
HAL Id: hal-00624093
https://hal.science/hal-00624093v1

Preprint submitted on 15 Sep 2011 (v1), last revised 19 Jun 2012 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Graph Cuts-based Reduction For Simultaneous
Segmentation And Filtering
Nicolas Lermé, François Malgouyres

To cite this version:
Nicolas Lermé, François Malgouyres. Graph Cuts-based Reduction For Simultaneous Segmentation
And Filtering. 2011. �hal-00624093v1�

https://hal.science/hal-00624093v1
https://hal.archives-ouvertes.fr

Graph Cuts-based Reduction For Simultaneous Segmentation And Filtering

N. Lermé1,2 F. Malgouyres3

(1) LAGA UMR CNRS 7539, (2) LIPN UMR CNRS 7030

Université Paris 13, Avenue J-B. Clément – 93430 Villetaneuse

(3) IMT UMR CNRS 5219

Université Paul Sabatier, 118 route de Narbonne – F-31062 Toulouse Cedex 9

nicolas.lerme@lipn.univ-paris13.fr

francois.malgouyres@math.univ-toulouse.fr

Abstract

Graph cuts have now become a cornerstone in computer

vision for efficiently solving a numerous labeling problems.

However, the large memory consumption of this method

make it hard to solve large-scale problems. Except some

exact methods [13, 7, 4], the heuristics present in the lit-

erature [9, 10, 12, 5] generally fail to fully capture shape

complexities. In this paper, we first review the band-based

strategy detailed in [8] for reducing graphs in image seg-

mentation. Unlike [12, 5], the proposed method provide

small graphs while accurately preserving thin structures.

Next, an extra parameter is introduced for both further re-

ducing graphs and removing small segments in the segmen-

tation. While this parameter is generally less sensitive to

variations, it offers a good robustness against noise. Fi-

nally, we provide an empirical way to automatically tune it

and illustrate its behavior through experiments for segment-

ing grayscale and color images.

Keywords: graph cuts, reduction, segmentation, filtering.

1. Motivation and scope

Graph cuts have become increasingly popular due to

their ability to efficiently compute the Maximum A Pos-

teriori of Markov Random Fields (MRF). This popularity

is notably driven by the introduction of a fast maximum-

flow (max-flow) algorithm [3] making near real-time per-

formance possible for solving numerous problems.

In parallel, technological advances in image acquisi-

tion have both increased the amount and the diversity of

data to process. As an illustration, in the satellite SPOT-

5 launched by Arianespace in 2002, the high resolution

sensors can capture multispectral and panchromatic images

with an imaging swath of 60 km × 60 km. Each image has

a size of 12000 × 12000 which amounts to about 1GB.

Processing this type of data amounts to solve large scale

optimization problems. In the image segmentation context,

almost all graph cuts methods are impractical to solve such

problems due to the memory requirements. To overcome

this situation, some amount of work has been recently done

in this direction and a number of heuristics [9, 10, 12, 5]

and exact methods [7, 4, 13] have been proposed. To our

best knowledge, this problem seems to be first addressed

in [9] where the underlying graph is built upon a pre-

segmentation. Although this approach greatly reduce the

computational burden of graph cuts, the results strongly de-

pend on the low-level segmentation algorithm used for com-

puting the pre-segmentation. Also, better results are ob-

tained when over-segmentation occurs, losing in this way

the main benefit of such a reduction.

Others have also reported band-based heuristics [10, 12,

5]. The principle is to segment a low-resolution of the image

and propagate the solution to the finer level by only build-

ing the graph in a narrow band surrounding the interpolated

foreground/background interface at that resolution. While

such an approach drastically reduce time and memory con-

sumption, it is limited to segment roundish objects. The

previous problem is notably reduced in [12] but still present

for low-contrasted details. In [5], finer bands are obtained

using an uncertainty measure associated to each pixel.

Exact methods have been also investigated [7, 4, 13].

In [7], binary energy functions are minimized with graph

cuts in a narrow band, while ensuring the optimality on the

solution. The principle is to make a band evolve around

the object to segment by expanding it when the minimum-

cut touches its boundary. This process is iterated until the

band no longer evolves. Although the algorithm quickly

converges toward the global optimal solution, it depends on

the initialization and no bound on the band size is given.

A parallel max-flow algorithm yielding a near-linear

speedup with the number of processors is also described

in [4]. Nevertheless, the algorithm is relatively sensitive to

the available amount of physical memory and remains less

efficient on small graphs.

In [13], binary energy functions are minimized in a par-

allelized/distributed fashion using the max-flow algorithm

of [3]. The original problem is decomposed into optimiz-

able sub-problems, solved independently and updated ac-

cording to the results of the adjacent problems. This process

is iterated until convergence and optimality is guaranteed by

dual decomposition. Nevertheless, the performance of this

approach depends on the object location in the image and

remains less effective for dense graphs.

In this paper, we first review the band-based strategy de-

scribed in [8] for reducing graphs in image segmentation.

The graph is built by only adding nodes which locally sat-

isfy a condition. In the manner of [12, 5], the nodes are typ-

ically located in a narrow band surrounding the object edges

to segment. Empirically, the solutions obtained with reduc-

tion are identical to the ones obtained without reduction.

Next, an extra parameter is introduced for further reducing

the graphs and remove small segments in the segmentation.

The key benefit of the proposed method is that it does not

require any post-processing steps, unlike traditional filters.

The rest of this paper is organized as follows. First, we

review the graph cuts framework in Section 2 and briefly

describe our approach for reducing the graphs in Section 3.

Finally, the methdology for further reducing graphs and fil-

tering segmentations is explained in Section 4.

2. Notations and preliminaries

Consider an image I : P ⊂ Z
d → [0, 1]c (d > 0, c > 0)

as a function, mapping each pixel of p ∈ P to a pixel Ip ∈
[0, 1]c 1. We define a binary segmentation as an application

u affecting to each pixel p ∈ P either 0 (background) or 1

(object) and we write u ∈ {0, 1}P . Then, a popular strategy

to segment I is to minimize a MRF of the form [2]:

E(u) = β ·
∑

p∈P

Ep(up) +
∑

(p,q)∈N

Ep,q(up, uq), (1)

among u ∈ {0, 1}P and for a fixed β ∈ R
+. The neigh-

borhood system N ⊂ P2 is a subset of all pixel pairs

(p, q) ∈ P2. In this context, we will use the following stan-

dard neighborhoods 2:

N0 = {(p, q) ∈ P2 :
∑d

i=1 |qi − pi| = 1} or,
N1 = {(p, q) ∈ P2 : |qi − pi| ≤ 1 ∀1 ≤ i ≤ d},

where pi denotes the ith coordinate of p and |.| stands for the

absolute value. In (1), the region term Ep(.) is defined as

the negative log of the likelihood of a label being assigned

to pixel p and is computed from its color and the appearance

models of the object and background seeds 3:

{
Ep(1) = −log P(Ip|p ∈ O)
Ep(0) = −log P(Ip|p ∈ B)

1Usually, P corresponds to a rectangle.
2In what follows, the terms "connectivity 0" and "connectivity 1" re-

spectively refer to the use of N0 and N1, respectively.
3In this context, the probabilities of the object and the background are

estimated using a Gaussian Mixtures Model. The number of gaussians is

automatically computed using a Minimum Description Length criteria [1].

Similarly, the boundary term in (1) is defined as a contrast-

sensitive Ising model (see [3] for more details):

Ep,q(up, uq) =

{
0 if up = uq,

1
‖p−q‖2

exp
(
− ‖Ip−Iq‖

2

2

2σ2

)
otherwise,

where ‖.‖ is the Euclidean norm (either in R
d or R

c). When

the region terms are submodular [6], the minimizer of (1)

can be efficiently obtained by computing a minimum-cut

in a weighted digraph G = (V, E , c) with a set of nodes

V = P ∪ {s, t}, a set of edges E ⊂ V2 and capacities

c : E → R
+. The terminal nodes s and t are called the

source and the sink, respectively. Moreover, the set of edges

E is split in two disjoint sets En and Et denoting respectively

n-links (edges linking two nodes of P) and t-links (edges

linking a node of P to s or t). Once the minimum-cut is

computed in G, we set up = 1 if a node p is connected to

the source s and up = 0 if p is connected to the sink t.

3. Reduction

As said earlier, the memory consumption of graph cuts

for segmenting high-resolution data is prohibitive. As an

illustration, the max-flow algorithm of [3] v2.2 allocates

24♯P + 14♯En bytes, where the operator ’♯’ stands for the

cardinality of a set. One can observe that for a fixed amount

of RAM, the maximum image size quickly decreases as

the dimension d increases. Nevertheless, as shown in [8],

most of the nodes in the graph are useless during max-flow

computation since they are not traversed by any flow. Ide-

ally, one would like to extract the smallest possible graph

G′ = (V ′, E ′) from G = (V, E) while keeping the max-flow

value f ′∗ in G′ identical or very close to the max-flow value

f∗ in G. In words, we want to minimize the relative size of

the reduced graph defined as

ρ = 100 ×
♯V ′

♯V
, (2)

under the constraint that f∗ = f ′∗. In fact, this is an ideal

optimization problem which we will not try to solve since

the method for determining G also needs to be (very) fast.

First, let us introduce some terminology before describ-

ing our method for building G′. In accordance with the

graph construction given in [6], we consider (without loss of

generality) that a node is connected to at most one terminal:

(s, p) ∈ Et ⇒ (p, t) 6∈ Et, p ∈ P.

We also summarize the t-links capacities for any node p ∈
P by:

c(p) = c(s, p) − c(p, t).

For any B ⊂ Z
d (in practice, B will be a square centered at

the origin) and p ∈ P , we denote by B̃p the set translation

of B by the point p:

B̃p = {q + p | q ∈ B}.

Figure 1: Reduction’s principle. Red (resp. green) area and

arrows denote the flow that might get in (resp. out of) Z̃B .

The nodes from Z are removed since (3) holds for any node

p ∈ Z. Remaining nodes are located in the band Z̃B \ Z.

For Z ⊂ P and B ⊂ Z
d, we denote by Z̃B the dilation of

Z by the structuring element B as:

Z̃B = {p + q | q ∈ B, p ∈ Z} =
⋃

p∈Z

B̃p.

The intuitive idea for building G′ is to remove from the

nodes of G any Z ⊂ P where all nodes are linked to s
(resp. to t) and such that all the flow that might get in (resp.

out of) the region Z̃B does so by traversing its boundary

and can be absorbed (resp. provided) by the band Z̃B \ Z
(see Figure 1). Building such Z is done by testing each

individual pixel p ∈ P . Thus, in the manner of [12, 5],

the remaining nodes are typically located in a narrow band

surrounding the object edges to segment. In practice, we

proposed in [8] to use an even more conservative test for

each node p ∈ Z in a square window B of size (2r + 1)
(r > 0) centered in p:

either
(
∀q ∈ B̃p, c(q) ≥ +δ

)
,

or
(
∀q ∈ B̃p, c(q) ≤ −δ

)
.

(3)

where δ = P (B)
(2r+1)2−1 . Here, P (B) is the perimeter of B:

P (B) = max(♯{(p, q) : p ∈ B, q 6∈ B and (p, q) ∈ N},
♯{(q, p) : p ∈ B, q 6∈ B and (q, p) ∈ N}).

In words, for any node p ∈ Z satisfying the first (resp.

second) condition of (3), all its neighbors q ∈ B̃q are only

linked to s (resp. t) and the flow that might get in (resp. out)

through t-links in B̃p \ {p} suffices to saturate the n-links

going out of (resp. in) B̃p. Thus, p becomes useless and

can be removed from G. Furthermore, the test (3) can be

computed in an incremental way for reaching a complexity

of O(♯P) (except borders), which is independent of r.

The experiments presentend in [8] confirm the intuitive

dependence between the size of G′ and model parameters.

Indeed, when minimizing (1) by graph cuts, the t-links ca-

pacities are all multiplied by β. Thus, it is straightforward

to observe that (3) is harder to satisfy as β decreases. In

such a situation, we need a larger window radius for de-

creasing δ in order to reduce the size of G′. This result in

wider bands around the object contours. Conversely, when

β is large, we can afford a large δ and therefore a small

window radius. Thus, G′ consists of narrow bands around

the object contours. Finally, we will prove in a forthcoming

paper that the reduction is exact but for a slightly stronger

test than (3) 4. Massive experiments for segmenting multi-

dimensional grayscale and color images using different en-

ergy models exhibit small reduced graphs, while keeping a

low pixel error on the segmentations.

4. Simultaneous segmentation and filtering

Additionally, we have also investigated some ways to re-

lax (3). A simple way to do that is to allow some nodes

in B̃p to fail complying the test. The proportion of nodes

satisfying (3) is controlled by a parameter η ∈ [0, 1]. As

η decreases, the test (3) can be satisfied more easily since a

larger ratio of nodes can be connected to opposite terminals.

Embedding η in (3) leads to

either
(
♯{q ∈ B̃p | c(q) ≥ +δ} ≥ η · ♯B̃p

)
,

or
(
♯{q ∈ B̃p | c(q) ≤ −δ} ≥ η · ♯B̃p

)
.

(4)

For instance, the parameter η can be used for reducing the

memory consumption. The Figure 4 illustrates how far the

test (3) can be relaxed for further reducing graphs while get-

ting nearly the same segmentation. In this experiment, the

segmentation as well as the reduced graph are shown for

segmenting a 2D synthetic noisy image. Since the test (4)

is easier to satisfy as η decreases, the reduced graph around

the object contours becomes thicker.

The parameter η can be also used for filtering the seg-

mentation. This behavior is illustrated in Figure 5 for seg-

menting a 3D noisy image from a confocal microscope.

White spots correspond to cell nuclei in a mouse cerebel-

lum. Observe how far the filtering acts for small values of

η: small regions in the reduced graph as well as in the seg-

mentation are progressively removed as η decreases. This

parameter is typically useful for filtering images corrupted

by a noise behaving like an impulsive noise.

Notice that, when G′ consists of a single connected com-

ponent, η must be large enough for keeping G′ in a whole

piece. Indeed, below some value of η (denoted by ηmin),

G′ is split into multiple pieces and becomes inconsistent

since the minimum-cut is no longer fully contained in G′.

The Figure 3 illustrates a situation where such value can

be computed on a image consisting of two high-contrasted

area. Using (4) with a square window of radius r and η = 1,

G′ is a thin band of size 2r. A lower bound on η is to impose

that ηmin permits to segment both areas. Thus, we want (4)

to be false for any node p located on the boundary of these

areas. For such a pixel p, we have (e.g. if c(p) ≥ +δ):

♯{q ∈ B̃p | c(q) ≥ +δ} = (r + 1)(2r + 1)d−1.

As a consequence, if

η ≤
(r + 1)(2r + 1)d−1

(2r + 1)d
,

4By exact, we mean that the max-flow value in G is identical to the

max-flow value in G′.

the pixel p does not belong to G′. In order to avoid this

situation, we set:

ηmin = (r+1)(2r+1)d−1

(2r+1)d ,

= 1 − r
2r+1 .

(5)

Thus, as r increases, the maximum proportion of nodes al-

lowed as being linked to opposite terminals tends to 50%.

Notice that this lower bound is not accurate in connectivity

0. Indeed, since diagonal directions are not allowed in G′

with such connectivity type, the reduced graph easily gets

disconnected into multiple pieces (see Figure 3). Again, the

minimum-cut is no longer ensured to be fully contained in

the reduced graph.

Given the amount of noise in the image, one can also

derive an upper bound on η by finding the maximum value

of η for which (2) is minimum, without regards to the im-

age and the model. Consider that the image is corrupted

by a salt-and-pepper noise generated by a Bernoulli distri-

bution of parameter ξ. The amount of noise corresponds

to the probability that a pixel p is corrupted, denoted by ξ.

Let X be a discrete random variable counting such pixels

in a square window B of size n = (2r + 1)d. Then, the

probability that at least k pixels are corrupted in B is

P(X ≥ k) =

n∑

i=k

(
n

i

)
ξi(1 − ξ)n−i. (6)

If we impose that ξ ∈]0, 1[, for a fixed window radius r
and η, it is straightforward to see that (6) is decreasing and

tends to ξn. Assuming that all the nodes corresponding to

noise-free pixels are linked to the same terminals, for a fixed

κ ∈ [0, 1] and ξ in (6), (4) holds for any node p ∈ P with

η ≤ 1 − κ. (7)

Although κ must be minimized for getting a larger value of

η, we also need to minimize P(X ≥ k). Otherwise, (4)

can fail for some nodes when the value of η is too large.

Therefore, there is a trade-off between the two situations

and the optimal value of κ can be computed as

κ∗ = min {κ, P(X ≥ ⌈κ♯B⌉) < ǫ}, (8)

for some ǫ ≃ 0. From (8), ηmax is set as

ηmax = max {ηmin, 1 − κ∗}. (9)

Since (6) is decreasing for a fixed r and η, the upper bound

ηmax can be quickly computed using a dichotomic search

of complexity O(d log2(2r + 1)). When ξ is fixed, one can

observe that the gap ∆η = (ηmax − ηmin) grows as r in-

creases. Indeed, ηmin tends to 0.5 as r increases (see (5)).

As opposite, ηmax grows as r increases since it is more

likely to Similarly, when r is fixed, remark that ∆η
decreases when ξ increases. Indeed, ηmin remains the same

but ηmax tends to 0.5 since it is more likely that the number

of noisy pixels increase in the same window.

Figure 2: Minimalist example for computing ηmin.

Additionally, one can also jointly estimate a couple of

values r∗ and η∗ for minimizing (2). If the number of pix-

els which can be corrupted by ξ is less than ηmin, it means

that we have κ∗ ≤ ηmin. Therefore, we should increase r
for both decreasing κ∗ and ηmin. Then, it suffices to pro-

gressively increase r from 1, while κ∗ > ηmin. Once r∗ is

computed, η∗ can be for instance set as (ηmin + ηmax)/2.

With the previous algorithm, r∗ is very near to the experi-

mental value obtained for segmenting a synthetic noisy im-

age. However, one can clearly observe that r∗ increases

quickly as p tends to 0.5. Therefore, the previous algorithm

should be stopped once a maximum number of iterations is

reached for instance.

The robustness to noise (see Figure 7 and 6) and the sen-

sitivity of the parameter η (see Figure 8) have been also

analyzed. Let us describe the experimental procedure for

segmenting four grayscale and five color 2D images with

an increasing noise level ranging from 4 to 48%. For each

image, we compute a reference segmentation on the noise-

free image by tuning the seeds and parameters by hand. The

σ parameter is automatically estimated as in [11]. Then, for

each impulsive noise level, we select the segmentation max-

imizing the Dice Similarity Coefficient (DSC) between the

reference image and all segmentations obtained through a

fixed range of r and η values. Each segmentation is com-

puted using the same seeds and parameters as for the refer-

ence segmentation. Again, the σ parameter is automatically

estimated using the same method.

As shown in Figure 7, for an impulsive noise level up

to 45%, the parameter η appears to be reasonably robust

with a DSC always greater than 94% for all images, except

for the image "rice". However, such high and stable noise

robustness can only be reached by increasing the amount

of seeds (see Figure 7). The reason why the algorithm be-

haves poorly on the "rice" image is the following. As said

earlier, r must be large enough when ξ increases for remov-

ing a maximum number of segments to noise. This implies

wider bands in G′ around the object contours. However, the

object contours further oscillate as ξ increases since the un-

certainty grows inside the band due to noise. Finally, the

Figure 8 also illustrates that the parameter η is not very sen-

sitive to the variations of r and η. The DSC does not vary

much, except for the image "rice". The latter problem can

be explained for the same reason as before.

η = 1.0 η = 0.8 η = 0.6 η = 0.53 η = 0.52

Figure 3: Illustration of the lower bound ηmin for segmenting a 2D synthetic image. In this experiment, ηmin ≃ 0.523 and

we set r = 10 using connectivity 1. On all images, the pixels belonging to G′ are superimposed in yellow to the original

image by transparency. The bottom row correspond to a close-up of the box in purple color. Observe how the reduced graph

split into multiple pieces as soon as η ≤ ηmin.

η 1.0 0.9 0.8 0.7 0.6

ρ 93.28% 30.99% 5.74% 3.65% 2.00%

Figure 4: Memory gain when segmenting a 2D synthetic image corrupted by 10% of impulsive noise (left). Top row shows

the nodes of the reduced graph in light gray while bottom row shows the corresponding segmentation. In this experiment, we

set r = 3 and use connectivity 1.

η 1.0 0.9 0.8 0.7 0.6

ρ 55.70% 37.15% 18.26% 12.65% 8.87%

Figure 5: Simultaneous segmentation and filtering of a 3D noisy image (left). In this picture, the white spots correspond to

cell nuclei in a mouse cerebellum. Top row shows the nodes of the reduced graph in light gray while bottom row shows the

corresponding segmentation. In this experiment, we set r = 5 and use connectivity 1.

Figure 6: Qualitative analysis of the robustness to noise for segmenting the images "f117" (left-most column), "black-cat"

(left column), "pyramid" (right column) and "flamingo" (right-most column) with a fixed impulsive noise level of 36%. The

seeds and the model parameters are the same than those used in Figure 7 (top row).

Figure 7: Quantitative analysis of the robustness to noise

for segmenting four 2D grayscale images (top-most curves

in the list) and five 2D color images with an impulsive noise

level ranging from 4 to 48%.

Figure 8: Sensitivity of η for segmenting the images in Fig-

ure 7 with an impulsive noise level of 36%. The seeds and

model parameters are the same than those used in Figure 7.

References

[1] C. A. Bouman, Cluster: An unsupervised algorithm for

modeling Gaussian mixtures, April 1997.
[2] Y. Boykov and M.-P. Jolly, "Interactive graph cuts for op-

timal boundary and region segmentation of objects in N-D

images", In ICCV, volume 1, pp. 105–112, 2001.
[3] Y. Boykov and V. Kolmogorov, "An experimental compar-

ison of min-cut/max-flow algorithms for energy minimiza-

tion in vision", IEEE Transactions on PAMI, 26(9), 2004,

pp. 1124–1137.
[4] A. Delong and Y. Boykov, "A scalable graph-cut algorithm

for N-D grids", In CVPR, pp. 1–8, 2008.
[5] P. Kohli, V. Lempitsky, and C. Rother, "Uncertainty driven

multi-scale energy optimization", In DAGM, pp. 242–251,

2010.
[6] V. Kolmogorov and R. Zabih, "What energy functions can

be minimized via graph cuts?", IEEE Transactions on PAMI,

26(2), 2004, pp. 147–159.
[7] V. Lempitsky and Y. Boykov, "Global optimization for shape

fitting", In CVPR, pp. 1–8, 2007.
[8] N. Lermé, F. Malgouyres, and L. Létocart, "Reducing graphs

in graph cut segmentation", In ICIP, pp. 3045–3048, 2010.
[9] Y. Li, J. Sun, C. Tang, and H. Shum, "Lazy Snapping", ACM

Transactions on Graphics, 23(3), 2004, pp. 303–308.
[10] H. Lombaert, Y. Sun, L. Grady, and C. Xu, "A multilevel

banded graph cuts method for fast image segmentation", In

ICCV, volume 1, pp. 259–265, 2005.
[11] C. Rother, V. Kolmogorov, and A. Blake, ""GrabCut": In-

teractive foreground extraction using iterated graph cuts", In

SIGGRAPH, pp. 309–314, 2004.
[12] A. Sinop and L. Grady, "Accurate banded graph cut seg-

mentation of thin structures using laplacian pyramids", In

MICCAI, volume 9, pp. 896–903, 2006.
[13] P. Strandmark and F. Kahl, "Parallel and distributed graph

cuts by dual decomposition", In CVPR, pp. 2085–2092,

2010.

