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Abstract
We give a detailed description of the torsors that correspond to multiloop al-
gebras. These algebras are twisted forms of simple Lie algebras extended over
Laurent polynomial rings. They play a crucial role in the construction of Ex-
tended Affine Lie Algebras (which are higher nullity analogues of the affine
Kac-Moody Lie algebras). The torsor approach that we take draws heavily
for the theory of reductive group schemes developed by M. Demazure and A.
Grothendieck. It also allows us to find a bridge between multiloop algebras and
the work of F. Bruhat and J. Tits on reductive groups over complete local fields.
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1 Introduction

To our good friend Benedictus Margaux

Many interesting infinite dimensional Lie algebras can be thought as being “finite
dimensional” when viewed, not as algebras over the given base field, but rather as
algebras over their centroids. From this point of view, the algebras in question look
like “twisted forms” of simpler objects with which one is familiar. The quintessential
example of this type of behaviour is given by the affine Kac-Moody Lie algebras.
Indeed the algebras that we are most interested in, Extended Affine Lie Algebras (or
EALAs for short), can roughly be thought of as higher nullity analogues of the affine
Kac-Moody Lie algebras. Once the twisted form point of view is taken the theory
of reductive group schemes developed by Demazure and Grothendieck [SGA3] arises
naturally.

Two key concepts which are common to [GP2] and the present work are those
of a twisted form of an algebra, and of a multiloop algebra. At this point we briefly
recall what these objects are, not only for future reference, but also to help us redact
a more comprehensive Introduction.

***
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Unless specific mention to the contrary throughout this paper k will denote a field
of characteristic 0, and k a fixed algebraic closure of k. We denote k–alg the category
of associative unital commutative k–algebras, and R object of k–alg. Let n ≥ 0 and
m > 0 be integers that we assume are fixed in our discussion. Consider the Laurent

polynomial rings R = Rn = k[t±1
1 , . . . , t±1

n ] and R′ = Rn,m = k[t
± 1

m
1 , . . . , t

± 1
m

n ]. For
convenience we also consider the direct limit R′

∞ = lim−→Rn,m taken over m which
in practice will allow us to “see” all the Rn,m at the same time. The natural map
R → R′ is not only faithfully flat but also étale. If k is algebraically closed this
extension is Galois and plays a crucial role in the study of multiloop algebras. The
explicit description of Gal(R′/R) is given below.

Let A be a k–algebra. We are in general interested in understanding forms (for
the fppf -topology) of the algebra A⊗k R, namely algebras L over R such that

(1.1) L⊗R S ≃ A⊗k S ≃ (A⊗k R)⊗R S

for some faithfully flat and finitely presented extension S/R. The case which is of most
interest to us is when S can be taken to be a Galois extension R′ of R of Laurent
polynomial algebras described above.1

Given a form L as above for which (1.1) holds, we say that L is trivialized by S.
The R–isomorphism classes of such algebras can be computed by means of cocycles,
just as one does in Galois cohomology:

(1.2) Isomorphism classes ofS/R–forms of A⊗k R←→ H1
fppf

(
S/R,Aut(A)

)
.

The right hand side is the part “trivialized by S” of the pointed set of non-abelian
cohomology on the flat site of Spec(R) with coefficients in the sheaf of groupsAut(A).
In the case when S is Galois over R we can indeed identify H1

fppf

(
S/R,Aut(A)

)
with

the “usual” Galois cohomology set H1
(
Gal(S/R),Aut(A)(S)

)
as in [Se].

Assume now that k is algebraically closed and fix a compatible set of primitive m–
th roots of unity ξm, namely such that ξeme = ξm for all e > 0. We can then identify
Gal(R′/R) with (Z/mZ)n where for each e = (e1, . . . , en) ∈ Zn the corresponding

element e = (e1, · · · , en) ∈ Gal(R′/R) acts on R′ via et
1
m
i = ξeimt

1
m
i .

The primary example of forms L of A ⊗k R which are trivialized by a Galois
extension R′/R as above are the multiloop algebras based on A. These are defined
as follows. Consider an n–tuple σσσ = (σ1, . . . , σn) of commuting elements of Autk(A)
satisfying σmi = 1. For each n–tuple (i1, . . . , in) ∈ Zn we consider the simultaneous

eigenspace Ai1...in = {x ∈ A : σj(x) = ξ
ij
mx for all 1 ≤ j ≤ n}. Then A =

∑
Ai1...in ,

1The Isotriviality Theorem of [GP1] and [GP3] shows that this assumption is superflous ifAut(A)
is a an algebraic k–group whose connected component is reductive, for example if A is a finite
dimensional simple Lie algebra.
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and A =
⊕

Ai1...in if we restrict the sum to those n–tuples (i1, . . . , in) for which
0 ≤ ij < mj.

The multiloop algebra corresponding to σσσ, commonly denoted by L(A,σσσ), is de-
fined by

L(A,σσσ) = ⊕
(i1,...,in)∈Zn

Ai1...in ⊗ t
i1
m . . . t

in
m
n ⊂ A⊗k R′ ⊂ A⊗k R′

∞

Note that L(A,σσσ), which does not depend on the choice of common period m, is not
only a k–algebra (in general infinite-dimensional), but also naturally an R–algebra.
It is when L(A,σσσ) is viewed as an R–algebra that Galois cohomology and the theory
of torsors enter into the picture. Indeed a rather simple calculation shows that

L(A,σσσ)⊗R R′ ≃ A⊗k R′ ≃ (A⊗k R)⊗R R′.

Thus L(A,σσσ) corresponds to a torsor over Spec(R) under Aut(A).
When n = 1 multiloop algebras are called simply loop algebras. To illustrate

our methods, let us look at the case of (twisted) loop algebras as they appear in
the theory of affine Kac-Moody Lie algebras. Here n = 1, k = C and A = g is a
finite-dimensional simple Lie algebra. Any such L is naturally a Lie algebra over
R := C[t±1] and L ⊗R S ≃ g ⊗C S ≃ (g ⊗C R) ⊗R S for some (unique) g, and some
finite étale extension S/R. In particular, L is an S/R–form of the R–algebra g⊗C R,
with respect to the étale topology of Spec(R). Thus L corresponds to a torsor over
Spec(R) under Aut(g) whose isomorphism class is an element of the pointed set

H1
ét

(
R,Aut(g)

)
. We may in fact take S to be R′ = C[t±

1
m ].

Assume that A is a finite-dimensional. The crucial point in the classification of
forms of A⊗k R by cohomological methods is the exact sequence of pointed sets

(1.3) H1
ét

(
R,Aut0(A)

)
→ H1

ét

(
R,Aut(A)

) ψ−→ H1
ét

(
R,Out(A)

)
,

where Out(A) is the (finite constant) group of connected components of the algebraic
k–group Aut(A).2

Grothendieck’s theory of the algebraic fundamental group allows us to identify
H1
ét

(
R,Out(A)

)
with the set of conjugacy classes of n–tuples of commuting elements

of the corresponding finite (abstract) group Out(A) (again under the assumption that
k is algebraically closed). This is an important cohomological invariant attached to
any twisted form of A⊗kR.We point out that the cohomological information is always
about the twisted forms viewed as algebras over R (and not k). In practice, as the

2Strictly speaking we should be using the affine R–group scheme Aut(A ⊗k R) instead of the
algebraic k–group Aut(A). This harmless and useful abuse of notation will be used throughout the
paper.
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affine Kac-Moody case illustrates, one is interested in understanding these algebras
as objects over k (and not R). A technical tool (the centroid trick) developed and
used in [ABP2] and [GP2] allows us to compare k vs R information.

We begin by looking at the nullity n = 1 case. The map ψ of (1.3) is injective
[P1]. This fundamental fact follows from a general result about the vanishing of
H1 for reductive group schemes over certain Dedekind rings which includes k[t±1].
This result can be thought of as an analogue of “Serre Conjecture I” for some very
special rings of dimension 1. It follows from what has been said that we can attach a
conjugacy class of the finite group Out(A) that characterizes L up to R–isomorphism.
In particular, if Aut(A) is connected, then all forms (and consequently, all twisted
loop algebras) of A are trivial, i.e. isomorphic to A⊗kR as R–algebras. This yields the
classification of the affine Kac-Moody Lie algebras by purely cohomological methods.
One can in fact define the affine algebras by such methods (which is a completely
different approach than the classical definition by generators and relations).

Surprisingly enough the analogue of “Serre Conjecture II” for k[t±1
1 , t±1

2 ] fails, as
explained in [GP2]. The single family of counterexamples known are the the so-
called Margaux algebras. The classification of forms in nullity 2 case is in fact quite
interesting and challenging. Unlike the nullity one case there are forms which are not
multiloop algebras (the Margaux algebra is one such example). The classification in
nullity 2 by cohomological methods, both over R and over k, will be given in §9 as an
application of one of our main results (the Acyclicity Theorem). This classification
(over k but not over R) can also be attained entirely by EALA methods [ABP3]. The
two approaches complement each other and are the culmination of a project started
a decade ago. We also provide classification results for loop Azumaya algebras in §13.

Questions related to the classification and characterization of EALAs in arbitrary
nullity are at the heart of our work. In this situation A = g is a finite dimensional
simple Lie algebra over k. The twisted forms relevant to EALA theory are always
multiloop algebras based on g [ABFP]. It is therefore desirable to try to characterize
and understand the part of H1

ét

(
R,Aut(g)

)
corresponding to multiloop algebras. We

address this problem by introducing the concept of loop and toral torsors (with k not
necessarily algebraically closed). These concepts are key ideas within our work. It is
easy to show using a theorem of Borel and Mostow that a multiloop algebra based on
g, viewed as a Lie algebra over Rn, always admits a Cartan subalgebra (in the sense
of [SGA3]). We establish that the converse also holds.

Central to our work is the study of the canonical map

(1.4) H1
ét

(
Rn,Aut(g)

)
→ H1

ét

(
Fn,Aut(g)

)

where Fn stands for the iterated Laurent series field k((t1)) . . . ((tn)). The Acyclicity
Theorem proved in §8 shows that the restriction of the canonical map (1.4) to the
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subset H1
loop

(
Rn,Aut(g)

)
⊂ H1

ét

(
Fn,Aut(g)

)
of classes of loop torsors is bijective.

This has strong applications to the classification of EALAs. Indeed H1
ét

(
Fn,Aut(g)

)

can be studied using Tits’ methods for algebraic groups over complete local fields.
In particular EALAs can be naturally attached Tits indices and diagrams, combi-
natorial root data and relative and absolute types. These are important invariants
which are extremely useful for classification purposes. Setting any applications aside,
and perhaps more importantly, we believe that the theory and methods that we are
putting forward display an intrinsic beauty, and show just how powerful the methods
developed in [SGA3] really are.

Acknowledgement The authors would like to thank M. Brion, V. Chernousov and
the referee for their valuable comments.

2 Generalities on the algebraic fundamental group,

torsors, and reductive group schemes

Throughout this section X will denote a scheme, and G a group scheme over X.

2.1 The fundamental group

Assume that X is connected and locally noetherian. Fix a geometric point a of X
i.e. a morphism a : Spec(Ω)→ X where Ω is an algebraically closed field.

Let Xfét be the category of finite étale covers of X, and F the covariant functor
from Xfét to the category of finite sets given by

F (X′) = {geometric points of X′ above a}.

That is, F (X′) consists of all morphisms a′ : Spec (Ω)→ X′ for which the diagram

X′

a′

ր ↓
Spec (Ω) →

a
X

commutes. The group of automorphism of the functor F is called the algebraic fun-
damental group of X at a, and is denoted by π1(X, a). If X = Spec(R) is affine, then
a corresponds to a ring homomorphism R → Ω and we will denote the fundamental
group by π1(R, a).

The functor F is pro-representable: There exists a directed set I, objects (Xi)i∈I
of Xfét, surjective morphisms ϕij ∈ HomX(Xj,Xi) for i ≤ j and geometric points
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ai ∈ F (Xi) such that

(2.1) ai = ϕij ◦ aj

(2.2) The canonical map f : lim−→ HomX(Xi,X
′)→ F (X′) is bijective,

where the map f of (2.2) is as follows: Given ϕ : Xi → X′ then f(ϕ) = F (ϕ)(ai). The
elements of lim−→ HomX(Xi,X

′) appearing in (2.2) are by definition the morphisms in

the category of pro-objects over X (see [EGA IV] §8.13 for details). It is in this sense
that lim−→ Hom(Xi,−) pro-represents F.

Since the Xi are finite and étale over X the morphisms ϕij are affine. Thus the
inverse limit

Xsc = lim←− Xi

exist in the category of schemes over X [EGA IV] §8.2. For any scheme X′ over X we
thus have a canonical map

(2.3) HomPro−X(X
sc,X′)

def
= lim−→ HomX(Xi,X

′) ≃ F (X′)→ HomX(X
sc,X′)

obtained by considering the canonical morphisms ϕi : X
sc → Xi.

Proposition 2.1. Assume X is noetherian. Then F is represented by Xsc; that is,
there exists a bijection

F (X′) ≃ HomX(X
sc,X′)

which is functorial on the objects X′ of Xfét.

Proof. Because the Xi are affine over X and X is noetherian, each Xi is noetherian; in
particular, quasicompact and quasiseparated. Thus, for X′/X locally of finite presen-
tation, in particular for X′ in Xfét, the map (2.3) is bijective [EGA IV, prop 8.13.1].
The Proposition now follows from (2.2).

Remark 2.2. The bijection of Proposition 2.1 could be thought along the same lines
as those of (2.2) by considering the “geometric point” asc ∈ lim←−F (Xi) satisfying
asc 7→ ai for all i ∈ I.

In computing Xsc = lim←−Xi we may replace (Xi)i∈I by any cofinal family. This

allows us to assume that the Xi are (connected) Galois, i.e. the Xi are connected and
the (left) action of AutX(Xi) on F (Xi) is transitive. We then have

F (Xi) ≃ HomPro−X(X
sc,Xi) ≃ HomX(Xi,Xi) = AutX(Xi).
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Thus π1(X, a) can be identified with the group lim←−AutX(Xi)
opp. Each AutX(Xi) is

finite, and this endows π1(X, a) with the structure of a profinite topological group.
The group π1(X, a) acts on the right on Xsc as the inverse limit of the finite

groups AutX(Xi). Thus, the group π1(X, a) acts on the left on each set F (X′) =
HomPro−X(X

sc,X′) for all X′ ∈ Xfét. This action is continuous since the structure
morphism X′ → X “factors at the finite level”, i.e there exists a morphism Xi → X′ of
X–schemes for some i ∈ I. If u : X′ → X′′ is a morphism of Xfét, then the map F (u) :
F (X′) → F (X′′) clearly commutes with the action of π1(X, a). This construction
provides an equivalence between Xfét and the category of finite sets equipped with a
continuous π1(X, a)–action.

The right action of π1(X, a) on Xsc induces an action of π1(X, a) on G(Xsc) =
MorX(X

sc,G), namely

γf(z) = f(zγ) ∀γ ∈ π1(X, a), f ∈ G(Xsc), z ∈ Xsc.

Proposition 2.3. Assume X is noetherian and that G is locally of finite presentation
over X. Then G(Xsc) is a discrete π1(X, a)–module and the canonical map

lim
−→

H1
(
AutX(Xi),G(Xi)

)
→ H1

(
π1(X, a),G(Xsc)

)

is bijective.

Remark 2.4. Here and elsewhere when a profinite group A acts discretely on a
module M the corresponding cohomology H1(A,M) is the continuous cohomology as
defined in [Se1]. Similarly, if a group H acts in both A and M, then HomH(A,M)
stands for the continuous group homomorphism of A into M that commute with the
action of H.

Proof. To show that G(Xsc) is discrete amounts to showing that the stabilizer in
π1(X, a) of a point of f ∈ G(Xsc) is open. But if G is locally of finite presentation
then G(Xsc) = G(lim←− Xi) = lim−→G(Xi) ([EGA IV] prop. 8.13.1), so we may assume

that f ∈ G(Xi) for some i. The result is then clear, for the stabilizer we are after is
the inverse image under the continuous map π1(X, a)→ AutX(Xi) of the stabilizer of
f in AutX(Xi) (which is then open since AutX(Xi) is given the discrete topology).

By definition

H1
(
π1(X, a),G(Xsc)

)
= lim−→

(
π1(X, a)/U,G(Xsc)U

)

where the limit is taken over all open normal subgroups U of π1(X, a). But for each
such U we can find Ui ⊂ U so that Ui = ker

(
π1(X, a)→ AutX(Xi)

)
. Thus

H1
(
π1(X, a),G(Xsc

)
= lim−→ H1

(
AutX(Xi),G(Xi)

)

as desired.
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Suppose now that our X is a geometrically connected k–scheme, where k is of
arbitrary characteristic. We will denote X ×k k by X. Fix a geometric point a :
Spec(k) → X. Let a (resp. b) be the geometric points of X [resp. Spec(k)] given by

the composite maps a : Spec(k)
a→ X→ X [resp. b : Spec(k)

a→ X→ Spec(k)]. Then
by [SGA1, théorème IX.6.1] π1

(
Spec(k), b

)
≃ Gal(k) = Gal(ks/k) where ks is the

separable closure of k in k, and the sequence

(2.4) 1→ π1(X, a)→ π1(X, a)
p−→ Gal(k)→ 1

is exact.

2.2 Torsors

Recall that a (right) torsor over X under G (or simply a G–torsor if X is un-
derstood) is a scheme E over X equipped with a right action of G for which there
exists a faithfully flat morphism Y → X, locally of finite presentation, such that
E×X Y ≃ G×X Y = GY, where GY acts on itself by right translation.

A G–torsor E is locally trivial (resp. étale locally trivial) if it admits a trivialization
by an open Zariski (resp. étale) covering of X. If G is affine, flat and locally of
finite presentation over X, then G–torsors over X are classified by the pointed set of
cohomology H1

fppf(X,G) defined by means of cocycles à la Čech. If G is smooth, any
G–torsor is étale locally trivial (cf. [SGA3], Exp. XXIV), and their classes are then
measured by H1

ét(X,G). In what follows the fppf -topology will be our default choice,
and we will for convenience denote H1

fppf simply by H1. Given a base change Y→ X,
we denote by H1(Y/X,G) the kernel of the base change mapH1(X,G)→ H1(Y,GY).
As it is customary, and when no confusion is possible, we will denote in what follows
H1(Y,GY) simply by H1(Y,G)

Recall that a torsor E over X under G is called isotrivial if it is trivialized by some
finite étale extension of X, that is,

[E] ∈ H1(X′/X,G) ⊂ H1(X,G)

for some X′ in Xfét. We denote by H1
iso(X,G) the subset of H1(X,G) consisting of

classes of isotrivial torsors.

Proposition 2.5. Assume that X is noetherian and that G is locally of finite presen-
tation over X. Then

H1
iso(X,G) = ker

(
H1(X,G)→ H1(Xsc,G)

)
.
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Proof. Assume E is trivialized by X′ ∈ Xfét. Since the connected components of X′

are also in Xfét
3 there exists a morphism Xi → X′ for some i ∈ I. But then E×X Xi =

E×X X
′×X′ Xi = GX′ ×X′ Xi = GXi

so that E is trivialized by Xi. The image of [E] on
H1(Xsc,G) is thus trivial.

Conversely assume [E] ∈ H1(X,G) vanishes under the base change Xsc → X. Since
the Xi are quasicompact and quasiseparated and G is locally of finite presentation, a
theorem of Grothendieck-Margaux [Mg] shows that the canonical map

lim−→ H1(Xi,G)→ H1(Xsc,G)

is bijective. Thus E×X Xi ≃ GXi
for some i ∈ I.

2.3 An example: Laurent polynomials in characteristic 0

We look in detail at an example that is of central importance to this work, namely
the case when X = Spec (Rn) where Rn = k[t±1

1 , . . . , t±1
n ] is the Laurent polynomial

ring in n–variables with coefficients on a field k of characteristic 0.
Fix once and for all a compatible set (ξm)m≥0 of primitive m–roots of unity in

k (i.e. ξℓmℓ = ξm). Let {kλ}λ∈Λ be the set of finite Galois extensions of k which are
included in k. Let Γλ = Gal (kλ/k) and Γ = lim←− Γλ. Then Γ coincides with the

algebraic fundamental group of Spec (k) at the geometric point Spec (k).
Let ε : Rn → k be the evaluation map at ti = 1. The composite map Rn

ε→ k →֒ k
defines a geometric point a of X and a geometric point a of X = Spec (Rn) where
Rn = k[t±1

1 , . . . , t±1
n ].

Let I be the subset of Λ×Z>0 consisting of all pairs (λ,m) for which kλ contains
ξm. Make I into a directed set by declaring that (λ, ℓ) ≤ (µ, n)⇐⇒ kλ ⊂ kµ and ℓ|n.

Each
Rλ
n,m = kλ[t

± 1
m

1 , . . . , t
± 1

m
n ]

is a Galois extension of Rn with Galois group Γm,λ = (Z/mZ)n ⋊ Γλ as follows: For

e = (e1, . . . , en) ∈ Zn we have et
1
m
j = ξ

ej
j t

1
m
j where − : Zn → (Z/mZ)n is the canonical

map, and the group Γλ acts naturally on Rλ
n,m through its action on kλ. It is immediate

3There exists a finite Galois connected covering F→ X such that F×XX′ ∼= F⊔ · · · ⊔F (r times).
If we decompose X′ = Y1 ⊔ · · · ⊔Ym into its connected components we have

X′ ×X F = Y1 ×X F ⊔ · · · ⊔Ym ×X F = F ⊔ · · · ⊔ F.

It follows that each Yi ×X F is a disjoint union of copies of F, hence Yi ×X F is finite étale over F
for i = 1, ..,m. Then each Yi is étale over X by proposition 17.7.4.vi of [EGA IV]. By descent, each
Yi is finite over X [EGA IV, prop. 2.7.1 xv], so each Yi/X is finite étale.

11



from the definition that for γ ∈ Γλ we have γeγ−1 : t
1
m
j 7→ (γξj)

ej t
1
m
j . Thus if

γξj = ξ
fj
j

then γeγ−1 = e′ where e′ = (f1e1, . . . fnen).
If (λ, ℓ) ≤ (µ, n) we have a canonical inclusion Rλ

n,ℓ ⊂ Rµ
n,m. For i = (λ, ℓ) ∈ I

we let Xi = Spec (Rλ
n,ℓ). The above gives morphisms ϕij : Xj → Xi of X–schemes

whenever i ≤ j.
We have [GP3]

Xsc = lim←− Xi = Spec(lim−→Xi)

= Spec (Rn,∞)

where Rn,∞ = lim−→
m

Rn,m with Rn,m = k[t
± 1

m
1 , . . . , t

± 1
m

n ]. Thus

(2.5) π1(X, a) = lim←−Γm,λ = Ẑ(1)n ⋊ Gal (k).

where Ẑ(1) denotes the abstract group Ẑ = lim←−m µµµm(k) equipped with the natural

action of the absolute Galois group Gal(k) = Gal(k/k).

Remark 2.6. Consider the affine k–group scheme ∞µµµ = lim←−mµµµm. It corresponds to
the Hopf algebra

k[∞µµµ] = lim−→
m

k[µµµm] = lim−→
m

k[t]

tm − 1
.

Then we have ∞µµµ(k) ≃ Ẑ and ∞µµµ(k) is equipped with a (canonical) structure of
profinite Gal(k)–module.

Remark 2.7. Let the notation be that of Example 2.3. Since Zn is the character
group of the the torus Gn

m,k, we have an automorphism GLn(Z) ≃ Autgr(G
n,k
m )op.

This defines a left action GLn(Z) on Rn and a right action of GLn(Z) on the torus
Gn
m,k. Furthermore, by universal nonsense, this action extends uniquely to the simply

connected covering Rn,∞ at the geometric point a. The extended action on the torus
Spec(Rn,m) with character group ( 1

m
Z)n is given by the extension of the action of

GLn(Z) from Zn to ( 1
m
Z)n inside Qn. The group GLn(Z) acts (on the right) on

π1(Rn), so we can consider the semidirect product of groups GLn(Z)⋉ π1(Rn) which
acts then on Rn,∞ (see §8.4 for details).

By taking the action of GLn(Z) on Rn described in Remark 2.7 we can twist
the Rn–module Rn by an element g ∈ GLn(Z). We denote the resulting twisted
Rn–algebra by Rg

n.
4

4The multiplication on the Rn-algebras R
g
n and Rn coincide. It is the action of Rn that is

different. See §4.1 for details.
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Lemma 2.8. Let S be a connected finite étale cover of Rn. Let L ⊂ S be the integral
closure of k in S. Then there exists g ∈ GLn(Z), a1, ..., an ∈ L× and positive integers
d1, ..., dn such that d1 | d2 · · · | dn and

S ⊗Rn R
g
n ≃Rn-alg (Rn ⊗k L)

[
d1
√
a1t1, · · · , dn

√
antn

]
.

In particular, S is k–isomorphic to Rn ⊗k L and Pic(S) = 0.

Proof. Note that Rg
n and Rn have the same units. For convenience in what follows

we will for simplicity denote (Rn)
g by Rg

n, (Rn,m)
g by Rg

n,m and S ⊗Rn R
g
n by Sg.

By Galois theory there exists a finite Galois extension k′/k and a positive inte-
ger m such that µm(k) ⊂ k′ and S ≃Rn (Rn,m ⊗k k′)H where H is a subgroup of
Gal(Rn,m ⊗k k′/Rn) = µµµm(k

′)n ⋊Gal(k′/k). Hence S is geometrically connected and
S is a finite étale cover of Rn ⊗k L. We can assume without loss of generality that
k = L. To say that L = k is to say that the map H → Gal(k′/k) is onto. We consider
the following commutative diagram

1 −−−→ µµµm(k
′)n ∩H −−−→ H −−−→ Gal(k′/k) −−−→ 1y

y ||
1 −−−→ µµµm(k

′)n −−−→ Gal(Rn,m ⊗k k′/Rn) −−−→ Gal(k′/k) −−−→ 1.

Note that the action Gal(k′/k) on µµµm(k
′)n normalizes µµµm(k

′)n∩H . Hence µµµnm(k
′)∩H

is the group of k′–points of a split k–group ννν of multiplicative type. By considering
the corresponding characters groups, we get a surjective homomorphism (Z/mZ)n =
µ̂µµnm → ν̂νν of finite abelian groups. An element g ∈ GLn(Z) ⊂ Autk(Rn) transforms
the diagram above to yield

1 −−−→ ννν(k′) −−−→ H −−−→ Gal(k′/k) −−−→ 1y
y ||

1 −−−→ µµµm(k
′)n −−−→ Gal(Rn,m ⊗k k′/Rn) −−−→ Gal(k′/k) −−−→ 1.

g∗
y g∗

y ||
1 −−−→ µµµm(k

′)n −−−→ Gal(Rg
n,m ⊗k k′/Rg

n) −−−→ Gal(k′/k) −−−→ 1.x
x ||

1 −−−→ gννν(k′) −−−→ Hg −−−→ Gal(k′/k) −−−→ 1

The action of GLn(Z) on (Z/mZ)n = µ̂µµnm is the left action provided by the homo-
morphism GLn(Z) → GLn(Z/mZ). By elementary facts about generators of finite
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abelian groups there exists g ∈ GLn(Z) and positive integers d1, ..., dn such that
d1 | d2 · · · | dn | m for which the following holds

(Z/mZ)n = µ̂µµnm −−−→ ν̂νν

g∗
y≃ ≃

y
(Z/mZ)n = µ̂µµnm −−−→ Z/(m/d1)Z⊕ · · ·Z/(m/dn)Z.

This base change leads to the following commutative diagram

1 −−−→ µµµm/d1(k
′)× · · · ×µµµm/dn(k′) −−−→ Hg −−−→ Gal(k′/k) −−−→ 1y

y ||
1 −−−→ µµµm(k

′)n −−−→ Gal(Rg
n,m ⊗k k′/Rg

n) −−−→ Gal(k′/k) −−−→ 1.

We claim that Sg is equipped with an Rg
n–torsor structure under µµµ := µµµd1 × · · ·µµµdn .

The diagram above provides a bijection

Gal(Rg
n,m ⊗k k′/Rg

n)/H
g ∼−→ µµµ(k′),

hence a map ψ : Gal(Rg
n,m ⊗k k′/Rg

n) −→ µµµ(k′) which is a cocycle for the standard
action of Gal(Rg

n,m ⊗k k′/Rg
n) on µµµ(k

′) as we now check. We shall use the following
two facts

(I) ψ is right Hg–invariant;

(II) the restriction of ψ to µµµm(k
′)n is a morphism of Gal(k′/k)–modules.

We are given γ1, γ2 ∈ Gal(Rg
n,m ⊗k k′/Rg

n). Since
gH surjects onto Gal(k′/k), we can

write γi = αihi with αi ∈ µµµm(k′)n and hi ∈ Hg for i = 1, 2. We have

ψ(γ1γ2) = ψ(α1 h1 α2 h2)

= ψ(α1 h1 α2 h
−1
1 h1h2)

= ψ(α1 h1 α2 h
−1
1 ) [by (I) ]

= ψ(α1)ψ(h1 α2 h
−1
1 ) [by (II) ]

= ψ(α1) h1 ψ(α2) h
−1
1 [by (I) ]

= ψ(γ1) γ1.ψ(γ2).

Denote by S̃ the µµµ–torsor over Rg
n defined by ψ, that is

S̃ :=
{
x ∈ Rg

n,m ⊗k k′ | ψ(γ) .γ(x) = x ∀γ ∈ Gal(Rg
n,m ⊗k k′/Rg

n)
}
.
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Since ψ is trivial over Hg, we have S̃ ⊂ Sg. But S̃ and Sg are both finite étale
coverings of Rg

n of degree | µµµ(k′) |, hence S̃ = Sg. Since Pic(Rg
n) = 0, we can use

Kummer theory (see [M] III 4.10), namely the isomorphism

H1(Rg
n,µµµ) =

∏

j=1,...,n

H1(Rg
n,µµµdj ) ≃

∏

j=1,...,n

Rg
n
×/(Rg

n
×)dj .

for determining the structure of S̃. Since Rg
n
× = k××Zn, there exist scalars a1, ..., an ∈

k× and monomials x1, ..., xn in the ti such that the class of S̃/Rg
n in H

1(Rn,µµµ) is given
by (a1 x1, · · · , anxn). In terms of covering, this means that S̃ = k

[
d1
√
a1x1, · · · , dn

√
anxn

]
.

Extending scalars to k′, we have

S̃ ⊗k k′ = (Rg
n,m ⊗k k′)µµµ(k

′) = k′
[

d1
√
t1, · · · , dn

√
tn
]
.

From this it follows that xi = ti mod
(
(Rg

n ⊗k k′)×
)di

and xi = ti mod (Rg
n
×)

di . We

conclude that S̃ = k
[

d1
√
a1t1, · · · , dn

√
antn

]
.

2.4 Reductive group schemes: Irreducibility and isotropy

The notation that we are going to use throughout the paper deserves some com-
ments. We will tend to use boldface characters, such asG, for algebraic groups over k,
as also for group schemes over X that are obtained from groups over k. A quintessen-
tial example is GX = G×k X. For arbitrary group schemes, or more generally group
functors, over X we shall tend to use german characters, such as G. This duality of
notation will be particularly useful when dealing with twisted forms over X of groups
that come from k.

The concept of reductive group scheme over X and all related terminology is that
of [SGA3].5

For convenience we now recall and introduce some concepts and notation attached
to a reductive group scheme H over X. We denote by rad(H) (resp. corad(H)) its
radical (resp. coradical) torus, that is its maximal central subtorus (resp. its maximal
toral quotient) of H [XII.1.3].

We say that a H is reducible if it admits a proper parabolic subgroup P such that
P contains a Levi subgroup L (see XXVI).6 The opposite notion is irreducible. If X
is affine, the notion of reducibility for H is equivalent to the existence of a proper
parabolic subgroup P (XXVI.2.3), so there is no ambiguity with the terminology of
[CGP] and [GP2].

5The references to [SGA3] are so prevalent that they will henceforth be given by simply listing
the Exposé number. Thus XII. 1.3, for example, refers to section 1.3 of Exposé XII of [SGA3].

6The concept of proper parabolic subgroup is not defined in [SGA3]. By proper we mean that
Ps is a proper subgroup of Gx for all geometric points x of X.
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By extension, if an affine group G over X acts on H, we say that the action is
reducible if it normalizes a couple (P,L) where P is a proper parabolic subgroup of
H and L a Levi subgroup of P. The action is otherwise called irreducible.

We say that H over is isotropic if H admits a subgroup isomorphic to Gm,X. The
opposite notion is anisotropic.

If the base scheme X is semi-local and connected (resp. normal), one can show that
H is anisotropic if and only if H is irreducible and the torus rad(H) (or equivalently
corad(H)) is anisotropic (XXVI.2.3, resp. [Gi4]).

Similarly we say that the action of G on H is isotropic if it centralizes a split
subtorus T of H with the property that all geometric fibers of T are non-trivial.
Otherwise the action is anisotropic. One checks that this is the case if and only
if the action of G on H is irreducible and the action of G on the torus rad(H) (or
equivalently to corad(H)) is anisotropic.

3 Loop, finite and toral torsors

Throughout this section k will denote a field of arbitrary characteristic, X a ge-
ometrically connected noetherian scheme over k, and Xsc = lim←− Xi its simply con-
nected cover as described in §2.1. Let G a group scheme over k which is locally of
finite presentation. We will maintain the notation of the previous section, and assume
that Ω = k. Consider the fundamental exact sequence (2.4). The geometric point a
corresponds to a point of X(k).

3.1 Loop torsors

Because of (2.1), the geometric points ai : Spec (k) → Xi induce a geometric
point asc : Spec (k)→ lim←−Xi = Xsc. We thus have a group homomorphism

(3.1) G(ks)→ G(k)
G(asc)−→ G(Xsc).

The group π1(X, a) acts on ks, hence on G(ks), via the group homomorphism
π1(X, a)→ Gal (k) of (2.4). This action is continuous, and together with (3.1) yields
a map

H1
(
π1(X, a),G(ks)

)
→ H1

(
π1(X, a),G(Xsc)

)
,

where we remind the reader that these H1 are defined in the “continuous” sense (see
Remark 2.4). On the other hand, by Proposition 2.3 and basic properties of torsors
trivialized by Galois extensions, we have

H1
(
π1(X, a),G(Xsc)

)
= lim−→ H1

(
AutX(Xi),G(Xi)

)

= lim−→ H1(Xi/X,G) ⊂ H1(X,G).
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By means of the foregoing observations we make the following.

Definition 3.1. A torsor E over X under G is called a loop torsor if its isomorphism
class [E] in H1(X,G) belongs to the image of the composite map

(3.2) H1
(
π1(X, a),G(ks)

)
→ H1

(
π1(X, a),G(Xsc)

)
⊂ H1(X,G).

We will denote by H1
loop(X,G) the subset of H1(X,G) consisting of classes of loop

torsors. They are given by (continuous) cocycles in the image of the natural map
Z1

(
π1(X, a),G(ks)

)
→ Z1(X,G), which we call loop cocycles.

Examples 3.2. (a) If X = Spec (k) then H1
loop(X,G) is nothing but the usual Galois

cohomology of k with coefficients in G.

(b) Assume that k is separably closed. Then the action of π1(X, a) on G(ks) is
trivial, so that

H1
(
π1(X, a),G(ks)

)
= Hom

(
π1(X, a),G(ks)

)
/IntG(ks)

where the group Int G(ks) of inner automorphisms of G(ks) acts naturally on
Hom

(
π1(X, a),G(ks)

)
. To be precise, Int(g)(φ) : x → g−1φ(x)g for all g ∈ G(ks),

φ ∈ Hom
(
π1(X, a),G(ks)

)
and x ∈ π1(X, a). Two particular cases are important:

(b1) G abelian: In this case H1
(
π1(X, a),G(ks)

)
is just the group of continuous

homomorphisms from π1(X, a) to G(ks).

(b2) π1(X, a) = Ẑn : In this case H1
(
π1(X, a),G(ks)

)
is the set of conjugacy classes

of n–tuples σ = (σ1, . . . , σn) of commuting elements of finite order of G(ks). That the
elements are of finite order follows from the continuity assumption.

(c) Let X = Spec (k[t±1]) with k algebraically closed of characteristic 0. If G is a
connected linear algebraic group over k then H1(X,G) = 1 ([P1, prop. 5]). We see
from (b2) above that the canonical map

H1
(
π1(X, a),G(ks)

)
→ H1(X,G)

of (3.2) need not be injective. It need not be surjective either (take X = P1
k and

G = Gm,k).

(d) If the canonical map G(ks)→ G(Xsc) is bijective, e.g. if X is a geometrically
integral projective variety over k (i.e. a geometrically integral closed subscheme of
Pnk for some n,) then H1

loop(X,G) = H1
(
π1(X, a),G(ks)

)
.

Remark 3.3. The notion of loop torsor behaves well under twisting by a Galois
cocycle z ∈ Z1

(
Gal(k),G(ks)

)
. Indeed the torsion map τ−1

z : H1(X,G)→ H1(X, zG)
maps loop classes to loop classes.
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3.2 Loop reductive groups

Let H be a reductive group scheme over X. Since X is connected, for all x ∈ X

the geometric fibers Hx are reductive group schemes of the same “type” (see [SGA3,
XXII.2.3]. By Demazure’s theorem there exists a unique split reductive group H0

over k such that H is a twisted form (in the étale topology of X) of H0 = H0 ×k X.
We will call H0 the Chevalley k–form of H. The X–group H corresponds to a torsor
E over X under the group scheme Aut(H0), namely E = Isomgroup(H0,H). We recall
that Aut(H0) is representable by a smooth and separated group scheme over X by
XXII 2.3. By definition H is then the contracted product E ∧Aut(H0) H0 (see [DG] III
§4 no3 for details.)

We now define one of the central concepts of our work.

Definition 3.4. We say that a group scheme H over X is loop reductive if it is
reductive and if E is a loop torsor.

We look more closely to the affine case X = Spec(R). Concretely, let H0 =
Spec(k[H0]) be a split reductive k–group and consider the corresponding R–group
H0 = H0 ×k R, whose Hopf algebra is R[H0] = k[H0]⊗k R.

Let H be an R–group which is a twisted form of H0 trivialized by the universal
covering Rsc. Then to a trivialization H0×R Rsc ∼= H×R Rsc, we can attach a cocycle
u ∈ Z1

(
π1(R, a),Aut(H0)(R

sc)
)
from which H can be recovered by Galois descent as

we now explain in the form of a Remark for future reference.

Remark 3.5. There are two possible conventions as to the meaning of the cocycles
u of Z1

(
π1(R, a),Aut(H0)(R

sc)
)
. On the one hand H0 can be thought of as the affine

scheme Spec(R[H0]), Aut(H0)(R
sc) as the (abstract) group of automorphisms of the

Rsc–group Spec(Rsc[H0]) where R
sc[H0] = R[H0]⊗RRsc, and π1(X, a) as the opposite

group of automorphisms of Spec(Rsc)/ Spec(R) acting naturally on Aut(H0)(R
sc).

We will adopt an (anti) equivalent second point of view that is much more con-
venient for our calculations. We view Aut(H0)(R

sc) as the group of automorphisms
of the Rsc–Hopf algebra Rsc[H0] = R[H0]⊗R Rsc ≃ k[H0]⊗k Rsc on which the Galois
group π1(R, a) acts naturally. Then the R–Hopf algebra R[H] corresponding to H is
given by

R[H] = {x ∈ Rsc[H0] : uγ
γx = a for all γ ∈ π1(R, a)}.

To say then that H is k–loop reductive is to say that u can be chosen so that uγ ∈
Aut(H0)(k) ⊂ Aut(H0)(R

sc) = Aut(H0)(R
sc) for all γ ∈ π1(R, a).

3.3 Loop torsors at a rational base point

If our geometric point a lies above a k–rational point x of X, then x corresponds
to a section of the structure morphism X → Spec(k) which maps b to a. This yields
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a group homomorphism x∗ : Gal(k) → π1(X, a) that splits the sequence (2.4) above.
This splitting defines an action of Gal(k) on the profinite group π1(X, a), hence a
semidirect product identification

(3.3) π1(X, a) ≃ π1(X, a)⋊Gal(k).

We have seen an example of (3.3) in Example 2.3.

Remark 3.6. By the structure of extensions of profinite groups [RZ, §6.8], it follows
that π1(X, a) is the projective limit of a system

(
Hα ⋊ Gal(k)

)
where the Hα’s are

finite groups. The Galois action on each Hα defines a twisted finite constant k–group
νννα. We define

ννν = lim←−
α

νννα.

The νννα are affine k–groups such that

ννν(k) = lim←−
α

νννα(k) = π1(X, a).

Note that ννν(ks) = ννν(k). In the case when X = Spec(Rn), where as before Rn =
k[t±1

1 , . . . , t±1
n ] with k of characteristic zero and a is the geometric point described in

Example 2.3, the above construction yields the affine k–group ∞µµµ defined in Remark
2.6.

By means of the decomposition (3.3) we can think of loop torsors as being com-
prised of a geometric and an arithmetic part, as we now explain.

Let η ∈ Z1
(
π1(X, a),G(ks)

)
. The restriction η|Gal(k) is called the arithmetic part of

η and its denoted by ηar. It is easily seen that ηar is in fact a cocycle in Z1
(
Gal(k),G(ks)

)
.

If η is fixed in our discussion, we will at times denote the cocycle ηar by the more
traditional notation z. In particular, for s ∈ Gal(k) we write zs instead of ηars .

Next we consider the restriction of η to π1(X, a) that we denote by η
geo and called

the geometric part of η.
We thus have a map

Θ : Z1
(
π1(X, a),G(ks)

)
−−−→ Z1

(
Gal(k),G(ks)

)
× Hom

(
π1(X, a),G(ks)

)

η 7→
(

ηar , ηgeo
)

The group Gal(k) acts on π1(X, a) by conjugation. On G(ks), the Galois group
Gal(k) acts on two different ways. There is the natural action arising for the action
of Gal(k) on ks that as customary we will denote by sg, and there is also the twisted
action given by the cocycle ηar = z. Following Serre we denote this last by s′g. Thus
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s′g = zs
sgzs

−1. Following standard practice to view the abstract group G(ks) as a
Gal(k)–module with the twisted action by z we write zG(ks).

For s ∈ Gal(k) and h ∈ π1(X, a), we have

ηgeoshs−1 = ηshs−1 = ηs
s(ηhs−1) [η is a cocycle]

= zs
s(ηhs−1) [ηs = ηars = zs]

= zs
s(ηgeoh zs−1) [η is a cocycle and h acts trivially on G(ks)]

= zs
sηgeoh z−1

s [1 = zs
szs−1].

This shows that ηgeo : π1(X, a) → zG(ks) commutes with the action of Gal(k). In
other words, ηgeo ∈ HomGal(k)

(
π1(X, a), zG(ks)

)
.

Lemma 3.7. The map Θ defines a bijection between Z1
(
π1(X, a),G(ks)

)
and couples

(z, ηgeo) with z ∈ Z1
(
π1(X, a),G(ks)

)
and ηgeo ∈ HomGal(k)

(
π1(X, a), zG(ks)

)
.

Proof. Since a 1–cocycle is determined by its image on generators, the map Θ is
injective. For the surjectivity, assume we are given z ∈ Z1(π1(X, a),G(ks)) and
ηgeo ∈ HomGal(k)

(
π1(X, a), zG(ks)

)
. We define then η : π1(X, a)→ G(ks) by ηhs :=

ηgeoh zs This map is continuous, its restriction to π1(X, a) (resp. Gal(k) ) is ηgeo (resp.
z). Finally, since η is a section of the projection map G(ks)⋊ π1(X, a)→ π1(X, a), it
is a cocycle.

We finish this section by recalling some basic properties of the twisting bijection.
Let η ∈ Z1

(
π1(X, a),G(ks)

)
and consider its corresponding pair Θ(η) = (z, ηgeo). We

can apply the same construction to the twisted k–group zG. This leads to a map Θz

that attaches to a cocycle η′ ∈ Z1
(
π1(X, a), zG(ks)

)
a pair (z′, η′geo) along the lines

explained above. Note that by Lemma 3.7 the pair (1, ηgeo) is in the image of Θz.
More precisely.

Lemma 3.8. Let η ∈ Z1
(
π1(X, a),G(ks)

)
. With the above notation, the inverse of

the twisting map [Se1]

τ−1
z : Z1

(
π1(X, a),G(ks)

) ∼−→ Z1
(
π1(X, a), zG(ks)

)

satisfies Θz ◦ τ−1
z (η) = (1, ηgeo).

Remark 3.9. Consider the special case when the semi-direct product is direct, i.e.
π1(X, a) = π1(X, a) × Gal(k). In other words, the affine k–group ννν defined above is
constant so that

ηgeoh = zs
sηgeoh z−1

s
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for all h ∈ π1(X, a) and s ∈ Gal(k). The torsion map

τ−1
z : Z1

(
π1(X, a),G(ks)

)
→ Z1

(
π1(X, a), zG(ks)

)

maps the cocycle η to the homomorphism ηgeo : π1(X, a)→ zG(ks).

We give now one more reason to call ηgeo the geometric part of η.

Lemma 3.10. Let ννν be the affine k–group scheme defined in Remark 3.6. Then for
each linear algebraic k–group H, there is a natural bijection

Homk−gp(ννν,H)
∼−→ HomGal(k)

(
π1(X, a),H(ks)

)
.

Proof. First we recall that HomGal(k)

(
π1(X, a),H(ks)

)
stands for the continuous ho-

momorphisms from π1(X, a) to H(ks) that commute with the action of Gal(k).
Write ννν = lim←−νννα as an inverse limit of twisted constant finite k–groups. Since H

and the νννα are of finite presentation we have by applying [SGA3] VIB 10.4 that

Homk−gp(ννν,H) = lim−→
α

Homk−gp(νννα,H)

= lim−→
α

HomGal(k)

(
νννα(ks),H(ks)

)
= HomGal(k)

(
π1(X, a),H(ks)

)
.

This permits to see purely geometric k–loop torsors in terms of homomorphisms
of affine k–group schemes.

3.4 Finite torsors

Throughout this section we assume that G is a smooth affine k–group, and X a
scheme over k. Let GX = G×k X be the X–group obtained from G by base change.

Following our convention a torsor over X under G means under GX, and we write
H1(X,G) instead of H1(X,GX).

Definition 3.11. A torsor E over X under G is said to be finite if it admits a
reduction to a finite k–subgroup S of G; this is to say, the class of E belongs to the
image of the natural map H1(X,S)→ H1(X,G) for some finite subgroup S of G.

We denote by H1
finite(X,G) the subset of H1(X,G) consisting of classes of finite

torsors, that is

H1
finite(X,G) :=

⋃

S⊂G

Im
(
H1(X,S)→ H1(X,G)

)
.

where S runs over all finite k–subgroups of G.

The case when k is of characteristic 0 is well known.
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Lemma 3.12. Assume that k is of characteristic 0. ThenH1
finite(X,G) ⊂ H1

loop(X,G).
If in addition k is algebraically closed, then H1

finite(X,G) = H1
loop(X,G).

Proof. Let S be a finite subgroup of the k–group G. Since k is of characteristic 0 the
group S is étale. Thus S corresponds to a finite abstract group S together with a
continuous action of Gal(k) by group automorphisms. More precisely (see [SGA1] or
[K] pg.184) S = S(k) with the natural action of Gal(k). Similarly the étale X-group
SX corresponds to S with the action of π1(X, a) induced from the homomorphism
π1(X, a)→ Gal(k).

By Exp. XI of [SGA1] we have

(3.4) H1(X,S)
def
= H1(X,SX) = H1

(
π1(X, a), S

)
= H1(π1(X, a),S(k))

which shows that H1(X,S) ⊂ H1
loop(X,G).

If k is algebraically closed any k-loop torsor E is given by a continuous group
homomorphism fE : π1(X, a) → G(k), as explained in Example 3.2(b). Then the
image of fE is a finite subgroup ofG(k) which gives rise to a finite (constant) algebraic
subgroup S of G. By construction [E] comes from H1(X,S).

3.5 Toral torsors

Let k, G and X be as in the previous section. Given a torsor E over X under GX

we can consider the twisted X–group EGX = E ∧GX GX. Since no confusion will arise
we will denote EGX simply by EG. We say that our torsor E is toral if the twisted X–
group EG admits a maximal torus (XII.1.3). We denote by H1

toral(X,G) ⊂ H1(X,G)
the set of classes of toral torsors.

We recall the following useful result.

Lemma 3.13. 1. Let T be a maximal torus of G.7 Then

H1
toral(X,G) = Im

(
H1

(
X,NG(T)

)
→ H1(X,G)

)
.

2. Let 1 → S → G′ p→ G → 1 be a central extension of G by a k–group S of
multiplicative type. Then the diagram

H1
toral(X,G

′) ⊂ H1(X,G′)

p∗

y p∗

y
H1
toral(X,G) ⊂ H1(X,G)

7We remind the reader that we are abiding by [SGA3] conventions and terminology. In the
expression “maximal torus of G ” we view G as a k–group, namely a group scheme over Spec(k).
In particular T is a k-group...
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is cartesian.

Proof. (1) is established in [CGR2, 3.1].

(2) Consider first the case when S is the reductive center of G′, We are given an X–
torsor E′ under G′ and consider the surjective morphism of X–group schemes E′G′ →
E′G whose kernel is S×k X. By XII 4.7 there is a natural one-to-one correspondence
between maximal tori of the X–groups E′G′ and E′G. Hence E′ is a toral G′–torsor
if and only if E′ ∧G′

X GX is a toral G–torsor. The general case follows form the fact
that G′/Z′ ≃ G/Z where Z′ (resp. Z) is the reductive center of G.

In an important case the property of a torsor being toral is of infinitesimal nature.

Lemma 3.14. Assume that G is semisimple of adjoint type. For a X–torsor E under
G the following conditions are equivalent:

1. E is toral.

2. The Lie algebra Lie(EG) admits a Cartan subalgebra.

Proof. By XIV théorèmes 3.9 and 3.18 there exists a natural one-to-one correspon-
dence between the maximal tori of EG and Cartan subalgebras of Lie(EG).

Recall the following result [CGR2].

Theorem 3.15. Let R be a commutative ring and G a smooth affine group scheme
over R whose connected component of the identity G0 is reductive. Assume further
that one of the following holds:

(a) R is an algebraically closed field, or

(b) R = Z, G0 is a Chevalley group, and the order of the Weyl group of the
geometric fiber Gs is independent of s ∈ Spec(Z), or

(c) R is a semilocal ring, G is connected, and the radical torus rad(G) is isotrivial.

Then there exist a maximal torus T of G, and a finite R–subgroup S ⊂ NG(T), such
that

1. S is an extension of a finite twisted constant R–group by a finite R–group of
multiplicative type,

2. the natural map H1
fppf(X,S) −→ H1

fppf

(
X,NG(T)

)
is surjective for any R–

scheme X satisfying the condition:

(3.5) Pic(X′) = 0 for every generalized Galois cover X′/X,

where by a generalized Galois cover X′ → X we understand a Γ–torsor for some
twisted finite constant X–group scheme Γ.
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Corollary 3.16. Let G be a linear algebraic k–group whose connected component of
the identity G0 is reductive. Assume that one of the following holds:

(i) k is algebraically closed;

(ii) G is obtained by base change from a smooth affine Z–group satisfying the
hypothesis of Theorem 3.15(b);

(iii) G is reductive.

If the k–scheme X satisfies condition (3.5), then

1. H1
toral(X,G) ⊂ H1

finite(X,G).

2. If furthermore char(k) = 0, we haveH1
toral(X,G) ⊂ H1

finite(X,G) ⊂ H1
loop(X,G).

The first statement is immediate. The second one follows from Lemma 3.12.

4 Semilinear considerations

Throughout this section k̃ will denote an object of k–alg. We will denote by Γ
a subgroup of the group Autk−alg(k̃). The elements of Γ are thus k–linear automor-
phisms of the ring k̃. For convenience we will denote the action of an element γ ∈ Γ
on an element λ ∈ k̃ by γλ.

4.1 Semilinear morphisms

Given an object R of k̃–alg (the category of associative unital commutative k̃–
algebras), we will denote the action of and element λ ∈ k̃ on an element r ∈ R by
λR · r, or simply λR r or λr if no confusion is possible.

Given an element γ ∈ Γ, we denote by Rγ the object of k̃–alg which coincides
with R as a ring, but where the k̃–module structure is now obtained by “twisting ”
by γ :

λRγ · r = (γλ)R · r
One verifies immediately that

(4.1) (Rγ)τ = Rγτ

for all γ, τ ∈ Γ. It is important to emphasize that (4.1) is an equality and not a
canonical identification.

Given a morphism ψ : A→ R of k̃–algebras and an element γ ∈ Γ we can view ψ
as a map ψγ : A

γ → Rγ (recall that A = Aγ and R = Rγ as rings, hence also as sets).

24



It is immediate to verify that ψγ is also a morphism of k̃–algebras. By (4.1) we have
(ψγ)τ = ψγτ for all γ, τ ∈ Γ.

The map ψ → ψγ gives a natural correspondence

(4.2) Homk̃−alg(A,R)→ Homk̃−alg(A
γ, Rγ).

In view of (4.1) we have also a natural (and equivalent) correspondence

(4.3) Homk̃−alg(A,R
γ)→ Homk̃−alg(A

γ−1

, R).

that we record for future use.

Remark 4.1. (i) Let γ, σ ∈ Γ. It is clear from the definitions that the k-algebra
isomorphism γ : k̃ → k̃ induces a k̃-algebra isomorphism γσ : k̃σ → k̃γσ. If no
confusion is possible we will denote γσ simply by γ.

One checks that the k̃–algebras (R⊗k k̃)γ and R⊗k k̃γ are equal (recall that both
algebras have R⊗k k̃ as underlying sets). We thus have a k̃–algebra isomorphism

1⊗ γ : R ⊗k k̃ → R⊗k k̃γ = (R⊗ k̃)γ,

or more generally

1⊗ γσ : R⊗k k̃σ → R ⊗k k̃γσ = (R ⊗ k̃)γσ.

(ii) If A is an object k̃–alg, and γ ∈ Γ, then the k̃–algebras A and Aγ have the same

ideals.

Given a k̃–functor X, that is a functor from the category k̃–alg to the category of
sets (see [DG] for details), and an element γ ∈ Γ we can define a new the k̃–functor
γX by setting

(4.4) γX(R) = X(Rγ)

and γX(ψ) = X(ψγ) where ψ : R→ S is as above. The diagram

X′(Rγ)
=−−−→ X(Rγ)

γX(ψ)

y X(ψγ)

y
γX′(R)

=−−−→ γX(R)

then commutes by definition, and one can indeed easily verify that γX is a k̃–functor.
We call γX the twist of X by γ.
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Similarly to the case of k̃–algebras described in (4.1) we have the equality of
functors

(4.5) γ(τX) = γτX

for all γ, τ ∈ Γ.
A morphism f : X′ → X induces a morphism γf : γX′ → γX by setting γf(R) =

f(Rγ). We thus have the commutative diagram

X′(Rγ)
f(Rγ )−−−→ X(Rγ)

=

y =

y
γX′(R)

γf(R)−−−→ γX(R)

This gives a natural bijection

(4.6) Homk̃−fun(X
′,X)→ Homk̃−fun(

γX′, γX)

given by f 7→ γf. This correspondence is compatible with the action of Γ, this is
γ(τf) = γτf. As before we will for future use explicitly write down an equivalent
version of this last bijection, namely

(4.7) Homk̃−fun(
γ−1

X′,X)→ Homk̃−fun(X
′, γX)

4.2 Semilinear morphisms

A k̃–functor morphism f : γX→ Z is called a semilinear morphism of type γ from
X to Z.We denoted the set of such morphisms by Homγ(X,Z), and set HomΓ(X,Z) =
∪γ∈Γ Homγ(X,Z).

8 These are the Γ–semilinear morphisms from X to Z.
If f : γX → Y and g : τY → Z are semilinear of type γ and τ respectively, then

the map gf : τγX→ Z defined by (gf)(R) = g(R) ◦ f(Rτ) according to the sequence

(4.8) τγX(R) = γX(Rτ )
f(Rτ )→ Y(Rτ ) = τY(R)

g(R)→ Z(R)

is semilinear of type τγ.
The above considerations give the set AutΓ(X) of invertible elements of HomΓ(X,X)

a group structure whose elements are called Γ–semilinear automorphisms of X. There
is a group homomorphism t : AutΓ(X)→ Γ that assigns to a semilinear automorphism
of X its type.

8The alert reader may question whether the “type” is well defined. Indeed it may happen that
γX and X are the same k̃-functor even though γ 6= 1. This ambiguity can be formally resolved by
defining semilinear morphism of type γ as pairs (f : γX → Z, γ). We will omit this complication of
notation in what follows since no confusion will be possible within our context. Note that the union
of sets ∪γ∈ΓHomγ(X,Z) is thus disjoint by definition.
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Remark 4.2. Fix a k̃–functor Y. Recall that the category of k̃–functors over Y

consists of k̃–functors X equipped with a structure morphism X→ Y. This category
admits fiber products: Given f1 : X1 → Y and f2 : X2 → Y then X1 ×Y X2 is given
by

(X1 ×Y X2)(R) = {(x1, x2) ∈ X1(R)× X2(R) : f1(R)(x1) = f2(R)(x2)}.
Semilinearity extends to fiber products under the right conditions. Suppose f1 :

X1 → Y and f2 : X2 → Y are as above, and that the action of Γ in Xi and Y

is compatible in the obvious way. Then for each γ ∈ Γ the “structure morphisms”
γfi :

γXi → γY defined above can be seen to verify

(4.9) γ(X1 ×Y X2) =
γX1 ×γY

γX2

for all γ ∈ Γ.

4.3 Case of affine schemes

Assume that X is affine, that is X = Spk̃A = Homk̃−alg(A,−). If γ ∈ Γ then

(4.10) γX = Spk̃A
γ−1

as can be seen from (4.3). In particular γX is also affine. Our next step is to show
that semilinear twists of schemes are also schemes.

Assume thatY is an open subfunctor of X.We claim that γY is an open subfunctor
of γX.We must show that for all affine functor Spk̃A and all morphism f : Spk̃A→ γX

there exists an ideal I of A such that f−1(γY) = D(I) where

D(I)(R) = {α ∈ Hom(A,R) : Rf(I) = R}.

Let us for convenience denote Spk̃A by X′, and γ−1 by γ′. Our morphism f induces
a morphism γ ′f : γ ′X′ → X by the considerations described above. Because Y is
open in X and γ ′

X′ = Spk̃−algA
γ is affine there exists and ideal I of Aγ such that

(γ ′f)−1(Y) = D(I). Applying this to the k̃–algebra Rγ we obtain

(4.11) γ ′f(Rγ)−1(Y(Rγ) = {α ∈ Homk̃−alg(A
γ ′

, Rγ) : Rγα(I) = Rγ}.

On the other hand γ ′f(Rγ)−1 = f(R)−1 and Y(Rγ) = γY(R). Finally in the right
hand side of (4.11) we have Homk̃−alg(A

γ ′
, Rγ) = Homk̃−alg(A,R) and R

γα(I) = Rγ

if and only if Rα(I) = R. Since I is also an ideal of the k̃–algebra A this completes
the proof that γY is an open subfunctor of γX.

If X is local then so is γX. Indeed, given a k̃-algebra R and and element f ∈ R
then f can naturally be viewed as an element of Rγ (since R and Rγ coincide as

27



rings), and it is immediate to verify that (Rf )
γ = (Rγ)f . Using that it is then clear

that the sequence

(4.12) γX(R)→ γX(Rfi) ⇉
γX(Rfifj)

is exact whenever 1 = f1 + · · ·+ fn.
Since R is a field if and only if Rγ is a field it is clear that if X is covered by a

family of open subfunctors (Yi)i∈I , then γX is covered by the open subfunctors γYi.
From this it follows that if X is a scheme then so is γX.

Remark 4.3. Let X is a k̃–scheme defined along traditional lines (and not as a
special type of k̃–functor), and let X also denote the restriction to the category of
affine k̃–schemes of the functor of points of X. If we define (again along traditional
lines) γX = X×Spec(k̃) Spec(k̃

γ−1
), then it can be shown that the functor of points of

γX (restricted to the category of affine k̃–schemes) coincides with the twist by γ of X
that we have defined.

Remark 4.4. We look in detail at the case when our k̃–scheme is an affine group
scheme G. Thus G = Spk̃k̃[G] for some k̃–Hopf algebra k̃[G] (see [DG] II §1 for
details).

Let ǫG : k̃[G] → k̃ denote the counit map. As k̃-modules we have k̃[G] = k̃ ⊕ IG
where IG is the kernel of ǫG. Let γ ∈ Γ. As explained in (4.10) we have γG =
Spk̃k̃[G]γ

−1
= Homk̃−alg(k̃[G]γ

−1
,−).We leave it to the reader to verify that ǫγG

: γ◦ǫG.
As an abelian group IG = IγG

, but in this last the action of k̃ is obtained through the

action of k̃ in k̃[G]γ .
Next we make some relevant observations about Lie algebras from a functorial

point of view ([DG] II §4). Recall that the group functor Lie(G) attaches to an
object R in k̃-alg the kernel of the group homomorphism G(R[ǫ]) → G(R) where
R[ǫ] is the k̃–algebra of dual numbers of R, and the group homomorphism comes
from the functorial nature of G applied to the morphism R[ǫ] → R in k̃–alg that
maps ǫ 7→ 0. By definition Lie(G) = Lie(G)(k̃). In particular Lie(G) ⊂ G(k̃[ǫ]) =
Homk̃-alg(k̃[G], k̃[ǫ]). Every element x ∈ Lie(G) is given by

(4.13) x : a 7→ ǫG(a) + δx(a)ǫ

with δx ∈ Derk̃(k̃[G], k̃) where k̃ is viewed as a k̃[G]–module via the counit map of
G. In what follows we write x = ǫG + δxǫ. The map x 7→ δx is in fact a k̃-module
isomorphism Lie(G) ≃ Derk̃(k̃[G], k̃). In particular if λ ∈ k̃ then λx ∈ Lie(G) is such
that δλx = λδx.

Similar considerations apply to the affine k̃-group γG. We have Lie(γG) =
Derk̃(k̃[G]γ

−1
, k̃). Note that if y ∈ Lie(γG) corresponds to δy ∈ Derk̃(k̃[G]γ

−1
, k̃),
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then under the action of k̃ on Lie(γG) the element λy corresponds to the derivation
λδy and not to (γλ)δy: The “γ part” is taken into consideration already by the fact
that y ∈ Lie(γG) and that δy ∈ Derk̃(k̃[G]γ

−1
, k̃).

4.4 Group functors

Let from now on G denote a k̃-group functor. If H is a subgroup functor of G we
let

Autγ(G,H) =
{
f ∈ Autγ(G) | γH = f−1(H)

}
.

It is easy to verify then that AutΓ(G,H) = ∪γ∈ΓAutγ(G,H) is a subgroup of AutΓ(G).

Proposition 4.5. Let Πk̃/kG be the Weil restriction of G to k (which we view as a
k–group functor). There exists a canonical group homomorphism

˜ : AutΓ(G)→ Aut(Πk̃/kG).

Proof. As observed in Remark 4.1 the map γ : k̃ → k̃γ is an isomorphism of k̃–alg,
and for R in k–alg (R ⊗k k̃)γ = R ⊗k k̃γ . We thus have a k̃–algebra isomorphism
1⊗ γ : R⊗k k̃ → (R⊗ k̃)γ . For a given f ∈ AutΓ(G), the composite map

f̃(R) : (Πk̃/kG)(R) = G(R ⊗k k̃)
G(1⊗γ)−→ G

(
(R⊗k k̃)γ

)
=

= γG(R⊗k k̃)
f(R⊗k k̃)→ G(R ⊗k k̃) = (Πk̃/kG)(R)

is an automorphism of the group (Πk̃/kG)(R). One readily verifies that the family

f̃ = f̃(R)R∈k−alg is functorial on R, hence an automorphism of Πk̃/kG.
To check that ˜ is a group homomorphism we consider two elements f1, f2 ∈

AutΓ(G) of type γ1 and γ2 respectively. Recall that γ2 induces a k̃-algebra homomor-
phism 1 ⊗ γ2σ : R⊗ k̃γ → R ⊗ k̃γ2γ for all σ ∈ Γ [see Remark 4.1(i)]. Since γ will be
understood from the context we will denote this homomorphism simply by 1⊗γ2. By
functoriality we get the following commutative diagram [see Remark 4.1(1)]

G(R ⊗ k̃γ1) G(1⊗γ2)−−−−−→ G(R⊗ k̃γ2γ1)y=

y=

γ1G(R ⊗ k̃)
γG(1⊗γ2)−−−−−→ γ1G(R⊗ k̃γ2)yf1(R⊗k̃)

yf1(R⊗k̃γ2 )

G(R⊗ k̃) G(1⊗γ2)−−−−−→ G(R ⊗ k̃γ2)
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Since f2 ◦ f1 is of type γ2γ1, by definition we have

f̃2 ◦ f1(R⊗ k̃) = (f2 ◦ f1)(R⊗ k̃) ◦G(1⊗ γ2γ1).

Thus
f̃2 ◦ f1(R⊗ k̃) = (f2 ◦ f1)(R⊗ k̃) ◦G(1⊗ γ2 ◦ 1⊗ γ1)

= (f2 ◦ f1)(R⊗ k̃) ◦G(1⊗ γ2) ◦G(1⊗ γ1)
= f2(R⊗ k̃) ◦ f1(R⊗ k̃γ2) ◦G(1⊗ γ2) ◦G(1⊗ γ1)
= f2(R⊗ k̃) ◦G(1⊗ γ2) ◦ f1(R⊗ k̃) ◦G(1⊗ γ1)

= f̃2(R ⊗ k̃) ◦ f̃1(R⊗ k̃).

Example 4.6. (a) Consider the case of the trivial k̃–group ek̃. Each set Autγ(ek̃) =
Isom(γek̃, ek̃) consists of one element which we denote by γ∗. Then AutΓ(ek̃) ≃ Γ.
We have Πk̃/kek̃ = ek. In particular Aut(Πk̃/kek̃) = 1 and the homomorphism
˜ : AutΓ(G) → Aut(Πk̃/kG) is in this case necessarily trivial. In affine terms ek̃ is

represented by k̃ and γek̃ by k̃γ
−1
. Then the k̃–group isomorphism γ∗ : γek̃ → ek̃

corresponds to the k̃–Hopf algebra isomorphism γ−1 : k̃ → k̃γ
−1
.

(b) Consider the case when Γ is the Galois group of the extension C/R, andG is the
additive C–group. Then AutΓ(G) can be identified with the group of automorphisms
of (C,+) which are of the form z 7→ λz or z 7→ λz for some λ ∈ C×. The Weil
restriction of G to R is the two-dimensional additive R–group. Thus Aut(Πk̃/kG) =
GL2(R).

The above examples show that, even if k̃/k is a finite Galois extension of fields
and G is a connected linear algebraic group over k̃, the homomorphism f 7→ f̃ need
be neither injective nor surjective

Corollary 4.7. Assume that G = Spk̃k̃[G] is an affine k̃-group. The group AutΓ(G)
acts naturally on the groups G(k̃) and G(k̃[ǫ]). Furthermore the action of an element
f ∈ Autγ(G) on G(k̃[ǫ]) stabilizes Lie(G) ⊂ G(k̃[ǫ]). The induced map Lie(f) :
Lie(G) → Lie(G) is an automorphism of Lie(G) viewed as a Lie algebra over k.
This automorphism is k̃–semilinear, i.e., Lie(f)(λx) = (γλ)Lie(f)(x) for all λ ∈ k̃
and x ∈ Lie(G).

Proof. We maintain the notation and use the facts presented in Remark 4.4. Let
x ∈ Lie(G) and write x = ǫG+ δxǫ. If λ ∈ k̃ then λx ∈ Lie(G) is such that δλx = λδx.

By definition (Πk̃/kG)(k) = G(k̃) and (Πk̃/kG)(k[ǫ]) = G(k̃[ǫ]). The action of an

element f ∈ AutΓ(G) on these two groups is then given by the automorphisms f̃k
and f̃k[ǫ] of the previous Proposition. Thus if we let γǫ : k̃[ǫ] → k̃[ǫ]γ denote the
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isomorphism of k̃–alg induced by γ the map f̃k[ǫ] is then obtained by restricting to
Lie(G) the composite map

G(k̃[ǫ]) = Homk̃−alg(k̃[G], k̃[ǫ])
G(γǫ)→ Homk̃−alg(k̃[G], k̃[ǫ]γ) =

= Homk̃−alg(k̃[G]γ
−1

, k̃[ǫ]) = γG(k̃[ǫ])
f(k̃[ǫ])→ Homk̃−alg(k̃[G], k̃[ǫ]) = G(k̃[ǫ]).

Using the fact that γǫ ◦ ǫG = γ ◦ ǫG = ǫγG
it easily follows that

(4.14) Lie(f)(x) = f̃k[ǫ](x) = f(k̃[ǫ]) ◦
(
ǫγG

+ (γ ◦ δx)ǫ
)

Let y = ǫγG
+ (γ ◦ δx)ǫ ∈ Lie(γG). If λ ∈ k̃ then we have

Lie(f)(λx) = f(k̃[ǫ]) ◦
(
ǫγG

+ (γ ◦ δλx)ǫ
)

= f(k̃[ǫ]) ◦
(
ǫγG

+ (γ(λδx)ǫ
)

= f(k̃[ǫ]) ◦
(
ǫγG

+ γλ(γ ◦ δx)ǫ
)

= f(k̃[ǫ])
(
(γλ)y)

)

where (γλ)y is the action of the element γλ ∈ k̃ on the element y ∈ Lie(γG), as
explained in the last paragraph of Remark 4.4. Since the restriction of f(k̃[ǫ]) to
Lie(γG) induces an isomorphism Lie(γG)→ Lie(G) of k̃-Lie algebras, this restriction
is in particular k̃-linear. It follows that

Lie(f)(λx) = f(k̃[ǫ])
(
(γλ)y

)
= (γλ)f(k̃[ǫ])(y) = (γλ)Lie(f)(x).

This shows that Lie(f) is semilinear. We leave it to the reader to verify that Lie(f)
is an automorphism of Lie(G) as a Lie algebra over k.

Remark 4.8. There is no natural action of AutΓ(G) on G.

4.5 Semilinear version of a theorem of Borel-Mostow

Throughout this section k denotes a field of characteristic 0.

Theorem 4.9. (Semilinear Borel-Mostow) Let k̃/k be a finite Galois extension of
fields with Galois group Γ. Suppose we are given a quintuple

(
g, H, ψ, φ, (Hi)0≤i≤s

)

where
g is a (finite dimensional) reductive Lie algebra over k̃,
H is a group,
ψ is a group homomorphism from H into the Galois group Γ,
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φ is a group homomorphism from H into the group Autk(g) of automorphisms of
g viewed as a Lie algebra over k,

(Hi)1≤i≤s is a finite family of subgroups of H for which the following two conditions
hold:

(i) If we let the group H act on g via φ and on Γ via ψ, namely hx = φ(h)x and
hλ = ψ(h)λ for all h ∈ H, x ∈ g, and λ ∈ k̃, then the action of H in g is semilinear,
i.e., h(λx)h = hλhx.

(ii) ker(ψ) = Hs ⊃ Hs−1 ⊃ ... ⊃ H1 ⊃ H0 = 0. Furthermore, each Hi is normal
in H, the elements of φ(Hi) are semisimple,9 and the quotients Hi/Hi−1 are cyclic.

Then there exists a Cartan subalgebra of g which is stable under the action of H.

Proof. We will reason by induction on s. If s = 0 we can identify by assumption (ii)
H with a subgroup Γ0 of Γ via ψ. Let k̃0 = k̃Γ0 . This yields a semilinear action of
Γ0 on g. By Galois descent the fixed point gΓ0 is a Lie algebra over k̃0 for which the
canonical map ρ : gΓ0 ⊗k̃0 k̃ ≃ g is a k̃–Lie algebra isomorphism. If h0 is a Cartan

subalgebra of gΓ0 then ρ(h0 ⊗k̃0 k̃) is a Cartan subalgebra of g which is H–stable as
one can easily verify with the aid of assumption (i).

Assume s ≥ 1 and consider a generator θ of the cyclic group H1. As we have
already observed the action of θ on g is k̃–linear. If V is a k̃–subspace of g stable
under θ we will denote by V θ the subspace of fixed points. Before continuing with we
establish the following crucial fact:

Claim 4.10. gθ is a reductive Lie algebra over k̃. If h is a Cartan subalgebra of gθ,
then zg(h) is a Cartan subalgebra of g.

Since φ(θ) is an automorphism of the k̃–Lie algebra g we see that gθ is indeed
a Lie subalgebra of g. Let g′ and z denote the derived algebra and the centre of g
respectively. Because g is reductive g′ is semisimple and g = g′× z. Clearly θ induces
by restriction automorphisms (also denoted by θ) of g′ and of z. By [Bbk] Ch. 8 §1
cor. to prop. 12. (g′)θ is reductive, and therefore gθ = (g′)θ × zθ is also reductive.

Every Cartan subalgebra h of gθ is of the form h = h′ × zθ for some Cartan
subalgebra h′ of (g′)θ. Clearly zg(h) = zg′(h

′) × z. By [P3] theorem 9 the centralizer
zg′(h

′) is a Cartan subalgebra of g′, so the claim follows.

We now return to the proof of the Theorem. Since H1 is normal in H we have
an induced action (via φ) of H ′ = H/H1 on the reductive k̃–Lie algebra gθ. We
have induced group homomorphisms φ′ : H ′ → Autk(g

θ) and ψ′ : H ′ → Γ (this last
since H1 ⊂ ker(ψ)). For 0 ≤ i < s define H ′

i = Hi+1/H1. We apply the induction
assumption to the quintuple

(
gθ, H ′, ψ′, φ′, (H ′

i)0≤i≤s−1

)
. This yields the existence of

9Because Hi ⊂ ker(ψ) the action of the elements of Hi on g is k̃–linear. The assumption is that
φ(θ) be semisimple as a k̃–linear endomorphisms of g for all θ ∈ Hi.
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a Cartan subalgebra h of gθ which is stable under the action of H ′ given by φ′. This
means that, back in g, the algebra h is stable under our original action of H given by
φ. But then the centralizer of h in g is also stable under this action, and we can now
conclude by (4.10) .

Remark 4.11. If ψ is the trivial map the Theorem reduces to the “Main result (B)”
of Borel and Mostow [BM] for g. The use of (4.10) allows for a slightly more direct
proof of this result.

We shall use the above semilinear version of Borel-Mostow’s theorem 4.12 to estab-
lish the following result which will play a crucial role in the the proof of the existence
of maximal tori on twisted groups corresponding to loop torsors.

Corollary 4.12. Let k̃/k be a finite Galois extension with Galois group Γ. Let G be
a reductive group over k̃. Let H be a group, and assume we are given a group homo-
morphism ρ : H → AutΓ(G) for which we can find a family of subgroups (Hi)0≤i≤s
of H as in the Theorem, that is ker(t ◦ ρ) = Hs ⊃ Hs−1 ⊃ ... ⊃ H1 ⊃ H0 = 0
where t : AutΓ(G) → Γ is the type morphism, each Hi is normal in H, the elements
of ρ(Hi) act semisimply on the k̃–Lie algebra Lie(G), and the quotients Hi/Hi−1

are cyclic. Then there exists a maximal torus T of G such that ρ has values in
AutΓ(G,T) ⊂ AutΓ(G). Namely if h ∈ H and (t◦ρ)(h) = γ ∈ Γ, then ρ(h) : γG→ G
induces by restriction an isomorphism γT→ T.

Proof. Let h ∈ H. If (t ◦ ρ)(h) = γ then according to the various definitions we have
the following commutative diagram.

G(k̃)
G(γ)−−−→ G(k̃γ) = γG(k̃)

ρ(h)(k̃)−−−−→ G(k̃)y
y

y

G(k̃[ǫ])
G(γǫ)−−−→ G(k̃[ǫ]γ) = γG(k̃[ǫ])

ρ(h)(k̃[ǫ])−−−−−→ G(k̃[ǫ])x
x

x

Lie(G)
Lie(G)(γ)−−−−−→ Lie(Gγ)

Lie(G)(ρ(h))−−−−−−−→ Lie(G).

where we have denoted by γǫ : k̃[ǫ] → k̃[ǫ]γ the k̃-algebra isomorphism induced
by γ. For convenience in what follows we will denote Lie(G) by g. By Corollary
4.7 we obtain by composing ρ with the map ˜ defined in Proposition 4.5 a group

homomorphism φ : H → Autk(g), namely φ(h) = ρ̃(h), which together with the group
homomorphism ψ = t ◦ ρ : H → Γ and the Hi satisfy the assumptions of Theorem
4.9. It follows that there exists a Cartan subalgebra t of g which is stable under the
action of H defined by φ.
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Note that by definition

(4.15) ρ̃(h) = ρ(h)(k̃) ◦G(γ)

which is nothing but the top row of our diagram above. Similarly with the notation
of Corollary 4.7 we have

(4.16) Lie(ρ̃(h)) = ρ̃ǫ(h)|g = Lie(G)(ρ(h)) ◦ Lie(G)(γ)

where ρ̃ǫ(h) stands for the middle row of our diagram, namely ρ(h)(k̃[ǫ]) ◦G(γǫ).
Let T be the maximal torus of G whose Lie algebra is t [XIV.6.6.c]. We have

T = ZG(t) where the centralizer is taken respect to the adjoint action of G on g.10

Given an element g ∈ G(k̃) we will denote its natural image in G(k̃[ǫ]) by gǫ.
Since we are working over a base field the k̃-points of T = ZG(t) can be computed in
the naive way, namely

(4.17) T(k̃) = {g ∈ G(k̃) : gǫxgǫ
−1 = x for all x ∈ t ⊂ G(k̃[ǫ])}

Since ˜ρǫ(h) is an automorphism of the (abstract) group G(k̃[ǫ]) we obtain

(4.18) T(k̃) = {g ∈ G(k̃) : ˜ρǫ(h)(gǫ) ˜ρǫ(h)(x)
( ˜ρǫ(h)(gǫ)

)−1
= ˜ρǫ(h)(x) for all x ∈ t}

But since ˜ρǫ(h) stabilizes t this last reads

(4.19) T(k̃) = {g ∈ G(k̃) : ˜ρǫ(h)(gǫ)x
( ˜ρǫ(h)(gǫ)

)−1
= x for all x ∈ t}

Note that by the commutativity of the top square of our diagram we have
( ˜ρ(h)(g)

)
ǫ
=

˜ρǫ(h)(gǫ). Thus from (4.19) we obtain that ˜ρǫ(h)
(
T(k̃)

)
= T(k̃). On the other hand by

(4.15) we have ˜ρǫ(h)
(
T(k̃)

)
= ρ(h)(k̃)

(
G(γ)

(
T(k̃)

))
. But by definition

(
G(γ)

(
T(k̃)

))
=

γT(k̃). Thus our k̃-group homomorphism ρ(h) : γG :→ G is such that the two tori
ρ(h)(γT) and T of G have the same k̃-points. This forces ρ(h)(γT) = T.

Next we give a crucial application of the semilinear considerations developed thus
far to the existence of maximal tori for certain loop groups.

10We could not find a reference for this basic fact in the literature. By [XIII 5.3] we haveNG(T) =
NG(t). Since the natural homomorphism NG(T)/T→ Aut(t) is injective we obtain T = ZG(t).
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4.6 Existence of maximal tori in loop groups

We come back to the case of R = Rn = k[t±1
1 , . . . , t±1

n ] where k is a field of
characteristic zero. This is the ring that plays a central role in all applications to
infinite-dimensional Lie theory. It is not true in general that a reductive Rn–group
admits a maximal torus; however.

Proposition 4.13. Let G be a loop reductive group scheme over Rn (see definition
3.4). Then G admits a maximal torus.

Proof. We try to recreate the situation of the semilinear Borel-Mostow theorem.
We can assume that G is split after base extension to the Galois covering R̃ =
k̃[t

±1/m
1 , . . . , t

±1/m
n ] where m is a positive integers and k̃/k is a finite Galois exten-

sion of fields containing all primitive m-th roots of unity of k. Recall from Example
2.3 that R̃ is a Galois extension of R with Galois group Γ̃ = (Z/mZ)n ⋊ Γ as fol-

lows: For e = (e1, . . . , en) ∈ Zn we have e(λt
1
m
j ) = λξ

ej
m t

1
m
j for all λ ∈ k̃, where

− : Zn → (Z/mZ)n is the canonical map, while the Galois group Γ = Gal(k̃/k) acts
naturally on R̃ through its action on k̃.

Let G0 be the Chevalley k–form of G (see §3.2). By assumption, we can assume
that G is the twist of G0 = G0 ×k R by a loop cocycle

u : Γ̃→ Aut(G0)(k̃).

The homomorphism ψ : Γ̃ = (Z/mZ)n⋊Γ→ Γ is defined to be the natural projection.
For convenience we will adopt the following notational convention. The elements of
Γ̃ will be denoted by γ̃, and the image under φ of such an element (which belongs to
Γ), by the corresponding greek character: that is ψ(γ̃) = γ.

Consider the reductive k̃–group G = Spec(k̃[G0]) where, as usual, k̃[G0] denotes
the k̃–Hopf algebra k̃ ⊗k k[G0]. Consider for each γ̃ the map f(γ̃) : k̃[G] → k̃[G]
defined by

(4.20) f(γ̃) = uγ̃ ◦ γ.

Since each uγ̃ is an automorphism of the k̃–Hopf algebra k̃[G], it follows that f(γ̃) is
in fact a k̃-Hopf algebra isomorphism k̃[G] → k̃[G]γ . As such it can be thought of,
by Yoneda considerations and (4.10), as an element of Autγ(G) of type γ−1 which we
will denote by ρ(γ̃).

Since the restriction of the action of γ̃ on R̃[G] to k̃[G] is given by γ, the cocycle
condition on u shows that for all α̃, β̃ ∈ Γ̃ we have

(4.21) ρ(α̃β̃) = ρ(α̃)ρ(β̃)
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where this last product takes place in AutΓ(G). Thus ρ is a group homomorphism
and f(γ̃) can be viewed as a k̃-Hopf algebra morphism from k̃[G] to k̃[G]γ

From (4.21), the various definitions and the “anti equivalent” nature of Yoneda’s
correspondence it follows that the map γ̃ → ρ(γ̃) can be viewed as a group homomor-
phism ρ : Γ̃opp → AutΓ(G), where Γ̃opp is the opposite group of Γ̃. Since ρ(γ̃) is of
type γ−1 we can complete the necessary semilinear picture by defining φ : Γ̃opp → Γ
to be the map γ̃ → γ−1. The kernel of the composite map t ◦ ρ is precisely (Z/mZ)n,
and the elements of this kernel act trivially on k̃[G], in particular their correspond-
ing action on the Lie algebra of G is trivial, hence semisimple. We can thus apply
Corollary 4.12; the role of H now being played by Γ̃opp.

Let T be a torus G such that ρ(γ̃)(γ
−1
T) = T for all γ̃ ∈ Γ̃. The torus T

corresponds to a Hopf ideal I of the Hopf k̃–algebra k̃[G] representing G. Each
ρ(γ̃), which corresponds to the k̃-Hopf algebra isomorphism f(γ̃) described in (4.20),
induces a k̃–Hopf algebra isomorphism f(γ̃) from k̃[T] to k̃[T]γ where k̃[G]/I = k̃[T]
is the Hopf algebra representing T. For future use we observe that the resulting action
of Γ̃ on k̃[T] is Γ–semilinear in the sense that if λ ∈ k̃ and a ∈ k̃[T] then

(4.22) f(γ̃)(λa) = f(γ̃)(λk̃[T].a) = λk̃[T]γ .
(
f(γ̃)(a)

)
= (γλ)f(γ̃)(a)

This follows immediately from the definition of f(γ̃).
Consider the reductive R̃-group G̃ = G×k̃ R̃ and its maximal torus T̃ = T×k̃ R̃.

We want to define an action of Γ̃ as automorphisms of the R–Hopf algebra R̃[T] =
k̃[T]⊗k̃ R̃ so that the action is Γ̃–semilinear, this is

(4.23) γ̃(xs) = γ̃xγ̃s

for all γ̃ ∈ Γ̃, s ∈ R̃ and x ∈ R̃[T]. By Galois descent this will show that the maximal
torus T̃ of G̃ descends to a torus (necessarily maximal) T of G.

To give the desired semilinear action consider, for a given fixed γ̃ ∈ Γ̃, the map

k̃[T]× R̃→ k̃[T]⊗k̃ R̃ = R̃[T]

defined by

(4.24) (a, s) 7→ f(γ̃)(a)⊗ γ̃s

for all a ∈ k̃[T] and s ∈ R̃. From (4.22) and the fact that γ̃s = γs if s ∈ k̃ ⊂ R̃ it
follows that the above map is k̃-balanced, hence that induces a morphism of k̃-spaces

(4.25) f̂(γ̃) : k̃[T]⊗k̃ R̃ = R̃[T]→ R̃[T]

satisfying

(4.26) f̂(γ̃) : a⊗ s 7→ ρ(γ̃)(a)⊗ γ̃s

for all a ∈ k̃[T] and s ∈ R̃. From (4.22) and (4.26) we then obtain an action of the
group Γ̃ on the Hopf algebra R̃[T] as prescribed by (4.23).
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4.7 Variations of a result of Sansuc.

We shall need the following variantion of a well-known and useful result [Sa, 1.13].

Lemma 4.14. Assume that k is of characteristic zero. Let H be a linear algebraic
group over k and let U be a normal unipotent subgroup of H.

1. Let k′/k be a finite Galois extension of fields. Let Γ be a finite group acting on
k′/k. Then the map

H1
(
Γ,H(k′)

)
→ H1

(
Γ, (H/U)(k′)

)

is bijective.

2. Let R be an object in k–alg. Then the map

H1(R,H)→ H1(R,H/U)

is bijective.

Proof. The k–group U admits a non-trivial characteristic central split unipotent sub-
group U0 ≃ Gn

a [DG, IV.4.3.13]. We can then form the following commutative
diagram of exact sequence of algebraic k–groups

1y
1 U/U0y

y
1 −−−→ U0 −−−→ H −−−→ H/U0 −−−→ 1y ∼=

y
y

1 −−−→ U −−−→ H −−−→ H/U −−−→ 1y
y

U/U0 1y
1

If the Lemma holds for the morphisms H → H/U0 and H/U0 → H/U, it holds for
H → H/U. Without loss of generality, we can therefore assume by devissage that
U = Gn

a .
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(1) Since by Hilbert’s Theorem 90 (additive form) and devissage H1(k′,U) = 0,11 we
have an exact sequence of Γ–groups

1→ U(k′)→ H(k′)→ (H/U)(k′)→ 1.

For each c ∈ Z1
(
Γ, (H/U)(k′)

)
, the group c

(
U(k′)

)
is a uniquely divisible abelian

group, so H i
(
Γ, c(U(k′))

)
= 0 for all i > 0. By applying a basic result on non-abelian

cohomology [Se1, §I.5, corollary to prop. 41], the vanishing of these H2 implies that
the map H1

(
Γ,H(k′)

)
→ H1

(
Γ, (H/U)(k′)

)
is surjective. Similarly, for each z ∈

Z1
(
Γ,H(k′)

)
, the group 0 = H1

(
Γ, z(U(k′))

)
maps onto the subset of H1

(
Γ,H(k′)

)

consisting of classes of cocycles whose image in H1
(
Γ, (H/U)(k′)

)
coincides with that

of [z]. We conclude that the map H1
(
Γ,H(k′)

)
→ H1

(
Γ, (H/U)(k′)

)
is bijective.

(2) Let us first prove the injectivity by using the classical torsion trick. We are given
a H/U–torsor E over Spec(R). We can twist the exact sequence of R–group schemes
1→ UR → HR → HR/UR → 1 by E and get the twisted sequence 1→ EU→ EH→
EH/EU → 1, where as usual we write EU instead of EUR and EH instead of EHR.
We consider the following commutative diagram of sets [Gi, III.3.3.4]

H1(R,H) −−−→ H1(R,H/U)

torsion

x≃ torsion

x≃

H1(R, EU) −−−→ H1(R, EH) −−−→ H1(R, EH/EU)

where the bottom map is an exact sequence of pointed sets. Indeed GLn is the group
of automorphisms of the group scheme Gn

a (see Lemma 4.15 below). It follows that EU
corresponds to a locally free sheaf over Spec(R). By [Gr1, pp 16-17] (or [M, III.3.7]),

we have Ȟ
i
(R, EU) = 0 for all i > 0.12 So the the map H1(R, EH)→ H1(R, EH/EU)

has trivial kernel and the fiber of H1(R,H)→ H1(R,H/U) is only [E].
For surjectivity, if we are given aH/U–torsor E over Spec(R) then by [Gi, IV.3.6.1]

there is a class
∆([E]) ∈ Ȟ

2
(R, EU)

which is the obstruction to the existence of a lift of [E] to H1(R,H). Here EU is the
R–group scheme obtained by twisting Gn

a by the R–torsor E. Since EU corresponds
to a locally free sheaf, the same reasoning used above shows that the obstruction
∆([E]) vanishes as desired.

11See [GMB] Lemme 7.3 for a more general result.
12All the Ȟ

i
that we consider coincide with the corresponding Hi defined in terms of derived

functors.
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Lemma 4.15. Let X be a scheme of characteristic 0. Let E be a locally free X–sheaf
of finite rank and let V(E) be the associated “additive” X–group scheme. Then the
natural homomorphism of fpqc sheaves

α : GL(E)→ AutX−gr(V(E))

is an X–group sheaf isomorphism. In particular, AutX−gr
(
V(E)

)
is an X–group

scheme.

Our convention is that of [DG, §2], namely V(E)(X′) = H0(X′, E ⊗OX
OX ′) for

every scheme X′ over X.

Proof. It is clear that α is a morphism of X–groups. For showing that α is an iso-
morphism of sheaves, we may assume that X = Spec(R) is affine and that E = Rn.
This in turn reduces to the case of R = Q and E = Qn. By descent, it will suffice
to establish the result for R = Q and E = (Q)n. Now on Q-schemes the functor
S 7→ Autgr(V(E))(S) is representable by a linear algebraic Q-group H according
to Hochschild-Mostow’s criterion [HM, th. 3.2]. Therefore we can check the fact
that α : GLn → H is an isomorphism on Q–points. But this readily follows from
the equivalence of categories between nilpotent Lie algebras and algebraic unipotent
groups [DG, §IV §2 cor.4.5]. Since GL(E) is an X–group scheme, α is an isomorphism
of X–group schemes.

5 Maximal tori of group schemes over the punc-

tured line

Let G be a linear algebraic k–group. One of the central results of [CGP] is the ex-
istence of maximal tori for twisted groups of the form EG where [E] ∈ H1(k[t±1],G).13

This result is used to describe the nature of torsors over k[t±1] under G. In our present
work we are ultimately interested in the classification of reductive groups over Laurent
polynomial rings when k is of characteristic 0, and applications to infinite dimensional
Lie theory. In understanding twisted forms ofG the relevant objects are torsors under
Aut(G), and not G. It is therefore essential to have an analogue of the [CGP] result
mentioned above, but for arbitrary twisted groups, not just inner forms.14 This is
one of the crucial theorems of our paper.

13If the characteristic of k is sufficiently large.
14Aut(G) need not be an algebraic group. Even if it is, the fact that it need not be connected

leads to considerable technical complications (stemming from the fact that, unlike the affine line, the
punctured line has non-trivial geometric étale coverings). As already mentioned, these difficulties
have to be dealt with if one is interested in the study of twisted forms of GR or its Lie algebra.
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Theorem 5.1. Let R = k[t±1] where k is a field of characteristic 0. Every reductive
group scheme G over R admits a maximal torus.

Corollary 5.2. Let k and R be as above. Let G be a smooth affine group scheme
over R whose connected component of the identity G0 is reductive. Then

1. H1
toral(R,G) = H1(R,G).

2. If G is constant, i.e. G = G×k R for some linear algebraic k–group G, then

H1
toral(R,G) = H1

loop(R,G) = H1(R,G).

The first assertion is an immediate corollary of the Theorem while the second then
follows from Corollary 3.16.2 and Lemma 2.8.

The proof of the Theorem relies on Bruhat-Tits twin buildings and Galois descent
considerations. We begin by establishing the following useful reduction.

Lemma 5.3. It suffices to establish Theorem 5.1 under the assumption that G is a
twisted form of a simple simply connected Chevalley R–group.15

Proof. Assume that Theorem 5.1 holds in the simple simply connected case. By
[XII.4.7.c], there is a natural one-to-one correspondence between the maximal tori of
G, its adjoint group Gad and those of the simply connected covering G̃ad of Gad. We
can thus assume without lost of generality thatG is simply connected. By [XXIV.5.10]
we have

G =
∏

i=1,...,l

∏

Si/R

Gi

where each Si is a connected finite étale covering of R and eachGi a simple simply con-
nected Si–group scheme. By Demazure’s main theorem, the Si–groups Gi are twisted
forms of simple simply connected Chevalley groups. Since by Lemma 2.8 Si is a Lau-
rent polynomial ring, our hypothesis implies that each of the Si–groups Gi admits a
maximal torus Ti. Then our R–group G admits the maximal torus

∏
i=1,...,l

∏
Si/R

Ti.

5.1 Twin buildings

Throughout this section k denotes a field of characteristic 0. We set R = k[t±1],

K = k(t) and K̂ = K((t)). For a “survival kit” on euclidean buildings, we recommend
Landvogt’s paper [L].

15The usual algebraic group literature would use the term “almost simple” in this situation. We
adhere throughout to the terminology of [SGA3].
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Let R̃ be a finite Galois extension of R of the form R̃ = k̃[t±
1
n ] where k̃/k is a finite

Galois extension of k containing all n-roots of unity in k. Then as we have already
seen Γ̃ := Gal(R̃/R) = µµµn(k̃)⋊ Γ where Γ = Gal(k̃/k).

Set t̃ = t
1
n We let L = k̃( t̃ ) = k̃(t̃

−1
), and consider the two completions L̂+ =

k̃(( t̃ )) and L̂− = k̃((t̃
−1
)) of L at 0 and∞ respectively, as well as their corresponding

valuation rings Â+ = k̃[[ t̃ ]] and Â− = k̃[[t̃
−1
]].

Let G be a split simple simply connected group over k. Let T be a maximal split
torus of G, B+ a Borel subgroup of G which contains T, and B− the corresponding
opposite Borel subgroup (which also contains T). We denote by W = NG(T) the
corresponding Weyl group and by ∆± the Dynkin diagram attached to (G,B±,T).

Following Tits [T3], we consider the twin building B = B+ × B− of G0 ×k L with

respect to the two completions L̂+ and L̂−. Recall that B comes equipped with an
action of the group G(L), hence also of G(R̃). The split torus T0×k L gives rise to a
twin apartment A = A+×A− of B. The Borel subgroups B± define the fundamental
chambers C± of A±, each of which is an open simplex whose vertices are given by the
extended Dynkin diagram ∆̃± of ∆±.

Recall that the group functor Aut(G) is an affine group scheme. The group
Aut(G)(L) acts on B by “transport of structure” [L] 1.3.4.16 This leads to an action
of G(L) on B via Int : G → Aut(G). This action coincides with the “standard”
action of G(L) mentioned before because G is semisimple. By taking into account

the natural action of Γ̃ ≃ Gal(L̂+/K̂) on B we conclude that the twin building
B is equipped with an action of the semi-direct product Aut(G)(R̃)⋊ Γ which is
compatible (via the adjoint action) with the action of G(R̃).

The hyperspecial group G(Â±) fixes a unique point φ± of A± [BT1, §9.1.19.c].
Recall that the hyperspecial points of B± are G(L̂±)-conjugate to φ± of B±, and can
therefore be identified with the set of left cosets

G(L̂±)/G(Â±) ≃ G(L̂±). φ± ⊂ B±.

More generally each facet of the building B± has a type [BT1, §2.1.1 ] which is a
subset of ∆̃± and the type of a point x ∈ B± is the type of its underlying facet Fx.

17

The type of the chamber C± is ∅ and the type of an hyperspecial point is ∆̃± \∆±,
namely the extra vertex of the affine Dynkin diagram.

16The group in question acts on the set of maximal split tori, hence permutes the apartments
around.

17Namely the smallest facet containing x in its closure.
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5.2 Proof of Theorem 5.1

By Lemma 5.3, we can assume that G is simple simply connected. By the
Isotriviality Theorem [GP1, cor. 2.16], we know that our R–group G is isotriv-
ial. This means that there exists a finite Galois covering S/R and a “trivialization”
f : G ×k S ≃ G ×R S where G is a split simple simply connected k–group. In our
terminology, G is the Chevalley k–form of G.

Because of the structure of the algebraic fundamental group of R we may assume
without loss of generality that S = R̃ is as in §5.1, and we keep all the notation
therein. What is so special about this situation is that R and R̃ “look the same”,
namely they are both Laurent polynomial rings in one variable with coefficients in a
field.

We have Spec(R̃) = P1
k̃
\ {0,∞} and the action of Γ̃ on R̃ extends to P1

k̃
since R̃

is regular of dimension 1.
For γ̃ ∈ Γ̃ consider the map zγ̃ = f−1 ◦ γ̃f : Γ̃ → Aut(G)(R̃), where Aut(G)

stands for the group scheme of automorphisms of the Z-group G. Then z = (zγ̃)γ̃∈Γ̃ is

a cocycle in Z1
(
Γ̃,Aut(G)(R̃)

)
where the Galois group Γ̃ acts naturally onAut(G)(R̃)

via its action on R̃. Descent theory tells us that G is isomorphic to the twisted R-
group zG.18

The action of Γ̃ on Aut(G)(R̃) allows us to consider the semidirect product group
Aut(G)(R̃)⋊ Γ̃. We then have a group homomorphism

(5.1) ψz : Γ̃→ Aut(G)(R̃)⋊ Γ̃

given by ψz(γ) = zγ γ which is a section of the projection map Aut(G)(R̃)⋊ Γ̃→ Γ̃.
Let T be a maximal split of G. Set L = k̃(t̃), and let A+ (resp. A−) be the local

ring of P1
k̃
at 0 (resp. ∞). The composite map (see §5.1)

Γ̃
ψz−→ Aut(G)(R̃)⋊ Γ̃→ Aut(B)

is a group homomorphism. The corresponding action of Γ̃ on B will be referred to
as the twisted action of Γ̃ on the building. We now appeal to the Bruhat-Tits fixed
point theorem [BT1, §3.2] to obtain a point p = (p+, p−) ∈ B which is fixed under
the twisted action, i.e. ψz(γ̃).p = zγ̃ γ̃(p) = p for all γ̃ ∈ Γ̃. Abramenko’s result
[A, Proposition 5] states that G(R̃).A = B. There thus exists g ∈ G(R̃) such that
p belongs to the apartment g.A. Up to replacing zγ̃ by Int(g)−1 zγ̃ Int(γ̃(g)), we can
therefore assume that p belongs to A.

We shall use several times that Γ̃ acts trivially on A under the standard action.
To see this one reduces to the action of Γ̃ on A+ = φ+ + T̂ ⊗Z R. Firstly Γ̃ stabilizes

18Recall that for convenience zG is shorthand notation for z(G×k R) = z(GR).
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the group G(Â+) so it fixes φ+. Secondly it acts trivially on T̂ so acts trivially on
A+.

Observe that since γ̃(p) = p, we have that zγ̃ . p = p for all γ̃ ∈ Γ̃.
Let Fp± be the facet associated to p± and choose a vertex q± of F p±. The trans-

forms of q± by zγ̃ and γ̃ are vertices of F p±, so ψz(γ̃).q± belongs to A. We define

x± = Barycentre
(
ψz(γ̃).q±, γ̃ ∈ Γ̃

)
∈ A,

where the barycentre stands for the riemannian’s one as defined by Pansu [P, §4.2].
Let d be the integer attached to G in [Gi1, §2], and set m = d | Γ̃ |. Let s ∈ L (a

fixed algebraic closure of L) be such that sm = t̃. We have accordingly smn = t. Set

R′ = k′[ s±1 ]

where k′ is a Galois extension of k which contains k̃ and all mn-roots of unity in k.
Then R′ is Galois over R of Galois group

Γ′ = µµµmn(k
′)⋊Gal(k′/k).

By Galois theory the map υ : Γ′ → Γ̃ given by

(5.2) υ : (ξ, θ) 7→ (ξm, θ|k̃)

is a surjective group homomorphism.
We consider the twin building B′ = B′

+ × B′− of G which is constructed in
the manner described above after replacing, mutatis mutandis, the relevant objects
attached to R̃ by those of R′ . We have a restriction map [Ro, §II.4] ρ± : B± → B′

±
which gives rise to

ρ = (ρ+, ρ−) : B → B′.

Furthermore, if γ′ ∈ Γ′ and we set υ(γ′) = γ̃ then the following diagram commutes

(
∗)

B ρ−→ B′

γ̃

y γ′

y
B ρ−→ B′

where the actions of Γ̃ and Γ′ are the twisted actions. If we define z′ : Γ′ →
Aut(G)(R′) by

z′ : γ′ 7→ z′γ′ = zγ̃ ∈ Aut(G)(R̃) ⊂ Aut(G)(R′)

then z′ is a cocycle and the classes [z] and [z′] in H1
(
R,Aut(G)

)
are the same.
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Lemma 5.4. ρ±(x±) is a hyperspecial point of B′±.

Proof. We look at the case ρ+(x+). We need to consider the intermediate extensions

L̂+ = k̃(( t̃ )) ⊂ k′(( t̃ )) ⊂ k′(( sd )) ⊂ k′(( s )).

The map ρ+ is the composite of the corresponding maps for the intermediate fields,
namely

B+ = B+(G0, k̃(( t̃ )))
ρ1,+−→ B

(
G0, k′(( t̃ ))

) ρd,+−→ B
(
G0, k′(( sd ))

) ρm
d

,+−→ B
(
G0, k′(( s ))

)
B′

+.

The first map does not change the type. By [Gi1, lemma 2.2.a], the image under ρd,+
of any vertex is a hyperspecial point. We have

ρ+(x+) = ρ+

[
Barycenter

(
ψz(γ̃).q±, γ ∈ Γ̃

)]

= ρm
d
,+

[
Barycenter

(
ρd,+ ◦ ρ1,+(ψz(γ̃).q±), γ ∈ Γ̃

)]
.

By [Gi1, Lemma 2.3’ in the errata], we know that the image under ρm
d
,+ of the

barycentre of m
d
hyperspecial points of a common apartment (namely the one attached

to the torus T) is a hyperspecial point, so we conclude that ρ+(x+) is a hyperspecial
point.

In view of diagram (*) above it follows that by replacing R̃ by R′ we may assume
without loss of generality that the points p± ∈ A± are hyperspecial. Note that
by construction, the points ρ±(x±) of B′

± are fixed by both actions (standard and
twisted) of Γ′, so that after our further extension of base ring we may assume that
ρ±(x±) of B± are fixed by both actions of Γ̃.

Since T(R̃) acts transitively on the sets φ± + (T̂ )0 ⊂ A± of hyperspecial points of

A±, there exists g ∈ T(R̃) and a cocharacter λ ∈ (T̂)0 such that

g.(ψ+, x
λ
−) = (x+, x−) = x.

where xλ− := φ− + λ (recall that we have a map (T̂)0 → A− = (T̂)0 ⊗Z R defined
by θ 7→ φ− + θ). Up to replacing the cocycle z by z′ where z′γ̃ = Int(g)−1 zγ̃

γ̃Int(g),

we may assume that ψz(γ̃).(φ+, x
λ
−) = zγ .(φ+, x

λ
−) = (φ+, x

λ
−) for every γ̃ ∈ Γ̃. In

particular,
zγ̃ ∈ Stab

Aut(G)(L̂+)(φ+) = Aut(G)(Â+)

hence
zγ̃ ∈ Aut(G)(R̃) ∩Aut(G)(Â+)Aut(G)(k̃[ t̃ ])
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for each γ̃ ∈ Γ̃. Let gλ := λ( t̃ ) ∈ T(R̃) ⊂ G(R̃). We have gλ.φ− = xλ− and therefore

zγ̃ ∈ Stab
Aut(G)(L̂−)(x

λ
−)

Int(gλ) StabAut(G)(L̂−)(φ−) Int(gλ)
−1 = Int(gλ)Aut(G)(Â−)Int(g

−1
λ ).

It follows that for each γ̃ ∈ Γ̃

zγ̃ ∈ Jλ := Aut(G)(k̃[ t̃ ]) ∩ Int(gλ)Aut(G)(Â−) Int(g
−1
λ )

= Aut(G)(k[ t̃ ]) ∩ Int(gλ)Aut(G)(k̃[ t̃
−1

]) Int(g−1
λ ).

Note that for γ̃ ∈ Γ̃ we have

γ̃gλ =
γ̃λ(t′) = λ(t′)

(
λ(t′)−1 γ̃λ(t′)

)
∈ λ(t′)T(k̃) ⊂ λ(t′)G(Â−) = gλG(Â−)

From this it follows not only that the subgroup Jλ of Aut(G)(R̃) is stable under the
(standard) action of Γ̃, but also that

[z] ∈ Im
(
H1

(
Γ̃, Jλ

)
→ H1

(
Γ̃,Aut(G)(R̃)

))
.

It turns out that the structure of the group Jλ is known by a computation of Ra-
manathan, as we shall see in Proposition 16.2 below. We have

Jλ = Uλ(k̃)⋊ ZAut(G)(λ)(k̃) ⊂ Aut(G)(k̃[ t̃ ]),

where Uλ is a unipotent k–group. Lemma 4.14 shows that the map

H1
(
Γ̃,ZAut(G)(λ)( k̃ )

)
→ H1

(
Γ̃, Jλ

)

is bijective. Summarizing, we have the commutative diagram

H1
(
Γ̃,ZAut(G)(λ)( k̃ )

)
−−−→ H1

(
Γ̃,Aut(G)( k̃ )

)
y∼=

y
H1

(
Γ̃, Jλ

)
−−−→ H1

(
Γ̃,Aut(G)(R̃)

)

which shows that

[z] ∈ Im
(
H1

(
Γ̃,Aut(G)( k̃ )

)
→ H1

(
Γ̃,Aut(G)(R̃)

))
.

This means that [z] is cohomologous to a loop cocycle, and we can now conclude by
Proposition 4.13
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6 Internal characterization of loop torsors and ap-

plications

We continue to assume that our base field k of characteristic zero. Let Rn =
k[t±1

1 , ..., t±1
n ] and X = Spec(Rn). As explained in Example 2.5 we have π1(Rn, a) ≃

Ẑn⋊Gal(k), where the action of Gal(k) on Ẑn is given by our fixed choice of compatible
roots of unity in k. For convenience in what follows we will denote π1(Rn, a) simply
by π1(Rn).

Throughout this section G denotes a linear algebraic k–group.

6.1 Internal characterization of loop torsors

We first observe that loop torsors make sense over R0 = k, namely H1
loop(R0,G)

is the usual Galois cohomology H1(k,G).
Section 3.3 shows that Z1

(
π1(Rn),G(k)

)
is given by couples (z, ηgeo) where z ∈

Z1(Gal(k),G(k)) and ηgeo ∈ HomGal(k)(π1(X, a), zG(k)) = HomGal(k)(Ẑn, zG(k)) ≃
HomGal(k)(∞µµµ, zG). We are now ready to state and establish the internal characteri-
zation of k-loop torsors as toral torsors.

Theorem 6.1. Assume that G0 is reductive. Then H1
toral(Rn,G) = H1

loop(Rn,G).

First we establish an auxiliary useful result.

Lemma 6.2. 1) Let H be an Rn group of multiplicative type. Then for all i ≥ 1 the
natural abstract group homomorphisms

H i
(
π1(Rn),H(Rn,∞)

)
→ H i(Rn, H)→ H i(Fn, H).

are all isomorphisms.
2) Let T be a k–torus. Let c ∈ Z1

(
π1(Rn),Aut(T)(k)

)
⊂

Z1
(
π1(Rn),Aut(T)(Rn,∞)

)
be a cocycle, and consider the twisted Rn–torus cT =

c(T×k Rn). Consider the natural maps

H i
(
π1(Rn), c(T(k)

)
→ H i

(
π1(Rn), cT(Rn,∞)

)
→ H i(Rn, cT)→ H i(Fn, cT)

Then.
(i) If i = 1 then the first group homomorphism is surjective and the last one is an

isomorphism.
(ii) If i > 1 then all the maps are group isomorphisms.
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Proof. 1) The second isomorphism is proposition 3.4.3 of [GP2]. As for the first iso-
morphism we consider the Hochschild-Serre spectral sequence
Hp

(
π1(Rn), H

q(Rn,∞,H)
)

=⇒ Hp+q(Rn,H). From the fact that the groupHp(Rn,∞,H)

is torsion for p ≥ 1 it follows that the map lim−→m
Hp(Rn,∞,mH)→ Hp(Rn,∞,H), where

mH stands for the kernel of the “multiplication by m” map, is surjective. By loc. cit.
cor. 3.3 Hp(Rn,∞,mH) vanishes for all m ≥ 1. Hence Hp(Rn,∞,H) = 0. The spectral
sequence degenerates and yields the isomorphisms H i

(
π1(Rn),H(Rn,∞)

)
≃ H i(Rn, H)

for all i ≤ 1.
2) We begin with an observation about the notation used in the statement of

the Lemma. The subgroup T(k) of T(Rn,∞) is stable under the (twisted) action of
π1(Rn) on cT(Rn,∞). To view T(k) as a π1(Rn)–module with this twisted action we
write c(T(k)).

The fact that the last two maps are isomorphism for all i ≥ 1 is a special case (1).
For the first map, we first analyse the π1(Rn)–module A = T(Rn,∞)/T(k). We have

A = lim−→
m

T(Rn,∞) /T(k)

= lim−→
m

(T̂)0 ⊗Z R
×
n,m /(T̂)0 ⊗Z k

×

= (T̂)0 ⊗Z lim−→
m

R
×
n,m / k

×

= (T̂)0 ⊗Z lim−→
m

(Zn)m (where (Zn)m = Zn)

= (T̂)0 ⊗Z Qn

given that the transition map (Zn)m → (Zn)md is multiplication by d. It follows that
A, hence also cA, is uniquely divisible.

We consider the sequence of continuous π1(Rn)–modules

(6.1) 1→ c

(
T(k)

)
→ cT(Rn,∞)→ cA→ 1.

From the fact that cA is uniquely divisible it follows that the group homomorphisms

(6.2) H i
(
π1(Rn), c(T(k))

)
→ H i

(
π1(Rn), cT(Rn,∞)

)

are surjective for all i ≥ 1 and bijective if i > 1.

We can proceed now with the proof of Theorem 6.1.
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Proof. Let us show first show that H1
loop(Rn,G) ⊂ H1

toral(Rn,G).

Case 1: G = Aut(H0) where H0 is a semisimple Chevalley k–group : Let φ :
π1(Rn)→ Aut(H0)(k) be a loop cocycle. Consider the twisted R–group φG.

19 Propo-
sition 4.13 shows that the connected component of the identity (φG)0 = φ(G

0) of φG
admits a maximal R-torus. Therefore φG admits a maximal R-torus, hence φ defines
a toral R-torsor.

Case 2: G = Aut(H) where H is a semisimple k–group : Denote by H0 the Cheval-
ley k–form of H. There exists a cocycle z : Gal(k)→ G(k) such that H is isomorphic
to the twisted k–group zH0. We can assume then that H = zH0 and G = zAut(H0).
The torsion bijection τz : H1(R,G) = H1(R, zAut(H0))

∼−→ H1(R,Aut(H0)) ex-
changes loop classes (resp. toral classes) according to Remark 3.3. Case 1 then yields
H1
loop(Rn,G) ⊂ H1

toral(Rn,G).

General case. The k–group acts by conjugacy on G0, its center Z(G0) and then on its
adjoint quotient G0

ad. Denote by f : G → Aut(G0
ad) this action. Let φ : π1(Rn) →

G(k) be a loop cocycle. We have to show that the twisted R–group scheme φG
admits a maximal torus. Equivalently, we need to show that (φG)0 =φ (G0) admits
a maximal torus which is in turn equivalent to the fact that (f∗φG)0ad = f∗φ(G

0
ad)

admits a maximal torus [SGA3, XII.4.7]. But f∗φ is a loop cocycle for Aut(G0
ad), so

defines a toral R–torsor under Aut(G0) according to Case 2. Thus f∗φ(G
0
ad) admits

a maximal torus as desired.

To establish the reverse inclusion we consider the quotient group ννν = G/G0, which
is a finite and étale k–group. In particular ννν ×k k is constant and finite, and one can
easily see as a consequence that the natural map ννν(k)→ ννν(Rn,∞) is an isomorphism.
We first establish the result for tori and then the general case.

G0 is a torus T: We again appeal to the isotriviality theorem of [GP1] to see that
H1(π1(Rn),G(Rn,∞))

∼−→ H1(Rn,G). We consider the following commutative dia-
gram of continuous π1(Rn)–groups

1 −−−→ T(k) −−−→ G(k) −−−→ ννν(k) −−−→ 1y
y ||

1 −−−→ T(Rn,∞) −−−→ G(Rn,∞) −−−→ ννν(Rn,∞) −−−→ 1.

This gives rise to an exact sequence of pointed sets

1 −−−→ H1
(
π1(Rn),T(k)

)
−−−→ H1

(
π1(Rn),G(k)

)
−−−→ H1

(
π1(Rn), ννν(k)

)
y

y ||
1 −−−→ H1

(
π1(Rn),T(Rn,∞)

)
−−−→ H1

(
π1(Rn),G(Rn,∞)

)
−−−→ H1

(
π1(Rn), ννν(Rn,∞)

)
.

19We recall, for the last time, that φG is short hand notation for φ(GR).
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We are given a cocycle z ∈ Z1
(
π1(Rn),G(Rn,∞)

)
. Denote by c the image of z in

Z1
(
π1(Rn), ννν(k)

)
= Z1

(
π1(Rn), ννν(Rn,∞)

)
under the bottom map. Under the top

map, the obstruction to lifting [c] to H1
(
π1(Rn),G(k)

)
is given by a class ∆([c]) ∈

H2
(
π1(Rn), c(T(k))

)
[Se1, §I.5.6]. This class vanishes in H2

(
π1(Rn), cT(Rn,∞))

)
, so

Lemma 6.2 shows that ∆([c]) = 0. Hence c lifts to a loop cocycle a ∈ Z1
(
π1(Rn),G(k)

)
.

By twisting by a we obtain the following commutative diagram of pointed sets

1 −−−→ H1
(
π1(Rn), a

(
T(k)

) )
−−−→ H1

(
π1(Rn), a

(
G(k)

) )
−−−→ H1

(
π1(Rn), c

(
ννν(k)

)
y

y ||

1 −−−→ H1
(
π1(Rn), a

(
T(Rn,∞)

) )
−−−→ H1

(
π1(Rn), a

(
G(Rn,∞)

))
−−−→ H1

(
π1(Rn), c

(
ννν(Rn,∞

y
1

where the surjectivity of the left map comes from Lemma 6.2, a(G(k)) denotes G(k)
as a π1(Rn)–submodule of aG(Rn,∞), and similarly for c

(
ννν)(k)

)
= c

(
ννν(Rn,∞)

)
. We

consider the torsion map

τa : H
1
(
π1(Rn), aG(Rn,∞)

) ∼−→ H1
(
π1(Rn),G(Rn,∞)

)
.

Then

τ−1
a ([z]) ∈ ker

(
H1

(
π1(Rn), aG(Rn,∞)

)
→ H1

(
π1(Rn), c

(
ννν(Rn,∞)

))
.

The diagram above shows that τ−1
a ([z]) comes from H1

(
π1(Rn), a(G(k))

)
, hence [z]

comes from H1
(
π1(Rn),G(k)

)
as desired. We conclude that H1(Rn,G) is covered by

loop torsors.

General case : Let T be a maximal torus of G. Consider the commutative diagram

H1
loop

(
Rn,NG(T )

)
−−−→ H1

(
Rn,NG(T)

)
y

y
H1
loop(Rn,G) −−−→ H1

toral(Rn,G).

The right vertical map is surjective according to Lemma 3.13.1. The top horizontal
map is surjective by the previous case. We conclude that the bottom horizontal map
is surjective as desired.

Corollary 6.3. Let G be a reductive R–group. Then G is loop reductive if and only
if G admits a maximal torus.
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Proof. LetG be the Chevalley k–form ofG. ToG corresponds a class [E] ∈ H1
(
Rn,Aut(G)

)
.

When G is semisimple, Aut(G) is an affine algebraic k–group and the Corollary fol-
lows from H1

toral

(
Rn,Aut(G)

)
= H1

loop

(
Rn,Aut(G)

)
.

We deal now with the general case. We already know tby 4.13 that every loop
reductive group is toral. Conversely assume that G admits a maximal torus. Consider
the exact sequence of smooth k–groups [XXIV.1.3.(iii)]

1→ Gad → Aut(G)
p−→ Out(G)→ 1,

where Gad is the adjoint group of G and Out(G) is a constant k–group. Since Rn is
a noetherian normal domain, we know that Rn–torsors under Out(G) are isotrivial
[X.6]. Furthermore by [SGA1, XI §5]

Homct

(
π1(Rn),Out(G)(k)

)
/ ∼ ∼−→ H1

(
Rn,Out(G)

)
.

So p∗[E] is given by a continous homomorphism π1(Rn) → Out(G)(k) whose image
we denote by Out(G)♯. This is a finite group so that Aut(G)♯ := p−1(Out(G)♯) is
an affine algebraic k–group. We consider the square of pointed sets

H1
(
Rn,Aut(G)♯

) p♯∗−−−→ H1
(
Rn,Out(G)♯

)
y

y
H1

(
Rn,Aut(G)

) p∗−−−→ H1
(
Rn,Out(G)

)
.

Since Aut(G)/Aut(G)♯ = Out(G)/Out(G)♯, this square is cartesian as can be
seen by using the criterion of reduction of a torsor to a subgroup [Gi, III.3.2.1]. By
construction, [p∗E] comes from H1

(
Rn,Out(G)♯

)
, hence [E] comes from a class [F] ∈

H1
(
Rn,Aut(G)♯

)
. Our assumption is that the Rn–group G = EG = FG contains a

maximal torus, so Gad = FGad contains a maximal torus and F

(
Aut(G)♯

)
contains

a maximal torus. In other words, F is a toral Rn–torsor under Aut(G)♯. From the
equality H1

toral

(
Rn,Aut(G)♯

)
= H1

loop

(
Rn,Aut(G)♯

)
, it follows that that F is a loop

torsor under Aut(G)♯. By applying the change of groups Aut(G)♯ → Aut(G), we
conclude that E is a loop torsor under Aut(G), hence that G is loop reductive.

Lemma 3.13.2 yields the following fact.

Corollary 6.4. Let 1→ S→ G′ p→ G→ 1 be a central extension of G by a k–group
S of multiplicative type. Then the diagram

H1
loop(Rn,G

′) ⊂ H1(Rn,G
′)

p∗

y p∗

y
H1
loop(Rn,G) ⊂ H1(Rn,G)

is cartesian.
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Remark 6.5. For a k–group G satisfying the condition of Corollary 3.16, one can
prove in a simpler way that toral G–torsors over Rn are loop torsors by reducing to
the case of a finite étale group.

Remark 6.6. Given an integer d ≥ 2, the Margaux algebra (both the Azumaya and
Lie versions) [GP2, 3.22 and example 5.7 ] provides an example of a PGLd-torsor over
C[t±1

1 , t±1
2 ] which is not a loop torsor. The underlying PGLd-torsor is therefore not

toral. This means that the Margaux Azumaya algebra does not contain any (com-
mutative) étale C[t±1

1 , t±1
2 ]-subalgebra of rank d, and that the Margaux Lie algebra,

viewed as a Lie algebra over C[t±1
1 , t±1

2 ], does not contain any Cartan subalgebras (in
the sense of [SGA3]).

Remark 6.7. More generally, for each each positive integer d, we haveH1
toral(Rn[x1, ..., xd],G) =

H1
loop(Rn[x1, ..., xd],G). Since π1(Rn[x1, ..., xd]) ≃ π1(Rn) andNG(T)(S) = NG(T)(S[x1, ..., xd])

for every finite étale covering S of Rn, the proof we have given works just the same
in this case.

6.2 Applications to (algebraic) Laurent series.

Let Fn = k((t1))((t2))...((tn)). In an analogous fashion to what we did in the case

of Rn we define Fn,m = k((t
1
m
1 ))((t

1
m
2 ))...((t

1
m
n )) and Fn,∞ = lim−→Fn,m.

Remark 6.8. (a) If k̃ is a field extension of k the natural map k̃ ⊗k Fn,m →
k̃((t

1
m
1 ))((t

1
m
2 ))...((t

1
m
n )) is injective. If the extension is finite, then this map is an

isomorphism. We will find it convenient (assuming that the field k̃ is fixed in our

discussion) to denote k̃((t
1
m
1 ))((t

1
m
2 ))...((t

1
m
n )) simply by F̃n,m.

(b) The field lim−→k((t
1
m
1 ))((t

1
m
2 ))...((t

1
m
n )) is algebraically closed. We will denote the

algebraic closure of Fn (resp. Fn,m, Fn,∞) in this field by Fn (resp. Fn,m, Fn,∞). As
mentioned in (a) we have a natural injective ring homomorphsm k ⊗k Fn,∞ → Fn.

(c) There is a natural group morphism π1(Rn)→ Gal(Fn) given by considering the
Galois extensions R̃n,m = k̃⊗kRn,m of Rn and F̃n,m of Fn respectively, where k̃ ⊂ k is
a finite Galois extension of k containing all m-roots of unity. These homomorphisms
are in fact isomorphisms.20 For by applying successively the structure theorem for
local fields [GMS] §7.1 p. 17, we have Gal(Fn) = ∞µµµn(k)⋊Gal(k). This means that

Gal(Fn) = lim←−Gal
(
k̃((t

1
m
1 ))((t

1
m
2 ))...((t

1
m
n ))/Fn

)

20If k is algebraically closed this was proved in [GP3] cor 2.14.
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for m running over all integers and k̃ running over all finite Galois extensions of
k inside k containing a primitive m–root of unity. Since at each step we have an
isomorphism

Gal
(
k̃ ⊗ Rn,m/Rn

) ∼= Gal
(
k̃((t

1
m
1 ))((t

1
m
2 ))...((t

1
m
n ))/Fn

) ∼= µµµnm(k̃)⋊Gal(k̃/k),

we conclude that π1(Rn) ∼= Gal(Fn).

(d) It follows from (c) that the base change Rn → Fn induces an equivalence of
categories between finite étale coverings of Rn and finite étale coverings of Fn. Fur-
thermore, if E/Rn is a finite étale covering of Rn, we have E(Rn) = E(Fn). Indeed, E

is split by some Galois covering R̃n,m = k̃⊗kRn,m and E(Rn) = E(R̃n,m)
Gal(R̃n,m/Rn) =

E(F̃n,m)
Gal(F̃n,m/Fn) = E(Fn).

Proposition 6.9. The canonical map

H1
loop(Rn,G)→ H1(Fn,G)

is surjective.

Proof. We henceforth identify π1(Rn) with Gal(Fn) as described in Remark 6.8(c).
The proof is very similar to that of Theorem 6.1, and we maintain the notation
therein. Again we proceed in two steps.

First case: G0 is a torus T: We consider the following commutative diagram of
continuous π1(Rn)–groups

1 −−−→ T(k) −−−→ G(k) −−−→ ννν(k) −−−→ 1y
y ||

1 −−−→ T(Fn) −−−→ G(Fn) −−−→ ννν(Fn) −−−→ 1.

This gives rise to an exact sequence of pointed sets

1 −−−→ H1
(
π1(Rn),T(k)

)
−−−→ H1

(
π1(Rn),G(k)

)
−−−→ H1

(
π1(Rn), ννν(k)

)
y

y ||
1 −−−→ H1

(
Fn,T

)
−−−→ H1

(
Fn,G

)
−−−→ H1

(
Fn, ννν

)
.

We are given a cocycle z ∈ Z1
(
Gal(Fn),G(Fn)

)
= Z1

(
π1(Rn),G(Fn)

)
, and consider

its image c ∈ Z1
(
π1(Rn), ννν(Fn)

)
. By reasoning as in Theorem 6.1 we see that [z]

comes from H1
(
π1(Rn),G(k)

)
as desired. We conclude that H1(Fn,G) is covered by

k-loop torsors.
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General case: Let T be a maximal torus of G.

H1
loop

(
Rn,NG(T )

)
−−−→ H1

(
Fn,NG(T)

)
y

y
H1
loop(Rn,G) −−−→ H1(Fn,G).

The reasoning is again identical to the one used in Theorem 6.1.

7 Isotropy of loop torsors

As before G denotes a linear algebraic group over a field k of characteristic zero.
Rn and π1(Rn) are as in the previous section.

7.1 Fixed point statements

Let η : π1(Rn) → G(k) be a continuous cocycle. Consider as before a Galois
extension R̃n,m = k̃ ⊗k Rn,m of Rn where k̃ ⊂ k is a finite Galois extension of k
containing all m–roots of unity in k, chosen so that our cocycle η factors through the
Galois group

(7.1) Γ̃n,m = Gal(R̃n,m/Rn) ∼= µµµnm(k̃)⋊Gal(k̃/k)

We assume henceforth that G acts on a k–scheme Y. The Galois group Γ̃n,m acts
naturally on Y(R̃n,m), and we denote this action by γ : y 7→ γy. By means of η we
get a twisted action of Γ̃n,m on Y(R̃n,m) which we denote by γ : y 7→ γ′y where

(7.2) γ′y = ηγ .
γy

By Galois descent (7.2) leads to a twisted form of the Rn–scheme YRn . One knows
that this twisted form is up to isomorphism independent of the Galois extension R̃n,m

chosen through which η factors. We will denote this twisted form by ηYRn, or simply
by ηY following the conventions that have been previously mentioned regarding this
matter.

Let (z, ηgeo) be the couple associated to η according to Lemma 3.7. Thus z ∈
Z1

(
Gal(k),G(k)

)
and ηgeo ∈ Homk−gp(∞µµµn, zG) by taking into account Lemma 3.10.

By means of z we construct a twisted form zY of the k–scheme Y which comes
equipped with an action of zG. Via ηgeo, this defines an algebraic action of the affine
k-group ∞µµµ

n on zY. At the level of k–points of ∞µµµ
n, the action is given by

(7.3) n̂.y = ηgeo(n̂).y
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for all n̂ ∈ ∞µµµn(k) = lim←−mµµµ
n
m(k) and y ∈ zY(k). We denote by (zY)η

geo

the closed

fixed point subscheme for the action of ∞µµµn (see [DG] II §1 prop. 3.6.d). We have

(zY)η
geo

(k) =
{
y ∈ zY(k) = Y(k) | y = ηgeo(n̂).y ∀ n̂ ∈ ∞µµµ

n(k)
}

and in terms of rational points
(7.4)

(zY)η
geo

(k) = zY(k) ∩ (zY)η
geo

(k) =
{
y ∈ zY(k) | y = ηgeo(n̂).y ∀ n̂ ∈ ∞µµµ

n(k)
}
.

where we recall that

zY(k) =
{
y ∈ Y(k) | y = zγ.

γy ∀ γ ∈ Gal(k)
}
.

Theorem 7.1. 1. Let G act on Y as above, and assume that Y is projective ( i.e.
a closed subscheme in Pnk). Let η : π1(Rn) → G(k) be a (continuous) cocycle,
and ηY be the corresponding twisted form of YRn . The following are equivalent:

(a) (ηY)(Rn) 6= ∅,
(b) (ηY)(Kn) 6= ∅,
(c) (ηY)(Fn) 6= ∅,
(d) (zY)η

geo

(k) 6= ∅.

2. Let S be a closed k–subgroup of G. Let Y be a smooth G–equivariant compact-
ification of G/S (i.e., Y is projective k–variety that contains G/S as an open
dense G-subvariety). Then the following are equivalent:

(a) [η]Kn ∈ Im
(
H1(Kn,S)→ H1(Kn,G)

)
,

(b) [η]Fn ∈ Im
(
H1(Fn,S)→ H1(Fn,G)

)
,

(c) (zY)η
geo

(k) 6= ∅.

Proof. (1) Again we twist the action G×Y→ Y by z to obtain an action zG×zY→
zY. Lemma 3.8 enables us to assume without loss of generality that z is the trivial
cocycle. We are thus left to deal with a k–homomorphism ηgeo : ∞µµµn → G which
factors at the finite level through µµµnm → G for m large enough. This allows us to
reason by means of a suitable covering R̃n,m as in (7.1).

(a) =⇒ (b) =⇒ (c) are obtained by applying the base change Rn ⊂ Kn ⊂ Fn.

(c) =⇒ (d): Each γ ∈ Γ̃n,m induces an automorphism of R̃n,m ⊗Rn Fn ≃ Fn,m ⊗k k̃ =
F̃n,m which we also denote by γ (even though the notation γ ⊗ 1 would be more
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accurate.) Since R̃n,m trivializes ηY, the Galois extension F̃n,m of Fn (whose Galois
group we identify with Γ̃n,m) splits ηYFn. By Galois descent

ηY(Fn) =
{
y ∈ Y(F̃n,m) | ηγ .γy = y ∀γ ∈ Γ̃n,m

}
.

Since z is trivial, this last equality reads

ηY(Fn) =
{
y ∈ Y(F̃n,m) | ηgeo(γ) .γy = y ∀γ ∈ Γ̃n,m

}
.

where γ is the image of γ under the map Γ̃n,m → µµµnm(k̃) given by (7.1). Hence we
have ηY(Fn) ⊂ Y(Fn,m) and

ηY(Fn) =
{
y ∈ Y(Fn,m) | ηgeo(γ) .γy = y ∀γ ∈ µµµnm(k)

}
.

Since Y is proper over k, we have

ηY(Fn) =
{
y ∈ Y(Fn−1,m[[t

1
m
n ]]) | ηgeo(γ).γy = y γ ∈ µµµnm(k)

}
.

Our hypothesis is that this last set is not empty. By specializing at tn = 0, we get
that

(7.5)
{
y ∈ Y(Fn−1,m) | ηgeo(γ).γy = y ∀γ ∈ µµµnm(k)

}
6= ∅.

We write now µµµnm(k) = µµµn−1
m (k) × µµµm(k) which provides a decomposition of ηgeo

into two k-homomorphisms η′geo : µµµn−1
m → G and ηn

geo : µµµm → G. We define
η′ = (1, η′geo), ηn = (1, ηn

geo) and

Y′ := Yηgeon .

By [DG] II §1 prop. 3.6.(d) we know that Y′ is a closed subscheme of Y, hence a
projective k–variety. Observe that µµµn−1

m acts on Y′.

Claim 7.2. The set (7.5) is included in η′Y
′(Fn−1).

21

To look at the invariants under the action of µµµnm(k), we first look at the invariants
under the last factor µµµm(k), and then the first (n − 1)-factor µµµn−1

m (k) By restricting
the condition to elements of the form (1, γn) for γn ∈ µµµm(k), we see that our set is
included in {

y ∈ Y(Fn−1,m) | ηgeon (γn).y = y ∀γn ∈ µµµm(k)
}

21This inclusion is in fact an equality, but this stronger statement is not needed.
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because µµµm(k) acts trivially on Fn−1,m. By identity (7.4) applied to the base change of

ηgeon to the field Fn−1, this is nothing but Yηgeon (Fn−1,m). Looking now at the invariant
condition for the elements of the form (γ′, 1) for γ′ ∈ µµµn−1

m (k), it follows that
{
y ∈ Y(Fn−1,m) | ηgeo(γ).γy = y ∀γ ∈ µµµnm(k)

}

⊂
{
y ∈ Yηgeon (Fn−1,m) | η′geo(γ′).γ

′

y = y ∀γ′ ∈ µµµn−1
m (k)

}
= η′Y

′(Fn−1).

By induction on n, we get that inside (η′Y
′)(Fn−1) we have Y′η′geo(k) 6= ∅. Thus

Y(k)η
geo 6= ∅ as desired.

(d) =⇒ (a): Since

(ηY)(Rn) =
{
y ∈ Y(R̃n,m) | ηgeo(γ) .γy = y ∀γ ∈ Γ̃n,m

}
,

the inclusion Y(k) ⊂ Y(R̃n,m) yields the inclusion

(Yηgeo)(k) ⊂ (ηY)(Rn).

Thus if (Yηgeo)(k) 6= ∅, then (ηY)(Rn) 6= ∅.
(2) The quotient G/S is representable by Chevalley’s theorem [DG, §III.3.5]. The
only non trivial implication is (c) =⇒ (a). Let X = (G/S) ×k Rn. By (1), we have

ηY(Kn) 6= ∅. In other words, the Kn-homogeneous space ηX under ηG has a Kn-
rational point on the compactification ηY. By Florence’s theorem [F], ηX(Kn) 6= ∅,
hence (a).

7.2 Case of flag varieties

The k–group G0/Ru(G) is reductive. Let T be a maximal k–torus of G0/Ru(G).
This data permits to choose a basis ∆ of the root system Φ(G0/Ru(G)×k k,T×k k)
or in other words to choose a Borel subgroup B of the k–group G0/Ru(G)×k k. It is
well known that there is a one-to-one correspondence between the subsets of ∆ and
the parabolic subgroups of G0 ×k k containing B, which is provided by the standard
parabolic subgroups (PI)I⊂∆ of

(
G0/Ru(G)

)
×k k [Bo, §21.11]. We have P∆ =(

G0/Ru(G)
)
×k k and P∅ = B. Furthermore we know that each parabolic subgroup

of
(
G0/Ru(G)

)
×k k is

(
G0/Ru(G)

)
(k)–conjugate to a unique standard parabolic

subgroup. This allows us to define the type of an arbitrary parabolic subgroup of
G0/Ru(G). It can happen that two different standard parabolic subgroups of the
k–group

(
G0/Ru(G)

)
×k k are conjugate under G(k): There are in general fewer

conjugacy classes of parabolic subgroups. If P is a parabolic subgroup of the k–group
G0/Ru(G), we denote by NG(P) its normalizer for the conjugacy action of G on
G0/Ru(G).
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Lemma 7.3. The quotient G/NG(P) is a projective k–variety.

Proof. We can assume that G0 is reductive. Since G0/P is projective and is a con-
nected component of G/P, G/P is projective as well. The point is that the morphism
G/P → G/NG(P) is a NG(P)/P–torsor. Since the affine k–group NG(P)/P is fi-
nite, étale descent tells us that G/NG(P) is proper [EGA IV, prop. 2.7.1]. But
G/NG(P) is quasiprojective, hence projective.

Given a loop cocycle η : π1(Rn) → G(k) with coordinates (z, ηgeo) as before, we
focus on the special case of flag varieties of parabolic subgroups of G0/Ru(G).

Corollary 7.4. 1. Let I ⊂ ∆. The following are equivalent:

(a) The Rn–group η

(
G0/Ru(G)

)
admits a parabolic subgroup scheme of type

I;

(b) The Rn–group η

(
G0/Ru(G)

)
Rn

admits a parabolic subgroup of type I;

(c) The Fn–group η

(
G0/Ru(G)

)
Fn

admits a parabolic subgroup of type I;

(d) There exists a parabolic subgroup P of the k–groupz(G
0/Ru(G)) which is

of type I and which is normalized by ηgeo, i.e., ηgeo factorizes through
NzG(P).

2. The following are equivalent:

(a) η

(
G0/Ru(G)

)
Rn

is irreducible (i.e has no proper parabolic subgroups);

(b) η

(
G0/Ru(G)

)
Kn

is irreducible;

(c) η

(
G0/Ru(G)oftype

)
Fn

is irreducible;

(d) The k–group homomorphism ηgeo : ∞µµµn → zG→ Aut(zG
0) is irreducible

(see §2.4).

3. The following are equivalent:

(a) η

(
G0/Ru(G)

)
Rn

is anisotropic;

(b) η

(
G0/Ru(G)

)
Kn

is anisotropic;

(c) η

(
G0/Ru(G)

)
Fn

is anisotropic;

(d) The k–group homomorphism ηgeo : ∞µµµn → zG→ Aut(zG
0) is anisotropic

(see §2.4).
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Proof. Without loss of generality, we can factor out by Ru(G) and assume that G0

is reductive. As in the proof of Theorem 7.1, we can assume by twisting that z is
trivial and reason “at the finite level”:

Claim 7.5. There exists a positive integer m such that [η] ∈ H1(Rn,G) is trivialized
by the base change Rn,m/Rn.

Indeed by continuity ηgeo : ∞µµµn → G factors through a morphism f : µµµnm → G
and [η] = f∗[En,m] where En,m = Spec(Rn,m)/ Spec(Rn) stands for the standard µµµnm-
torsor. In particular, the class [η] ∈ H1(Rn,G) is trivialized by the covering Rn,m/Rn

as above.

(1) (a) =⇒ (b) =⇒ (c): obvious.

(c) =⇒ (d): We assume that ηG
0
Fn

admits a Fn-parabolic subgroup Q of type I.
Hence

ηG
0
Fn
×Fn Fn,m = G0

Fn,m
admits a Fn,m–parabolic subgroup of type I. Since Fn,m

is an iterated Laurent serie field over k, it implies that G0 admits a parabolic sub-
group P of type I (see the proof of [CGP, lemma 5.24]). We consider the Rn–scheme
X := η

(
G/NG(P)

)
×k Rn which by descent considerations [EGA IV, 2.7.1.vii] is

proper since G/NG(P) is.

Claim 7.6. X(Fn) 6= ∅.
The Fn–group ηG

0/Fn admits a subgroup Q such that Q×k F n is G0(F n)-
conjugate to P×k F n ⊂ G0 ×k F n. Let g ∈ G(F n) be such that Q ×Fn F n =
g (P×k F n) g

−1. As in [Se1, III.2, lemme 1], we check that the cocycle γ 7→ g−1 ηγ
γg

is cohomologous to η and has value in NG(P)(F n). In other words, the Fn–torsor
corresponding to η admits a reduction to the subgroup NG(P), i.e.

[η] ∈ Im
(
H1

(
Fn,NG(P)

)
→ H1(Fn,G)

)
.

This implies that X(Fn) 6= ∅ (ibid, I.5, prop. 37) and the Claim is proven.
By Theorem 7.1.1, we have (Xηgeo)(k) 6= ∅, so that there exists an element x ∈

(Xηgeo)(k). Since H1
(
k,NG(P)

)
injects in H1(k,G) (see [Gi4, cor. 2.7.2]), we have

X(k) = G(k)/NG(P)(k), i.e. X(k) is homogeneous under G(k).
Hence there exists g ∈ G(k) such that x = g.x0 where x0 stands for the image of

1 in X(k). We have

ηgeo(µµµnm(k)) ⊂ Stab
G(k)(x)g Stab

G(k)(x0)g
−1 = gNG(P)(k)g−1 = NG(gPg

−1)(k).

Thus ηgeo normalizes a parabolic subgroup of type I of the k–group of G0.

(d) =⇒ (a): We may assume that η has values in NG(P)(k). In that case, the twisted
Rn–group scheme ηG

0 admits the parabolic subgroup ηP/Rn.
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(2) Follows of (1).

(3) Recall that a k–group H with reductive connected component of the identity H0

is anisotropic if and only if it is irreducible and its connected center Z(H0)0 is an
anisotropic torus. Statement (3) reduces then to the case where G0 is a k–torus T.

We are then given a continuous action of π1(Rn) on the cocharacter group T̂
0
(k). It

is convenient to work with the opposite assertions to (a), (b) (c)and (d), which we
denote by (a′), (b′) (c′) and (c′) respectively.

(a′) =⇒ (b′): If the Rn–torus ηT := ηTRn is isotropic, so is the Kn–torus ηT×Rn Kn.

(b′) =⇒ (c′): If the Kn–torus ηT×Rn Kn is isotropic, so is the Fn–torus ηT×Rn Fn.

(c′) =⇒ (d′): By Lemma 3.8 we have

HomFn−gr(Gm, ηTFn
) = HomFn−gr(Gm,TFn)

ηgeo .

If ηT is isotropic, then this group is not zero and the k–group morphism ηgeo : ∞µµµn →
zG fixes a cocharacter of T = (G)0, hence (c′).

(d′) =⇒ (a′): We assume that the morphism ηgeo : ∞µµµn → G fixes a cocharacter
λ : Gm → T. Since

HomKn−gr(Gm, ηTKn
) ≃ HomKn−gr(Gm,TKn)

ηgeo .

it follows that λ provides a non-zero cocharacter of ηGKn, hence (a′).

As in the case of loop torsors [GP2, cor. 3.3], the Borel-Tits theorem has the
following consequence.

Corollary 7.7. The minimal elements (with respect to inclusion) of the set of parabolic
subgroups of the k–group zG

0 which are normalized by ηgeo are all conjugate under

zG
0(k). The type I(η) of this conjugacy class is the Witt-Tits index of the Fn–group

η

(
G0/Ru(G)

)
×Rn Fn.

7.3 Anisotropic loop torsors

For anisotropic loop classes, we have the following beautiful picture.

Theorem 7.8. Assume that G0 is reductive. Let η, η′ : π1(Rn) → G(k) be two loop
cocycles. Assume that (ηG)Fn is anisotropic. Then the following are equivalent:

1. [η] = [η′] ∈ H1(Rn,G),
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2. [η]Kn = [η′]Kn ∈ H1(Kn,G),

3. [η]Fn = [η′]Fn ∈ H1(Fn,G).

We consider first the case of purely geometric loop cocycles. Note that this is the
set of all loop cocycles if k is algebraically closed.

Theorem 7.9. Let η, η′ : π1(Rn)→ G(k) be two loop cocycles of the form η = (1, ηgeo)
and η′ = (1, η

′geo). Assume that η is anisotropic. Then the following are equivalent:

1. ηgeo and η′geo are conjugate under G(k),

2. [η] = [η′] ∈ H1(Rn,G),

3. [η]Kn = [η′]Kn ∈ H1(Kn,G),

4. [η]Fn = [η′]Fn ∈ H1(Fn,G).

Proof. Recall that ηgeo, η′geo : ∞µµµ→ G are affine k–group homomorphisms that factor
through the algebraic group µµµnm for m large enough. The meaning of (1) is that there
exists g ∈ G(k) such that η′geo = Int(g) ◦ ηgeo.

The implications 1) =⇒ 2) =⇒ 3) =⇒ 4) are obvious. We shall prove the impli-
cation 4) =⇒ 1). Assume, therefore, that [η]Fn = [η′]Fn ∈ H1(Fn,G).

Let T be a maximal torus of G0 and let N = NG(T) and W = N/T. Since the
maximal tori of G0 ×k k are all conjugate under G0(k), the map NG(T) → G/G0

is surjective. Let k̃ be a finite Galois extension which contains µµµm(k), splits T and
such that the natural map N(k̃)→ (G/G0)(k) is surjective. We furthermore assume
without loss of generality that our choice of m and k̃ trivialize η and η′.

Set Γ̃n,m = µµµnm(k) ⋊ Gal(k̃/k). In terms of cocycles, our hypothesis means that
there exists hn ∈ G(F̃n,m) such that

(7.6) h−1
n η(γ) γhn = η′(γ) ∀γ ∈ Γ̃n.

Our goal is to show that we can actually find such an element inside G(k). We
reason by means of a building argument, and appeal to Remark 6.8 to view F̃n,m as

a complete local field with residue field F̃n−1,m. Note that Fn = (F̃n,m)
Γ̃n,m , and that

Fn can be viewed as complete local field with residue field Fn−1.
Let C = G0/DG0 be the coradical of G0. This is a k–torus which is split by k̃.

Recall that the (enlarged) Bruhat-Tits building Bn of the F̃n,m–group G×k F̃n,m [T2,
§2.1] is defined by

Bn = B × V
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where V = Ĉ
0 ⊗Z R, and B is the building of the semisimple F̃n,m–group DG0 ×k

F̃n,m. The building Bn is equipped with a natural action of G(F̃n,m) ⋊ Γ̃n,m. By

[BT1, 9.1.19.c] the group DG0(F̃n−1,m[[t
1
m
n ]]) fixes a unique (hyperspecial) point φd ∈

B(DG0 ×k F̃n,m) and Stab
DG

0(F̃n,m)(φd) = DG0
(
F̃n−1,m[[t

1
m
n ]]

)
.

Since the bounded group G(F̃n−1,m[[t
1
m
n ]]) ⋊ Γ̃m,n fixes at least one point of the

building B(DG0 ×k F̃n,m); such a point is necessarily φd which is then fixed under

G(F̃n−1,m[[t
1
m
n ]])⋊ Γ̃m,n.

Claim 7.10. There exists a point φ = (φd, v) ∈ Bn such that

1. Γ̃m,n fixes φ;

2. Stab
G(F̃n,m)(φ) = G

(
F̃n−1,m[[t

1
m
n ]]

)
.

We use the fact that G0(F̃n,m) acts on V by translations under the map

G0(F̃n,m)
q−→ C(F̃n,m) = Ĉ

0 ⊗Z F̃
×
n,m

−ordtn−→ Ĉ
0
.

It follows that for each v ∈ V , we have

(∗) Stab
G

0(F̃n,m)(v) = Stab
G

0(F̃n,m)(V ) = q−1
(
C(F̃n−1,m[[t

1
m
n ]])

)
.

Since q maps G0(F̃n−1,m[[t
1
m
n ]]) into C(F̃n−1,m[[t

1
m
n ]]), it follows that G0(F̃n−1,m[[t

1
m
n ]])

fixes pointwise φd × V .
Let us choose now the vector v by considering the action of the group N(k̃)⋊ Γ̃m,n

on V . Since this action is trivial on T(k̃), it provides an action of the finite group
W(k̃)⋊ Γ̃m,n on V . But this action is affine, so there is at least one v ∈ V which is
fixed under N(k̃)⋊ Γ̃m,n. The point φ = (φd, v) is Γ̃m,n-invariant, hence (1). We now

use that N(k̃) surjects onto (G/G0)(k̃) = (G/G0)(F̃n−1,m[[t
1
m
n ]]) = (G/G0)(F̃n,m),

hence that

G(F̃n−1,m[[t
1
m
n ]]) = G0(F̃n−1,m[[t

1
m
n ]]) .N

(
k̃
)
, G(F̃n,m) = G0(F̃n,m) .N

(
k̃
)
.

Since N
(
k̃
)
fixes φ, we have

Stab
G(F̃n,m)(φ) = Stab

G
0(F̃n,m)(φ) .N

(
k̃
)
,

and it remains to show that G0(F̃n−1,m[[t
1
m
n ]]) = Stab

G
0(F̃n,m)(φ). Since T×k k̃ is split,

the map T×k k̃ → C×k k̃ is split and we have the decompositions

G0(F̃n−1,m[[t
1
m
n ]]) = DG0(F̃n−1,m[[t

1
m
n ]]) .T(F̃n−1,m[[t

1
m
n ]])
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and
G0(F̃n,m) = DG0(F̃n,m) .T(F̃n,m).

The first equality shows that G0(F̃n−1,m[[t
1
m
n ]]) fixes φ hence that G0(F̃n−1,m[[t

1
m
n ]]) ⊂

Stab
G

0(F̃n,m)(φ).
As for the reversed inclusion consider an element g ∈ Stab

G(F̃n,m)(φ). Then q(g) ∈
C(F̃n−1,m[[t

1
m
n ]]). The map G(F̃n−1,m[[t

1
m
n ]])

q−→ C(F̃n−1,m[[t
1
m
n ]]) is surjective, hence

we can assume that g ∈ DG0(F̃n,m). Since g.φd = φd, g belongs toDG0
(
F̃n−1,m[[t

1
m
n ]]

)

as desired. This finishes the proof of our claim.

We consider the twisted action of Γ̃n,m on Bn defined by

γ ∗ x = η(γ) . γx.

The extension of local fields (with respect to tn) F̃n,m/Fn is tamely ramified. The
Bruhat-Tits-Rousseau theorem states that the Bruhat-Tits building of (ηG

0)Fn can be

identified with BΓ̃n,m
n , i.e. the fixed points of the building Bn under the twisted action

([Ro] and [Pr]). But by Corollary 7.4.3, the Fn−1((tn))–group ηG
0 ×Rn Fn−1((tn)) is

anisotropic, so its building consists of a single point, which is in fact φ. Indeed since
our loop cocycle has value in G(k̃)⋊Γn,m, φ is fixed under the twisted action of Γ̃n,m.
This shows that

BΓn,m
n = {φ}.

We claim that hn.φ = φ. We have

γ ∗ (hn . φ) = η(γ) γ(hn) .
γφ

= η(γ) γ(hn) . φ [φ is invariant under Γ̃m,n]

= hn . η
′(γ) φ [relation 7.6]

= hn . φ [η′(γ) ∈ G(k̃)] and claim 7.10]

for every γ ∈ Γ̃n,m. Hence hn . φ ∈ BΓn,m
n and therefore hn . φ = φ as desired.

It then follows that hn ∈ G(F̃n−1,m[[t
1
m
n ]]). By specializing (7.6) at tn = 0, we

obtain an element hn−1 ∈ G(F̃n−1,m) such that

(7.7) h−1
n−1 η(γ)

γhn−1 = η
′

(γ) ∀γ ∈ Γ̃n,m.

Since η and η′ have trivial arithmetic part, it follows that hn−1 is invariant under
Gal(k̃/k). We apply now the relation (7.7) to the generator τn of Gal

(
F̃n,m/F̃n−1,m((tn))

)
.

This yields

(7.8) h−1
n−1 η(τn) hn−1 = η′(τn),
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where η(τn), η
′(τn) ∈ G(k̃) and hn−1 ∈ G(Fn−1,m) = G(F̃n−1,m)

Gal(k̃/k). If we denote

by µµµ
(n)
m the last factor of µµµnm then (7.8) implies that ηgeo|µµµ(n)

m
and η

′geo
|µµµ(n)

m
are conjugate

under G(Fn−1,m).

Claim 7.11. ηgeo|µµµ(n)
m

and η
′geo

|µµµ(n)
m

are conjugate under G(k).

The transporter X := {h ∈ G | Int(h) ◦ ηgeo|µµµ(n)
n

= η′geo|µµµ(n)
n
} is a non-empty k–

variety which is a homogeneous space under the group ZG(η
geo

|µµµ(n)
n
). SinceX(Fn−1,m) 6=

∅ and Fn−1,m is an iterated Laurent series field over k, Florence’s theorem [F, §1] shows
that X(k) 6= ∅. The claim is thus proven.

Without loss of generality we may therefore assume that ηgeo|µµµ(n)
m

= η
′geo

|µµµ(n)
m
. The

finite multiplicative k–group µµµ
(n)
m acts on G via ηgeo, and we let Gn−1 denote the k–

group which is the centralizer of this action [DG, II 1.3.7]. The connected component
of the identity of Gn−1 is reductive ([Ri], proposition 10.1.5). Since the action of

µµµ
(n−1)
m on G given by ηgeo commutes with that of µµµ

(n)
m , the k–group morphism ηgeo :

µµµnm → G factors through Gn−1. Similarly for η
′geo. Denote by ηgeon−1 (resp. η′geon−1) the

restriction of ηgeo (resp. η′geo) to the k–subgroup µµµn−1
m = µµµ

(1)
n ×· · ·×µµµ(n−1)

n of µµµnm. Set
Γ̃n−1,m := µµµn−1

m (k)⋊Gal(k̃/k) and consider the loop cocycle ηn−1 : Γ̃n−1,m → Gn−1(k̃)
attached to (1, ηgeon−1), and similarly for η′geon−1.

The crucial point for the induction argument we want to use is the fact that
ηgeon−1 : µµµn−1

m → Gn−1 is anisotropic. For otherwise the k–group G0
n−1 admits a non-

trivial split subtorus S which is normalized by µµµn−1
m . But then S is a non-trivial

split subtorus of G0 which is normalized by µµµnm, and this contradicts the anisotropic
assumption on ηgeo.

Inside Gn−1(F̃n−1,m), relation (7.7) yields that

h−1
n−1 ηn−1(γ)

γhn−1 = η′(γ) ∀γ ∈ Γ̃n−1.

which is similar to (7.6). By induction on n, we may assume that ηgeon−1 is Gn−1(k)–
conjugate to η′geon−1. Thus η

geo is G(k)–conjugate to η′geo as desired.

Before establishing Theorem 7.8, we need the following preliminary step.

Lemma 7.12. Let H be a linear algebraic k–group. It two loop classes [η], [η′] of
H1

(
π1(Rn),H(k)

)
have same image in H1(Fn,H), then [ηar] = [η′ar] in H1(k,H).

Proof. Up to twisting H by ηar, the standard torsion argument allows us to assume
with no loss of generality that ηar is trivial, i.e. that η is purely geometrical. We
are thus left to deal with the case of a k–group homomorphism ηgeo : ∞µµµ → H that
factors through some µµµnm → H for m > 0 large enough. Hence [η] is trivialized by
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the extension R̃n,m/Rn and its image in H1(Fn,H) by the extension F̃n,m/Fn, where
R̃n,m and F̃n,m are as above.

By further increasing m, the same reasoning allows us to assume that the image
of η′ in H1

(
Rn,m,H(k)

)
is purely arithmetic. More precisely, that the map

Z1
(
π1(Rn),H(k)

)
→ Z1

(
π1(Rn,m),H(k)

)

maps (η′geo, η′ar) to (1, η′ar) where the coordinates are as in Section 3.3. But our
hypothesis implies that the image of [η′] in H1(Fn,m,H) is trivial, hence

[η′
ar
] ∈ ker

(
H1(k,H)→ H1(Fn,H)

)
.

Since Fn is an iterated Laurent series field over k, this kernel is trivial (see [F, §5.4]),
and we conclude that [η′ar] = 1 ∈ H1(k,H).

We are now ready to proceed with the proof of Theorem 7.8.

Proof. The implications 1) =⇒ 2) =⇒ 3) are obvious. We shall prove the implication
3) =⇒ 1) by using the previous result. By assumption [η]Fn = [η′]Fn ∈ H1(Fn,G). It
is convenient to work at finite level as we have done previously, namely with cocycles

η, η
′

: Γ̃n,m → G(k̃)

with Γ̃n,m := µµµnm(k̃) ⋊ Gal(k̃/k) where m > 0 large enough and k̃/k is a finite Ga-
lois extension extension containing all m–roots of unity in k. We associate to η its
arithmetic-geometric coordinate pair (z, ηgeo) where z ∈ Z1(Gal(k̃/k),G(k̃)) and
ηgeo : µµµnm → zG is a k–group homomorphism. Similar considerations apply to η′,
and its corresponding pair (z′, η′geo). By Lemma 7.12, we have [z] = [z′] ∈ H1(k,G).
Without lost of generality we may assume that z = z′. Consider the commutative
diagram

H1
(
Γ̃n,m, zG(k̃)

)
−−−→ H1

(
Γ̃n,m, zG(F̃n,m)

)

τz

y≀ τz

y≀

H1
(
Γ̃n,m,G(k̃)

)
−−−→ H1

(
Γ̃n,m,G(F̃n,m)

)
.

where the vertical arrows are the torsion bijections. Thus τ−1
z [η] = τ−1

z [η′] ∈ H1
(
Γ̃n,m, zG(F̃n,m)

)
.

By Corollary 7.4.3, ηgeo : µµµnm → zG is an anisotropic k–group homomorphism. We
can thus apply Theorem 7.9 to conclude that ηgeo and η′geo are conjugate under zG(k)
hence τ−1

z [η] = τ−1
z [η′] inH1

(
Γ̃n,m, zG(k̃)

)
, and therefore [η] = [η′] inH1

(
Γ̃n,m, zG(k̃)

)

as desired.

Corollary 7.13. Let the assumptions be as in the Theorem, and let H1
(
π1(Rn),G(k)

)
an

denote the preimage of H1(Fn,G)an under the composite map H1
(
π1(Rn),G(k)

)
→

H1(Rn,G)→ H1(Fn,G). Then H1
(
π1(Rn),G(k)

)
an

injects into H1(Fn,G).
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8 Acyclicity

We have now arrived to one of the main results of our work

Theorem 8.1. Let G be a linear algebraic group over a field k of characteristic 0.
Then the natural restriction map H1(Rn,G)→ H1(Fn,G) induces a bijection

H1
loop(Rn,G)

∼−→ H1(Fn,G).

In particular, the inclusion map H1
loop(Rn,G) → H1(Rn,G) admits a canonical sec-

tion.

8.1 The proof

For any k–scheme X, we denote byH1(X,G)irr ⊂ H1(X,G)22 the subset consisting
of classes of G–torsor E over X for which the twisted reductive X–group scheme

E

(
G0/Ru(G

0)
)
X
does not contain a proper parabolic subgroup which admits a Levi

subgroup.23 Set H1
loop(X,G)irr = H1

loop(X,G) ∩ H1(X,G)irr. We begin with the
following special case.

Lemma 8.2. H1
loop(Rn,G)irr injects into H

1(Fn,G).

Proof. By Lemma 4.14, we can assume without loss of generality thatG0 is reductive.

We have an exact sequence 1 → G0 i−→ G
p−→ ννν → 1 where ννν is a finite étale k–

group. We are given two loop cocycles η, η′ in Z1(Rn,G) which have the same image
in H1(Fn,G), and for which the twisted Fn–groups ηG

0, η′G
0 are irreducible. Since

H1
(
π1(Rn), ννν(k)

) ∼−→ H1(Fn, ννν), it follows that p∗[η] = p∗[η′] in H1
(
π1(Rn), ννν(k)

)
.

We can thus assume without loss of generality that p∗η = p∗η′ in Z1
(
π1(Rn), ννν(k)

)
.

Furthermore, as in the proof of Theorem 7.8 the standard twisting argument reduces
the problem to the case of purely geometric loop torsors. In particular, the group
actions of ηgeo and η′geo are irreducible according to Corollary 7.4.3.

Let C be the connected center ofG0. Then C is a k–torus equipped with an action
of ννν. We consider its k–subtorus C♯ := (Cp◦ηgeo)0 and denote by C0 its maximal k–

split subtorus which is defined by Ĉ0

0
= Ĉ♯

0

(k). By construction, ηgeo : ∞µµµ
n → G

centralizes C♯ and C0. Similarly for η′geo. The k–torus C0 is a split subtorus of C
centralized by ηgeo and maximal for this property. We consider the exact sequence of
k–groups

1→ C0 → G
q−→ G/C0 → 1

22We remind the reader that H1(X,G) stands for H1(X,GX).
23Recall that the assumption on the existence of the Levi subgroup is superfluous whenever X is

affine.
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Claim 8.3. The composite q ◦ ηgeo : ∞µµµn → G/C0 is anisotropic.

Let us establish the claim. We are given a split subtorus S of the k–group G0

which is centralized by q ◦ ηgeo. Since q ◦ ηgeo is irreducible, S is central in G0/C0.
We consider M = q−1(S), this is an extension of S by C0, so it is a split k–torus. By
the semisimplicity of the category of representations of ∞µµµn, we see that ∞µµµn acts
trivially on M. Then M = C0 and S = 1, and the claim thus holds.

Next we twist the sequence of Rn–groups

1→ C0 → G
q−→ G/C0 → 1

by η to obtain
1→ C0 → ηG→ η(G/C0)→ 1.

This leads to the commutative exact diagram of pointed sets

0 = H1(Rn,C0) −−−→ H1(Rn,G)
q∗−−−→ H1(Rn,G/C0)

τη

x≃ τη

x≃

0 = H1(Rn,C0) −−−→ H1(Rn, ηG) −−−→ H1
(
Rn, η(G/C0)

)

where the vertical maps are the torsion bijections. Note that H1(Rn,C0) vanishes
since Pic(Rn) = 0. By diagram chasing we have [η] = [η′] in H1(Rn,G) if and only
if q∗[η] = q∗[η′] in H1(Rn,G/C0). Since q∗[η]Fn = q∗[η′]Fn in H1(Fn,G/C0) it will
suffice to establish the Lemma for G/C0. The claim states that q∗ηgeo is anisotropic,
therefore q∗[η] = q∗[η

′] in H1(Rn,G/C0) by Theorem 7.9.

We can now proceed to prove Theorem 8.1.

Proof. The surjectivity of the map H1
loop(Rn,G) → H1(Fn,G) is a special case of

Proposition 6.9. Let us establish injectivity. We are given two loop cocycles η, η′ ∈
Z1

(
π1(Rn),G(k)

)
having the same image in H1(Fn,G). Lemma 7.12 shows that

[ηar] = [η′ar] in H1(k,G). Up to twisting G by ηar, we may assume that η and η′

are purely geometrical loop torsors. The proof now proceeds by reduction to the
irreducible case, i.e. to the case when ηG

0 ×Rn Fn is irreducible.
Let Q be a minimal Fn–parabolic subgroup of ηG

0 ×Rn Fn. Corollary 7.4 shows
that the k–group G0 admits a parabolic subgroup P of the same type as Q which is
normalized by η. The same statement shows that η′ normalizes a parabolic subgroup,
say P′, of the same type than P. Since by Borel-Tits theory P′ is G0(k)–conjugate
to P we may assume that η′ normalizes P as well. Furthermore, P is minimal for
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η (and η′) with respect to this property. We can view then η, η′ as elements of
Z1
loop

(
Rn,NG(P)

)
irr
. We look at the following commutative diagram

H1
loop

(
Rn,NG(P)

)
irr
−−−→ H1(Rn,G)y

y
H1

(
Fn,NG(P)

)
irr

∼−−−→ H1(Fn,G)

Since the bottom map is injective (see [Gi4, th. 2.15]), it will suffice to show that
H1
loop

(
Rn,NG(P)

)
irr

injects in H1
(
Fn,NG(PI)

)
. Since the unipotent radical U of P

is a split unipotent group, we have

H1
(
Rn,NG(P)

)
≃ H1

(
Rn,NG(P)/U

)
,

and similarly for Fn by Lemma 4.14. So we are reduced to showing thatH1
loop

(
Rn,NG(P)/U

)
irr

injects in H1
(
Fn,NG(P)/U

)
, which is covered by Lemma 8.2. This completes the

proof of injectivity.

8.2 Application: Witt-Tits decomposition

By using the Witt-Tits decomposition over Fn [Gi4, th. 2.15], we get the following.

Corollary 8.4. Assume that G0 is a split reductive k–group. Let PI1, ... , PIl be
representatives of the G(k)-conjugacy classes of parabolic subgroups of G0. Let LIj be
a Levi subgroup of PIj for j = 1, ...l. Then

⊔

j=1,...,l

H1
loop

(
Rn,NG(PIj ,LIj)

)
irr
≃ H1

loop(Rn,G) ≃ H1(Fn,G).

Remark 8.5. It follows from the Corollary that we have a “Witt-Tits decomposi-
tion” for loop torsors. Furthermore, if we are interested in purely geometrical irre-
ducible loop torsors, then we have a nice description in terms of k–group homomor-
phisms ∞µµµ→ G as described in Theorem 7.9. This corresponds to the embedding of
Homk−gp(∞µµµnirr,G)/G(k) in H1(Rn,G).

For future use we record the connected case.

Corollary 8.6. Assume that G is a split reductive group.

1. Let PI1, ... , PIl be the standard k–parabolic subgroups containing a given Borel
subgroup of G/k. Then

⊔

j=1,...,l

H1
loop(Rn,PIj )irr ≃ H1

loop(Rn,G) ≃ H1(Fn,G).
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2. If k is algebraically closed

Homk−gp,irr(∞µµµ
n,G)/G(k) ≃ H1

loop(Rn,G)irr ≃ H1(Fn,G)irr.

Using our choice of roots of unity (2.3), we have ∞µµµ ≃ Ẑ. So the left handside

is Homgp

(
Ẑn,G(k)

)
irr
/G(k), namely the G(k)–conjugacy classes of finite order ir-

reducible pairwise commuting elements (g1, ..., gn) (irreducible in the sense that the
elements do not belong to a proper parabolic subgroup).

8.3 Classification of semisimple k–loop adjoint groups

Next we discuss in detail the important case where our algebraic group is the group
Aut(G) of automorphisms of a split semisimple group G of adjoint type. This is the
situation needed to classify forms of the Rn–group G×kRn and of the corresponding
Rn–Lie algebra g ⊗k Rn where g is the Lie algebra of G. Indeed it is this particular
case, and its applications to infinite- dimensional Lie theory as described in [P2] and
[GP2] for example, that have motivated our present work.

We fix a “Killing couple” T ⊂ B of G, as well as a base ∆ of the corresponding
root system. For each subset I ⊂ ∆ we define as usual

TI =
(⋂

α∈I
ker(α)

)0
.

Since G is adjoint, we know that the roots define an isomorphism T ≃ (Gm)
|∆|, hence

TI ≃ (Gm)
|∆\I|. The centralizer LI := CG(TI), is the standard Levi subgroup of the

parabolic subgroup PI = UI ⋊LI attached to I. Since G is of adjoint type, we know
that LI/TI is a semisimple k–group of adjoint type.

We have a split exact sequence of k–groups

1→ G→ Aut(G)→ Out(G)→ 1

where Out(G) is the finite constant k–group corresponding to the finite (abstract)
group Out(G) of symmetries of the Dynkin diagram of G. [XXIV §3].24 For I ⊂ ∆,
we need to describe the normalizer NAut(G)(LI) of LI . Following [Sp, 16.3.9.(4)], we
define the subgroup of I-automorphisms of G by

AutI(G) = Aut(G,PI ,LI)

where the latter group is the subgroup of Aut(G) that stabilizes both PI and LI .
There is then an exact sequence

1→ LI → AutI(G)→ OutI(G)→ 1,

24In [SGA3] the group Out(G) is denoted by Aut(Dyn).
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where OutI(G) is the finite constant group corresponding to the subgroup of Out(G)
consisting of elements that stabilize I ⊂ ∆. Then the preceding Corollary reads

⊔

[I]⊂∆/Out(G)

H1
loop

(
Rn,AutI(G)

)
irr
≃ H1

loop

(
Rn,Aut(G)

)
≃ H1

(
Fn,Aut(G)

)
.

By [Gi4, cor. 3.5], H1
loop

(
Rn,AutI(G)

)
irr
≃ H1

(
Fn,AutI(G)

)
irr

can be seen as a

subset of H1
loop

(
Rn,AutI(G)/TI

)
an
≃ H1

(
Fn,AutI(G)/TI

)
an
. We come now to

another of the central results of the paper.

Theorem 8.7. Assume that k is algebraically closed and of characteristic 0. Let G
be a simple k–group of adjoint type. Let T ⊂ B, I, and ∆ be as above. On the set
Homk−gp

(
∞µµµn,AutI(G)

)
define the equivalence relation φ ∼I φ′ if there exists g ∈

AutI(G)(k) such that φ and gφ′g−1 have same image in Homk−gp
(
∞µµµ

n,AutI(G)/TI

)
.

Then we have a decomposition

⊔

[I]⊂∆/Out(G)

Homk−gp(∞µµµ
n,AutI(G))an/ ∼I ∼−→ H1

loop(Rn,G)
∼−→ H1(Fn,G).

where Homk−gp
(
∞µµµn,AutI(G)/TI

)
an

stands for the set of anisotropic group homo-
morphisms ∞µµµ

n → AutI(G)/TI .

Remark 8.8. As an application of Margaux’s rigidity theorem [Mg2], the right hand-
side does not change by extension of algebraically closed fields. Hence H1

loop(Rn,G)
does not change by extension of algebraically closed fields. This allows us in practice
whenever useful to work over Q or C.

Proof. The group (AutI(G)/TI)(k) acts naturally on the set Homk−gp
(
∞µµµn,AutI(G)/TI

)
an

by conjugation, and we denote the resulting quotient set by Homk−gp
(
∞µµµn,AutI(G)/TI

)
an
.

The commutative square

Homk−gp
(
∞µµµn,AutI(G)

)
irr
−−−→ Homk−gp

(
∞µµµn,AutI(G)/TI

)
any

y
H1
loop

(
Rn,AutI(G)

)
irr

−−−→ H1
loop

(
Rn,AutI(G)/TI

)
an

is well defined as one can see by taking into account Corollary 7.4. Since k is al-
gebraically closed, loop torsors are purely geometric, hence the two vertical maps
are onto. As we have seen, the bottom horizontal map is injective; this defines an
equivalence relation ∼′

I on the set Homk−gp
(
∞µµµn,AutI(G)

)
such that

Homk−gp
(
∞µµµ

n,AutI(G)
)
irr
/ ∼′

I
∼−→ H1

loop(Rn,AutI(G)).
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It remains to establish that the equivalence relations ∼′
I and ∼I coincide, and we do

this by using that the right vertical map in the above diagram is injective. (Theorem
7.9). We are given φ1, φ2 ∈ Homk−gp

(
∞µµµ

n,AutI(G)
)
irr
. Then φ1 ∼′

I φ2 if and only

if the image of φ1 and φ2 in Homk−gp
(
∞µµµ

n,AutI(G)/TI

)
an

are conjugate by an

element of
(
AutI(G)/LI

)
(k). Since the map AutI(G)(k) →

(
AutI(G)/LI

)
(k) is

onto, it follows that φ1 ∼′
I φ2 if and only if φ1 ∼I φ2 as desired.

Corollary 8.9. Under the hypothesis of Theorem 8.7, the classification of loop torsors
on Rn “is the same” as the classification, for each subset I ⊂ ∆, of irreducible
commuting n–uples of elements of finite order of AutI(G)(k) up to the equivalence
relation ∼I .

8.4 Action of GLn(Z)

The assumptions are as in the previous section. We fix a pinning (épinglage)
(G,B,T) [XXIV §1]. This determines a section s : Out(G)→ Aut(G).

The group GLn(Z) acts on the left as automorphisms of the k–algebra Rn via

(8.1) g = (aij) ∈ GLn(Z) : ti 7→ ta1i1 ta2i2 . . . tani
n

We denote the resulting k–automorphism of Rn corresponding to g also by g since no
confusion will arise. By Yoneda considerations g (anti)corresponds to an automor-
phism g∗ of the k–scheme Spec(Rn).

Applying (8.1) where we now replace ti by t
1/m
1 and k by k gives a left action

of GLn(Z) as automorphisms of Rn,m = k[t±1/m, . . . , t
±1/m
n ]. If we denote by gm the

automorphism corresponding to g then the diagram

Rn
g−−−→ Rny

y
Rn,m

gm−−−→ Rn,m

commutes. Passing to the direct limit on (8.4) the element g induces an automorphism

g∞ of Rn,∞ = lim−→k[t
±1/m, . . . , t

±1/m
n ]. If no confusion is possible, we will denote g∞

and gm simply by g.
Recall that π1(Rn) = Ẑ(1)n⋊Gal(k). Our fixed choice of compatible roots of unity

(ξm) allows us to identify π1(Rn) with Ẑn⋊Gal(k) where the left action of Gal(k) on

each component Ẑ = lim←−Z/mZ is as follows: If a ∈ Gal(k) and m ≥ 1 there exists

a unique 1 ≤ a(m) ≤ m − 1 such that a(ξm) = ξ
a(m)
m . This defines an automorphism

am of the additive group Z/mZ. Passing to the limit on each component yields the

desired group automorphism â of Ẑn.
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View
(
Z/mZ

)n
as row vectors. Then GLn(Z) acts on the right on this group by

right multiplication
g : em 7→ egm = emg

where
(
Z/mZ

)n
is viewed as a Z–module in the natural way. By passing to the

inverse limit we get a right action of GLn(Z) as automorphisms of Ẑn that we denote

by e 7→ eg. We extend this to a right action on π1(Rn) = Ẑn ⋊ Gal(k) by letting

GLn(Z) act trivially on Gal(k). Thus if γ = (e, a) ∈ Ẑn ⋊ Gal(k) and g ∈ GLn(Z),
then γg = (eg, a).25

By taking the foregoing discussion into consideration we can define the (right)
semidirect product group GLn(Z)⋉ π1(Rn) with multiplication

(8.2)
(
h, (e, a)

)(
g, (f, b)

)
=

(
hg, (eg, a)(f, b)

)
=

(
hg, (egâ(f), ab)

)

for all h, g ∈ GLn(Z), e, f ∈ Ẑn and a, b ∈ π1(Rn). For future use we point out that
under that under the natural identification of GLn(Z) and π1(Rn) with subgroups of
GLn(Z)⋉ π1(Rn) we have

(8.3) γg = gγg

for all g ∈ GLn(Z) and γ ∈ π1(Rn).
By definition π1(Rn) acts naturally on Rn,∞. Under our identification π1(Rn) =

Ẑn ⋊Gal(k) the action is given by

(8.4) (e, a) : λt
1/m
i 7→ a(λ)ξem,i

m t
1/m
i

where e = (e1, . . . , en) ∈ Ẑn, ei = (em,i)m≥1 with 0 ≤ em,i < m, and λ ∈ k. Using (8.2)
and (8.4) it is tedious but straightforward to check that the group GLn(Z)⋉ π1(Rn)
defined above acts on the left as automorphisms of the k–algebra Rn,∞ in a way which
is compatible with the left actions of each of the groups, i.e.

(8.5) (gγ).x = g.(γ.x)

for all g ∈ GLn(Z), γ ∈ π1(Rn) and x ∈ Rn,∞.
In the reminder of this section we let H denote a linear algebraic group over k.

Each element g ∈ GLn(Z) viewed as an automorphism g∗ of the k–scheme Spec(Rn)
induces by functoriality a bijection, also denoted by g∗, of the pointed set H1(Rn,H)
onto itself. This leads to a left action of GLn(Z) on this pointed set which we

25After our identifications, this is nothing but the natural action of g∗ on π1
(
Spec(Rn)

)
.
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called base change. Our objective is to have a precise description of this action.26

The isotriviality theorem [GP3, th. 2.9] shows tha it will suffice to trace the base
change action at the level of 1-cocycles in Z1

(
π1(Rn),H(Rn,∞)

)
. Following standard

conventions for cocycles we denote the action of an element γ ∈ π1(Rn) on an element
h ∈ H(Rn,∞) by γh. Then (8.5) implies that

(8.6) γ.h = γh.

Lemma 8.10. The base change action of GLn(Z) on H1(Rn,H) is induced by the
action η 7→ gη of GLn(Z) on Z1

(
π1(Rn),H(Rn,∞)

)
given by

(gη)(γ) = g.η(γg)

for all γ ∈ π1(Rn) and g ∈ GLn(Z).

Proof. For all α, β ∈ π1(Rn) we have

gη(αβ) = g.η
(
(αβ)g)

)
[definition]

= g.η(αgβg)

= g.
(
η(αg) α

g

η(βg)
)

[η a cocycle]

= g.
(
η(αg)

(
αg.η(βg)

))
[by (8.6)]

=
(
g.(η(αg)

)(
g.αg.η(βg)

)
[by action axiom]

=
(
g.(η(αg)

)(
α.g.η(βg)

)
[by action axiom and (8.3)]

= gη(α)
(
α.gη(β)

)
[by definition ]

= gη(α)α
(
gη(β)

)
[by (8.6) ].

This shows that gη is a cocycle (which is clearly continuous since η is). That this
defines a left action of GLn(Z) on Z1

(
π1(Rn),H(Rn,∞)

)
is easy to verify using the

definitions.
Next we verify that the action factors through H1. Assume µ is a cocycle coho-

mologous to η, and let h ∈ H(Rn,∞) be such that µ(γ) = h−1ηγγh for all γ ∈ π1(Rn).
Then

26Our main interest is the case when H = Aut(G) with G simple. The reason behind the
importance of this case lies in the applications to infinite-dimensional Lie theory.
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gµ(γ) = g.µ(gγ) [definition]

= g.
(
h−1η(γg)γh

)

= g.h−1 g.η(γg) g.γh [action axiom]

= (g.h)−1 gη(γ) γg.γh [action axiom, definition, and g = γg]

= (g.h)−1 gη(γ) γ(g.h).

Thus gµ and gη are cohomologous.
It remains to verify that the action we have defined on H1

(
π1(Rn),H(Rn,∞)

)
=

H1
(
Rn,H

)
coincides with the base change action. To see this we consider a faithful

representation H→ GLd and the corresponding quotient variety Y = GLd/H. Since
H1(Rn,GLn) = 1 by a variation of a theorem of Quillen and Suslin ([Lam] V.4), we
have a short exact sequence of pointed sets

1→ H(Rn)→ GLd(Rn)→ Y(Rn)
ϕ→ H1(Rn,H)→ 1.

Therefore it is enough to verify our assertion for the image of the characteristic map
ϕ. Given y ∈ Y(Rn), by definition ϕ(y) is the class of the cocycle

γ → η(γ) = Y −1 γY = Y −1 γ.Y

where Y ∈ GLd(Rn,∞) is a lift of y [the last equality holds by (8.6)]. If g ∈ GLd(Z)
we have

g∗(ϕ(y)) = ϕ(g.y)

by the equivariance of the characteristic map relative to k–schemes. Since g.Y is a
lift of g.y, we conclude that ϕ(g.y) is the class of the cocycle (g.Y )−1γ(g.Y ). Using
identities and compatibility of actions that have already been mentioned, we have

(g.Y )−1γ(g.Y ) = (g.Y )−1γ.(g.Y ) = g.Y −1 gγg.Y =

= g.Y −1 g.γg.Y = g.
(
Y −1γg.Y

)
= g.η(γg) = gη(γ)

as desired.

Remark 8.11. The action ofGLn(Z) on Z1
(
π1(Rn),H(Rn,∞)

)
stabilizes Z1

(
π1(Rn),H(k)

)
.

In particular, it preserves loop cocycles.

We pause to observe that the decomposition 8.4 is equivariant under the action
of GLn(Z) on Rn. Thus
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Corollary 8.12. With the assumptions and notation as above

⊔

j=1,...,l

GLn(Z)\H1
loop

(
Rn,Aut(G,PIj)

)
irr
≃ GLn(Z)\H1

loop

(
Rn,Aut(G)

)

In particular, if E is a loop Rn–torsor under Aut(G), the Witt-Tits index of the loop
group scheme EG/Rn depends only of the class of E in GLn(Z)\H1

loop

(
Rn,Aut(G)

)
.

Remark 8.13. Assume η is a loop cocycle. Since GLn(Z) acts trivially on H(k) we
have (gη)(γ) = η(γg) for all γ ∈ π1(Rn) and g ∈ GLn(Z).

Lemma 8.14. Assume that H acts on a quasi-projective k–variety M. Let η ∈
Z1

(
π1(Rn),H(k)

)
be a loop cocycle. Let Λη ⊂ GLn(Z) be the stabilizer of η for the

(left) action of GLn(Z) on Z1
(
π1(Rn),H(k)

)
.

(1) Λη =
{
g ∈ GLn(Z) | η(γg) = η(γ) ∀γ ∈ π1(Rn)

}
.

(2) The map

(
GLn(Z)⋉ π1(Rn)

)
×M(Rn,∞)→M(Rn,∞),

(
(g, γ), x

)
7→ g.η(γ).γ.x

defines an action of Λη ⋉ π1(Rn) on (ηX)(Rn,∞).

(3) Assume that M is a linear algebraic k–group on which H acts as group auto-
morphisms. Let g ∈ Λη and ζ ∈ Z1

(
π1(Rn), ηM(Rn,∞)

)
, and set

gζ(γ) = g.ζ(γg).

This defines a (left) action of Λη on Z1
(
π1(Rn), ηM(Rn,∞)

)
which induces an action

of Λη on H1(Rn, ηM). The action is functorial in M. If H = M, the diagram

H1(Rn, ηH)
τη−−−→
∼

H1(Rn,H)

g∗

y≀ g∗

y≀

H1(Rn, ηH)
τη−−−→
∼

H1(Rn,H)

commutes for all g ∈ GLn(Z), where τη is the twisting bijection.

(4) Assume that in (3) H is finite and that M is of multiplicative type. For g ∈ Λη
and an inhomogeneous (continuous) cochain y ∈ Ci

(
π1(Rn), ηM

)
of degree i ≥ 0, set

(gy)(γ1, . . . , γi) =
g
(
y(γg1 , . . . , γ

g
i )
)
.
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This defines a left action of Λη on the chain complex C∗
(
π1(Rn), ηM(Rn,∞)

)
of (cont-

nuous) inhomogeneous cochains and on H∗(π1(Rn), ηM(Rn,∞)
)
= H∗(Rn, ηM) which

is functorial with respect to short exact sequences of H–equivariant k–groups of mul-
tiplicative type.

(5) Assume that H is finite and let 1 → M1 → M2 → M3 → 1 be a an ex-
act sequence of linear algebraic k–groups equipped with an equivariant action of H
as group automorphism. The action of Λη commutes with the characteristic map

ηM3(Rn) → H1(Rn, ηM1). If M1 is central in M2, then the action of Λη commutes
with the boundary map ∆ : H1(Rn, ηM3)→ H2(Rn, ηM1).

(6) Assume k is algebraically closed and let d be a postive integer. The base change
action of GLn(Z) on H2(R2,µµµ) and on Br(R2) is given by g.α = det(g).α.

Proof. (1) is obvious by taking into account Remark 8.13.

In what follows we take the “Galois” point of view and notation: ηM(Rn,∞)
coincides with M(Rn,∞) as a set, but the action of π1(Rn) is the twisted action,
which we denote by ⋆:

γ ⋆ x = η(γ).(γ.x)

(2) The groups GLn(Z) and π1(Rn) act on X(Rn,∞) and H(Rn,∞) via their natural
action on Rn,∞. We will denote these actions by x 7→ g.x, and x 7→ γ.x for all
g ∈ GLn(Z), γ ∈ π1(Rn) and x ∈ X(Rn,∞). It follows from (8.5) and (8.6) that for
all γ ∈ π1(Rn) we have

γ.g.x = g.γg.x

One also verifies using the axioms of action that

γ.(h.x) = (γ.h).(γ.x)

for all h ∈ H(Rn,∞). The content of (2) is that

(8.7) (g, γ) ⋆ x = g.(γ ⋆ x)

defines an action of Λη⋉π1(Rn) on (ηX)(Rn,∞). Write for convenience g.γ ⋆x instead
of g.(γ ⋆ x) since no confusion is possible. Then

75



(f, α) ⋆ (g, β) ⋆ x = f.η(α).α.g.η(β).b.x [definition of the twisted action]

= f.η(α).g.αg.η(β).β.x

= f.g.η(α).αg.η(β).β.x [η is a loop cocycle]

= f.g.η(α).(αg.η(β)).αg.(β.x)

= f.g.η(αg).(αg.η(β)).αg.(β.x) [g ∈ Λη]

= fg.η(αgβ).αg.(β.x) [η a cocycle]

= (fg, αgβ) ⋆ x

=
(
(f, α)(g, β)

)
⋆ x.

(3) One checks that gη is a cocycle and that two equivalent cocycles remain equivalent
under this action along the same lines as for the proof of Lemma 8.10.

The commutativity of the diagram takes place already at the level of cocycles.
Indeed. Consider the square

Z1
(
π1(Rn), ηH(Rn,∞)

) τη−−−→
∼

Z1
(
π1(Rn),H(Rn,∞)

)

g∗

y≀ g∗

y≀

Z1
(
π1(Rn), ηH(Rn,∞)

) τη−−−→
∼

Z1
(
π1(Rn),H(Rn,∞)

)

Given a cocycle φ ∈ Z1
(
π1(Rn), ηH(Rn,∞)

)
recall that (τηφ)(γ) = φ(γ) η(γ), hence

g
(
(τη)(φ)

)
(γ) = g.

(
τη(φ)(γ

g)
)
= g.

(
(φ)(γg) η(γg)

)
, γ ∈ Λη.

g.(φ)(γg)g . η(γg) = gφ(γ)g . η(γg) = gφ(γ) η(γ)

since g.η(γg) = η(γg) because η is a loop cocycle, and η(γg) = η(γ) because g ∈ Λη.
On the other hand by definition of the twisting map

τη(
gφ)(γ) = gφ(γ) η(γ)

so that the diagram above commutes.

(4) The continuous profinite cohomology is the direct limit of discrete group coho-
mology of finite quotients. Hence it is enough to establish the desired results at the
“finite level”, namely for a group Γ = Gal(R̃n,m/Rn) where R̃n,m = k̃ ⊗k Rn,m is a
finite Galois covering of Rn through wich η factors, and such that H(k̃) = H(k).
Recall that the action of GLn(Z) on Rn,∞ preserves k̃ ⊗k Rn,m, so that GLn(Z) acts
on Γ.
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We need to check that the given action of Λη on C∗(Γ, ηA) commutes with the
differentials. We are given g ∈ Λη and y ∈ Ci(Γ, ηA). Recall that the boundary map
∂i : Ci(Γ, ηA)→ Ci+1(Γ, ηA) is given by

(
∂i(y)

)
(γ1, . . . , γi+1) =

γ1 . η(γ1).y(γ1, . . . , γi+1) +

i∑

j=1

(−1)j y(γ1, . . . , γj−1, γjγj+1, γj+2, . . . γi+1) + (−1)i+1y(γ1, . . . , γi).

Thus

(g(
∂i(y)

))
(γ1, . . . , γi+1) = g.

(
∂i(y)(γ

g
1 , . . . , γ

g
i+1)

)

= g.
(
γg1 η(γ

g
1) . y(γ

g
1, . . . , γ

g
i+1)

)

+g.
( i∑

j=1

(−1)j y(γg1 , . . . , γgj−1, γ
g
j γ

g
j+1, γ

g
j+2, . . . γ

g
i+1)

)

+g.
(
(−1)i+1 y(γg1 , . . . , γ

g
i )
)

= γ1 η(γ1) .
gy(γ1, . . . , γi+1) [g ∈ Λη]

+
i∑

j=1

(−1)j gy(γ1, . . . , γj−1, γjγj+1, γj+2, . . . γi+1)

+(−1)i+1 gy(γ1, . . . , γi)

=
(
∂i(

gy)
)
(γ1, . . . , γi+1).

This shows that the action of Λη on Ci(Γ, ηA) commutes with the boundary maps
as desired.

(5) We are given an exact sequence of linear algebraic groups 1 → M1 → M2 →
M3 → 1 equipped with an action of H. We twist it by η to obtain 1 → ηM1 →
ηM2 → ηM3 → 1, and look at the characteristic map

ψ : ηM3(Rn)→ H1(Rn, ηM1).

Let x3 ∈ ηM3(Rn) ⊂ M3(Rn,∞). Lift x3 to an element x2 ∈ M2(Rn,∞). Then
ψ(x3) = [zγ ] with zγ = x−1

2

(
η(γ) γx2

)
. Now if g ∈ Λη the element gx2 lifts gx3, hence

ψ(gx3) is represented by the 1–cocycle

(gx2)
−1 (η(γ) γ(gx2)

)
= gx2

−1
(
η(γ) γgx2

)
= g.

(
x2

−1(η(γ) γ
g

x2)
)
= (gz)γ

by using again η(γg) = η(γ) and the fact that g acts trivially on H(k). This shows
that ψ(gx2) =

gψ(x2).
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Assuming that M1 is central and of multiplicative type, we consider the bound-
ary map ∆ : H1(Rn, ηM3) → H2(Rn, ηM1). By isotriviality, the precise nature
of this map can be computed at the “finite level” by means of Galois cocycles.
Let (aγ) be a cocycle with value ηM3(Rn,∞) = M3(Rn,∞) and choose a lifting
(bγ) in M2(Rn,∞) which is trivial on an open subgroup of π1(Rn). Recall that
∆([aγ ]) ∈ H2

(
π1(Rn), ηM1(Rn,∞)

)
is the class of the 2–cocycle [Se1, I.5.6]

cγ,τ = bγ (η(γ).
γbτ ) b

−1
γτ .

Similarly, the (gbγg) lift the (gaγg), so ∆(g.[aγ]) is the class of the 2–cocycle

gbγg
(
η(γ).γ(gbτg)

)
gb−1
γgτg = g.

(
bγ (η(γ).

γgbgτ ) b
−1
γgτg

)
= g.∆([aγ ])

as desired.

6) Since H2(R2,µµµd) injects in Br(R2) = Q/Z [GP2, 2.1], it is enough to check the

formula on Br(R2). Since GL2(Z) is generated by the matrices

(
−1 0
0 −1

)
,

(
1 0
0 −1

)

(
1 1
0 1

)
and

(
0 1
1 0

)
, it is enough to show that the desired compatibility holds when

g is one of these four elements. Consider the cyclic Azumaya R2-algebra A = A(1, d)
with presentation T d1 = t1, T

d
2 = t2, T2T1 = ζdT1T2. Then for g in the above list we

have g.[A] = [A] (resp. −[A], [A], −[A]) respectively, so that g.[A] = det(g).[A]. Since
the classes of these cyclic Azumaya algebras generate Br(R2) the result follows.

Remark 8.15. (a) In (4), we have H∗(π1(Rn), ηM(Rn,∞)
) ∼−→ H∗(Rn, ηM) [GP3,

prop 3.4], hence we have a natural action of Λη on H∗(Rn, ηM). We have used an
explicit description of this action in our proof, but the result can also be established
in a more abstract setting. For g ∈ Λη, we claim that the map g∗ : A → A, a 7→ g.a
applies H0(Γ, ηA) into itself. Indeed for a ∈ H0(Γ, ηA) and γ ∈ Γ, we compute the
twisted action just as we did in (2) of the Lemma.

γ ⋆ (g.a) = (η(γ) γg) .a

= (η(γ) g γg) .a [definition of γg]

= (g η(γ) γg) .a [GLn(Z) commutes with H(k̃)]

= (g η(γg)γg) .a [g ∈ Λη]

= g.a [a ∈ H0(Γ, ηA)].

We get then a morphism of functors g∗ : F → F which extends uniquely as a mor-
phism of δ-functors [W, §2.5]. This then yields the desired natural transformations
g∗ : H i(Γ, ηA)→ H i(Γ,η A) for each GLn(Z)⋉

(
H(k̃)⋊ Γ

)
-module.

(b) There is an analogous statement to (5) for homogeneous spaces.
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For each class [E] ∈ H1
(
Rn,Out(G)

)
, we denote by H1

(
Rn,Aut(G)

)
[E]

the fiber

at [E] of the map H1
(
Rn,Aut(G)

)
→ H1

(
Rn,Out(G)

)
. We then have the decom-

position

(8.8) H1
(
Rn,Aut(G)

)
=

⊔

[E]∈H1(Rn,Out(G))

H1
(
Rn,Aut(G)

)
[E]

The groupGLn(Z) acts onH1
(
Rn,Out(G)

)
and onH1

(
Rn,Aut(G)

)
by base change

(see Lemma 8.10). It follows that GLn(Z) permutes the subsets of the partition
(8.8), and that for each class [E] ∈ H1

(
Rn,Out(G)

)
, its stabilizer under the action

of GLn(Z) preserves H1
(
Rn,Aut(G)

)
[E]
.

Let Out(G) = Out(G)(k). The (abstract) group Out(G) acts naturally on the
right on the set of (continuous) homomorphisms Hom

(
π1(Rn),Out(G)

)
. This action,

which we denote by int, is given by int(a)(φ)(γ) = φa(γ) = a−1 φ(γ) a. We have
H1

(
Rn,Out(G)

)
= Hom

(
π1(Rn),Out(G)

)
/int

(
Out(G)

)

We consider a system of representatives ([φj ])j∈J of the set of double cosets
GLn(Z) \ Hom

(
π1(Rn),Out(G)

)
/int

(
Out(G)

)
. Consider a fixed element j ∈ J . De-

note by Λj ⊂ GLn(Z) the stabilizer of [φj ] ∈ H1
(
Rn,Out(G)

)
for the base change

action of GLn(Z) on Spec(Rn). An element g ∈ GLn(Z) belongs to Λj if and only if
there exists ag ∈ Out(G) such that the following diagram commutes

φj : π1(Rn) −−−→ Out(G)

g∗
x≀ int(ag)

x≀

φj : π1(Rn) −−−→ Out(G)

Note that Λφj ⊂ Γj . We have

GLn(Z)\H1
(
Rn,Aut(G)

)
=

⊔
j∈J

Λj\H1
(
Rn,Aut(G)

)
[φj ]
.(8.9)

Recall that our section s : Out(G) → Aut(G) is determined by our choice of
pinning of (G,B,T). This allows us to trace the action of Λj . Indeed [s∗(φj)] ∈
H1

(
Rn,Aut(G)

)
[φj ]

, so that the classical twisting argument (see [Gi4, lemme 1.2])

shows that the map

H1(Rn, s∗(φj)G)→ H1
(
Rn, s∗(φj)Aut(G)

) τs∗(φj )→ H1
(
Rn,Aut(G)

)

induces a bijection

H1(Rn, s∗(φj)G)/H0
(
Rn, φjOut(G)

) ∼−→ H1
(
Rn,Aut(G)

)
[φj ]
.(8.10)
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Note that the action of an element a ∈ H0
(
Rn, φjOut(G)

)
on H1

(
Rn, s∗(φj)G

)
is

given by

H1(Rn, s∗(φ)G)

(φj s∗)(a)
∼−→ H1(Rn, s∗(φj)G).

where (φjs∗) is the twist of s∗ by the cocycle φj. Furthermore the map (8.10) pre-
serves toral or, what is equivalent, loop classes. Feeding this information into the
decomposition (8.9), we get

(8.11)

GLn(Z)\H1
(
Rn,Aut(G)

) ∼−→
⊔

j∈J
Λj\

(
H1(Rn, s∗(φj)G)/H0

(
Rn, φjOut(G)

))
.

At least in certain cases, the action of Λj on H
1(Rn, s∗(φj)G)/H0

(
Rn, φjAut(G)

)

can be understood quite nicely (see Remark 8.17 below).

Lemma 8.16. (1) For each g ∈ Λφj , the following diagrams

H1(Rn, s∗(φj)G) −−−→ H1
(
Rn, s∗(φj)Aut(G)

) τs∗(φj)−−−−→ H1
(
Rn,Aut(G)

)
[φj ]

g∗

y g∗

y g∗

y

H1(Rn, s∗(φj)G) −−−→ H1
(
Rn, s∗(φj)Aut(G)

) τs∗(φj)−−−−→ H1
(
Rn,Aut(G)

)
[φj ]
,

H1(Rn, s∗(φj)G)×H0
(
Rn, φjOut(G)

)
−−−→ H1(Rn, s∗(φj)G)

g∗

y id

y g∗

y
H1(Rn, s∗(φj)G)×H0

(
Rn, φjOut(G)

)
−−−→ H1(Rn, s∗(φj)G)

commute where the maps g∗ are the base change maps defined in Lemma 8.14.

(2) The map (8.10)

H1(Rn, s∗(φj)G)→ H1
(
Rn,Aut(G)

)
[φj ]

is Λφj ×H0(Rn, φjOut(G))op–equivariant and

Λφj ×H0
(
Rn, φjOut(G)

)op \ H1
(
Rn, s∗(φj)G

) ∼−→ Λφj \ H1
(
Rn,Aut(G)

)
[φj ]
.

Remark 8.17. Of course (2) is useful provided that Λφj = Γj. This is the case for
simple groups which are not of type D4 since Out(G) = 1 or Z/2Z.
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Proof. (1) We are given g ∈ Λφj . The left square of the first diagram commutes by
the functoriality of the base change map g∗. The commutativity of the right square
follows from Lemma 8.14.(3) applied to the k–group Aut(G) and the cocycle s∗(φj).
The commutativity of the second diagram follows from the action on cocycles given
in Lemma 8.10.

(2) By (1), the left action of Λφj and the right action of H0
(
Rn, φjOut(G)

)
on

H1(Rn, s∗(φj)G) commute. Hence

Λφj\
(
H1(Rn, s∗(φj)G)/H0

(
Rn, s∗(φj)Aut(G)

)) ∼−→

Λφj ×H0(Rn, s∗(φj)Out(G))op \ H1(Rn, s∗(φj)G)

and this set maps bijectively onto Λφj\H1(Rn,Aut(G))[φj ].

9 Small dimensions

9.1 The one-dimensional case

By combining Theorem 8.1, Corollary 5.2 and Lemma 4.14 we get the following
generalization (in characteristic 0) of theorem 2.4 of [CGP].

Corollary 9.1. Let G be a linear algebraic k–group Then we have bijections

H1
toral(k[t

±1],G)
∼−→ H1

loop(k[t
±1],G)

∼−→ H1(k[t±1],G)
∼−→ H1(k((t)),G).

In the case when k is algebraically closed, we also recover the original results of
[P1] and [P2] that began the “cohomological approach” to classification problems in
infinite-dimensional Lie theory.

9.2 The two-dimensional case

Throughout this section we assume that k is algebraically closed of characteristic
0 and G a semisimple Chevalley k–group of adjoint type. We let Gsc → G be its
simply connected covering and denote by µµµ its kernel.

9.2.1 Classification of semisimple loop R2-groups.

Serre’s conjecture II holds for the field F2 by Bruhat–Tits theory [BT3, cor. 3.15],
i.e. H1(F2,H) = 1 for every semisimple simply connected group H over F2. Fur-
thermore, we know explicitly how to compute the Galois cohomology of an arbitrary
semisimple F2 group [CTGP, th. 2.1] and [GP2, th. 2.5]. We thus have.
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Corollary 9.2. We have a decomposition

H1
loop

(
R2,Aut(G)

) ∼−→
⊔

[E]∈H1(R2,Out(G))

EOut(G)(R2) \H2(R2, Eµµµ)

and the inner R2–forms of G are classified by the coset Out(G)(R2) \H2(R2,µµµ).

Note that the case when Out(G) is trivial recovers theorem 3.17 of [GP2]. We
can thus view the last Corollary as an extension of this theorem to the case when the
automorphism group of G is not connected.

Proof. Our choice of splitting s : Out(G)→ Aut(G) of the exact sequence

1→ G→ Aut(G)→ Out(G)→ 1

easily leads to the decomposition (see [Gi4, lemme 1.2])

H1
(
F2,Aut(G)

) ∼−→
⊔

[E]∈H1(F2,Out(G))

H1(F2, EG)/EOut(G)(F2)

with respect to the Dynkin-Tits invariant. On the other hand, the boundary map
H1(F2, EG) → H2(F2, Eµµµ) is bijective by [CTGP, th. 2.1] and [GP2, th. 2.5]. The
right action of EOut(G)(F2) can then be transferred toH2(F2,Eµµµ), and is the opposite
of the natural left action of EOut(G)(F2) on H

2(F2,Eµµµ). Hence

H1(F2,Aut(G))
∼−→

⊔

[E]∈H1(F2,Out(G))

EOut(G)(F2) \H2(F2, Eµµµ).

But EOut(G) is finite étale over Rn hence EOut(G)(R2) = EOut(G)(F2) by Remark
6.8.(d). On the other hand, we have H2(R2, Eµµµ)

∼−→ H2(F2, Eµµµ) since Eµµµ is an R2–
group of multiplicative type [GP3, prop. 3.4]. Taking into account the acyclicity
theorem for Aut(G) and Out(G), we get the square of bijections

H1(F2,Aut(G)) −−−→
∼

⊔
[E]∈H1(F2,Out(G))

EOut(G)(F2) \H2(F2, Eµµµ).

x≀
x≀

H1
loop(R2,Aut(G)) −−−→

∼

⊔
[E]∈H1(R2,Out(G))

EOut(G)(R2) \H2(R2, Eµµµ),

and this establishes the Corollary.
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Next we give a complete list of the isomorphism classes of loop R2–forms of G in
the case when G is simple of adjoint type. We have Out(G) = 1 in type A1 B, C,
E7, E8, F4 and G2, Out(G) = Z/2Z in type An (n ≥ 2), Dn (n ≥ 5) and E6, and
Out(G) = S3 in type D4.

27

In the case Out(G) = 1, then by theorem 3.17 of [GP2] we have
H1
loop(R2,Aut(G))

∼−→ H2(R2,µµµ). But µµµ = µµµn for n = 1 or 2. We haveH2(R2,µµµ2)
∼=

Z/2Z [GP2, §2.1].Thus
Corollary 9.3. (1) If G has type A1, then H1

loop

(
R2,Aut(G)

)
≃ Z/2Z.

(2) If G has type B, C or E7, then H
1
loop

(
R2,Aut(G)

)
≃ Z/2Z.

(3) If G has type E8, F4 or G2, then H
1
loop

(
R2,Aut(G)

)
= 1.

Remark 9.4. In Case (1) and Case (2) the non-trivial twisted groups are not qua-
sisplit (because their “Brauer invariant” in H2(R2,µµµ) is not trivial.) In Case (1) the
non-trivial twisted group is in fact anisotropic (see [GP2] for details).

In the case Out(G) = Z/2Z, we have H1(R2,Z/2Z) ∼= Z/2Z ⊕ Z/2Z. The
Z/2Z-Galois extensions of R2 under consideration are R2 × R2, R2[

√
t1], R2[

√
t2]

and R2[
√
t1t2] which correspond to the elements (0, 0), (1, 0), (0, 1) and (1, 1) respec-

tively. These can also be thought as Z/2Z-torsors over R2 that we will denote by
E0,0,E1,0,E0,1 and E1,1 respectively. In the first case the generator of the Galois group
acts by permuting the two factors, while in the other three is of the form

√
x 7→ −√x.

Since EOut(G) ∼= Out(G) = Z/2Z, for any of our four torsors we have

H1
loop

(
R2,Aut(G)

) ∼−→ Z/2Z \H2(R2,µµµ)
⊔

E=E1,0,E0,1,E1,1

Z/2Z \H2(R2, Eµµµ).

This leads to a case by case discussion.

Corollary 9.5. (1) For G of type A2n (n ≥ 1)

H1
loop

(
R2,Aut(G)

)
≃ {±1} \

(
Z/(2n+ 1)Z

) ⊔

E=E1,0,E0,1,E1,1

{EG}.

There are n + 1 inner and three outer loop R2–forms of G. All outer forms are
quasisplit.

(2) For G of type A2n−1 (n ≥ 2)

H1
loop

(
R2,Aut(G)

)
≃ {±1} \

(
Z/2nZ

) ⊔

E=E1,0,E0,1,E1,1

{EG±}.

27Of course here 1,Z/2Z and S3 are here viewed as constant R2 groups or finite (abstract) groups
as the situation requires.
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There are n + 1 inner and six outer loop R2–forms of G. The outer forms come in
three pairs. Each pair has one form which is quasisplit and one which is not.

(3) For G of type D2n−1 (n ≥ 3)

H1
loop

(
R2,Aut(G)

)
≃ {±1} \

(
Z/4Z

) ⊔

E=E1,0,E0,1,E1,1

{EG±}.

There are three inner and six outer loop R2–forms of G. The outer forms come in
three pairs. Each pair has one form which is quasisplit and one which is not.

(4) For G of type D2n (n ≥ 3)

H1
loop

(
R2,Aut(G)

)
≃ switch \

(
Z/2Z⊕ Z/2Z

) ⊔

E=E1,0,E0,1,E1,1

{EG±}.

There are three inner and six outer loop R2–forms of G. The outer forms come in
three pairs. Each pair has one form which is quasisplit and one which is not.

(5) For G of type E6

H1
loop(R2,Aut(G)) ≃ {±1} \

(
Z/3Z

) ⊔

E=E1,0,E0,1,E1,1

{EG}.

There are two inner and three outer loop R2–forms of G. All outer forms are quasis-
plit.

Proof. (1) We have µµµ = µµµ2n+1 = ker
(
µµµ2
2n+1

∏

→ µµµ2n+1

)
and the action of Z/2Z switches

the two factors. We have H2(R2,µµµ) ≃ Z/(2n + 1)Z and the outer action of Z/2Z is
by signs.28

Let E = E(1,0). It follows that Eµµµ = ker
( ∏
R2[

√
t1]/R2

µµµ2n+1
norm→ µµµ2n+1

)
. Since 2n + 1

is odd, the norm is split and Shapiro lemma yields

H2(R2, Eµµµ) = ker
(
H2(R2[

√
t1],µµµ2n+1)

Cores→ H2(R2,µµµ2n+1)
)
.

This reads ker
(
Z/(2n+ 1)Z

id→ Z/(2n+ 1)Z
)
= 0 by taking into account proposition

2.1 of [GP3]. The same calculation holds for E(0,1) and E(1,1) and we obtain the desired
decomposition. In particular there are n+ 1 inner forms and three outer forms. The
outer forms are all quasiplit.

28Strictly speaking we are looking, here and in what follows, at the action of Out(G) on R2–
groups or cohomology of R2–groups which are of multiplicative type. Since we have an equivalence
of categories between R2 and F2 groups of multiplicative type [GP3]. By Remark 6.8(d)) we can
carry all relevant calculations at the level of fields, in which case the situation is well understood.
See for example the table in page 332 of [PR].
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(2) We have µµµ = µµµ2n = ker
(
µµµ2
2n

∏

→ µµµ2n

)
and the action of Z/2Z switches the two

factors. The coset Z/2Z \H2(R,µµµ2n) is as before {±1} \(Z/2nZ). However, the
computation of H2(R2, Eµµµ) is different. The exact sequence

1→ Eµµµ2n →
∏

R2[
√
t1]/R2

µµµ2n
norm→ µµµ2n → 1

gives rise to the long exact sequence of étale cohomology

· · · → H1(R2[
√
t1],µµµ2n)

norm→ H1(R2,µµµ2n)
δ→ H2(R2, Eµµµ)→ H1(R2[

√
t1],µµµ2n)

norm→ H2(R2,µµµ2n).

The norm map appearing on the righthand side is the identity map id : Z/2nZ →
Z/2nZ, so δ is onto. By the choices of coordinates

√
t1 and t2 on R2[

√
t1] and t1, t2

on R2, the beginning of the exact sequence decomposes as

Z/2nZ⊕ Z/2nZ
(id,×2)−→ Z/2nZ⊕ Z/2nZ.

So H2(R2, Eµµµ) ≃ Z/2Z and the action of Z/2Z on H2(R2, Eµµµ) is therefore necessarily
trivial. Thus E leads to two distinct twisted forms EG

±. More precisely EG
+ =

EG (which is quasiplit), while EG
− is not quasiplit (since its “Brauer invariant”

in H2(R2, Eµµµ) is not trivial). Similarly for E(0,1) and E(1,1). This gives the desired
decomposition. There are n + 1 inner forms and six outer forms (three of which are
quasisplit).

(3) In this case µµµ = µµµ4. The computation of the H2 are exactly as in case (2) for
n = 2. There are three inner forms and six outer forms (three of which are quasisplit).

(4) This case is rather different since µµµ = µµµ2 × µµµ2 where Z/2Z switches the two
summands. We have H2(R2,µµµ) ≃ Z/2Z⊕Z/2Z where again Z/2Z acts by switching
the two summands

Given that Eµµµ =
∏

R2[
√
t1]/R2

µµµ2, we have H2(R2, Eµµµ)
∼−→ H2(R2[

√
t1],µµµ2) = Z/2Z.

Similarly for E(0,1) and E(1,1), whence our decomposition. Again we have three inner
forms and six outer forms (three of which are quasisplit).

(5) This is exactly as in case (1) for n = 1. There are two inner forms and three outer
forms (all three of them quasisplit).

It remains to look at the case whenG is of typeD4. The setH
1(R2, S3) classifies all

degree 3 étale extensions S of R2. Then S is a direct product of connected extensions.
There are tree cases: S = R2 × R2 × R2 (the split case), S = S ′ × R2 with S ′/R2 of
degree 2, and the connected case.

The case of S ′ × R2 is already understood: They correspond to a 1-cocycle φ :
π1(Rn) → Z/2Z ⊂ S3, where we view Z/2Z as a subgroup of S3 generated by a
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permutation. Note that up to conjugation by S3, there are exactly three such maps
φ. These are three non-isomorphic quadratic extensions which were denoted by E(i,j)

above for (i, j) 6= (0, 0). We shall denote them by E
(i,j)
2 in the present situation to

avoid confusion.
In the connected case there are four cubic extensions of R2. They correspond to

adjoining to R2 a cubic root in R2,∞ of t1, t2, t1t2 and t21t2 respectively. We will

denote the corresponding four S3–torsors by E
(i,j)
3 with the obvious values for (i, j).

The cubic case, which a priori appears as the most complicated, ends up being quite
simple due to cohomological vanishing reasons, as we shall momentarily see.

According to Corollary 9.2 we have the decomposition

H1
loop(R2,Aut(G)) ≃ S3\H2(R2,µµµ)(9.1)

⊔

E
(i,j)
2

(
E
(i,j)
2
S3)(R2) \H2(R2,E(i,j)

2
µµµ)

⊔

E
(i,j)
3

(
E
(i,j)
3
S3)(R2) \H2(R2,E(i,j)

3
µµµ).

The centre is µµµ = µµµ2 × µµµ2 = ker
(
µµµ3
2

∏

→ µµµ2

)
and S3 acts by permutation on µµµ3

2.
Hence H2(R2,µµµ) = ker

(
H2(R2,µµµ2)

3 → H2(R2,µµµ2)
)
⊂ H2(R2,µµµ2)

3 ≃ (Z/2Z)3. There
are two orbits for the action of S3 on H2(R2,µµµ), namely (0, 0, 0) and (1, 1, 0).

For simplicity we will denote E
(1,0)
2 by E2 and E

(1,0)
3 by E3. Since the group GL2(Z)

acts transitively on the set of quadratic and cubic extensions of R2 we may consider
only the case of E2 := E

1,0
2 [resp. E3 := E

1,0
3 ] for the purpose of determining the coset

(
E
(i,j)
2
S3)(R2)\H2(R2, E(i,j)

2
µµµ) [resp. (

E
(i,j)
3
S3)(R2)\H2(R2, E(i,j)

3
µµµ)]. that all the twists of

µµµ and S3 by quadratic or cubic torsors are of the form Ei
µµµ and Ei

S3 for i = 2 (resp.
i = 3) in the quadratic (resp. cubic) case.

We have E2µµµ = ker
( ∏
R2[

√
t1]/R2

µµµ2 ×µµµ2
norm×id→ µµµ2

)
, hence

H2(R2, E2µµµ) = ker
(
H2(R2[

√
t1],µµµ2)⊕H2(R2,µµµ2)→ H2(R2,µµµ2)

) ∼= H2(R2[
√
t1],µµµ2) = Z/2Z.

Since Z/2Z has trivial automorphism group, we get three copies of Z/2Z in the second
summand of the decomposition (9.1).

In the cubic case we have E3µµµ = ker
( ∏
R2[

3√t1]/R2

µµµ2
norm→ µµµ2

)
. Since 2 is prime to 3,

the norm is split and

H2(R2, E3µµµ) = ker
(
H2(R2[

3
√
t1],µµµ2)

Cores−→ H2(R2,µµµ2)
)
= ker

(
Z/2Z

id→ Z/2Z) = 0.
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Finally we observe, with the aid of Remark 6.8(d), that (E2S3)(R2) ∼= Z/2Z and
(E3S3)(R2) ∼= Z/3Z.

Looking at (9.1) we obtain.

Corollary 9.6. For G of type D4 there are twelve loop R2–forms, two inner and
ten outer. Six of the outer forms are “quadratic”, and come divided into three pairs,
where each pair contains exactly one quasiplit group. The remaining four outer forms
are “cubic” and are all quasiplit.

9.2.2 Applications to the classification of EALAs in nullity 2.

The Extended Affine Lie Algebras (EALAs), as their name suggests, are a class
of Lie algebras which generalize the affine Kac-Moody Lie algebras. To an EALA E
one can attached its so called centreless core, which is usually denoted by Ecc. This
is a Lie algebra over k (in general infinite-dimensional) which satisfies the axioms of
a Lie torus.29 Neher has shown that all Lie torus arise as centreless cores of EALAs,
and conversely. He has also given an explicit procedure that constructs all EALAs
having a given Lie torus L as their centreless cores. To some extent this reduces many
central questions about EALAs (such as their classification) to that of Lie tori.

The centroid of a Lie tori L is always of the form Rn. This gives a natural Rn–Lie
algebra structure to L. If L as an Rn–module is of finite type, then L is necessarily
a multiloop algebra L(g,σσσ) as explained in the Introduction. Let G be a Chevalley
k–group of adjoint type with Lie algebra g. Since Aut(g) ≃ Aut(G) the n–loop
algebras based on g (as Rn–Lie algebras) are in bijective correspondence with the
loop Rn–forms of G. Indeed, they are precisely the Lie algebras of the loop Rn–
groups. The subtlety comes from the fact that in infinite-dimensional Lie theory one
is interested in these Lie algebras as Lie algebras over k, and not Rn. In the present
context the “centroid trick” (see [GP2, §4.1]) translates into the GLn(Z) action on
H1

(
Rn,Aut(g)

)
we have defined. This allows us to describe, in terms of orbits, all

the isomorphism classes of Rn–multiloop algebras L(g,σσσ) that become isomorphic
when viewed as Lie algebras over k.

In what follows “loop algebras based on g” will be though as Lie algebras over k.

In the case Out(G) = 1 we have seen that H1
loop

(
R2,Aut(G)

)
≃ H2(R2,µµµ),

and this latter H2 is either trivial or Z/2Z. In both cases the action of GL2(Z) on
H1
loop

(
R2,Aut(G)

)
is necessarily trivial. In particular.

29This terminology is due to Neher and Yoshii. It may seem strange to call a Lie algebra a Lie
torus (since tori have already a meaning in Lie theory). The terminology was motivated by the
concept of Jordan tori, which are a class of Jordan algebras.
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Corollary 9.7. (1) If g has type A1 B, C or E7, there exists two isomorphism classes
of 2–loop algebras based on g denoted by g0 (the split case) and g1.

30

(2) All 2–loop algebras based on g of type E8, F4 or G2 are trivial, i.e isomorphic
as k–Lie algebras to g0 = g⊗k R2.

In the case Out(G) = Z/2Z, we have H1(R2,Z/2Z) ∼= Z/2Z ⊕ Z/2Z and the
action of GL2(Z) on H1(R2,Z/2Z) is given by the linear action mod 2. Since
SL2(Z/2Z) = GL2(Z/2Z) and SL2(Z/2Z) is generated by elementary matrices, the
reduction map GL2(Z) → GL2(Z/2Z) is onto. Hence there are two orbits for the
action of GL2(Z) on H1(R2,Z/2Z), namely the trivial one and H1(R2,Z/2Z) \ {0}.
The last one is represented by the quadratic Galois extension R2[

√
t1]/R2, denoted

by E(1,0) in the previous section, which we will again denote simply by E in what
follows. The action of GL2(Z) we have just described shows that in all cases the
outer forms, which came in three families (each with one or two classes) in the case
of loop R2–groups, collapse into a single family. This single family consists of either
a single class, namely the quasi-split algebra Eg = Eg

+, or two classes Eg
+ and Eg

−.
The algebra Eg

− is not quasisplit.

Corollary 9.8. If Out(G) = Z/2Z the classification of isomorphism classes of 2–
loop algebras based on g is as follows:

(1) In type A2n (n ≥ 1)

GL2(Z) \H1
loop(R2,Aut(g)) ≃ {±1} \

(
Z/(2n+ 1)Z

) ⊔
{Eg}.

There are n + 1 inner forms, denoted by gq with 0 ≤ q ≤ n, and one outer form
(which is quasisplit).

(2) In type A2n−1 (n ≥ 2)

GL2(Z) \H1
loop(R2,Aut(g)) ≃ {±1} \

(
Z/2nZ

) ⊔
{Eg+}

⊔
{Eg−}.

There are n+1 inner forms, denoted by gq with 0 ≤ q ≤ n, and two outer forms (one
of them quasiplit, the other one not).

(3) In type D2n−1 (n ≥ 3)

GL2(Z) \H1
loop(R2,Aut(g)) ≃ {±1} \

(
Z/4Z

) ⊔
{Eg+}

⊔
{Eg−}.

30As pointed out in [GP2], the case of E7 has an amusing story behind it. The existence of a
k–Lie algebra L(g, σ1, σ2) which is not isomorphic to g ⊗k R2 was first established by van de Leur
with the aid of a computer. In nullity 1 inner automorphisms always lead to trivial loop algebras.
van de Leur’s example shows that this fails already in nullity two.
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There are 3 inner forms, denoted by g0,1,2, and two outer forms (one of them quasiplit,
the other one not).

(4) In type D2n (n ≥ 3), we have

GL2(Z) \H1
loop(R2,Aut(g)) ≃ switch \

(
Z/2Z⊕ Z/2Z

) ⊔
{Eg+}

⊔
{Eg−}.

There are 3 inner forms, denoted by g0,1,2, and two outer forms (one of them quasiplit,
the other one not).

(5) In type E6

GL2(Z) \H1
loop(R2,Aut(g)) ≃ {±1} \

(
Z/3Z

) ⊔
{Eg}.

There are 2 inner forms, g0 and g1, and one outer form (which is quasisplit).

Proof. The nature of the collapse of outer forms when passing from R2 to k was
explained before the statement of the Corollary. It remains to understand the inner
cases. According to Corollary 9.2 and (8.9), we need to trace the action of GL2(Z)
on Z/2Z\H2(R2,µµµ) and use the fact that this action lifts to an action of GL2(Z) on
H2(R2,µµµ) which commutes with that of Z/2Z.

(1) We have µµµ = µµµ2n+1 = ker
(
µµµ2
2n+1

∏

→ µµµ2n+1

)
and the action of Z/2Z switches the two

factors. We have H2(R2,µµµ) ∼= Z/(2n + 1)Z and the action of GL2(Z) on H2(R2,µµµ)
is given by the determinant (Lemma 8.14.6), that of Z/2Z is given by signs. Thus
GL2(Z) acts trivially on Z/2Z\H2(R2,µµµ) and the result follows.

(2) We have µµµ = µµµ2n = ker
(
µµµ2
2n

∏

→ µµµ2n

)
and the action of Z/2Z switches the two

factors. The action of GL2(Z) on H2(R,µµµ) is given by the determinant, hence the set
of cosets (GL2(Z)× Z/2Z)) \H2(R,µµµ2n) can still be identified with {±1} \(Z/2nZ).
(3) In this case µµµ = µµµ4. The computation of H2 and reasoning are exactly as in (2)
above for n = 2.

(4) This case is rather different since µµµ = µµµ2 × µµµ2 where Z/2Z switches the two
summands. We have H2(R2,µµµ) ∼= Z/2Z ⊕ Z/2Z with respect to the switch action.
Again GL2(Z) acts by g.α = det(g).α, hence trivially.

(5) This is exactly as in case (1) for n = 1.

It remains to look at the case when G is of type D4.

Lemma 9.9. There are three orbits for the action of GL2(Z) on H1(R2, S3) :
- the trivial class;

-
{
E0,1
2 ,E1,0

2 ,E1,1
2

}
;
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-
{
E1,0
3 ,E0,1

3 ,E1,1
3 ,E2,1

3

}

where the notations is as in Corollary 9.6 supra.

Proof. The three classes above correspond to case of the split étale cubic R2-algebra,
the case S ′ × R2 where S ′/R2 is quadratic and the cubic case. Obviously each of
the above sets is GL2(Z)-stable, so we need to check that there is a single orbit.
The quadratic case was dealt with in Corollary 9.8. In the cubic case, we have

E1,0
3 = R2[

3
√
t1]. By applying the base change corresponding to

(
1 0
0 1

)
,

(
1 0
1 1

)
,

(
2 5
1 3

)
we obtain E0,1

3 , E1,1
3 and E2,1

3 respectively.

Corollary 9.10. Up to k-isomorphism there are five 2-loop algebras based on g of
type D4: two inner forms, denoted by g0 and g1; two “quadratic” algebras, E

1,0
2
g+

(which is quasisplit) and E
1,0
2
g− (which is not quasiplit); and one “cubic” algebra E

1,0
3
g

( which is quasisplit).

Proof. By Lemma 9.9, the quadratic (resp. cubic) classes of Corollary 9.6 are in
the GL2(Z)–orbit of those having Dynkin-Tits invariant E1,0

2 (resp. E1,0
3 ). So the

cubic case is done. In the quadratic case, there are then one or two non-isomorphic
“quadratic” 2-loop algebras. Since one of these R2–algebras is quasisplit and the
other one is not, Corollary 8.12 shows that they remain non-isomorphic as k–algebras.
Finally, there are two orbits for the action of S3 on H2(R2,µµµ), namely (0, 0, 0) and
(1, 1, 0), and these correspond to the two inner R2-forms. The action of GL2(Z) is
trivial in this set, so the algebras remain non-isomorphic over k.

9.2.3 Rigidity in nullity 2 apart from type A.

The following theorem extends results of Steinmetz from classical types [SZ, th.
6.4] (which involves certain small rank restrictions) to all types. This establishes
Conjecture 6.4 of [GP2].31

Theorem 9.11. Let g be a finite dimensional simple Lie algebra over k which is
not of type A. Let L and L′ be two 2-loop algebras based on g. The following are
equivalent:

(1) L and L′ are isomorphic (as Lie algebras over k);

(2) L and L′ have the same Witt-Tits index.

31An even stronger version of this Conjecture will be established in the next section.
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Proof. Of course, we use that L (resp. L′) arise as the Lie algebra of R2–loop adjoint
groups H (resp. H′) which are forms of G = Aut(g)0.32 Then condition (1) reads
that [H] = [H′] in GL2(Z) \H1

loop

(
R2,Aut(g)

)
and condition (2) reads that H×R2K2

and H′ ×R2 K2 have the same Witt-Tits index.

(1) =⇒ (2) : This is is the simple part of the the equivalence (and it is not necessary to
exclude type A). Let G be the corresponding adjoint group. If [H] and [H′] are equal
inGL2(Z) \H1

loop

(
R2,Aut(G)

)
, it is obvious that their Dynkin-Tits invariant coincide

in GL2(Z)\H1
loop

(
R2,Out(G)

)
, and also that their Tits index over K2 coincide by

Corollary 8.12.

(2) =⇒ (1) : Without loss of generality we can assume that H and H′ have same
Dynkin-Tits invariant in H1

(
R2,Out(g)

)
. The proof is given by a case-by-case dis-

cussion. The cases of type E8, F4 and G2 follow directly from Corollary 9.7.2. Types
B, C and E7 are also straightforward since (over R2) there is only one class of non-split
2–loop algebras. For obvious reasons, this non-split Lie algebras necessarily remain
non-isomorphic to the split Lie algebra g⊗k R2 when viewed as Lie algebras over k.

Type D2n, n ≥ 3 : If the Dynkin-Tits invariant is non-trivial, then the summand of
GL2(Z) \H1

loop(R2,Aut(g)) corresponding to [E1] has only one non quasi-split class,

so [H] and [H′] are equal in GL2(Z) \H1
loop

(
R2,Aut(g)

)
. Corollary 9.8 states that the

inner part of GL2(Z) \H1
loop(R2,Aut(g)) is Z/2Z ⊕ Z/2Z modulo the switch action,

so is represented by (0, 0), (1, 0) and (1, 1). It has then three elements, the split one
and two others. It is then enough to explicitly describe these two other elements and
distinguish them by their Witt-Tits index by means of Tits tables [T1]. The first one
is the R2-loop group PSO(q) with q = 〈1, t1, t2, t1t2〉 ⊥ (2n−1)〈1,−1〉. Its Witt-Tits
K2-index is

(9.2) . . . . . .
H
H

�
�r r ir ir ir ir ir
ir

ir
ir

α1 α2 α2n−1

α2n

The other one is PSU(A, h) where A = A(2, 1) is the R2-quaternion algebra T 2
1 = t1,

T 2
2 = t2, T1T2 + T2T1 = 0 and h is the hyperbolic hermitian form over A2n with

respect to the quaternionic involution q 7→ q. Indeed PSU(A, h) is an adjoint inner
loop R2-group of type D2n and its Witt-Tits K2-index is

(9.3) . . .
H
H

�
�r ir r ri r r ir
r

r
ir

α1 α2 α2n−1

α2n

So [H] and [H′] are equal in GL2(Z) \H1
loop(R2,Aut(g)) to the split form or one of

these two forms.

32Strictly speaking “...the Lie algebra...” is an R2-Lie algebra, but we view this in a natural away
as a k-Lie algebra.
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Type D2n−1, n ≥ 3 : As in the preceding case, we need to discuss only the inner
case and it is enough to provide two non-split R2-loop groups with distinct K2-Witt-
Tits index. The first one is the R2-loop group PSO(q) with q = 〈1, t1, t2, t1t2〉 ⊥
(2n− 2)〈1,−1〉. Its Witt-Tits K2-index is

(9.4) . . . . . .
H
H

�
�r r ir ir ir ir ir
ir

ir
ir

α1 α2 α2n−2

α2n−1

The other one is PSU(A, h) where h is the hyperbolic hermitian form over A2n−1

which is the orthogonal sum of 〈1〉 and the hyperbolic form over A2n−2. Its Witt-Tits
K2-index is

(9.5) . . .
H
H

�
�r ir r ri r ri r
r

r
ir

α1 α2 α2n−2

α2n−1

Type D4: Follows from Corollary 9.10.

Type E6: This case is straightforward because there is only one class of 2–loop algebras
which is not quasi-split.

Remark 9.12. There is some redundancy in the statement of the Theorem. It is
well known, by descent considerations, that if L and L′ are isomorphic as Lie algebras
over k, then their absolute type coincide, i.e. they are both 2–loop algebras based
on the same g (see [ABP2.5] for further details). It will thus suffice to assume in the
Theorem that neither L nor L′ are of absolute type A.

9.2.4 Tables

The following table summarizes the classification on 2-loop algebras. The table
includes the Cartan-Killing (absolute) type g, its name, the Witt-Tits index (with
Tits’ notations) of an Rn–representative of the k–Lie algebra in question, and the
type of the relative root system. For example, van de Leur’s algebra has absolute
type E7, Tits index E

9
7,4 and relative type F4. The way in which the Witt-Tits index

are determined was illustrated in the previous section. The procedure of how to
obtain the relative type from the index is described by Tits.

In all cases the “trivial” loop algebra g ⊗ k[t±1 , t
±
2 ] is denoted by g0. When the

relative type is A0, the loop algebra in question is anisotropic. For example, in
absolute type A1 the Lie algebra g0 is sl2([t

±
1 , t

±
2 ]). The Lie algebra g1 is the derived

algebra of the Lie algebra that corresponds to the quaternion algebra over k[t±1 , t
±
2 ]

with relations T1T2 = −T2T1 and T 2
i = ti. This rank 3 free Lie algebra over k[t±1 , t

±
2 ]

is anisotropic, and is a twisted form of sl2⊗ k[t±1 , t±2 ] split by the quadratic extension
k[t±1 , t

±
2 ](T1).
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Cartan-Killing type g Name Tits index Relative root system

A1 g0
1A

(1)
1,1 A1

A1 g1
1A

(2)
1,0 A0

A2n ( n ≥ 1) gq
1A

( 2n+1
r

)

2n,r−1 r = gcd(q, 2n+ 1) Ar−1

A2n ( n ≥ 1) Eg
2A

(1)
2n,n BCn

A2n−1 ( n ≥ 2) gq
1A

( 2n
r
)

2n−1,r−1 r = gcd(q, 2n) Ar−1

A2n−1 ( n ≥ 2) Eg
+ 2A

(1)
2n−1,n Cn

A2n−1 ( n ≥ 2) Eg
− 2A

(1)
2n−1,n−1 BCn−1

Bn (n ≥ 2) g0 Bn,n Bn

Bn (n ≥ 2) g1 Bn,n−1 Bn−1

Cn (n ≥ 3) g0 C
(1)
n,n Cn

C2n+1 (n ≥ 1) g1 C
(2)
2n+1,n BCn

C2n (n ≥ 2) g1 C
(2)
2n,n Cn

D4 g0
1D

(1)
4,4 D4

D4 g1
1D

(1)
4,2 B2

D4 E2g
+ 2D

(1)
4,3 B3

D4 E2g
− 2D

(2)
4,1 BC1

D4 E3g
3D2

4,2 G2

D2n−1 (n ≥ 3) g0
1D

(1)
2n−1,2n−1 D2n−1

D2n−1 (n ≥ 3) g1
1D

(1)
2n−1,2n−3 B2n−3

D2n−1 (n ≥ 3) g2
1D

(2)
2n−1,n−2 BCn−2

D2n−1 (n ≥ 3) Eg
+ 2D

(1)
2n−1,2n−2 B2n−2

D2n−1 (n ≥ 3) Eg
− 2D

(2)
2n−1,n−2 BCn−2

D2n (n ≥ 3) g0
1D

(1)
2n,2n D2n

D2n (n ≥ 3) g1
1D

(1)
2n,2n−2 B2n−2

D2n (n ≥ 3) g2
1D

(2)
2n,n Cn

D2n (n ≥ 3) Eg
+ 2D

(1)
2n,2n−1 B2n−1

D2n (n ≥ 3) Eg
− 2D

(2)
2n,n−1 BCn−1

E6 g0
1E0

6,6 E6

E6 g1
1E16

6,2 G2

E6 Eg
2E2

6,4 F4

E7 g0 E0
7,7 E7

E7 g1 E9
7,4 F4

E8 g0 E0
8,8 E8

F4 g0 F 0
4,4 F4

G2 g0 G0
2,2 G2
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By taking Remark 9.12 into consideration, an inspection of the Table shows that
a stronger version of Theorem 9.11 holds.

Theorem 9.13. Let L and L′ be two 2-loop algebras neither of which is of absolute
type A. The following are equivalent:

(1) L and L′ are isomorphic (as Lie algebras over k);

(2) L and L′ have the same absolute and relative type.

Remark 9.14. This result was established, also by inspection, in Cor.13.3.3 of
[ABP3]. In this paper the classification of nullity 2 multiloop algebras over k is
achieved by considering loop algebras of the affine algebras. More precisely, it is
shown that every multiloop algebra of nulllity2 is isomorphic as a Lie algebra over k
to a Lie algebra of the form L(g ⊗ k[t±1

1 ], π) where π is a diagram automorphism of
the untwisted affine Lie algebra g⊗k[t±1

1 ]. For example, van de Leur’s algebra appears
by taking g of type E7 and considering the diagram automorphism of order two of
the corresponding extended Coxeter-Dynkin.

Note that in the present work we have outlined a general procedure to classify
loop adjoint groups and algebras over Rn, and that the classification of multiloop
algebras over k follows by GLn-considerations from that over Rn. This is not the case
in [ABP3]. The nullity 2 classification relies on the structure of the affine algebras
and only yields results over k.

10 The case of orthogonal groups

These groups are related to quadratic forms, which allows for a very precise un-
derstanding of their nature based on our results.

We consider the example of the split orthogonal group O(d) for d ≥ 1. If d = 2m
(resp. d = 2m + 1), this is the orthogonal group corresponding to the quadratic

form
m∑
i=1

XiX2m+1−i (resp.
m∑
i=1

XiX2m+1−i +X2
2m+1). Since Rn-projective modules of

finite type are free, we know that H1
(
Rn,O(d)

)
classifies regular quadratic forms over

Rd
n [K, §4.6]. We have H1

loop

(
Rn,O(d)

) ∼−→ H1
(
Fn,O(d)

)
. By iterating Springer’s

theorem for quadratic forms over k((t))) [Sc, §6.2], the classification of Fn-quadratic
forms reads as follows: For each subset I ⊂ {1, ..., n}, we put tI =

∏
i∈I ti with the

convention 1 = t∅; we denote by H the hyperbolic plane, that is the rank two split
form. The isometry classes of d-dimensional Rn–forms are then of the form

⊥I⊂{1,...,n} tI qI ⊥ Hv
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where the qI ’s are anisotropic quadratic k-forms and v a non negative integer such
that

∑
I⊂{1,...,n}

dimk(qI) + 2v = d.

Corollary 10.1. The set H1
loop

(
Rn,O(d)

)
is parametrized by the quadratic forms

⊥I⊂{1,...,n} tI qI ⊥ Hv

where the qI are anisotropic quadratic k-forms and v a non-negative integer such that∑
I⊂{1,...,n}

dimk(qI) + 2v = 2d.

We denote by P(n) the set of subsets of {1, ..., n} and by Peven≤d (n) ⊂ P(n) the set
of subsets of {1, ..., n} of even cardinal ≤ d. In a similar fashion we define Podd≤d (n).

Corollary 10.2. Assume that k is quadratically closed.

(1) If d = 2m, then the map

Peven≤d (n) −−−→ H1
loop(Rn,O(d))

S 7→ ⊥I⊂S 〈tI〉 ⊥ Hm− |S|
2

is a bijection.

(2) If d = 2m+ 1, then the map

Podd≤d (n) −−−→ H1
loop(Rn,O(d))

S 7→ ⊥I⊂S 〈tI〉 ⊥ Hm+
1− |S|

2

is a bijection.

Corollary 10.3. Assume that k is quadratically closed. Inside O′
d = O(〈1, . . . , 1〉) ≃

Od. there is a single O′
d(k)-conjugacy class of maximal anisotropic abelian constant

subgroup of O′(d), that of the diagonal subgroup µµµd2. In particular anisotropic abelian
subgroups of O′(d) are 2-elementary.

Proof. Let A be a finite abelian constant group of O′
d. There exist an even integer

m ≥ 1 and a surjective homomorphism φ : (Z/mZ)n → A(k). Then the corre-
sponding loop torsor [φ] ∈ H1(Rn,O

′
d) is anisotropic. Indeed the map H1(Rn,µµµ

d
2)→

H1(Rn,O
′
d) is surjective. Hence there exists ψ : (Z/mZ)n → µµµd2 such that [φ] = [ψ] ∈

H1(Rn,O
′
d). Theorem 7.9 shows that φ and ψ are O′

d(k)-conjugate. By considering
their images, we conclude that A(k) is O′

d(k)-conjugate to a subgroup of µµµd2(k).

Remark 10.4. (1) All anisotropic abelian constant subgroups of O′
d are related to

codes, and these are not explicitly enumerated (see [Gs] for details).

(2) Under the hypothesis of the Corollary, let f : Spin′
d → SO′

d be the universal
covering of O′

d. Since the image of a finite abelian constant anisotropic subgroup of
Spin′

d in O′
d is still anisotropic, it follows that an anisotropic finite constant abelian

subgroup of Spin′
d is of rank ≤ d and has 4-torsion.
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11 Groups of type G2

We denote by G2 the split Chevalley group of type G2 over k. If F is a field
of characteristic zero containing k, we know that H1(Fn,G2) classifies octonion F -
algebras or alternatively 3-Pfister forms [Se2, §8.1]. This follows from the fact that
the Rost invariant [GMS]

rF : H1(F,G2)→ H3(F,Z/2Z)

is injective and sends the class of an octonion algebra to the Arason invariant of its
norm form.

Consider the standard non-toral constant abelian subgroup f : (Z/2Z)3 ⊂ G2.
Then the composite map

(F×/F×3
) ∼= H1(F, (Z/2Z)3)

f∗−→ H1(F,G2)
rF−→ H3(F,Z/2Z).

sends an element
(
(a), (b), (c)

)
to the cup product (a).(b).(c) ∈ H3(F,Z/2Z) [GiQ,

§6]. For n ≥ 0, we consider the mapping

(R×
n /R

×
n
2
)3 ≃ H1

(
Rn, (Z/2Z)

3
) f∗−→ H1(Rn,G2).

For a class
(
(x), (y), (z)

)
∈
(
R×

3 /(R
×
3 )

2
)3

we write only (x, y, z).

Corollary 11.1. The map above surjects onto H1
loop(Rn,G2).

Proof. By the Acyclicity Theorem, it suffices to observe that the analogous statement
holds for H1

loop(Fn,G2).

By using the Rost invariant, we get a full classification of the multiloop algebras
based on the split Lie algebra of type G2.

Corollary 11.2. Assume that k is quadratically closed. Assume that n ≥ 3.

1) H1
loop(Rn,G2) \ {1} consists in the images by f∗ of the

(
tI1 , tI2, tI3

)
where I1,

I2, I3 are non-empty subsets of {1, .., n} such that i1 < i2 < i3 for all (i1, i2, i3) ∈
I1 × I2 × I3.

2) GLn(Z)\
(
H1
loop(Rn,G2) \ {1}

)
consists of the image by f∗ of (t1, t2, t3).

Proof. (1) Again by aciclicity it suffices to establish the analogous result over Fn.
Since k is quadratically closed, we have R×

n /(R
×
n )

×2 ∼= F×
n /(F

×
n )

×2 ∼= (Z/2Z)n. Hence
H1(Fn,G2) consists of the image of f∗(tI1, tI2 , tI3) for I1, I2, I3 running over the sub-
sets of {1, .., n}. The Rost invariant of such a class is (tI1).(tI2).(tI3) ∈ H3(Fn,Z/2Z).
Since (ti).(ti) = 0 and (ti).(tj) = (tj)(ti) ∈ H3(Fn,Z/2Z), it follows that H1(Fn,G2)
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consists of the trivial class and the images by f∗ of the
(
tI1, tI2 , tI3

)
where I1, I2, I3 are

non-empty subsets of {1, .., n} such that i1 < i2 < i3 for each (i1, i2, i3) ∈ I1× I2× I3.
The last classes are non-trivial pairwise distinct elements since the (tI1).(tI2).(tI3) ∈
H3(Fn,Z/2Z) are distinct pairwise elements by residue considerations (see for exam-
ple prop. 3.1.1 of [GP3]).

(2) Follows easily from (1).

The following corollary refines Griess’ classification in the G2-case [Gs].

Corollary 11.3. Assume that k is algebraically closed. Let A be an anisotropic
constant abelian subgroup of G2. Then A is G2(k)-conjugate to the standard non-
toral subgroup (Z/2Z)3.

Proof. Let A be a finite abelian constant anisotropic subgroup of G2. We reason
as before. There exist an even integer m ≥ 1 and a surjective homomorphism
φ : (Z/mZ)n → A(k) so that the corresponding loop torsor [φ] ∈ H1(Rn,G2) is
anisotropic. By part (1) of Corollary 11.1 there exists ψ : (Z/mZ)n → (Z/2Z)3 such
that [φ] = [ψ] ∈ H1(Rn,G2). Theorem 7.9 shows that φ and ψ are G2(k)-conjugate.
By taking the images, we conclude that A(k) is G2(k)–conjugate to the standard
(Z/2Z)3.

12 Case of groups of type F4, E8 and simply con-

nected E7 in nullity 3

In this section, we assume that k is algebraically closed. We denote by F4, and
E8 the split algebraic k–group of type F4 and E8 respectively, and by E7 the split
simply connected k–group of type E7. For either of these three groups we know that
G = Aut(G) and that H1(R2,G) = 1 [GP2, th. 2.7]. The goal is then to compute
H1
loop(R3,G), or at least the anisotropic classes.
Since we want to use Borel-Friedman-Morgan’s classification of rank zero (i.e.

with finite centralizer) abelian subgroups and triples of the corresponding compact
Lie group [BFM, §5.2], we will assume that k = C. Note that there is no loss of
generality in doing this as explained in Remark 8.8.33

Denote by G0 the anisotropic real form of G (viewed as algebraic group over R)
and let K = G0(R). This is a compact Lie group.

In the F4 and E7 case K has a single conjugacy class of rank zero abelian subgroup
of rank 3. In the E8 case, K has two conjugacy classes of rank zero abelian subgroup

33All the results that we need about rank zero abelian groups and triples can also be found in
[KS].
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of rank 3, (Z/5Z)3 and (Z/6Z)3. To translate this to the complex case we establish
the following fact.

Lemma 12.1. Let H be a complex affine algebraic group whose connected component
of the identity is reductive. Denote by H0 its anisotropic real form, viewed as algebraic
group over R (see [OV, §5.2, th. 12]). Set KH = H0(R).

(1) Let A is a finite abelian subgroup of KH and denote by A the underlying
constant subgroup of the algebraic R-group H0. Then A is a rank zero subgroup of
KH if and only if A×R C is an anisotropic subgroup of H.

(2) Let A be an anisotropic abelian constant subgroup of H and put A = A(C).
Then there exists h ∈ H(C) such that hA ⊂ KH and NKH

(hA) = NH(
hA)(C), both

groups being finite. Furthermore ZKH
(hA) = ZH(

hA)(C).

Recall that K is a maximal subgroup of H(C) and that maximal compact sub-
groups are conjugate under H0(C).

Proof. (1) Let C denote the connected component of the identity of the centralizer
ZH0(A). It is a real reductive group [BMR, 10.1.5]. If A is an anisotropic subgroup
of H, then the maximal tori of ZH(A) are trivial and C = 1. Hence C(C) is finite and
ZKH

(A) is finite, i.e. A is a rank zero subgroup of KH . Conversely, if A is a rank zero
subgroup of KH then C(R) is finite. Since C(R) is Zariski dense in the connected
group C, we see that C = 1, and A×RC is an anisotropic constant abelian subgroup
of H.

(2) We are given a finite anisotropic constant subgroup A of H. Since 1 = ZH(A)0 =
NH(A)0, NH(A) is a finite algebraic group and NH(A)(C) is finite. Since NH(A)(C)
is included in a maximal compact group of H(C), we know that there exists h ∈ H(C)
such that A ⊂ NH(A)(C) ⊂ h−1

KH . We have then hA ⊂ NH(
hA)(C) ⊂ KH , hence

NKH
(hA) = NH(

hA)(C). It follows that ZKH
(hA) = ZH(

hA)(C).

Lemma 12.2. (1) The group F4 has a single conjugacy class of anisotropic finite
abelian (constant) subgroups of rank 3, denoted by f3 : (Z/3Z)3 ⊂ F4. Furthermore

NF4

(
(Z/3Z)3

)
/ZF4

(
(Z/3Z)3

)
≃ SL3(Z/3Z).

(2) The group E7 has a single conjugacy class of anisotropic finite abelian (con-
stant) subgroups of rank 3, denoted by f4 : (Z/4Z)3 ⊂ E7. The finite group f4 is a sub-
group the maximal subgroup SL8 /µµµ2. Furthermore NE7

(
(Z/4Z)3

)
/ZE7

(
(Z/4Z)3

)
≃

SL3(Z/4Z).

(3) The group E8 has two conjugacy classes of anisotropic finite abelian (constant)
subgroups of rank 3, denoted by f5 and f6. We have:
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(a) f5 : (Z/5Z)3 ⊂ E8 and NE8

(
(Z/5Z)3

)
/ZE8

(
(Z/5Z)3

)
≃ SL3(Z/5Z).

(b) f6 : (Z/6Z)3 ⊂ E8 is a subgroup of the subgroup
(SL2×SL3×SL6)/µµµ6. Furthermore NE8

(
Z/6Z)3

)
/ZE8

(
(Z/6Z)3

)
≃ SL3(Z/6Z).

Remark 12.3. The finite subgroups (1) and 3 (a) are described precisely in [GiQ,
§6]. That the third one, namely that f6 : (Z/6Z)3 ⊂ E8 sits inside the subgroup
(SL2×SL3×SL6)/µµµ6, follows from its very construction (see the proof of lemma
5.1.1 [BFM] for details).

Proof. As explained above we may assume that k = C. The previous Lemma 12.1
shows that any rank 0 finite abelian constant subgroup A of G arises from rank 0
abelian subgroup A of K, so the list of Borel-Friedman-Morgan [BFM, §5.2] provides
all relevant conjugacy classes, and this yields the inclusions f3, f4, f5 and f6 described
above. Given two rank 0 finite abelian constant subgroups A and A′ of G arising
respectively from rank 0 abelian subgroups A,A′ of K, it remains to check that A(C)
and A′(C) are G(C)–conjugate if and only if A and A′ are K-conjugate. But this is
obvious since the subgroups from the list are distinct as groups. We investigate now
the normalizers and centralizers.

Claim 12.4. Let A ⊂ K be a rank zero subgroup. Then NK(A) = NG(A)(C), ZK(A) =
ZG(A)(C).

Indeed Lemma 12.1.(2) shows the existence of an element g ∈ G(C) such that
gA ⊂ K and

NK(
gA) = NG(

gA)(C), ZK(A) = ZG(
gA)(C).

But A and gA are K–conjugate by Borel-Friedman-Morgan’s theorem, so the same
fact holds for g = 1.

It is then enough to know the quotient “normalizer/centralizer” in the compact
group case. For each relevant d, we have an exact sequence of groups

1→ ZK
(
(Z/dZ)3

)
→ NK

(
Z/dZ)3

) θ→ GL3(Z/dZ)

and we want to determine the image of θ. Denote by Sd the set of K-conjugacy
classes of rank zero triples of K of order d. Since such a triple generates a rank
zero abelian subgroup of order d3 of K, the set Sd is covered by rank zero triples
inside (Z/dZ)3, namely GL3(Z/dZ)-conjugates of the standard triple (1, 1, 1). So
we have GL3(Z/dZ)/Im(θ) ∼= Sd. Proposition 5.1.5 of [BFM] states that the K-
conjugacy classes of rank zero triples of K of order d consists of the classes fd(1, 1, i)
for i = 1, .., d − 1 with i prime to d. Hence the image of θ in GL3(Z/dZ) is exactly
SL3(Z/dZ) as desired.
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Given fd : (Z/dZ)3 → G as above consider the map

fd,∗ :
(
R×

3 /(R
×
3 )

d
)3 ≃ H1

(
R3, (Z/dZ)

3
)
→ H1(R3,G).

A class
(
(x), (y), (z)

)
∈

(
R×

3 /(R
×
3 )

d
)3

will for convenience simply be written as
(x, y, z).

Corollary 12.5. (1) The set H1
loop(R3,F4)an consists of the classes of f3,∗(t1, t2, t3)

and f3,∗(t1, t2, t23).

(2) The set H1
loop(R3,E7)an consists of the classes of f4,∗(t1, t2, t3), f4,∗(t1, t2, t33).

(3) The set H1
loop(R3,E8)an consists in the classes of f5,∗(t1, t2, ti3) for i = 1, 2, 3, 4,

f6,∗(t1, t2, t3) and f6,∗(t1, t2, t53).

Proof. We do in detail the case of F4, the other cases being similar. The setH1
loop(R3,F4)an

is covered by the image of the anisotropic loop cocycles φ : π1(R3) → F4(C). The
image of such a φ is an anisotropic finite abelian subgroup of F4, so Lemma 12.2.1
allows us to assume that its image is the subgroup (Z/3Z)3. Furthermore, we know
that two such homomorphisms φ and φ′ have the same image in H1

loop(R3,F4)an if
and only if there exists g ∈ F4(C) such that gφg−1 = φ′, or equivalently if there exists
g ∈ NF4

(
(Z/3Z)3

)
(C) such that gφg−1 = φ′. Note the importance of the isomorphism

NF4((Z/3Z)
3)/ZF4((Z/3Z)

3) ≃ SL3(Z/3Z).
Rephrasing what has been said in terms of the mapping f3,∗, we see thatH1

loop(R3,F4)an
is the image under f3,∗ of the classes (x, y, z) where x, y, z ∈ R×

3 are such that (x, y, z)
generates R×

3 /(R
×
3 )

3; furthermore, two such classes (x, y, z) and (x′, y′, z′) have the
same image in H1

loop(R3,F4)an if and only if there exists τ ∈ SL3(Z/3Z) such that

(x′, y′, z′) = τ∗
(
(x, y, z)

)
. We conclude that H1

loop(R3,F4)an consists of the classes of
f3,∗(t1, t2, t3) and f3,∗(t1, t2, t23).

Corollary 12.6. (1) The setGL3(Z)\H1
loop(R3,F4)an consists of the class of f3,∗(t1, t2, t3).

(2) The set GL3(Z)\H1
loop(R3,E7)an consists of the class f4,∗(t1, t2, t3).

(3) The set GL3(Z)\H1
loop(R3,E8)an consists of the classes of f5,∗(t1, t2, t3) and

f6,∗(t1, t2, t3).

Remark 12.7. The above Corollary gives the full classification of nullity 3 anisotropic
multiloop algebras of absolute type F4 or E8.

13 The case of PGLd

13.1 Loop Azumaya algebras

For any base scheme X, the set H1(X,PGLd) classifies the isomorphism classes
of Azumaya OX-algebras A of degree d, i.e. OX-algebras which are locally isomorphic
for the étale topology to the matrix algebra Md(OX) [Gr2] and [K, §III].
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The exact sequence 1 → Gm → GLd
p−→ PGLd → 1 induces the sequence of

pointed sets

Pic(X)→ H1(X,GLd)→ H1(X,PGLd)
δ−→ H2(X,Gm) = Br(X).

We denote again by [A] ∈ Br(X) the class of δ([A]) in the cohomological Brauer
group.

By [GP3, 3.1], we have an isomorphism Br(Rn) ∼= Br(Fn). We look now at the
diagram

H1
loop(Rn,PGLd)

δ−−−→ Br(Rn)

∼=
y ∼=

y

H1(Fn,PGLd)
δ−−−→ Br(Fn)

where the bottom map is injective [GS, §4.4] and the left map is bijective because of
Theorem 8.1. We thus have

Corollary 13.1. The boundary map H1
loop(Rn,PGLd)→ Br(Rn) is injective.

Azumaya Rn–algebras whose classes are in H1
loop(Rn,PGLd) are called loop Azu-

maya algebras. They are isomorphic to twisted form of Md by a loop cocycle. One
can rephrase the last Corollary by saying that loop Azumaya algebras of degree d are
classified by their “Brauer invariant”.

Similarly, Wedderburn’s theorem [GS, 2.1] for Fn–central simple algebras has its
counterpart.

Corollary 13.2. Let A be a loop Azumaya Rn–algebra of degree d. Then there exists
a unique positive integer r dividing d and a loop Azumaya Rn–algebra B (unique up
to Rn–algebras isomorphism) of degree d/r such that A ≃Mr(B) and B ⊗Rn Fn is a
division algebra.

This reduces the classification of loop Azumaya Rn-algebras to the “anisotropic”
case, namely to the case of loop Azumaya Rn–algebras A such that A ⊗Rn Fn is a
division algebra.

In the same spirit, the Brauer decomposition [GS, 4.5.16] for central Fn–division
algebras yields the following.

Corollary 13.3. Write d = pm1
1 · · · pml

l . Let A be an anisotropic loop Azumaya Rn-
algebra of degree d. Then there exists a unique decomposition

A ≃ A1 ⊗Rn · · · ⊗Rn Al

where Ai is an anisotropic k–loop Azumaya Rn-algebra of degree pmi
i for i = 1, .., l.
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The two previous Corollaries show that the classification of loop Azumaya Rn–
algebra reduces the classification of anisotropic loop Azumaya Rn-algebras of degree
pm. Though the Brauer group of Rn and Fn are well understood, the understanding
of H1

loop(Rn,PGLd)an is much more delicate.

We are given a loop cocycle φ = (φgeo, z) with values in PGLd(k). Set A = z(Md).
This is a central simple k–algebra such that z PGLd = PGL1(A). Recall that φgeo

is given by a k–group homomorphism φgeo : µµµnm → PGL1(A). To say that φ is
anisotropic is to say that φgeo : µµµnm → PGL1(A) is anisotropic.

We discuss in detail the following two special cases : the one-dimensional case,
and the geometric case (i.e. k is algebraically closed).

13.2 The one-dimensional case

If k is algebraically closed H1(R1,PGLd) is trivial. The interesting new case is
when k is not algebraically closed, e.g. the case of real numbers. Since the map
H1(F1,PGLd) → Br(F1) is injective, as a consequence of Corollary 9.1, we have
H1(R1,PGLd) ≃ H1(F1,PGLd) and the map

(13.1) H1(R1,PGLd)→ Br(R1) = Br(k)⊕H1(k,Q/Z)

is injective.

Theorem 13.4. The image of the map 13.1 consists of all pairs [A0]⊕χ where A0 is
a central simple algebra of degree d and χ : Gal(ks/k) → Q/Z a character for which
that there exists an étale algebra K/k of degree d inside A0 such that χK = 0.

Remark 13.5. The indices of such algebras over F1 are known ([Ti, prop. 2.4] in
the prime exponent case, and [FSS, Lemma 4.6] in the general case). The index of a
F1–algebra of invariant [A0]⊕χ is deg(χ)× indkχ(A⊗k kχ) where kχ/k stands for the
cyclic extension associated to χ.

The proof needs some preparatory material from homological algebra based on
Cartier duality for groups of multiplicative type. More precisely, the dual of an
extension of k–groups of multiplicative type

1→ Gm → E→ µµµm → 1

is the exact sequence
0→ Z/mZ→ Ê → Z→ 1.

We have then an isomorphism

Ext1k−gr(µµµm,Gm) ≃ Ext1Gal(k)(Z,Z/mZ) = H1(k,Z/mZ)
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which permits to attach to the first extension a character. Up to isomorphism, there
exists a unique extension Eχ of µµµm by Gm of class [χ].

Lemma 13.6. Let χ : Gal(k)→ Z/mZ be a character for some m ≥ 1.

1. The boundary map

k×/(k×)m
∼−→ H1(k,µµµm)→ H2(k,Gm) = Br(k)

is given by (x) 7→ χ ∪ (x).

2. Let K/k be an étale algebra. The following are equivalent:

(a) There exists a morphism of extensions Eχ → RK/k(Gm) rendering the
diagram

1 −−−→ Gm −−−→ Eχ −−−→ µµµm −−−→ 1y∼=
y

y
1 −−−→ Gm −−−→ RK/k(Gm) −−−→ RK/k(Gm)/Gm −−−→ 1;

commutative.

(b) χK = 0.

Proof. (1) The cocharacter group Êχ is Z/mZ ⊕ Z together with the Galois action

γ(α, β) = (α + χ(γ), β). The Galois action on Eχ(k) ≃ k
× ×µµµm(k) is then given by

γ(y, ζ) =
(
γ(y) ζχ(γ), γ(ζ)

)

for every γ ∈ Gal(k). The class (x) ∈ H1(k,µµµm) is represented by the cocycle
cγ = γ( m

√
x)/ m
√
x. The element bγ = (1, cγ) ∈ Eχ(k) lifts cγ . The boundary ∂

(
(x)

)
∈

H2(k, k
×
) is then represented by the 2–cocycle

aγ,τ = bγ × γ(bτ ) b−1
γτ = cχ(γ)τ χ(γ) . cτ .

(2) We decompose K = k1 × · · · × kl as a product of field extensions and denote by
Mj the cocharacter module of Rkj/k(Gm). Then the character module of RK/k(Gm)
is M = ⊕Mj . By dualizing we are interested in morphism of extensions

0 −−−→ I −−−→ M −−−→ Z −−−→ 0y
y

y≃

0 −−−→ Z/mZ −−−→ Êχ −−−→ Z −−−→ 0.
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By Shapiro’s lemma Ext1(Mj ,Z/mZ) = H1(kj,Z/mZ) and the map Ext1(Z,Z/mZ)→
Ext1(Mj ,Z/mZ) yields the restriction map H1(k,Z/mZ) → H1(kj,Z/mZ). It fol-
lows that the bottom extension above is killed by the pull-backMj → Z, and therefore
that χkj = 0 for j = 1, .., l. This shows that (a) =⇒ (b).

(b) =⇒ (a): We assume that χK = 0, namely χkj = 0 for j = 1, .., l. Hence Êχ

belongs to the kernel of Ext1(Z,Z/mZ) → Ext1(Mj ,Z/mZ) for for j = 1, .., l so Êχ
belongs to the kernel of Ext1(Z,Z/mZ) → Ext1(M,Z/mZ). This means that the

map M → Z of Galois modules lifts to Êχ → Z as desired.

We can proceed now with the proof of Theorem 13.4.

Proof. We show first that the image of ∂ consists of pairs with the desired proper-
ties. Again by Corollary 9.1, we have H1

loop(R1,PGLd) = H1(R1,PGLd) and we
are reduced to twisted algebras given by loop cocycles φ = (φgeo, z) with value in
PGLd(k). Recall that A0 = z(Md) and that we have then a k–group homomorphism
φgeo : µµµm → PGL1(A0). We may assume that φgeo is injective. We pull back the

central extension 1→ Gm → GL1(A0)
p−→ PGL(A0)→ 1 by φgeo and get a central

extension of algebraic k–groups

1→ Gm → E
p′−→ µµµm → 1

such that E is a k–subgroup of GL1(A0). By extending the scalars to k, we see that
E is commutative, hence is a k–group of multiplicative type. Then E is contained in a
maximal torus of the k–group GL1(A0) and is of the form RK/k(Gm) where K ⊂ A0

is an étale algebra of degree d. We have then the commutative diagram

1 −−−→ Gm −−−→ E −−−→ µµµm −−−→ 1y≃
y

y
1 −−−→ Gm −−−→ RK/k(Gm) −−−→ RK/k(Gm)/Gm −−−→ 1.

Lemma 13.6.2 tells us that χK = 0. We compute the Brauer class of this loop algebra
by taking into account the commutative diagram

H1(F1,PGLd) −−−→ Br(F1)

τz

x≀ ≀
x?+[A0]

H1
(
F1,PGL(A0)

) ∂−−−→ Br(F1)x
x

H1(F1,µµµm)
∂−−−→ Br(F1).
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The commutativity of the upper square is that of the torsion map [Se1, §I.5.7], while
that of the bottom square is trivial. The image of (t1) ∈ F×

1 /(F
×
1 )× is χ ∪ (t1) by

Lemma 13.6.1. The diagram yields the formula ∂([φ]) = [A0] ⊕ χ which has the
required properties.

Conversely, let K/k be an étale algebra of degree d inside A0 and let χ be a
character such that χK = 0. Let m be the order of χ; by restriction-corestriction
considerations m divides d. Lemma 13.6.2 shows that there exists a morphism of
extensions Eχ → RK/k(Gm). This yields a morphism ψgeo : µµµm → RK/k(Gm)/Gm →
PGL1(A0). The previous computation shows that the loop torsor (ψgeo, z) has Brauer
invariant [A0]⊕ χ.

As an example, we consider the real case.

Corollary 13.7. Assume that k = R. Then the image of the injective map

H1(R1,PGLd)→ Br(R1) = Br(R)⊕H1(R,Q/Z)

is as follows:

1. 0⊕ 0 if d is odd;

2. 0⊕ 0, 0⊕ χC/R, [(−1,−1)]⊕ 0 and [(−1,−1)]⊕ χC/R if d is even.

Remark 13.8. In the case d = 2, the four classes under consideration corresponds
to the quaternion algebras (1, 1), (1, t), (−1,−1), (−1, t).

13.3 The geometric case

We assume that k is algebraically closed. According to Corollary 8.6.2, our goal
is to extract information from the bijections

Homgp

(
Ẑn,PGLd(k)

)
irr
/PGLd(k)

∼−→ H1
loop(Rn,PGLd)irr

∼−→ H1(Fn,PGLd)irr.

The right hand set is known from the work of Amitsur [Am], Tignol-Wadsworth [TiW]
and Brussel [Br],34 the left hand-side is known by a classification due to Mumford
[Mu, Prop. 3]

34See also [L], [Ne], [RY1, §8] and [RY2]. These last two references relate to finite abelian constant
subgroups of PGLd which have been investigated by Reichstein-Youssin in their construction of
division algebras with large essential dimension. [Ne] is more interested in the “quantum tori” point
of view and its relation to EALAs of absolute type A.
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As a byproduct of our main result, we can provide then a proof of Mumford’s clas-
sification of irreducible finite abelian constant subgroups of PGLd from the knowledge
of the Brauer group of the field Fn. Let us state first Mumford’s classification. If
d = s1....slŝ with s1 | s2 · · · | sl and s1 ≥ 2, we consider the embedding

PGLs1 × · · · ×PGLsl → PGLd

and define the subgroup H(s1, ..., sl) to be the image of the product of the standard
anisotropic subgroups H(sj) = (Z/sjZ)2 of PGLsj for j = 1, .., l defined by the
generators

aj =




0 0 · · · 0 1
1 0 0 · · · 0
0 1 · · · 0
· · · 1 0


 , bj =




1 0 · · ·
0 ζsj 0 · · · 0
0 · · · 0

0 · · · 0 ζ
sj−1
sj


 .(13.2)

Remark 13.9. The way of expressing the group H(s1, s2) in the form H(s1)×H(s2)
is not unique when s1 and s2 are coprime. There is then a unique way to ar-
range such a group H as H(s′1, ..., s

′
l′) with s′1 | s′2 · · · | s′l and s′1 ≥ 2. Note that

rank
(
H(s′1, ..., s

′
l)(k)

)
= 2l′.

We can now state and establish the classification of irreducible finite abelian groups
of the projective linear group.

Theorem 13.10. [Mu, Prop. 3] (see also [BL, §6], [GM, Th. 8.28]).

1. d = s1 × ...× sl if and only H(s1, ..., sl) is irreducible in PGLd.

2. If H is an irreducible finite abelian constant subgroup of PGLd, then H is
PGLd(k)–conjugate to a unique H(s1, ..., sl) with d = s1...sl, s1 | s2 · · · | sl and
s1 ≥ 2.

As mentioned above, our proof makes use of Galois cohomology results over Rn

for n ≥ 1 (or equivalently Fn) collected from our previous paper [GP3].
Our convention on the cyclic algebra (ti, tj)

q
p is that of Tate35 for the Azumaya

Rn–algebra with presentation

Xq = ti, Y
q = tpj , Y X = ζqXY.

35This is the opposite convention than that of [Br] and [GP3], but consistent with that of [GS]
which we use in the proof.
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Let us consider now Brussel Rn–algebras. Given sequences of length l ≤ [n
2
]

2 ≤ s1 · · · ≤ sl, r1, · · · , rl
we define

A(r1, s1, ..., rl, sl) : (t1, t2)
r1
s1 ⊗Rn · · · ⊗Rn (t2l−1, t2l)

rl
sl
.

Lemma 13.11. With the notation as above, set d = s1...sl and define

φ : Ẑn → H(s1)(k)× · · · ×H(sl)(k) = H(s1, ..., sl)(k) ⊂ PGLd(k),

(e1, e2, ..., e2l−1, e2l) 7→ (−a1,−r1b1, ...,−al,−rlbl)

1. Then φ(Md)
∼−→ A(r1, s1, ..., rl, sl) as Rn–algebras.

2. The following are equivalent:

(a) A(r1, s1, ..., rl, sl)⊗Rn Fn is division Fn–algebra;

(b) φ is irreducible;

(c) H(s1, ..., sl) is irreducible in PGLd and (rj, sj) = 1 for j = 1, ..., l.

Proof. (1) This is done for R2 and each H(si) in [GP2, proof of Th. 3.17]. This
“extends” in an additive way to yield the general case.

(2) The equivalence (a)⇐⇒ (b) is a special case of [GP3, 3.1].

(b) =⇒ (c): Since φ is irreducible, its image Im(φ) is an irreducible subgroup ofPGLd.
This image is a product of the Im(φi) which are then irreducible in PGLsi. According
to [GP3, 3.13], we have then (rj, sj) = 1 for j = 1, ..., l. Hence Im(φ) = H(s1, ..., sl)
is irreducible in PGLd.

(c) =⇒ (a): Since H(s1, ..., sl) is irreducible in PGLd, we have d = s1....sl. The
condition (rj, sj) = 1 for j = 1, ..., l implies that the algebra A(r1, s1, ..., rl, sl)⊗Rn Fn
is division [Am, th. 3].

We can now proceed with the proof of Theorem 13.10.

Proof. (1) If d = s1...sl then A(1, s1, ..., 1, sl) ⊗Rn Fn is a division Fn–algebra [Am,
th. 3], so Lemma 13.11 shows that H(s1, ..., sn) is irreducible in PGLd. If d 6= s1...sl,
then this algebra is not division and H(s1, ..., sn) is reducible.
(2) If H(s1, ..., sl) is PGLd(k)–conjugate to some H(s′1, ..., s

′
l′), then H(s1, ..., sl) is

isomorphic to H(s′1, ..., s
′
l′) as finite abelian group. So the divisibility conditions yield

l = l′ and sj = s′j for j = 1, ..., l.

The delicate points are existence and conjugacy. LetH be a finite abelian constant
irreducible subgroup of PGLd. Denote by n the rank of H(k) and by m its exponent.
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Let us prove first that H is PGLd(k)–conjugate to some H(s1, ..., sl). We view
H(k) as the image of an irreducible group homomorphism ψ : (Z/mZ)n → PGLd(k).
Since k is algebraically closed ψ is a cocycle. The loop construction then defines
an Azumaya Rn–algebra of degree d such that A ⊗Rn Fn is division (i.e. the group
PGL1(A)Fn is anisotropic). Up to base change by a suitable element of GLn(Z),
Theorem 4.7 of [GP3] provides an element g ∈ GLn(Z) such that

g∗(A) ∼= A(r1, s1, ..., rl, sl)

with (rj , sj) = 1 for j = 1, .., l.
By Lemma 6.1.1, A(r1, s1, ..., rl, sl) is the loop Azumaya algebra defined by the

morphism

φ : Ẑn → H(s1)(k)× · · · ×H(sl)(k) = H(s1, ..., sl)(k) ⊂ PGLd(k),

(e1, e2, ..., e2l−1, e2l) 7→ (−a1,−b1, ...,−al,−rlbl).
which is then irreducible by the second statement of the same lemma. Theorem 7.9
tells us that φ and ψ are PGLd(k)–conjugate, hence H(k) is PGLd(k)–conjugate to
H(s1, ..., sl)(k) = Im(ψ). Since n = rank(H(s1, ..., sl)(k)), we have s1 | s2... | sl.

We can now go back to Azumaya algebras.

Theorem 13.12. Let A be an anisotropic loop Azumaya Rn–algebra of degree d.

1. There exists a sequence s1, ..., sl and an integer r1 prime to s1 satisfying

s1 | · · · | sl, 2 ≥ s1, d = s1 · · · sl, (r1, s1) = 1

and an element g ∈ GLn(Z) such that

g∗(A) ∼= A(r1, s1, 1, s2, 1, s3, · · · , 1, sl) ∼= A(−r1, s1, 1, s2, 1, s3, · · · , 1, sl).

Such a sequence s1, ..., sl is unique.

2. If n = 2l, ±r1 is unique modulo s1.

3. If n > 2l, g∗(A) ∼= A(1, s1, 1, s2, 1, s3, · · · , 1, sl).

Proof. (1) By definition, A is the twist of Md(k) by a morphism φ : (Z/mZ)n →
PGLd(k). Since A⊗Rn Fn is division, φ is irreducible [GP2, th. 3.1]. Theorem 13.10
shows that there exists a unique sequence s1, ..., sl such that s1 | · · · | sl, 2 ≥ s1
and Im(φ) is PGLd(k)–conjugate to H(s1, ..., sl) := H(s1, ..., sl)(k). Without lost of
generality, we can assume that Im(φ) = H(s1, ..., sl).
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Recall that a1, b1, ..., al, bl stand for the standard generators of H(s1, ..., sl). We
shall use that Λl

(
H(s1, ..., sl)

)
≃ Z/s1Z generated by a1 ∧ b1 · · ·al ∧ bl [RY2, Lemma

2.1], as well as the following invariant of φ (ibid, 2.5)

δ(φ) = φ(e1) ∧ φ(e2) ∧ · · · ∧ φ(en) ∈ Λn
(
H(s1, ..., sl)(k)

)

This invariant has the remarkable property that a homomorphism φ′ : (Z/mZ)n →
H(s1, ..., sl)(k) is GLn(Z)–conjugate to φ if and only if δ(φ) = ±δ(φ′).

We shall prove (1) together with (2) [resp. (3)] in the case n = 2l (resp. n > 2l).

First case. n = 2l: The family (φ(e1), ..., φ(en)) generates H(s1, ..., sl), and we con-
sider the class

[r♯1] := φ(e1) ∧ φ(e2) ∧ · · · ∧ φ(en) ∈ (Z/s1Z)
×.

Let r1 be an inverse of r♯1 modulo s1. We have

φ(r1e1) ∧ φ(e2) · · · ∧ φ(en) = a1 ∧ b1 · · · al ∧ bl

so there exists g ∈ GLn(Z) such that (ibid, 2.5)

ψ(r1e1) = a1, ψ(e2) = b2, · · · , φ(en−1) = al, φ(en) = bl

where ψ = φ ◦ g. In terms of algebras, this means that

g∗(A) ≃ A(r1, s1, 1, s2, 1, s3, · · · , 1, sl).

Let us first prove the uniqueness assertions The uniqueness of (s1, .., sl) follows from
Theorem 13.10, hence (1) is proven. For (2), we are given then r′1 ∈ Z coprime to s1,
and an element h ∈ GLn(Z) such that

h∗
(
A(r1, s1, 1, s2, 1, s3, · · · , 1, sl)

)
≃ A(r′1, s1, 1, s2, 1, s3, · · · , 1, sl).

Denote by ψ′ : (Z/mZ)n → H(s1, .., sn) the group homomorphism defined by ψ′(e1) =
r′1a1, ψ

′(e2) = b1, · · · , ψ(en) = b2l. Since the (Fn–anisotropic) loop algebras attached
to h∗ψ and ψ′ are isomorphic, Theorem 7.9 provides an element u ∈ PGLd(k) such
that

ψ ◦ h = u ◦ ψ′.

Since H(s1, ..., sl) = Im(ψ) = Im(ψ′), it follows that u ∈ NPGLd(k)

(
H(s1, ...sl)

)
.

But the map u : H(s1, ..., sl)(k) → H(s1, ...sl)(k) preserves the symplectic pairing
H(s1, ..., sl)(k) × H(s1, ..., sl)(k) → k× arising by taking the commutator of lifts in
GLd(k). It follows that Λ

n(u) = id (ibid, 2.3.a) hence

δ(ψ) = ±δ(ψ ◦ h) = ±δ(u ◦ ψ′) = ±δ(u ◦ ψ′).
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Thus r1 = ±r′1 ∈ Z/s1Z as prescribed in (2) .

Second case. n > 2l: For i = 2l + 1, ..., n we set ci = 0 ∈ H(s1, .., sl). Both fam-
ilies

(
φ(e1), . . . φ(en)

)
and (r1 a1, b1 · · · , al, bl, c2l+1, · · · , cn) generate H(s1, ..., sl) and

satisfy

φ(e1)∧φ(e2) · · ·∧φ(en) = (r1 a1)∧b1 · · · al∧bl∧c2l+1∧· · ·∧cn ∈ Λn
(
H(s1, ..., sl)

)
= 0.

The same fact [RY2, Lemma 2.5] shows that there exists g ∈ GLn(Z) such that
(g∗φ)(e1) = r1a1, (g

∗φ)(e2) = b1, (g
∗φ)(e2i−1) = ai and (g∗φ)(e2i) = bi for i = 2, .., l

and (g∗φ)(ei) = ci for i = 2l+ 1, ..., n. Therefore the preceding case with 2l variables
yields the existence and the uniqueness of the si’s. It remains to prove (3), namely
that we can assume that r1 = 1. But this follows along the same lines of the argument
given above since (r1 a1)∧b1 · · · al∧bl∧c2l+1 · · ·∧cn = (a1)∧b1 · · · al∧bl∧c2l+1 · · ·∧cn ∈
Λn

(
H(s1, ..., sl)

)
.

13.4 Loop algebras of inner type A

To the Azumaya Rn–algebra A(r1, s1, ..., rl, sl) we can attach (using the commu-
tator [x, y] = xy − yx) a Lie algebra over Rn. We denote by L(r1, s1, ..., rl, sl) the
derived algebra of this Lie algebra. It is a twisted form of sld(Rn) where d = s1 . . . sl.

Corollary 13.13. Let d be a positive integer. Let L be a nullity n loop algebra of
inner (absolute) type Ad−1.

1. If L is not split, it is k–isomorphic to L(r1, s1, 1, s2, · · · , 1, sl) where

s1 | · · · | sl, 2 ≥ s1, d = s1 · · · sl, (r1, s1) = 1 and l ≤
[n
2

]

and such a sequence s1, ..., sl is unique.

2. If n = 2l, r1 is unique modulo s1 and up to the sign.

3. If n > 2l, L is k–isomorphic to L(1, s1, 1, s2, · · · , 1, sl)
Proof. The classification in question is given by considering the image of the natural
map

H1
loop(Rn,PGLd)→ GLn(Z)\H1(Rn,Aut(PGLd))

The image can be identified with (Z/2Z×GLn(Z))\H1
loop(Rn,PGLd) where Z/2Z acts

by the opposite Azumaya algebra construction. Corollary 8.6 reduces the problem to
the “anisotropic case”. Theorem 13.12 determines the set GLn(Z)\H1

loop(Rn,PGLd),
and as it turns out the action of Z/2Z is trivial. Therefore the desired classification
is also provided by GLn(Z)\H1

loop(Rn,PGLd) and we can now appeal to Theorem
13.12 to obtain the Corollary.
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14 Invariants attached to EALAs and multiloop

algebras

Both the finite dimensional simple Lie algebras over k (nullity 0) and their affine
counterparts (nullity 1) have Coxeter-Dynkin diagrams attached to them that contain
a considerable amount of information about the algebras themselves. It has been a
long dream to find a meaningful way of attaching some kind of diagram to multiloop,
or at least EALAs of arbitrary nullity (perhaps with as many nodes as the nullity).
Our work shows that this can indeed be done and in a very natural way.

Let us recall (see the Introduction for more details) the multiloop algebras based
on a finite dimensional simple Lie algebra g over an algebraically closed field k of char-
acteristic 0. Consider an n–tuple σσσ = (σ1, . . . , σn) of commuting elements of Aut(g)
satisfying σmi = 1. For each n–tuple (i1, . . . , in) ∈ Zn we consider the simultaneous

eigenspace gi1...in = {x ∈ g : σj(x) = ξ
ij
mx for all 1 ≤ j ≤ n}. The multiloop algebra

L(g,σσσ) corresponding to σσσ is defined by

L(g,σσσ) = ⊕
(i1,...,in)∈Zn

gi1...in ⊗ t
i1
m . . . t

in
m
n ⊂ g⊗k Rn,m ⊂ g⊗k R∞

Recall that L(A,σσσ), which does not depend on the choice of common period m, is
not only a k–Lie algebra (in general infinite-dimensional), but also naturally an R–
algebra. It is when L(g,σσσ) is viewed as an R–algebra that Galois cohomology and
the theory of torsors enter into the picture. Indeed a rather simple calculation shows
that

L(g,σσσ)⊗Rn Rn.m ≃ g⊗k Rn,m ≃ (g⊗k Rn)⊗Rn Rn,m.

Thus L(g,σσσ) corresponds to a torsor Eσσσ over Spec(R) under Aut(g). It is, however,
the k–Lie algebra structure that is of interest in infinite-dimensional Lie theory and
Physics.

Let G be the k–Chevalley group of adjoint type corresponding to g. Since Aut(G)
and Aut(g) coincide we can also consider the twisted Rn–group EGRn . By functori-
ality and the definition of Lie algebra of a group functor in terms of dual numbers we
see that Lie(EGRn) = L(g,σσσ). By the aciclicity Theorem to EGRn we can attach a
Witt-Tits index, and this is the “diagram” that we attach to L(g,σσσ) as as Lie algebra
over k. Note that by Corollary 8.12 this is well defined. The diagram carries the
information about the absolute and relative type of L(g,σσσ).36

36The relative type as an invariant of L(g,σσσ) is defined in in §3 of [ABP3] by means of the central

closure. If C is the centroid of L(g,σσσ) and C̃ denotes its field of quotients, then L(g,σσσ) ⊗C C̃ is a

finite dimensional central simple algebra over C̃. As such it has an absolute and relative type. This
construction applies to an arbitrary prime perfect Lie algebra which is finitely generated over its
centroid.
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To reassure ourselves that this is the correct point of view we can look at the
nullity one case. EALAs of nullity one are the same than the affine Kac-Moody Lie
algebras. If one uses Tits methods to compute simple adjoint algebraic groups over
the field k((t)) one obtains precisely the diagrams of the affine algebras.

15 Appendix 1: Pseudo-parabolic subgroup schemes

We extend the definition of pseudo-parabolic subgroups37 of affine algebraic groups
(Borel-Tits [BoT2], see also [Sp, §13.4]) to the case of a group scheme G which is of
finite type and affine over a fixed base scheme X. We begin by establishing some
notation.

We will denote by Gm,X and Ga,X the multiplicative and additive X-groups. The
underlying schemes of these groups will be denoted by A×

X and AX respectively. After
applying a base change X→ X′ we obtain corresponding X′-groups and schemes that
we denote by Gm,X′ , Ga,X′ , A×

X and AX′.
The structure morphism of the X′–scheme A×

X′ gives by functoriality a group ho-
momorphism

(15.1) ηX′ : G(X′)→ G(A×
X′)

Let λ : Gm,X → G be a cocharacter. By applying λX′ to the identity map idA×
X′
∈

Gm,X′(A×
X′) we obtain an element of λX′(idA×

X′
) ∈ G(A×

X′).

We have a natural group homomorphism G(AX′) → G(A×
X′). Given an element

x′ ∈ G(A×
X′) we will write x′ ∈ G(AX′) if x′ is in the image of this map.

After these preliminary definitions we are ready to define the three group functors
that are relevant to the definition of pseudo-parabolic subgroups.

Let ZG(λ) denote the centralizer of λ. Recall that this is the X-group functor that
to a scheme X′ over X attaches the group

(15.2) ZG(λ)(X
′) = {x′ ∈ G(X′) : x′′ commutes with λ

(
Gm,X(X

′′)
)
⊂ G(X′′)}

where X′′ is a scheme over X′ and x′′ denotes the image of x′ under the natural group
homomorphism G(X′)→ G(X′′).

We consider the two following X–functors

P(λ)(X′) =
{
g ∈ G(X′) | λX′(idA×

X′
) ηX′(g)

(
λX′(idA×

X′
)
)−1 ∈ G(AX′)

}

37In [CoGP] the groups that we are about to define are called limit subgroups. We have decided,
since we are only dealing with analogues of pseudo-parabolic subgroups over fields, to abide by this
terminology. This material can in part be recovered from their work, but we have decided to include
it in the form that we needed for the sake of completeness.
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and

U(λ)(X′) =
{
g ∈ G(X′) | λX′(idA×

X′
) ηX′(g)

(
λX′(idA×

X′
)
)−1 ∈ ker

(
G(AX′)→ G(X′)

)}

for every X-scheme X′. The centralizer ZG(λ) is an X–subgroup functor of P(λ) which
normalizes U(λ).

We look at the previous definitions in the case when X = Spec(R) and X′ =
Spec(R′) are both affine.38 We have AR′ = Spec(R′[x]) and A×

R′ = Spec(R′[x±1]).
Then x ∈ R′[x±1]× = Gm,R′(R′[x±1]) = Gm,R′(A×

R′), and by applying our cocharacter
we obtain an element λR′(x) ∈ G(R′). Under Yoneda’s correspondenceGm,R′(R′[x±1]) ≃
HomR′(R′[x±1], R′[x±1]) our element x corresponds to the identity map, namely to
the element idA×

R′
∈ Gm,R′(A×

R′) if we rewrite our ring theoretical objects in terms of

schemes. We thus have

P(λ)(R′) =
{
g ∈ G(R′) | λR′(x) ηR′(g)

(
λR′(x)

)−1 ∈ G(R′[x])
}

and

U(λ)(R′) =
{
g ∈ G(R′) | λR′(x) ηR′(g)

(
λR′(x)

)−1 ∈ ker
(
G(R′[x])→ G(R′)

)}

where ηR′(g) is the natural image of g ∈ G(R′) in G(R′[x±1]), and the group homo-
morphism G(R′[x]) → G(R′) comes from the ring homomorphism R′[x] → R′ that
maps x to 0.

15.1 The case of GLn,Z.

Assume S = Spec(Z) and let G denote the general linear group GLn,Z over Z.
We let T denote the standard maximal torus of G. Let λ : Gm,Z → T →֒ G be
a cocharacter of G that factors through T. We review the structure of the groups
ZG(λ), P(λ) and U(λ).

After replacing λ by int(θ) ◦ λ for some suitable θ ∈ G(Z) we may assume that
there exists (unique) integers 1 ≤ ℓ1 < ℓ2 < · · · < ℓj ≤ n and e1, . . . , en such that

ei = ej if ℓk ≤ i, j < ℓk+1 for some k

eℓk+1 > eℓk for all 1 ≤ k ≤ j

so that the functor of points of our map λ : Gm,Z → T is given by

λR : Gm,Z(R) −→ T(R)

38As customary we write Gm,R instead of Gm,X...
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(∗) r 7→




re1 0
. . .

0
ren




for any (commutative) ring R and for all r ∈ Gm,Z(R) = R×.
At the level of coordinate rings ifGm,Z = Spec

(
Z[x±1]

)
andT = Spec

(
Z[t±1

1 , . . . , t±1
n ]

)
,

then λ corresponds (under Yoneda) to the ring homomorphism

λ∗ : Z[t±1
1 , . . . , t±1

n ] −→ Z[x±1]

given by
λ∗ : ti 7→ xei.

From this it follows that ZG(λ)(R) consists of block diagonal matrices inside
GLn(R) of size ℓ1, . . . , ℓj . Note that one “cannot see” this by looking at the centralizer
of λ

(
Gm,Z(R)

)
inside G(R). This is clear, for example, if n = 2, R = Z, j = 1, ℓ1 = 1

and 1 = e1 < e2 = 3. The easiest way to eliminate “naive” contralizers in ZG(λ)(R)
is to look at their image in G

(
R[x±1]

)
. In fact

Lemma 15.1. With the above notation we have

ZG(λ)(R) =
{
A ∈ G(R) ⊂ G(R[x±1]) : A commutes with λR

(
Gm,Z(R[x

±1])
) }
.

Proof. The inclusion ⊂ follows from the definition of ZG(λ). Conversely suppose that
A ∈ G(R) is not an element of ZG(λ)(R). Then there exists a ring homomorphism
R→ S and an element s ∈ S× such that the image of A in G(S) does not commute
with the diagonal matrix

λS(s) =



se1

. . .

sen


 .

But then A, viewed now as an element of G
(
R[x±1]

)
cannot commute with

λR[x±1](x) =



xe1

. . .

xen


 .

For if it did, we would reach a contradiction by functoriality considerations applied
to the (natural) ring homomorphism R[x±1]→ S that maps x to s.
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Returning to our example we see that there are two extreme cases for ZG(λ). If
j = 1 and ℓ1 = n then ZG(λ) = G. At the other extreme if j = n then λ is regular
and ZG(λ) = T. In all cases we see from the diagonal block description that ZG(λ)
is a closed subgroup of G (in particular affine).

We now turn our attention to P(λ) and U(λ). By using (∗) one immediately sees
that

P(λ)(R) = {A = (aij) ∈ G(R) : aji = 0 if ei > ej}.
Thus the P(λ) are the standard parabolic subgroups of G.

Example 15.2. We illustrate with the case n = 5 with j = 2 and ℓ1 = 2, ℓ2 =
5, e1 = 1, e2 = 3. Then A = (aij) ∈ GL5(R) is of the form

A =

(
× +
− ×

)
.

We have two blocks, the top left of size 2 and the bottom right of size 3. Given
A = (aij) ∈ GL5(R) ⊂ GL5(R[x

±1]) define P by




x1 0
x

x3

0 x3

x3




A




x−1 0
x−1

x−3

0 x−3

x−3




= P

that is
λ(x)Aλ(x)−1 = P

where P = (pij) and pij =
∑
pijkx

k ∈ R[x±1]. To belong to P(λ) the element A must
be such that pijk = 0 for k < 0. This forces all entries in the 3× 2 block marked with
a − to vanish. For the elements in ZG(λ)(R) both blocks − and + must vanish.

It is easy to determine that if A ∈ P(λ) the matrix P is such that the pij = aij ∈ R
whenever 1 ≤ i, j ≤ 2 or 2 ≤ i, j ≤ 5. If, on the other hand, i ≤ 2 < j then
pij = aijx

2.

This makes the meaning of U(λ) quite clear in general. If λ(x)Aλ(x)−1 ∈ G(R[x])
is mapped to the identity element of G(R) under the map R[x] → R which sends
x 7→ 0 then aii = 1 and aij = 0 if ei > ej . That is

U(λ)(R) = {A = (aij) ∈ P(λ) : aii = 1 and aij = 0 if ei > ej}.

In particular U(λ) is an unipotent subgroup of P(λ).
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15.2 The general case

Lemma 15.3. Assume that there exists locally for the fpqc-topology a closed embed-
ding of G in a linear group scheme.39 Then

1. the X–functor U(λ) (resp. P(λ), resp. ZG(λ)) is representable by a closed
subgroup scheme of G which is affine over X.

2. The geometric fibers of U(λ) are unipotent.

3. P(λ) = U(λ)⋊ ZG(λ).

4. ZG(λ) = P(λ)×G P(−λ).

5. P(λ) = NG

(
P(λ)

)
.

Proof. The case of GLn,S: The question is local with respect to the fpqc topology,
so we can assume then that X is the spectrum of a local ring R. Since all maximal
split40 tori of the R–group GLn,R are conjugate under GLn(R) [SGA3, XXVI.6.16],
we can assume that λ : Gm,R → TR < GLn,R where T is the standard maximal torus
of GLn,Z. Since HomZ(Gm,T) ≃ HomR(Gm,RTR), we can reduce our problem to the
case when R = Z, which has been already done in Example 15.1.

General case:
By fpqc-descent, we can assume that X is the spectrum of a ring R, and that we

are given a R–group scheme homomorphism ρ : G → G′ = GLn,R which is a closed
immersion.

(1) Denote by P′(λ) and U′(λ) the R–subfunctors of G′ attached to the cocharacter
ρ ◦ λ. The identities P(λ) = P′(λ)×G′ G and U(λ) = U′(λ)×G′ G can be established
by reducing to the case of G′ = GLn,R. This reduces the representability questions
to the case when G = GLn,R considered above.

(2) This follows as well from the GLn,R case.

(3) We know that the result holds for G′. Let R′ be a ring extension of R and let
g ∈ G(R′). Then g = uz with u ∈ U′(λ)(R′) and z ∈ P′(λ)(R′). We have

λ(x) g λ(x)−1λ(x) u λ(x)−1 z ∈ G(AR′).

By specializing at 0, we get that z ∈ G(R′). Thus g ∈ ZG(λ)(R
′) and u ∈ U(λ)(R′).

We conclude that P(λ) = U(λ)⋊ ZG(λ).

(4) and (5) follows from the GLn,R case.

39This condition is satisfied if X is locally noetherian of dimension ≤ 1 [BT2, §1.4], and also for
reductive X–group schemes.

40Trivial, in the terminology of [SGA3].
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Definition 15.4. An X–subgroup of G is pseudo-parabolic if it is of the form P(λ)
for some X–group homomorphism Gm,X → G.

Proposition 15.5. Let G be a reductive group scheme over X.

1. Let λ : Gm,X → G be a cocharacter. Then P(λ) is a parabolic subgroup scheme
of G and ZG(λ) is a Levi subgroup of the X–group scheme P(λ).

2. Assume that X is semi-local, connected and non-empty. Then the pseudo parabolic
subgroup schemes of G coincide with the parabolic subgroup schemes of G.

We shall use that this fact is known for reductive groups over fields [Sp, §15.1].
Proof. We can assume that X = Spec(R) is affine.

(1) The geometric fibers of P(λ) are parabolic subgroups. By definition [SGA3,
§XXVI.1], it remains to show that P(λ) is smooth. The question is then local with
respect to the fpqc topology, so that we can assume that R is local and that G is
split. By Demazure’s theorem [SGA3, XXIII.4], we can assume that G arises by base
change from a (unique) split Chevalley group G0 over Z.

We now reason along similar lines than the ones used in studying the GLn,Z case
above. Let T ⊂ G0 be a maximal split torus. Since all maximal split tori of G are
conjugate under G(R), we can assume that our cocharacter λ factors through TR.
Since HomZ(Gm,Z,T) ∼= HomR(Gm,R,TR), the problem again reduces to the case
when R = Z and of G = G0, and λ : Gm,Z → T. By the field case, the morphism
P(λ) → Spec(Z) is equidimensional. Since Z is a normal ring and the geometric
fibers are smooth, we can conclude by [SGA1, prop. II.2.3] that P(λ) is smooth and
is a parabolic subgroup scheme of the Z–group G0.

The geometric fibers of P(λ)×S P(−λ) are Levi subgroups. By applying [SGA3,
th. XXVI.4.3.2], we get that ZG(λ) = P(λ)×G P(−λ) is a Levi S-subgroup scheme
of P(λ).

(2) Using the theory of relative root systems [SGA3, §XXVI.7], the proof is the same
as in the field case.

16 Appendix 2: Global automorphisms of G–torsors

over the projective line

In this appendix there is no assumption on the characteristic of the base field k.
Let G be a linear algebraic k–group such that G0 is reductive. One way to state
Grothendieck-Harder’s theorem is to say that the natural map

Homgp(Gm,G)/G(k)→ H1
Zar(P

1,G)
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which maps a cocharacter λ : Gm → G to the G-torsor Eλ := (−λ)∗
(
O(−1)

)
over P1

k

where O(−1) stands for the Hopf bundle A2
k \ {0} → P1

k, is bijective.
41

We fix now a cocharacter λ : Gm → G. We are interested in the twisted P1
k–group

scheme Eλ(G) = Isom
G
(Eλ,Eλ), as well as the abstract group Eλ(G)(P1

k). This group
is the group of global automorphisms of the G–torsor Eλ over P1

k. It has a concrete
description.

Lemma 16.1. Eλ(G)(P1
k) = G(k[t]) ∩ λ(t)G(k[t−1])λ(t−1).

Proof. We recover P1
k by two affine lines U0 = Spec(k[t]) and U1 = Spec(k[t−1]). The

Hopf bundle is isomorphic to the twist of Gm by the cocycle z ∈ Z1(U0⊔U1/P1
k,Gm)

where z0,0 = 1, z0,1 = t−1, z1,0 = t, z1,1 = 1. Then λ(z) ∈ Z1(U0 ⊔U1/P1
k,Gm) is the

cocycle of Eλ. Hence

Eλ(G)(P1
k) =

{
(g0, g1) ∈ G(U0)×G(U1) | λ−1(z0,1).g1 = g0

}

= G(k[t]) ∩ λ(t)G(k[t−1])λ(t−1).

In the split connected case, this group has been computed by Ramanathan [Ra,
prop. 5.2] and by the first author in the split case (see proposition II.2.2.2 of [Gi0]).
We provide here the general case by computing the Weil restriction

Hλ =
∏

P1
k/k

Eλ(G),

which is known to be a representable by an algebraic affine k–group. Let P(λ) =
U(λ)⋊ ZG(λ) ⊂ G be the parabolic subgroup attached to λ (lemma 15.3).

Denote by Z(λ) the center of ZG(λ). Then λ factors through Z(λ) and this
allows us to define the Z(λ)–torsor Sλ := (−λ)∗

(
O(−1)

)
over P1

k. We can twist the
morphism ZG(λ)→ G by Sλ, so we get a morphism ZG(λ)×k P1

k → Eλ(G) and then
a morphism ZG(λ)→ Hλ.

Proposition 16.2. The homomorphisms of k–groups
(∏

P1
k/k

Sλ(U(λ))
)
⋊ ZG(λ) →

∏

P1
k/k

Sλ
(
P(λ)

)
→ Hλ.

are isomorphisms. Furthermore,
∏
P1
k/k

Sλ(U(λ)) is a unipotent k–group.

41This is not the usual way to state the theorem (see [Gi0, II.2.2.1]), but it is easy to derive the
formulation that we are using.
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Proof. Write P, U for P(λ), U(λ).

∏

P1
k/k

Sλ(P) =
∏

P1
k/k

Sλ(U) ⋊
∏

P1
k/k

ZG(λ) =
∏

P1
k/k

Sλ(U) ⋊ ZG(λ)

so it remains to show that
∏
P1
k/k

Sλ(P)
∼−→ Hλ. Consider a faithful representation

ρ : G → G′ = GLn. Denote by P′ the parabolic subgroup of G′ attached to λ. We
have P = G×G

′ P′, hence Sλ(P) = Eλ(G)×Eλ(G
′) Sλ(P

′). It follows that

∏

P1
k/k

Sλ(P) =
∏

P1
k/k

Eλ(G) × ∏

P1
k
/k

Eλ(G
′)

∏

P1
k/k

Sλ(P
′)

as can be seen by reducing to the case of GLn already done in Example 15.1. This
case also shows that

∏
P1
k/k

Sλ(U(λ)) is a unipotent k–group.
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28 and 32 (1964 - 1967).

[F] M. Florence, Points rationnels sur les espaces homogènes et leurs compactifica-
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sur un corps de nombres, J. reine angew. Math. (Crelle) 327 (1981), 12–80.

[Sc] W. Scharlau, Quadratic and hermitian forms, Grundlehren der math. Wiss. 270
(1985), Springer.

[Se1] J.-P. Serre, Cohomologie Galoisienne, cinquième édition révisée et complétée,
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