y 2 0 + 2σ 2 max ) (3.4) where ρ = max |y 0 | , σ max √ L , 2(x * + ML) .
Now for any δ > 0 and any parameter vector ν = (ν 0 , ν 1 , ν 2 , ν 3 , ν 4 ) from R 5

+ we set

z 0 = z 0 (δ, ν) = δ 3/2 max 2c * 1 ν 3 , 2c * 2 ν 2 , ν 4 T 1/2 , ν 1 T -1/2 , τ = τ (δ, ν) = δ 3/2 max c * 1 ν 3 , c * 2 ν 2 , (3.5) 
where

c * 1 = 2e κ+1 R(1 + ρ) κ and c * 2 = √ 2eσ max .
The parameters R and κ are defined in Theorem 5.1. Finally we set

γ = 1 4τ and κ = κ(δ, ν) = 9κ 0 (1 -δ) 64δ . (3.6) 
Now we set

M 1 = M + L (x * + |x 0 | + 2) . (3.7) 
Now for any inegrated two times continuously differentiable R → R function Ψ we define

k * (Ψ) = max | Ψ| 1 , | Ψ| 1 , Ψ * , Ψ * , Ψ * . (3.8) 
Using this operator we define the parameters

z * 0 = λ 1 k * (Ψ) and τ * = λ 2 k * (Ψ) , (3.9) 
where

λ 1 = max 2c * 1 M 1 , 2c * 2 , M 1 q * , 1 and λ 2 = max c * 1 M 1 , c * 2 .
Finally, we set

γ * = 1 4τ * .
(3.10)

Continuous observations

In this section we study the deviation in the ergodic theorem for the continuous observation case, which in this case is defined as

∆ T (φ) = 1 √ T T 0 (φ(y t ) -π ϑ (φ)) dt , (4.1) 
where φ is any integrated function, i.e. |φ| 1 < ∞. sup

φ∈V ν 0 ,ν 1 sup ϑ∈Θ P ϑ (|∆ T (φ)| ≥ z) ≤ 2 , (4.2) 
where the parameter κ 0 is given in (3.4).

Proof. Similarly to [START_REF] Galtchouk | Uniform concentration inequality for ergodic diffusion processes[END_REF] firstly we show that the deviation (4.1) has an exponential moment, i.e. we show that for the parameter κ 0 sup

T ≥1 sup ϑ∈Θ E ϑ e κ 0 ∆ 2 T (φ) ≤ 2 . (4.3)
Indeed, to show this inequality we need to estimate the expectation of any even power for the deviation ∆ T (φ). To this end we have to represent this deviation as the sum of a continuous martingale and a negligible term. For this one needs to find a bounded solution for the following differential equation

vϑ (u) + 2 S(u) σ 2 (u) v ϑ (u) = 2 φ(u) σ 2 (u) , φ(u) = φ(u) -π ϑ (φ) . (4.4) 
One can check directly that the function

v ϑ (u) = -2 ∞ u φ(y) σ 2 (y) exp{2 y u S 1 (z)dz} dy (4.5)
yields such a solution. We recall that the function S 1 is defined in (2.2). Moreover, due to Lemma A.2 from Appendix implies this function is uniform bounded. By applying the Ito formula to the function V (y) = y 0 v ϑ (u)du we following representation

T 0 φ(y s )ds = V (y T ) -V (y 0 ) -ζ T , (4.6) 
where ζ T = T 0 v ϑ (y s )σ(y s )dw s . Therefore, for any T ≥ 1 through Lemma A.2 we can estimate ∆ T (φ) from above as

|∆ T (φ)| ≤ r|y T | + r|y 0 | + 1 √ T |ζ T | .
Moreover, taking into account (see [START_REF] Sh | Statistics of random processes[END_REF], Lemma 4.11), that for any m ≥ 1,

E ϑ (ζ T ) 2m ≤ (2m -1)!! r 2m σ 2m max T m
, we obtain by Proposition A.1 , that for any m ≥ 1

E ϑ |∆ T (φ)| 2m ≤ 3 2m-1 r 2m (E ϑ |y T | 2m + |y 0 | 2m ) + E ϑ (ζ T ) 2m T m ≤ (3 r) 2m 4(m + 1)(2m -1)!! ρ 2m + y 2m 0 + (2m -1)!! σ 2m max .
Therefore, taking into account the definition of κ 0 , we obtain

E ϑ e κ 0 ∆ 2 T (φ) = 1 + ∞ m=1 κ m 0 m! (3 r) 2m 4(2m + 1)!!ρ 2m + y 2m 0 + (2m -1)!!σ 2m max ≤ 1 + ∞ m=1 κ m 0 (3 r) 2m 4(3ρ 2 ) m + y 2m 0 + 2 m σ 2m max ≤ 1 + ∞ m=1 (1/2) m = 2 .
From here we obtain the inequality (4.3) and by the Chebychev inequality we come to the upper bound (4.2). Hence Proposition 4.1.

Remark 4.1. It should be noted that the inequality (4.2) is shown in [START_REF] Galtchouk | Uniform concentration inequality for ergodic diffusion processes[END_REF] for the process (1.1) with σ = 1. Thus Proposition 4.1 extends teh result from [START_REF] Galtchouk | Uniform concentration inequality for ergodic diffusion processes[END_REF] for any diffusion function σ.

Uniform geometric ergodicity

Here we announce a result on geometric ergodicity obtained in [START_REF] Galtchouk | Geometric ergodicity for families of homogeneous Markov chains[END_REF]. where the parameters R and κ are given in [START_REF] Galtchouk | Geometric ergodicity for families of homogeneous Markov chains[END_REF].

Burkhölder's inequality

In this section we give the following inequality from [START_REF] Dedecker | A new covariance inequality and applications[END_REF], [START_REF] Rio | Théorie asymptotique des processus faiblement dépendants[END_REF].

Proposition 6.1. Let (Ω, F , (F j ) 1≤j≤n , P) be a filtered probability space and (X j , F j ) 1≤j≤n be sequence of random variables such that for some p ≥ 2 Now we represent the deviation D T (φ) as

max 1≤j≤n E |X j | p < ∞ . Define b j,n (p) =   E (|X j | n k=j |E (X k |F j )|) p/2   2/p . Then E | n j=1 X j | p ≤ (2p) p/2   n j=1 b j,n (p)   p/2 . ( 6 
D T (φ) = T 0 (φ(y t ) -π ϑ (φ))dt + A 1,T -A 2,T = √ T ∆ T (φ) + A 1,T -A 2,T , (7.2) 
where

A 1,T = N j=1 t j t j-1
φ(y t j ) -φ(y t ) dt and A 2,T = T δN (φ(y t ) -π ϑ (φ))dt .

To estimate the term A 1,T we represent through the Ito formula the difference φ(y t j ) -φ(y t ) as

φ(y t j ) -φ(y t ) = t j t L ϑ (φ)(y s ) ds + t j t φ(y s )σ(y s )dW s = π ϑ (φ)(t j -t) + Ψ j (t) + t j t φ(y s )σ(y s )dW s ,
where

Ψ j (t) = t j t ψ(y s ) ds , ω j (t) = t j t φ(y s )σ(y s ) dW s
and ψ(y) = L ϑ (φ)(y) -π ϑ (φ). Now setting

X j = t j t j-1
Ψ j (t) dt and η j =

t j t j-1 ω j (t)dt , we obtain A 1,T = π ϑ (φ) Nδ 2 2 + N j=1 X j + N j=1 η j . (7.3) 
To estimate the second term in the right-hand part of (7.3), we make use of the Proposition 6.1.We start with verifying its conditions. Putting F s = σ{y u , 0 ≤ u ≤ s}, we obtain by Theorem 5.1, that for any t ≥ s and for any φ from the functional class (2.5)

|E ϑ (ψ(y t )|F s ) | ≤ µ(φ) R (1 + |y s |) e -κ(t-s) ≤ ν 3 R (1 + |y s |) e -κ(t-s) .
Therefore, for any k > j,

|E ϑ (X k |F t j )| ≤ Re κ (1 + |y t j |) ν 3 δ 2 e -κδ(k-j) . (7.4) 
It should be noted also, that the random variables X j are bounded, i.e.

|X j | ≤ ν 3 δ 2 .
To estimatie the probability tail for the sum n j=1 X j we will use the inequality (6.1). For this we need to estmate the coefficients b j,N (p) for any p ≥ 1. From here, taking into account that 1 -e -κδ ≥ κδe -κ and that for p ≥ 2

E ϑ (1 + |y t j |) p/2 2/p ≤ 1 + E ϑ |y t j | p/2 2/p , we can estimate the coefficient b j,N (p) as b j,N (p) ≤ 1 κ R e 2κ ς 2 1 + (E|y t j | p/2 ) 2/p ,
where ς 2 = ν 2 3 δ 3 . Now the inequality (7.1) yields

b j,N (p) ≤ R 1 ς 2 2 + p ≤ R 1 ς 2 2p , where R 1 = 1 κ R e 2κ (1 + ρ) .
Using this in (6.1) we obtain, that for any p > 2,

E ϑ | N k=1 X k | p ≤ (2p) p/2 N p/2 R p/2 1 ς p (2p) p/4 ≤ (2 R 1 ς) p N p/2 p p .
Therefore, by Chebyshev's inequality

P ϑ | N k=1 X k | ≥ z √ N ≤ e p ln(a)+p ln p
with a = 2 R 1 ς/z. Minimizing now the right-hand part over p ≥ 2, we obtain

for z ≥ 4e R 1 ν 3 δ 3/2 P ϑ | N k=1 X k | ≥ z √ N ≤ e -z/ς 1 , (7.5) 
where

ς 1 = 2e R 1 ς.
Moreover, note that by the Burkholder-Davis-Gundy inequality, for any

α ≥ 1, E ϑ |ω j (t)| α ≤ (α) α/2 ν α 2 σ α max (t j -t) α/2
. Using this and the the Hölder inequality, we get

E ϑ |η j | α ≤ δ α-1 t j t j-1 E ϑ |ω j (t)| α dt ≤ δ 3α/2 α α/2 ν α 2 σ α max .
Note, that in this case in the right hand of the inequality (6.1)

b j,N = E ϑ |η j | p 2/p .
Therefore, similarly to the inequality (4.5) we find, that for all z ≥ 2ς 2 ,

P ϑ | N k=1 η k | ≥ z √ N ≤ e -z/ς 2 , (7.6) 
where ς 2 = √ 2eδ 3/2 ν 2 σ max . Now from (7.3), (4.5)-(4.6) it follows that for z ≥ z 0

P ϑ |A 1,T | ≥ z √ N ≤ P ϑ | N k=1 X k | ≥ z √ N/4 + P ϑ | N k=1 η k | ≥ z √ N/4 ≤ 2 e -z/4τ , (7.7)
when the parameters z 0 and τ are given in (3.5). Moreover, note that due to (2.5) the last term in (7.2) is bounded, i.e.

|A 2,T | ≤ 2δ φ * ≤ 2δν 2 ≤ z 0 √ N /4 .
Finally, from (7.2) for z ≥ z 0 one has

P ϑ (|D T (φ)| ≥ z √ N ) ≤ P ϑ √ T |∆ T (φ)| + |A 1,T | ≥ 3z √ N /4 ≤ P ϑ √ T |∆ T (φ)| ≥ 3z √ N/8 + P ϑ |A 1,T | ≥ 3z √ N /8 .
Taking into account here, that N/T ≥ (1 -δ)/δ for any 0 < δ < 1 and T ≥ 1, we obtain, that

P ϑ (|D T (φ)| ≥ z √ N) ≤ P ϑ |∆ T (φ)| ≥ 3z (1 -δ) 8 √ δ + P ϑ |A 1,T | ≥ 3 8 z √ N .
Therefore, applying here the inequalities (4.2) and (7.7) we come to the upper bound (2.6) with the parameter κ given in (3.6). Hence Theorem 2.1.

Proof of Theorem 2.2

Firstly, note that in this case

|ψ h,x 0 | 1 = |Ψ| 1 , ψ h,x 0 * = 1 h Ψ * and ψh,x 0 * = 1 h 2 Ψ * .
Moreover, taking into account that |S(y)| ≤ M + Lx * + L|y|, we find that sup

|y|≤|x 0 |+2 |S(y)| ≤ M 1 , (7.8) 
where M 1 is given in (3.7). Therefore, in view of the fact that 0 < h < 1, we can estimate from above the parametrs (2.4) as

µ(ψ h,x 0 ) ≤ µ * h -3 and µ(ψ h,x 0 ) ≤ µ * h -2 , (7.9) 
where

µ * = max Ψ * , Ψ * M 1 and µ * = max | Ψ| 1 , | Ψ| 1 M 1 q * .
Therefore, the function ψ h,x 0 belongs to the class (2.5) with the following parameters

ν 0 = |Ψ| 1 , ν 1 = Ψ * h , ν 2 = Ψ * h 2 , ν 3 = µ * h 3 , ν 4 = µ * h 2 .
Therefore, in this case the coefficient (3.4) equals to κ 0 (|Ψ| 1 ) and the parameters (3.5) can be represented as

z 0 = δ 3/2 h 3 max 2c * 1 µ * , 2c * 2 Ψ * h , µ * hT 1/2 , Ψ * h 2 T -1/2 τ = δ 3/2 h 3 max c * 1 µ * , c * 2 Ψ * h . (7.10) 
Therefore, thanks to the condition (2.8) for any

T -1/2 ≤ h ≤ 1 z 0 ≤ l -3/2 T z * 0 and τ ≤ l -3/2 T τ * , (7.11) 
where the parameters z * 0 and τ * are given in (3.9). Note now that, by the condition (2.7)

P ϑ |D T (ψ h,x 0 )| ≥ a T ≤ P ϑ |D T (ψ h,x 0 )| ≥ z 1 √ N
where z 1 = a/ l T . The first inequality in (7.11) implies that z 1 ≥ z 0 for all a ≥ a * = z * 0 /l T . Moreover, from the last inequality in (7.11) it follows, that for a ≥ a * min (κz

1 , γ) = min κz 1 , 1 4τ ≥ min κ z * 0 l T l T , l T l T 4τ * .
Taking into account here the definition of κ in (3.6) and the form for δ given by (2.7) we obtain that for sufficiently large T

min κ z * 0 l T l T , l T l T 4τ * = l T l T 4τ * .
Thus, through Theorem 2.1 we come to the inequality (2.10). Hence Theorem 2.2

Proof of Theorem 2.3

First we represent the tail probability as

P ϑ |D T (χ h,x 0 )| ≥ ǫ T T = I 1 + I 2 ,
where

I 1 = P ϑ   N j=1 χ h,x 0 (y t j )∆t j ≤ (π ϑ (χ h,x 0 ) -ǫ T ) T  
and

I 2 = P ϑ   N j=1 χ h,x 0 (y t j )∆t j ≥ (π ϑ (χ h,x 0 ) + ǫ T ) T   .
Let us define now the following smoothing indicator functions

Ψ 1,η (u) = 1 η +∞ -∞ 1 {|z|≤1-η} V z -u η dz and Ψ 2,η (u) = 1 η +∞ -∞ 1 {|z|≤1+η} V z -u η dz ,
where η is a smoothing positive parameter which will be specified later, V is a two times continuously differentiable even R → R function such that V (z) = 0 for |z| ≥ 1 and

1 -1 V (z)dz = 1 .
It is easy to see that, for any y ∈ R and 0

< η ≤ 1/2, Ψ 1,η (u)(y) ≤ χ(y) ≤ Ψ 2,η (y) 
and Ψ 2,η (y) = 0 for |y| ≥ 2. Moreover, for the functions

ψ i,h (y) = 1 h Ψ i,η y -z 0 h
using the inequality (A.4), we can estimate the difference between the cooresponding ergodic intergals (1.4) as

|π ϑ (χ h,x 0 ) -π ϑ (ψ i,h )| ≤ 4ηq * .
Therefore, choosing here η = ǫ 2 T we obtain, for sufficiently large T ,

I i ≤ P ϑ |D T (φ i,h )| ≥ ǫ T T /2 .
One can check directly that in this case the operator (3.8) has the following asymptotic (T → ∞) form

k * (Ψ i,η ) = O η -2 .
Therefore, from (3.9) and (7.11) it follows that for T → ∞ and

h ≥ T -1/2 z 0 (φ i,h ) = O η -2 l -3/2 T and τ (φ i,h ) = O η -2 l -3/2 T , with Υ(j, n) = X j n k=j E(X k |F j ) .
Therefore,

h n (t) = p(p -1) n-1 j=1 1 0 E|S j-1 + vX j | p-2 (-vX2 j + G(i, n, t))dv + p(p -1) 1 0 E|S n-1 + vtX n | p-2 t 2 (1 -v)X 2 n dv ,
where G(j, n, t) = Υ(j, n -1) + tX j E(X n |F j ) .

Moreover, we can estimate h n (t) as

h n (t) p2 ≤ n-1 j=1 1 0 E|S j-1 + vX j | p-2 |G(i, n, t)|dv + t 0 E|S n-1 + sX n | p-2 X 2 n ds
Now taking into account that for 0 ≤ t ≤ 1 E|G(j, n, t)| p/2 2/p ≤ b j,n (p) , we obtain by the Hölder inequality

1 0 E|S j-1 + vX j | p-2 |G(i, n, t)| dv ≤ 1 0 h α j (v) b j,n (p)dv ,
where α = 1 -2/p. Therefore,

h n (t) p2 ≤ n-1 j=1 b j,n (p) 1 0 h α j (v)dv + b n,n (p) t 0 h α n (s)ds
Now by the induction assumption for any 1

≤ j ≤ n -1 b j,n (p) 1 0 h α j (v)dv ≤ (2p) (p-2)/2 1 0 B (p-2)/2 j (v) dv b j,n (p) .
Moreover, taking into account that

B j (v) ≤ j-1 i=1 b i,n + vb j,n (p) ,

A.2 Uniform bound for the invariant density

Lemma A.1. The invariant density (2.2) is uniformly bounded:

sup x∈R sup ϑ∈Θ q ϑ (x) ≤ q * < ∞ , (A.4)
where the upper bound q * is given in (3.2).

Proof. First, note that through the definition of Θ we can check directly that for any |x| ≥ x *

2 x 0 S 1 (v) d v ≤ β 1 |x| -β 2 (|x| -x * ) 2 , (A.5)
where the coefficients β 1 and β 2 are given in (3.1). Therefore, taking into account, that for |x| ≥ x *

2 x 0 S 1 (v) d v ≤ β 1 x * ,
we obtain that 2 sup

x∈R x 0 S 1 (v) d v ≤ β 1 x * + β 1 4β 2 .
Estimating now the denominator in (2.2) from below as Taking into account here that sup x∈R σ 2 (x) ≤ σ 2 max we obtain, that for any m ≥ 1 and t ≥ 0 żt (m) ≤ 2mE ϑ y 2m-1 t S(y t ) + m(2m -1)σ 2 max z t (m -1) .

Now we need to estimate from above the function x 2m-1 S(x). Obviously, that for any

K > x * x 2m-1 S(x) ≤ K 2m-1 sup |x|≤K |S(x)|1 {|x|≤K} + x 2m S(x) x 1 {|x|>K} . Taking into account that sup |x|>x * | Ṡ(x)| ≤ L, we obtain, for any x ∈ [x * , K], |S(x)| ≤ |S(x * )| + L|x -x * | ≤ M + L(K -x * ) .
Similarly, we obtain the same upper bound for

x ∈ [-K, -x * ]. Therefore, sup |x|≤K |S(x)| ≤ M + L (K -x * ).
Consider now the case |x| > K. We recall, that sup |x|≥x * Ṡ(x) ≤ -L -1 .

Therefore,

S(x) x ≤ M K - K -x * LK . Choosing K = 2(x * + ML) yields S(x) x ≤ - 1 2L . 
Therefore,

x 2m-1 S(x) ≤ K 2m-1 (M + L(K -x * )) - 1 2L x 2m 1 {|x|>K} = K 2m-1 (M + L(K -x * )) + β 2 x 2m 1 {|x|≤K} - 1 2L x 2m ≤ A m - β 2 x 2m , where A m = (2(x * + ML)) 2m-1 2M + x * L + L -1 + 2L 2 M From here it follows, that żt (m) ≤ 2m A m -L -1 m z t (m) + m(2m -1)σ 2 max z t (m -1) .
We can rewrite this inequality as follows

żt (m) = -L -1 mz t (m) + m(2m -1)σ 2 1 z t (m -1) + ψ t ,
where sup t≥0 ψ t ≤ 2m A m . This equality provides x * S 1 (z)dz dy .

z t (m) = z 0 (m)e -mL -1 t + m(2m -1)σ 2 max t 0 e -mL -1 (t-s) z s (m -1)ds + t 0 e -mL -1 (t-s) ψ s ds ≤ m(2m -1)σ 2 max t 0 e -mL -1 (t-s) z s (m - 
To estimate this term note that similarly to (A.5) we can obtain that for any y ≥ a ≥ x * 

Proposition 4 . 1 .

 41 For any ν 0 > 0 and ν 1 > 0 sup z≥0 e κ 0 z 2 sup T ≥1

Theorem 5 . 1 .

 51 There exist some constants R ≥ 1 and κ > 0 such that sup t≥0 e κt sup g * ≤1 sup x∈R sup ϑ∈Θ |E ϑ (g(y t )|y 0 = x) -π ϑ (g)| 1 + |x| ≤ R , (5.1)

R σ - 2 1 0σ - 2 (z) dz ≥ 1 σ 2 max, 0 E ϑ y 2m- 1 s

 212201 (z) e S(z) dz ≥ and taking into account the definition of q * we come to the upper uniform bound (A.4). Hence Proposition A.1.A.3 Moment bound for the process yt . Proposition A.1. For any m ≥ 1 sup t≥0 sup ϑ∈Θ E ϑ |y t | 2m ≤ 4(m + 1)(2m -1)!! ρ 2m ≤ 4(2m) m ρ 2m ,where ρ is given in (3.4).Proof. First note, that through the Ito formula we can write for the function z t (m) = E ϑ y 2m t the following intergal equalityz t (m) = z 0 (m) + 2m t S(y s )ds + m(2m -1) t 0 E ϑ y 2m-2 s σ 2 (y s )ds ,which can be rewritten as the differential equality żt (m) = 2mE ϑ y 2m-1 s S(y t ) + m(2m -1)E ϑ y 2m-2 t σ 2 (y t ) .

A. 4 5 )Lemma A. 2 .* β 1 σ 2 min(( 1 +

 45221 1)ds + B m , where B m = y 2m 0 + 2A m L. Setting B 0 = 1 and resolving this inequality by recurrence yieldsz t (m) ≤ 4 (2m -1)!! m j=0 σ 2 max L m-j B j .It is easy to see, thatB m ≤ 4 max |y 0 | 2 , 4(x * + ML) 2 m . Therefore sup t≥0 z t (m) ≤ 4(m + 1)(2m -1)!! ρ 2m ≤ 4(2m) m ρ 2m ,where ρ is defined in (3.4). Hence Proposition A.1. Properties of the function (4.For any integrated function φ the solution (4.5) is uniform bounded, i.e. sup ϑ∈Θ sup y∈R |v ϑ (y)| ≤ r , where the upper bound r is introduced in (3.3).Proof. Firstly we note, that for any ϑ from Θ and any intergatedR → R function φ |π ϑ (φ)| ≤ q * |φ| 1 .Moreover, by the definition of the parameter β 1 we get2 sup |u|≤x * |S 1 (u)| ≤ β 1 .Therefore, for 0 ≤ u ≤ x * we can estimate the function v ϑ as|v ϑ (u)| ≤ 2e x q * x * ) |φ| 1 + I(φ)) ,where β 1 is given in (3.1) andI(φ) = ∞ x * (|φ(y)| + q * |φ| 1 ) e 2 y

S 1 1 ∞ 0 e β 1 z-β 2 z 2 dz ≤ |φ| 1 sup z≥0 e β 1 z-β 2 z 2 + q * |φ| 1 ∞ 0 e β 1 (υ 1 + 0 S 1 S 1 (S 1 (

 11011210110111 (z)dz ≤ β 1 (y -a) -β 2 (y -a) 2 . (A.6)Using this inequlity for a = x * , we getI(φ) ≤ ∞ x * |φ(y)|e β 1 (y-x * )-β 2 (y-x * ) 2 dy + q * |φ| z-β 2 z 2 dz ≤ |φ| 1 (υ 1 + q * υ 2 ) ,where the parameters υ 1 and υ 2 are introduced in (3.1). Therefore, taking into account the definition (3.3), the last inequality implies sup ϑ∈Θ sup 0≤u≤x * |v ϑ (u)| ≤ r . (A.7) If u ≥ x * , then through the inequality (A.6) we estimate the function v ϑ (u) q * υ 2 ) ≤ r . Let now u ≤ 0. Taking into account that R φ(y) σ 2 (y) exp{2 y (z) dz} dy = 0 , we can represent the function v ϑ as v ϑ (u) = 2 -z) dz dy . Similarly to (A.6), one can check directly, that for any y ≥ a ≥ x * -z) dz ≤ β 1 (y -a) -β 2 (y -a) 2 . Therefore, by the same way as in the proof of (A.7) we can estimate the function v ϑ (u) as sup ϑ∈Θ sup u≤0 |v ϑ (u)| ≤ r . Hence Lemma A.2.
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i.e. z 0 (φ i,h ) = O 1

and τ (φ i,h ) = O 1

.

Now we have

where z 1 = ǫ T / l T . The last equality in (2.9) implies z 1 ≥ z 0 for sufficiently large T . Moreover, taking into account, that there exists a constant c * > 0 such that for sufficiently large T

T . Therefore, by Theorem 2.1 for sufficiently large T

Now the last condition in (2.9) yields the equality (2.12). Hence Theorem 2.3.

A Appendix

A.1 Proof of Proposition 6.1

We set

By the induction method we assume that for any 1

where

Note now that as is shown in [START_REF] Rio | Théorie asymptotique des processus faiblement dépendants[END_REF] (Theorem 2.3)

we obtain that

This implies for any 0 ≤ t ≤ 1

with

.

Now by setting

, we obtain the differential equation Ż(t) = k α n Z α (t) + g(t) with g(t) ≤ 0. From here we obtain