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Many interesting processes share the property of multivariate regular variation. This property is equivalent to existence of the tail process introduced by B. Basrak and J. Segers [1] to describe the asymptotic behavior for the extreme values of a regularly varying time series. We apply this theory to multivariate MA(∞) processes with random coefficients.

Introduction

We interested in multivariate infinite-order moving average process with random coefficient matrices, defined for t ∈ Z by (1.1)

X t = ∞ i=0 C i (t)ξ t-i ,
where (ξ t ) t∈Z is a sequence of i.i.d. regularly varying random vector in R q and {C i (t), i ≥ 0, t ∈ Z} is an array of random d×q matrices. The tail behavior of such process is usually controlled by a moment condition on the matrix C i (t), this has been shown by Hult and Samorodnitsky [START_REF] Hult | Tail probabilities for infinite series of regularly varying random vectors[END_REF]. We adapt the conditions as follows.

INTRODUCTION

Condition 1.1 Suppose that P( i≥0 { C i (0) = 0}) = 0, and there is some ε ∈ (0, α)

such that i E C i (0) α-ε < ∞ and i E C i (0) α+ε < ∞, if α ∈ (0, 1) ∪ (1, 2); (1.2) E i C i (0) α-ε α+ε α-ε < ∞, if α ∈ {1, 2}; (1.3) E i C i (0) 2 α+ε 2 < ∞, if α ∈ (2, ∞); (1.4)
To apply the results in Hult and Samorodnitsky [START_REF] Hult | Tail probabilities for infinite series of regularly varying random vectors[END_REF], a 'predictability' assumption is required.

Condition 1.2 Suppose there is a filtration (F j , j ∈ Z) such that for all t ∈ Z and i ∈ N ∪ {0} (1.5) C i (t) ∈ F i-t , ξ t-i ∈ F i-t+1 , (or ξ j ∈ F 1-j ),

(1.6) F j is independent of σ(ξ -j , ξ -j-1 , . . .).

If the sequence (C i (t)) is independent of the sequence (ξ i ), we can set F j = σ((C k (t)) k≥0,t∈Z , (ξ k ) k≥1-j ).

Throughout the paper we will use the following notations, E q = [-∞, ∞] q \{0}, E q u = {x ∈ E q | x > u} and

S q-1 = {x ∈ R d | x = 1}. A function f is called regularly varying at infinity with index τ ∈ R, if lim x→∞ f (ux)/f (x) = u τ for all u > 0.
Definition 1.1. A random vector X in R d is regularly varying with index α > 0 if there exists a non-null Radon measure µ on E d and a regularly varying function V of index -α such that, as x → ∞,

(1.7) P x -1 X ∈ • V (x) v -→ µ(•),
where v -→ denote the vague convergence of measures. Relation (1.7) is equivalent to

P X > ux, x -1 X ∈ • P { X > x} v -→ u -α P {Θ ∈ •} , as x → ∞. The law of Θ is called spectral measure.
The random sequence (X t ) given by (1.1) is built from two components which satisfy the following basic assumptions.

A1

The q-dimensional random vector ξ t is regularly varying of index α ∈ (0, ∞) and with spectral measure L(Θ) on S q-1 , i.e. there exists a non-null Radon measure µ on E q such that, as x → ∞,

P x -1 ξ 0 ∈ • P { ξ 0 > x} v -→ µ(•),
where the measure µ has the following representation, for all u > 0,

µ x x > u, x x ∈ • = u -α P {Θ ∈ •} .
A2 The array of random matrices {C i (t), i ≥ 0, t ≥ Z} of dimension d×q is independent of the sequence (ξ t ) and stationary when index over t ∈ Z.

Joint regular variation

The following theorem is adapted version of Theorem 3.1 in [START_REF] Hult | Tail probabilities for infinite series of regularly varying random vectors[END_REF].

Theorem 2.1 [START_REF] Hult | Tail probabilities for infinite series of regularly varying random vectors[END_REF] Suppose that Condition 1.1 and 1.2 hold, then the series X t given by (1.1) converges a.s. and

(2.8) P x -1 X 0 ∈ • P { ξ 0 > x} v -→ ∞ i=0 E µ • C i (0) -1 (•) , as x → ∞ on E q .
Observe that by assumption A1, the function u → P { ξ 0 > u} is regularly varying with index -α < 0. Therefore if the limit on the right-hand side in (2.8) is a non-null Radon measure, then vector X 0 is regularly varying with index α. As we shall see slightly stronger condition is needed to ensure regular variation of vector X 0 . Consider for u > 0 Hence Condition 1.2 holds for the sequence Ci (s, t) and (ξ t ). In order to obtain the convergence of type (2.8) for the series X(s, t) defined by (2.10), it is sufficient to show that the array Ci (s, t) satisfy Condition 1.1. For this, the following lemma is needed.

E µ • C i (0) -1 (E d u ) = E [µ {x | C i (0)x > u}] = E 1I { C i (0)rθ >u} d(-r -α )P Θ (dθ) = u -α E C i (0)Θ α . Thus if (2.9) 0 < ∞ i=0 E C i (0)Θ α < ∞ the random
Lemma 2.2 Let A = (A 1 , . . . , A n ) be a block matrix of dimension nd × q with n blocks, A i be a d × q matrix with entries in R, i = 1, . . . , n. Then

(2.12) A ≤ n i=1 A i ,
where • denote the matrix norm.

Proof. Without loss of generality, we consider the vector norm (x 1 , . . . ,

x d ) d = max 1≤i≤d { x i } on R d . We may decompose the matrix A as (2.13) A = n i=1 B i
with B i is a nd × q matrix defined by

B i = (0, . . . , A i , . . . , 0)
where A i is in the ith position. We have, for all x ∈ R d

B i x nd = (0, . . . , A i x, . . . , 0) nd = A i x d , i = 1, . . . , n. Therefore (2.14) B i = sup x q ≤1 { B i x nd } = sup x q ≤1 { A i x d } = A i .
Inequality (2.12) follows from (2.13) and (2.14).

By Lemma 2.2 and the definition of the sequence Ci (s, t) (2.11), we obtain

(2.15) Ci (s, t) ≤ i j=(i-t+s)∨0 C j (t -i + j) .
Using (2.15) and the following inequality, for

a i > 0, i = 1, . . . , n, (2.16 
)

n i=1 a i p ≤ c n i=1 a p i , where c = 1 if p ≤ 1, c = n p-1 if p > 1, we obtain, if α ∈ (0, 1) ∪ (1, 2), for some 0 < ε < α, ∞ i=0 E Ci (s, t) α-ε ≤ ∞ i=0 E   i j=(i-t+s)∨0 C j (t -i + j)   α-ε ≤ c 1 ∞ i=0 i j=(i-t+s)∨0 E C j (t -i + j) α-ε = c 1 t-s j=0 ∞ i=0 E C i (t -j) α-ε , (2.17)
where c 1 is a constant depending on α -ε and t -s. The latter inequality in combination with the condition (1.2) and the stationarity of the sequence

{C i (t)} implies ∞ i=0 E Ci (s, t) α-ε < ∞.
By the similar method for (2.17), we obtain, for some 0

< ε < α, ∞ i=0 E Ci (s, t) α+ε ≤ c 2 t-s j=0 ∞ i=0 E C i (t -j) α+ε , if α ∈ (0, 1) ∪ (1, 2), E ∞ i=0 Ci (s, t) α-ε α+ε α-ε ≤ c 3 t-s j=0 E ∞ i=0 C i (t -j) α-ε α+ε α-ε , if α ∈ {1, 2} and E ∞ i=0 Ci (s, t) 2 α+ε 2 ≤ c 4 t-s j=0 E ∞ i=0 C i (t -j) 2 α+ε 2 , if α ∈ (2, ∞),
where c 2 , c 3 and c 4 are the constants depending on α, ε and t -s. As a consequence, under the conditions of Theorem 2.1, it is not only the marginal distribution of (X t ) that is regularly varying, the same holds for all finite dimensional distributions.

Corollary 2.3 Under the conditions of Theorem 2.1, the stationary process (X t ) given by (1.1) satisfies, for s, t ∈ Z with s ≤ t

(2.18) P x -1 (X s , . . . , X t ) ∈ • P { ξ 0 > x} v -→ ∞ i=0 E µ • Ci (s, t) -1 (•) =: ν s,t (•), as x → ∞ on E (t-s+1)d
, where the sequence of random matrices Ci (s, t) is defined by (2.11). In particular, if X 0 is regularly varying, then the process (X t ) is jointly regularly varying, i.e. for all s, t ∈ Z withs ≤ t, random vector (X s , . . . , X t ) are regularly varying.

Tail process

The joint regular variation of the sequence (X t ) in particular means that there exists a process (Y t ) t∈Z in R d with P { Y 0 > y} = y -α for y ≥ 1 such that for all s, t ∈ Z with s ≤ t and as

x → ∞ L(x -1 (X s , . . . , X t ) | X 0 > x) L(Y s , . . . , Y t ),
see Theorem 2.1 in [START_REF] Basrak | Regularly varying multivariate time series[END_REF]. The process (Y t ) is called the tail process of (X t ). Moreover the so-called spectral process

Θ t = Yt Y 0 t∈Z is independent of Y 0 , see Theorem 3.1 in [1].
To understand the tail process in this case, it is helpful for instance to consider a set B in

E (t-s+1)d of the form B = E d bs × • • • × E d bt for arbitrary real constant b i > 0, i = s, .
. . , t. The limit of the probabilities, as x → ∞,

P x -1 (X s , . . . , X t ) ∈ B P { ξ 0 > x} is the sum ∞ i=0 E µ • Ci (s, t) -1 (B) = ∞ i=0 E µ x Ci (s, t)x ∈ B = ∞ i=t-s E [µ {x | C i-t+s (s)x > b s , . . . , C i (t)x > b t }] = ∞ i=t-s E P Θ (dθ) 1I { C i-t+s (s)rθ >bs} • • • 1I { C i (t)rθ >bt} d(-r -α ) = ∞ i=t-s E P Θ (dθ) max b s C i-t+s (s)θ , . . . , b t C i (t)θ -α = ∞ i=t-s E min C i-t+s (s)Θ α b α s , . . . , C i (t)Θ α b α t .
In particular, if s = t and b s = 1, one can apply this to obtain the following limit, as x → ∞,

(3.19) P { X 0 > x} P { ξ 0 > x} → ∞ i=0 E C i (0)Θ α .
The following result is the multivariate version of Breiman's lemma [START_REF] Breiman | On some limit theorems similar to the arc-sin law[END_REF] which appears as Proposition A. 1 in [START_REF] Basrak | Regular variation of GARCH processes[END_REF]. Lemma 3.1 Let Z be a q-dimensional random vector and let A be a d×q random matrix, independent of Z. Assume that Z is multivariate regularly varying of index α ∈ (0, ∞), i.e. there exists a non-null Radon measure µ on E q such that, as x → ∞,

P x -1 Z ∈ • P { Z > x} v -→ µ(•). If E A β < ∞ for some β > α, then in E d , as x → ∞, P x -1 AZ ∈ • P { Z > x} v -→ E µ • A -1 (•) .
Theorem 3.2 Let (X t ) t∈Z be a stationary process given by (1.1). Suppose that Condition 1.1 and 1.2 hold. If P (∩ i≥0 { C i (0)Θ = 0}) = 0, then for s, t ∈ Z with s ≤ 0 ≤ t and bounded and continuous function f

: (R d ) t-s+1 → R, E f X s X 0 , . . . , X t X 0 X 0 > x (3.20) → 1 ∞ i=0 E C i (0)Θ α ∞ i=0 E f C i+s (s)Θ C i (0)Θ , . . . , C i+t (t)Θ C i (0)Θ C i (0)Θ α , as x → ∞, where C i (•) = 0 if i < 0.
Proof. Let h : (R d ) t-s+1 → R be bounded and continuous. In view of convergence (3.19) and Corollary 2.3, as x → ∞,

E f X s x , . . . , X t x X 0 > x (3.21) → 1 ∞ i=0 E C i (0)Θ α h(y s , . . . , y t )1I { y 0 >1} ν s,t (dy). Note X(s, t) = (X s , . . . , X t ) = ∞ i=0 Ci (s, t)ξ t-i ,
where the sequence Ci (s, t) is defined by (2.11). By (2.15), (2.16), Condition 1.1 and the stationarity of sequence {C i (t)}, we have for some β > α,

E Ci (s, t) β ≤ c i j=(i-t+s)∨0 E C j (t -i + j) β = c i j=(i-t+s)∨0 E C j (0) β < ∞,
where c is a constant depending on β and t -s. Using Lemma 3.1, we obtain, for each i ≥ 0

(3.22) P x -1 Ci (s, t)ξ t-i ∈ • P { ξ 0 > x} v -→ E µ • Ci (s, t) -1 (•) =: ν (i) s,t (•), as x → ∞, in E (t-s+1)d
. By the definition of the measure ν s,t in (2.18),

(3.23) ν s,t (•) = ∞ i=0 ν (i) s,t (•).
We denote

H(x) = E h x -1 Ci (s, t)ξ t-i 1I { C i-t (0)ξ t-i >x} /P { ξ 0 > x} .
On the one hand, it follows from (3.22), as x → ∞,

H(x) = h(y s , . . . , y t )1I { y 0 >1} P x -1 Ci (s,t)ξ t-i (dy)/P { ξ 0 > x} → h(y s , . . . , y t )1I { y 0 >1} ν (i) s,t (dy). (3.24)
On the other hand, by independence between Ci (s, t) and ξ t-i and assumption A1, as x → ∞,

H(x) = E h Ci (s, t)y 1I { C i-t (0)y >1} P x -1 ξ t-i (dy)/P { ξ 0 > x} → ∞ 0 E h Ci (s, t)Θr 1I { C i-t (0)Θ r>1} d(-r -α ). (3.25) Since for i < t, ν (i) s,t {(y s , . . . , y t ) | y s = • • • = y 0 = 0 } = 1, (3.26) h(y s , . . . , y t )1I { y 0 >1} ν (i)
s,t (dy) = 0, i = 0, . . . , t -1.

In combination with (3.23), (3.24), (3.25) and (3.26), it follows that

h(y s , . . . , y t )1I { y 0 >1} ν s,t (dy) = ∞ i=t h(y s , . . . , y t )1I { y 0 >1} ν (i) s,t (dy) = ∞ i=t ∞ 0 E h Ci (s, t)Θr 1I { C i-t (0)Θ r>1} d(-r -α ). (3.27) Considering (3.21) and (3.27), we have, as x → ∞, E f X s x , . . . , X t x X 0 > x → I where I = 1 ∞ i=0 E C i (0)Θ α ∞ i=t ∞ 0 E h (C i-t+s (s)Θr, . . . , C i (t)Θr) 1I { C i-t (0)Θ r>1} d(-r -α ).
Applying this relation to the function h(x s , . . . , x t ) = f xs x 0 , . . . , xt x 0 to see that, as x → ∞, the left-hand side of (3.20) converges to

1 ∞ i=0 E C i (0)Θ α ∞ i=t ∞ 0 E f C i-t+s (s)Θ C i-t (0)Θ , . . . , C i (t)Θ C i-t (0)Θ 1I { C i-t (0)Θ r>1} d(-r -α ).
By Fubini's theorem, this is equal to the right-hand side of (3.20).

4 Applied models 

X t = A t X t-1 + B t ξ t-1 + ξ t .
Iterating this equation backwards we arrive at the following MA(∞) representation of this process (4.29)

X t = ξ t + i≥1 (A t-i+1 + B t-i+1 ) i-2 j=0 A t-j ξ t-i ,
namely, the stationary solution can be represented as (1.1) with (4.30)

C i (t) =    Id, i = 0, (A t-i+1 + B t-i+1 ) i-2 j=0 A t-j , i ≥ 1.
From Theorem 3.1 in Hult and Samorodnitsky [START_REF] Hult | Tail probabilities for infinite series of regularly varying random vectors[END_REF] we obtain the following result.

Corollary 4.1 Suppose that ξ ∈ RV(α, µ) and there is some 0 < ε < α such that

(4.31) E A α+ε < 1, E B α+ε < ∞.
Then the series (4.29) converges a.s. and

(4.32) P{u -1 X 0 ∈ •} P{ ξ 0 > u} v -→ E µ • C j (0) -1 (•)
as u → ∞ on Rd \{0}.

Proof. Since C 0 (0) = Id, we have P( j≥0 { C j (0) = 0}) = 0. For α ∈ (0, 1) ∪ (1, 2), we have

E C i (0) α-ε = 1 + i≥1 E (A -i+1 + B -i+1 ) i-2 j=0 A -j α-ε ≤ 1 + i≥1 E A + B α-ε E i-2 j=0 A -j α-ε = 1 + E A + B α-ε i≥1 (E A α-ε ) i-1 = 1 + E A + B α-ε i≥0 (E A α-ε ) α+ε α-ε i α-ε
α+ε . (4.33) By Jensen's inequality, the last term is bounded by (4.34)

1 + E A + B α-ε i≥0 (E A α+ε ) i α-ε α+ε .
In the case of α ∈ (0, 1),

(4.35) E A + B α-ε < E A α-ε + E B α-ε .
In the case of α ∈ (1, 2)

(4.36) E A + B α-ε ≤ (E A + B α+ε ) α-ε α+ε ≤ E A α+ε 1 α+ε + E B α+ε 1 α+ε α-ε
.

Combining (4.33), (4.34), (4.35) and (4.36) proves

E C i (0) α-ε < ∞.
Similarly as in (4.33), we have (4.37)

E C i (0) α+ε ≤ 1 + E A + B α+ε i≥0 (E A α+ε ) i . If α + ε < 1, then (4.38) E A + B α+ε < E A α+ε + E B α+ε , else (4.39) E A + B α+ε ≤ (E A α+ε ) 1 α+ε + (E B α+ε ) 1 α+ε α+ε .
Combining (4.37), (4.38) and (4.39) proves

E C i (0) α+ε < ∞.
For α ∈ {1, 2}, using Lemma 3.2.1 in Kwapien and Woyczynski [START_REF] Kwapien | Random series and stochastic integrals: single and multiple[END_REF] it follows that 

E C i (0) α-ε α+ε α-ε ≤ (E C i (0) α+ε ) α-ε α+ε α+ε α-ε =   1 + i≥1    E (A -i+1 + B -i+1 ) i-2 j=0 A -j α+ε    α-ε α+ε    α+ε α-ε ≤   1 + i≥1    E A + B α+ε E i-2 j=0 A -j α+ε    α-ε α+ε    α+ε α-ε =   1 + (E A + B α+ε ) α-ε α+ε i≥0 (E A α+ε ) i α-ε α+ε   α+ε α-ε . ( 4 
E C i (0) α-ε α+ε α-ε < ∞.
For α ∈ (2, ∞), using Lemma 3.2.1 in Kwapien and Woyczynski [START_REF] Kwapien | Random series and stochastic integrals: single and multiple[END_REF] it follows that 

E C i (0) 2 α+ε 2 ≤ (E C i (0) α+ε ) 2 α+ε α+ε 2 ≤   1 + (E A + B α+ε ) 2 α+ε i≥0 (E A α+ε ) i 2 α+ε   α+ε 2 . ( 4 
E C i (0) 2 α+ε 2 < ∞.
Here is another proof of Corollary 4.1.

Proof. We denote (4.42) Xt = (X t , ξ t , ξ t+1 ) ,

Ãt =   A t B t Id 0 0 Id 0 0 0   and Z t = (0, 0, ξ t+1 ) .
Then the relation (4.28) can be wrote as

(4.43) Xt = Ãt Xt-1 + Z t .
Iterating this equation we get

Xt = ∞ i=0 C i (t)Z t-i
where C 0 (t) = Id, C 1 (t) = Ãt and

C i (t) =     i-1 j=0 A t-j B t-i+1 i-2 j=0 A t-j (A t-i+2 + B t-i+2 ) i-3 j=0 A t-j 0 0 0 0 0 0     , i ≥ 2.
It 

≤ 1 + c i≥1   E i-1 j=0 A t-j α-ε + E   B t-i+1 i-2 j=0 A t-j   α-ε +E   A t-i+2 + B t-i+2 i-3 j=0 A t-j   α-ε   = 1 + c   i≥1 E A α-ε i + E B α-ε i≥0 E A α-ε i +E A + B α-ε i≥0 E A α-ε i + 2 α-ε   ,
where c is a constant depending on α -ε. By Jensen's inequality, Similarly we can prove i≥0 E C i (0) α+ε < ∞.

For α ∈ {1, 2}, using Lemma 3.2.1 in Kwapien and Woyczynski [START_REF] Kwapien | Random series and stochastic integrals: single and multiple[END_REF] it follows that 

  .40) Considering (4.39) and (4.40) we get

( 4 .

 4 46) E A α-ε ≤ E A α+ε α-ε α+ε .Combining (4.45), (4.46), (4.38) and (4.39) proves i≥0 E C i (0) α-ε < ∞.

  16) and (4.44), (E C i (0) α+ε ) α-ε α+ε is bounded by the right-hand side of (4.45) which is bounded. Hence (4.48)E C i (0) α-ε α+ε α-ε < ∞.

  Assume that ((A t , B t , ξ t )) t is an i.i.d. sequence of random vectors in R d×d × R d×d × R d , for some d ≥ 1. Throughout we assume that ξ t 's are regularly varying random vectors. Suppose that a stationary sequence (X t ) t∈Z with value in R d satisfies a multivariate random coefficient ARMA(1,1) equation of the following form(4.28) 

	4.1 Heavy tailed multivariate ARMA(1,1) process

  is equivalent to prove the convergence (4.32) of vector Xt defined by (4.42). By Lemma 2.2 and the properties of matrix norm, for i ≥ 1where A i = B i = Id if i > t. It follows from (2.16), if α ∈ (0, 1) ∪ (2, 1)
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 [START_REF] Breiman | On some limit theorems similar to the arc-sin law[END_REF]Research supported by IAP research network grant nr. P6/03 of the Belgian government (Belgian Science Policy).

By similar method of (4.48), we get