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Abstract

Graph cuts have now become a cornerstone in computer
vision for efficiently solving numerous labeling problems.
However, their large memory consumption make it hard to
solve large-scale problems even when restricted to binary
variables. Except some exact methods [14, 8, 4], the heuris-
tics [10, 11, 13, 6] generally fail to fully capture details. In
this paper, we first review a band-based strategy for reduc-
ing graphs in image segmentation [9]. It provides small
graphs while accurately preserving thin structures but do
not offer low memory usage when the amount of regulariza-
tion is large. This is, for instance, the case when images are
corrupted by an impulsive noise. In this paper, we overcome
this situation by embedding a new parameter in [9] to both
further reducing graphs and filtering the segmentation. This
parameter appears to be generally less sensitive to noise
variations and offers a good robustness against noise. We
also provide an empirical way to automatically tune it and
illustrate its behavior through some experiments.

Keywords: graph cuts, reduction, segmentation, filtering.

1. Motivation and scope
Graph cuts have become increasingly popular due to

their ability to efficiently compute the Maximum A Pos-
teriori of Markov Random Fields (MRF). This popularity
is notably driven by the introduction of a fast maximum-
flow (max-flow) algorithm [3] making near real-time per-
formance possible for solving numerous labeling problems.

In parallel, technological advances in image acquisition
have both increased the amount and the diversity of data to
process. As an illustration, in the satellite SPOT-5 launched
by Arianespace in 2002, high resolution sensors can capture
multispectral and panchromatic images of about 1GB.

Processing this type of data amounts to solve large scale
optimization problems. In the image segmentation context,
almost all graph cuts-based methods are impractical to solve
such problems due to the memory requirements. To over-
come this situation, some amount of work has been done in
this direction and a number of heuristics [10, 11, 13, 6] and

exact methods [8, 4, 14] have been proposed.
To our best knowledge, this problem seems to be first

addressed in [10] where the underlying graph is built upon
a pre-segmentation. Although this approach greatly re-
duce the computational burden of graph cuts, the results
strongly depend on the algorithm used for computing the
pre-segmentation. Also, better results are obtained when
over-segmentation occurs, losing in this way the main ben-
efit of such a reduction.

Others have also reported band-based methods [11, 13,
6]. A low-resolution of the image is first segmented and
the solution is propagated to the finer level by only build-
ing the graph in a narrow band surrounding the interpolated
foreground/background interface at that resolution. While
such an approach drastically reduce time and memory con-
sumption, it is limited to segment roundish objects. This
problem is notably reduced in [13] but still present for low-
contrasted details. In [6], finer bands are obtained using an
uncertainty measure associated to each pixel.

Exact methods have been also investigated [8, 4, 14].
In [8], binary energy functions are minimized for the shape
fitting problem with graph cuts in a narrow band while en-
suring the optimality on the solution. One makes a band
evolve around the object to delineate by expanding it when
the minimum-cut (min-cut) touches its boundary. This pro-
cess is iterated until the band no longer evolves. Although
the algorithm generally converges in few iterations toward
the optimal solution, an initialization is required and no
bound on the band size is given.

A parallel max-flow algorithm yielding a near-linear
speedup with the number of processors is described in [4].
Nevertheless, the algorithm is relatively sensitive to the
available amount of physical memory and remains less effi-
cient on small graphs.

The approach used in [14] is different: instead of reduc-
ing the graphs, the problem is decomposed into optimizable
sub-problems, solved independently and updated according
to the results of the adjacent problems. This process is iter-
ated until convergence and optimality is guaranteed by La-
grangian decomposition.

Finally, another band-based method was proposed for re-
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ducing graphs in binary image segmentation [9]. The graph
is progressively built by only adding nodes which locally
satisfy a condition. In the manner of [13, 6], the graph
nodes are typically located in a narrow band surrounding
the object edges to segment. Empirically, the authors show
in [9] that the solutions obtained with and without reduc-
tion are identical and the time for reducing the graph is even
compensated by the time for computing the min-cut in the
reduced graph.

The rest of this paper is organized as follows. First, we
review the graph cuts framework in Section 2 as well as
the strategy of [9] in Section 3 for reducing graphs. Af-
terwards, a new parameter is introduced in Section 4 for
further reducing the graphs and removing small undesired
segments in the segmentation when the image is corrupted
by a noise behaving like an impulsive noise. The sensitivity
of this parameter as well as its robustness against noise are
also evaluated through experiments for segmenting images.

2. Preliminaries
Consider an image I : P ⊂ Zd → [0, 1]c as a function,

mapping each pixel p ∈ P to a vector Ip ∈ [0, 1]c 1. We
define a binary segmentation as an application u affecting
to each pixel p ∈ P either 0 (background) or 1 (object) and
we write u ∈ {0, 1}P . A popular strategy to segment I is
to minimize a MRF of the form [2]:

E(u) = β ·
∑
p∈P

Ep(up) +
∑

(p,q)∈N

Ep,q(up, uq), (1)

among u ∈ {0, 1}P and for a fixed β ∈ R+. The neigh-
borhood system N ⊂ P2 is a subset of all pixel pairs
(p, q) ∈ P2. In the sequel, ”connectivity 0” will denote
4 and 6 neighbors in 2D and 3D images while ”connectiv-
ity 1” will denote 8 and 26 neighbors for the same images.
In (1), the data term Ep(.) is defined as the negative log-
likelihood of a label being assigned to pixel p and is com-
puted from its color and the appearance models of the object
and background seeds 2:{

Ep(1) = −log P(Ip|p ∈ O)
Ep(0) = −log P(Ip|p ∈ B)

For any pair (p, q) ∈ N , the corresponding smoothness
term in (1) is defined as a contrast-sensitive Ising model:

Ep,q(up, uq) =

{
0 if up = uq,

1
‖p−q‖2 exp

(
− ‖Ip−Iq‖22

2σ2

)
otherwise,

where ‖.‖2 is the Euclidean norm (either in Rd or Rc).
When the smoothness terms are submodular [7], the min-
imizer of (1) can be efficiently obtained by computing a

1Usually, P corresponds to a rectangle.
2In this setting, the distributions are estimated using a Gaussian Mix-

tures Model. The number of gaussians is automatically computed using a
Minimum Description Length criteria [1].

min-cut in a weighted digraph G = (V, E , c) with a set of
nodes V = P ∪ {s, t}, a set of edges E ⊂ V2 and capac-
ities c : E → R+. The terminal nodes s and t are called
the source and the sink, respectively. The set of edges E is
split into two disjoint sets En and Et denoting respectively
n-links (edges linking two nodes of P) and t-links (edges
linking a node of P to s or t). Once the min-cut is com-
puted in G, we set up = 1 if a node p is connected to the
source s and up = 0 if p is connected to the sink t.

3. Reduction
As said earlier, the memory consumption of graph cuts

for segmenting high-resolution data can be very large. As
an illustration, the max-flow algorithm of [3] v3.01 used
in the experiments of Section 4, allocates 25]P + 16]En
bytes 3. For a fixed amount of RAM, one clearly see that
the maximum image size quickly decreases as the dimen-
sionality d of P increases. As shown in [9], most of the
nodes in the graph are however useless during the max-flow
computation since they are not traversed by any flow. Ide-
ally, one would like to extract the smallest possible graph
G′ = (V ′, E ′) from G = (V, E) while keeping the max-
flow value f ′∗ in G′ identical or very close to the max-flow
value f∗ in G. This corresponds to an optimization problem
which we will not try to solve since the method for deter-
mining G also needs to be (very) fast.

Let us first introduce some terminology before reviewing
the method of [9] for building G′. For the sake of clarity,
the same notations are used as in [9]. In accordance with
the construction given in [7], we consider (without loss of
generality) that a node is connected to at most one terminal

(s, p) ∈ Et ⇒ (p, t) 6∈ Et, ∀p ∈ P.

We also summarize t-links capacities by

c(p) = c(s, p)− c(p, t), ∀p ∈ P.

For any B ⊂ Zd 4 and a node p ∈ P , we denote by Bp the
set translation of B at p

Bp = {q + p | q ∈ B}.

For Z ⊂ P and B ⊂ Zd, we denote by ZB the dilation of
Z by B as

ZB = {p+ q | q ∈ B, p ∈ Z} =
⋃
p∈Z

Bp.

From here, the idea developed in [9] for building G′ is to
remove from the nodes of G any Z ⊂ P where all nodes are
linked to s (resp. to t) and such that all the flow that might

3The operator ’]’ stands for the cardinality of a set.
4In practice, B is a square centered at the origin.
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get in (resp. out of) the region ZB does so by traversing its
boundary and can be absorbed (resp. provided) by the band
ZB \ Z. Building such Z is done by testing each individ-
ual pixel p ∈ P . In the manner of [13, 6], the remaining
nodes are therefore located in a narrow band surrounding
the object edges to segment. In practice, the authors of [9]
use a more conservative test by testing each node p ∈ Z in
a square window B of size (2r + 1)d centered in p: either

(
∀q ∈ Bp, c(q) ≥ +δr

)
,

or
(
∀q ∈ Bp, c(q) ≤ −δr

)
.

(2)

where δr = P (B)
(2r+1)d−1

and P (B) is defined as

P (B) = max(]{(p, q) : p ∈ B, q 6∈ B and (p, q) ∈ N},
]{(q, p) : p ∈ B, q 6∈ B and (q, p) ∈ N}).

In words, for any node p ∈ Z satisfying the first (resp. sec-
ond) condition of (2), all its neighbors q ∈ Bq are only
linked to s (resp. t) and the flow that might get in (resp.
out) through t-links in Bp \ {p} suffices to saturate the n-
links going out (resp. in) Bp. Thus, p becomes useless and
need not to be added to G′. An algorithm of complexity in-
dependent of r is also mentioned in [9] for computing (2).
A key point of the method proposed in [9] is that the pixel
error between segmentations obtained with and without re-
duction remains very low.

The experiments presented in [9] confirm the depen-
dence between the size of G′ and model parameters. Indeed,
when minimizing (1) by graph cuts, the t-links capacities
are all multiplied by β. Thus, it is straightforward to ob-
serve that (2) is harder to satisfy as β decreases. In such a
situation, we need a larger window radius for decreasing δr
in order to reduce the size of G′. This results in wider bands
around the object contours. Conversely, when β is large, we
can afford a large δr and therefore a small window radius.
This time, G′ consists of narrow bands around the object
contours. However, such an ideal situation cannot be guar-
anteed when segmenting images corrupted by an impulsive
noise since β should not be too large to avoid noise in the
solution. In the next section, we embed a new parameter
in (2) for filtering the segmentation while keeping β large.

4. Simultaneous segmentation and filtering
A simple way to relax (2) is to allow some nodes in Bp

to fail complying the test. The proportion of nodes satis-
fying (2) can be controlled by a parameter η ∈ [0, 1]. As
η decreases, the test (2) becomes easier to satisfy since a
larger proportion of nodes can be connected to opposite ter-
minals. Embedding η in (2) leads to either

(
]{q ∈ Bp | c(q) ≥ +δr} ≥ η]Bp

)
,

or
(
]{q ∈ Bp | c(q) ≤ −δr} ≥ η]Bp

)
.

(3)

4.1. Further reducing graphs

The parameter η can be used for decreasing the memory
consumption of graph cuts. The Figure 3 illustrates how far
the test (2) can be relaxed for further reducing graphs while
getting nearly the same segmentation. In this experiment,
the segmentation as well as the reduced graph are shown for
segmenting a 2D noisy image. Since the test (3) is easier to
satisfy as η decreases, the reduced graph G′ becomes thicker
around the object contours.

4.2. Automatic tuning of η

For a fixed window radius, notice first that the value of η
must be large enough to not increase the number of compo-
nents in the reduced graph G′ (see Figure 2). Indeed, below
some value (denoted by ηmin), the reduced graph G′ is split
into multiple pieces in areas with high-curvature and the
min-cut is no longer ensured of being fully embedded into
G′. This implies that some voxels could be wrongly labeled
in the segmentation.

The Figure 1 illustrates a situation where ηmin can be
easily computed with an image consisting of two highly-
contrasted areas. Using (3) with a square window of radius
r and η = 1, the reduced graph G′ corresponds to a thin
band of size 2r. An easy under-estimation of ηmin is ob-
tained by imposing that ηmin permits to segment these two
contrasted areas. In order to do so, we want the test (3) to
be false for any pixel p at the boundary between these areas.
For such a pixel, we have (assuming e.g. that c(p) ≥ +δr)

]{q ∈ Bp | c(q) ≥ +δr} = (r + 1)(2r + 1)d−1.

As a consequence, if

η ≤ (r + 1)(2r + 1)d−1

(2r + 1)d
,

the node p does not belong to the reduced graph G′. Since
we want to avoid the situation, we must therefore have

η > (r+1)(2r+1)d−1

(2r+1)d

= 1− r
2r+1 = ηmin.

(4)

Remark that (4) does not depend on the dimensionality d
of P . By observing (4), it is straightforward to see that,
as the window radius r tends to infinity, the proportion of
nodes allowed to be connected to opposite terminals tends
to 1

2 . In practice, we also observed that (4) is less accurate
in connectivity 0 than in connectivity 1 (see Figure 2).

For a fixed window radius r and a positive amount of
noise ξ, one can observe in Figure 3 that there exists a value
of the parameter η for which most of the nodes in noisy re-
gions are removed from the graph G, leading to a diminution
of the size of the reduced graph G′.

3
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The purpose of this paragraph is to identify, from a sta-
tistical point of view, a reliable value of the parameter η for
which all nodes of P are very likely to be removed from G.
For a fixed amount of noise ξ in the image I , we therefore
want to find an upper bound on η by finding the maximum
value of η in such a way that we control the proportion of
nodes corresponding to noisy pixels in homogeneous areas.

Consider a noisy constant image I with a noise gener-
ated by a Bernoulli distribution of parameter ξ ∈]0, 1[, cor-
responding to the amount of noise in I 5. The two cases
where ξ = 0 and ξ = 1 are trivial and are not considered in
our analysis. Assume now that the graph G is defined as in
Section 3 where the nodes corresponding to noise-free pix-
els are connected to the sink t with a capacity c(q) ≤ −δr
and the nodes corresponding to noisy pixels have a capacity
c(q) > −δr.

First, let X be a discrete random variable counting de-
graded pixels in a square window B of size n = (2r + 1)d

in the image I . Then, the probability that at least k pixels
are corrupted in B is given by

P(X > k) =
n∑

i=k+1

(
n

i

)
ξi(1− ξ)n−i, (5)

where
(
n
i

)
= n!

i!(n−i)! . For a fixed window radius r, it is
straightforward to see that (5) is decreasing in k and tends
to ξn if we impose that ξ ∈ ]0, 1[. According to the test (3)
and the hypothesis on G: a node p ∈ P can be removed
from G if and only if

]{q ∈ Bp | c(q) ≤ −δr} = ]{q ∈ Bp | q is noise-free} ≥ ηn
(6)

Moreover, we assumed

]{q ∈ Bp | q is noise-free} ∼ (n−X).

Therefore, we have

P(p is not removed) = P((n−X) < ηn) = P(X > (1−η)n).

Fixing a proportion ε ' 0 of wrongly constructed nodes,
we choose

η+ = max {η ∈ [0, 1] | P(X > (1− η)n) ≥ ε}, (7)

Considering the lower bound ηmin defined in (4), we set

ηmax = max {ηmin, η+}. (8)

Combining the definitions of the lower and upper bounds
(see (4) and (8)), it now becomes easy to get an estimation
of the parameter η∗ for a fixed window radius by setting

η∗ =
(ηmin + ηmax

2

)
. (9)

5Simple histogram-based techniques can be for instance used to esti-
mate the amount of noise ξ in the image.

Let us now analyze the joint behavior of the lower and
the upper bounds. When the amount of noise ξ is fixed,
one can easily observe that the gap ∆η = (ηmax − ηmin)
grows as the window radius r increases. Indeed, we have
previously seen that the lower bound ηmin tends to 1

2 as the
window radius r increases (see (4)). The previous observa-
tion is also due to the fact that the upper bound ηmax grows
as the window radius r increases.

Similarly, when the window radius r is fixed, remark that
∆η decreases when the amount of noise ξ increases. This
situation is consistent because ηmin remains the same but
ηmax tends to 1

2 since it is more likely that the number of
degraded pixels increase in the window B. Notice that in-
creasing the window radius r can compensate the augmen-
tation of the amount of noise only up to ξ = 0.5.

4.3. Filtering

The parameter η can also serves to filter the segmenta-
tion. This behavior is illustrated in Figure 4 for segment-
ing a 3D noisy image acquired from a confocal microscope.
White spots correspond to cell nuclei in a mouse cerebel-
lum. Observe how far the filtering acts for small values of
η: small regions in the reduced graph G′ as well as in the
segmentation are progressively removed as η decreases.

The robustness to noise (see Figure 6 and 5) and the sen-
sitivity of the parameter η (see Figure 7) have been also an-
alyzed. Let us describe the experimental procedure for seg-
menting four grayscale and five color 2D images with an in-
creasing noise level ranging from 4 to 48%. For each image,
we compute a reference segmentation on the noise-free im-
age by placing the seeds by hand. We set β = +∞ and the
σ parameter is automatically estimated as explained in [12].
Then, for each impulsive noise level, we select the segmen-
tation maximizing the Dice Similarity Coefficient (DSC) [5]
between the reference image and all segmentations obtained
through a fixed range of r and η values. Each segmentation
is computed using the same seeds as those used for the com-
puting the reference segmentation. Again, the σ parameter
is automatically estimated using [12].

As shown in Figure 6, for an impulsive noise level up to
45%, the parameter η appears to be reasonably robust with
a DSC always greater than 94% for all images, except for
the image ”rice”. However, such high and stable noise ro-
bustness can only be reached by increasing the amount of
seeds (see Figure 6). The reason why the algorithm behaves
poorly on the ”rice” image is the following. As said earlier,
r must be large enough when ξ increases for removing a
maximum number of segments due to noise. This implies
wider bands in G′ around the object contours. However,
the object contours further oscillate as ξ increases. Another
reason is due to the proximity of the objects to segment. As
an illustration, consider two circles over a uniform back-
ground, separated by a distance d0 > 0. We clearly see

4
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Figure 1: Toy example for computing ηmin.

Figure 5: Qualitative analysis of the robustness to noise
for segmenting the images ”f117” (left-most column),
”black-cat” (left column), ”pyramid” (right column) and
”flamingo” (right-most column) with a fixed impulsive
noise level of 36%. The seeds and the model parameters
are the same than those used in Figure 6 (top row).

Figure 6: Quantitative analysis of the robustness to noise
for segmenting four 2D grayscale images (top-most curves
in the list) and five 2D color images with an impulsive noise
level ranging from 4 to 48%.

that the test (3) becomes more and more difficult to satisfy
when the window radius r increases. When (2r + 1) ≥ d0,
the reduced graphs of both circles fuse into one component.
This is the case in the image ”rice” because this photo con-
sists of small assembled rice grains. Finally, the Figure 7
also illustrates that the parameter η is not very sensitive to
the variations of r and η. The DSC does not vary much
with respect to noise, except for the image ”rice”. The latter
problem can be explained for the same reasons as before.

Figure 7: Sensitivity of η for segmenting the images in Fig-
ure 6 with an impulsive noise level of 36%. The seeds and
model parameters are the same than those used in Figure 6.
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η = 1.0 η = 0.8 η = 0.6 η = 0.53 η = 0.52

Figure 2: Illustration of the lower bound ηmin for segmenting a 2D synthetic image. In this experiment, ηmin ' 0.523 and
we set r = 10 using connectivity 1. On all images, the pixels belonging to G′ are superimposed in yellow to the original
image by transparency. The bottom row correspond to a close-up of the box in purple color. Observe how the reduced graph
G′ splits into multiple pieces as soon as η ≤ ηmin.

η 1.0 0.9 0.8 0.7 0.6
100× ]V ′/]V 93.28% 30.99% 5.74% 3.65% 2.00%

Figure 3: Memory gain when segmenting a 2D synthetic image corrupted by 10% of impulsive noise (left). Top row shows
the nodes of the reduced graph in light gray while bottom row shows the corresponding segmentation. In this experiment, we
set r = 3 and use connectivity 1.

η 1.0 0.9 0.8 0.7 0.6
100× ]V ′/]V 55.70% 37.15% 18.26% 12.65% 8.87%

Figure 4: Simultaneous segmentation and filtering of a 3D noisy image (left). In this picture, the white spots correspond to
cell nuclei in a mouse cerebellum. Top row shows the nodes of the reduced graph in light gray while bottom row shows the
corresponding segmentation. In this experiment, we set r = 5 and use connectivity 1.
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