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Abstract

Graph cuts have now become a cornerstone in computer
vision for efficiently solving a numerous labeling problems.
However, the large memory consumption of this method
make it hard to solve large-scale problems. Except some
exact methods [13, 7, 4], the heuristics present in the lit-
erature [9, 10, 12, 5] generally fail to fully capture shape
complexities. In this paper, we first review the band-based
strategy detailed in [8] for reducing graphs in image seg-
mentation. Unlike [12, 5], the proposed method provide
small graphs while accurately preserving thin structures.
Next, an extra parameter is introduced for both further re-
ducing graphs and removing small segments in the segmen-
tation. While this parameter is generally less sensitive to
variations, it offers a good robustness against noise. Fi-
nally, we provide an empirical way to automatically tune it
and illustrate its behavior through experiments for segment-
ing grayscale and color images.

Keywords: graph cuts, reduction, segmentation, filtering.

1. Motivation and scope

Graph cuts have become increasingly popular due to
their ability to efficiently compute the Maximum A Pos-
teriori of Markov Random Fields (MRF). This popularity
is notably driven by the introduction of a fast maximum-
flow (max-flow) algorithm [3] making near real-time per-
formance possible for solving numerous problems.

In parallel, technological advances in image acquisi-
tion have both increased the amount and the diversity of
data to process. As an illustration, in the satellite SPOT-
5 launched by Arianespace in 2002, the high resolution
sensors can capture multispectral and panchromatic images
with an imaging swath of 60 km x 60 km. Each image has
a size of 12000 x 12000 which amounts to about 1GB.

Processing this type of data amounts to solve large scale
optimization problems. In the image segmentation context,

almost all graph cuts methods are impractical to solve such
problems due to the memory requirements. To overcome
this situation, some amount of work has been recently done
in this direction and a number of heuristics [9, 10, 12, 5]
and exact methods [7, 4, 13] have been proposed. To our
best knowledge, this problem seems to be first addressed
in [9] where the underlying graph is built upon a pre-
segmentation. Although this approach greatly reduce the
computational burden of graph cuts, the results strongly de-
pend on the low-level segmentation algorithm used for com-
puting the pre-segmentation. Also, better results are ob-
tained when over-segmentation occurs, losing in this way
the main benefit of such a reduction.

Others have also reported band-based heuristics [10, 12,
5]. The principle is to segment a low-resolution of the image
and propagate the solution to the finer level by only build-
ing the graph in a narrow band surrounding the interpolated
foreground/background interface at that resolution. While
such an approach drastically reduce time and memory con-
sumption, it is limited to segment roundish objects. The
previous problem is notably reduced in [12] but still present
for low-contrasted details. In [5], finer bands are obtained
using an uncertainty measure associated to each pixel.

Exact methods have been also investigated [7, 4, 13].
In [7], binary energy functions are minimized with graph
cuts in a narrow band, while ensuring the optimality on the
solution. The principle is to make a band evolve around
the object to segment by expanding it when the minimum-
cut touches its boundary. This process is iterated until the
band no longer evolves. Although the algorithm quickly
converges toward the global optimal solution, it depends on
the initialization and no bound on the band size is given.

A parallel max-flow algorithm yielding a near-linear
speedup with the number of processors is also described
in [4]. Nevertheless, the algorithm is relatively sensitive to
the available amount of physical memory and remains less
efficient on small graphs.

In [13], binary energy functions are minimized in a par-
allelized/distributed fashion using the max-flow algorithm



of [3]. The original problem is decomposed into optimiz-
able sub-problems, solved independently and updated ac-
cording to the results of the adjacent problems. This process
is iterated until convergence and optimality is guaranteed by
dual decomposition. Nevertheless, the performance of this
approach depends on the object location in the image and
remains less effective for dense graphs.

In this paper, we first review the band-based strategy de-
scribed in [8] for reducing graphs in image segmentation.
The graph is built by only adding nodes which locally sat-
isfy a condition. In the manner of [12, 5], the nodes are typ-
ically located in a narrow band surrounding the object edges
to segment. Empirically, the solutions obtained with reduc-
tion are identical to the ones obtained without reduction.
Next, an extra parameter is introduced for further reducing
the graphs and remove small segments in the segmentation.
The key benefit of the proposed method is that it does not
require any post-processing steps, unlike traditional filters.

The rest of this paper is organized as follows. First, we
review the graph cuts framework in Section 2 and briefly
describe our approach for reducing the graphs in Section 3.
Finally, the methdology for further reducing graphs and fil-
tering segmentations is explained in Section 4.

2. Notations and preliminaries

Consider an image [ : P C Z¢ — [0,1]¢ (d > 0,¢ > 0)
as a function, mapping each pixel of p € P to a pixel I, €
[0,1]¢ . We define a binary segmentation as an application
u affecting to each pixel p € P either O (background) or 1
(object) and we write u € {0, 1}”. Then, a popular strategy
to segment [ is to minimize a MRF of the form [2]:

E(u)=4- Z Ep(up) + Z Epq(up,ug), (1)

peEP (p.a)EN

among u € {0,1}" and for a fixed 3 € R*. The neigh-
borhood system N° C P? is a subset of all pixel pairs
(p, q) € P2. In this context, we will use the following stan-
dard neighborhoods 2:

No=1{lp,q) €P? : 0 | lai —pil =1} or,
N ={(p,q) € P? : |gs —ps| <1V1<i<d},

where p; denotes the ith coordinate of pand |.| stands for the
absolute value. In (1), the region term E,(.) is defined as
the negative log of the likelihood of a label being assigned
to pixel p and is computed from its color and the appearance
models of the object and background seeds 3:

{ E,(1) = —log P(I,|p € O)
Ey(0) = —log B(L,|p € B)

!Usually, P corresponds to a rectangle.

2In what follows, the terms "connectivity 0" and "connectivity 1" re-
spectively refer to the use of N and N7, respectively.

3In this context, the probabilities of the object and the background are
estimated using a Gaussian Mixtures Model. The number of gaussians is
automatically computed using a Minimum Description Length criteria [1].

Similarly, the boundary term in (1) is defined as a contrast-
sensitive Ising model (see [3] for more details):

5 B 0 . if up, = ug,
pa(Ups Uq) = Lo — oLl
llp—all2 202

) otherwise,

where ||.|| is the Euclidean norm (either in R? or R®). When
the region terms are submodular [6], the minimizer of (1)
can be efficiently obtained by computing a minimum-cut
in a weighted digraph G = (V, &, ¢) with a set of nodes
V = P U {s,t}, asetof edges &€ C V? and capacities
¢ : & — RT. The terminal nodes s and ¢ are called the
source and the sink, respectively. Moreover, the set of edges
€ is split in two disjoint sets &,, and &, denoting respectively
n-links (edges linking two nodes of P) and t-links (edges
linking a node of P to s or ). Once the minimum-cut is
computed in G, we set u, = 1 if a node p is connected to
the source s and u,, = 0 if p is connected to the sink ¢.

3. Reduction

As said earlier, the memory consumption of graph cuts
for segmenting high-resolution data is prohibitive. As an
illustration, the max-flow algorithm of [3] v2.2 allocates
24P + 144€,, bytes, where the operator ’f’ stands for the
cardinality of a set. One can observe that for a fixed amount
of RAM, the maximum image size quickly decreases as
the dimension d increases. Nevertheless, as shown in [8],
most of the nodes in the graph are useless during max-flow
computation since they are not traversed by any flow. Ide-
ally, one would like to extract the smallest possible graph
G = (V,¢&) from G = (V, &) while keeping the max-flow
value f’* in G’ identical or very close to the max-flow value
f*in G. In words, we want to minimize the relative size of
the reduced graph defined as

%

p =100 x A 2)
under the constraint that f* = f’*. In fact, this is an ideal
optimization problem which we will not try to solve since
the method for determining G also needs to be (very) fast.

First, let us introduce some terminology before describ-
ing our method for building G’. In accordance with the
graph construction given in [6], we consider (without loss of
generality) that a node is connected to at most one terminal:

(s,p) €& = (pt) €&, peP.

We also summarize the t-links capacities for any node p €
P by:

C(p) = C(Sap) - C(pv t)
For any B C Z¢ (in practice, B will be a square centered at

the origin) and p € P, we denote by B,, the set translation
of B by the point p:

B,={q+pl|qe B}.



Z
Figure 1: Reduction’s principle. Red (resp. green) area and
arrows denote the flow that might get in (resp. out of) Zp.
The nodes from Z are removed since (3) holds for any node
p € Z. Remaining nodes are located in the band Zp \ Z.

For Z C P and B C Z<, we denote by Zp the dilation of
Z by the structuring element B as:

Zy={p+aqleeBpez}=] B,
PEZ

The intuitive idea for building G’ is to remove from the
nodes of G any Z C P where all nodes are linked to s
(resp. to t) and such that all the flow that might get in (resp.
out of) the region Zp does so by traversing its boundary
and can be absorbed (resp. provided) by the band Zp \ Z
(see Figure 1). Building such Z is done by testing each
individual pixel p € P. Thus, in the manner of [12, 5],
the remaining nodes are typically located in a narrow band
surrounding the object edges to segment. In practice, we
proposed in [8] to use an even more conservative test for
each node p € Z in a square window B of size (2r + 1)
(r > 0) centered in p:

either (Vg e Ep,c(q) > +4), 3
or Vg € Ep,c(q) < —6).
P(B)

where § = @

CTEn e Here, P(B) is the perimeter of B:

P(B) = max(#{(p.q) : p€ B,q ¢ Band (p,q) € N'},
#{(¢,p) : p€ B,q¢ Band (¢q,p) € N'}).

In words, for any node p € Z satisfying the first (resp.
second) condition of (3), all its neighbors ¢ € B, are only
linked to s (resp. t) and the flow that might get in (resp. out)
through t-links in B, \ {p} suffices to saturate the n-links
going out of (resp. in) Ep. Thus, p becomes useless and
can be removed from G. Furthermore, the test (3) can be
computed in an incremental way for reaching a complexity
of O(#P) (except borders), which is independent of r.

The experiments presentend in [8] confirm the intuitive
dependence between the size of G’ and model parameters.
Indeed, when minimizing (1) by graph cuts, the t-links ca-
pacities are all multiplied by 8. Thus, it is straightforward
to observe that (3) is harder to satisfy as (§ decreases. In
such a situation, we need a larger window radius for de-
creasing 0 in order to reduce the size of G’. This result in
wider bands around the object contours. Conversely, when
[ is large, we can afford a large § and therefore a small
window radius. Thus, G’ consists of narrow bands around
the object contours. Finally, we will prove in a forthcoming

paper that the reduction is exact but for a slightly stronger
test than (3) *. Massive experiments for segmenting multi-
dimensional grayscale and color images using different en-
ergy models exhibit small reduced graphs, while keeping a
low pixel error on the segmentations.

4. Simultaneous segmentation and filtering

Additionally, we have also investigated some ways to re-
lax (3). A simple way to do that is to allow some nodes
in B, to fail complying the test. The proportion of nodes
satisfying (3) is controlled by a parameter € [0,1]. As
71 decreases, the test (3) can be satisfied more easily since a
larger ratio of nodes can be connected to opposite terminals.
Embedding 7 in (3) leads to

either
or ﬁ{q€§p|C(Q)§*5}2n'ﬁ§p .

For instance, the parameter 7 can be used for reducing the
memory consumption. The Figure 4 illustrates how far the
test (3) can be relaxed for further reducing graphs while get-
ting nearly the same segmentation. In this experiment, the
segmentation as well as the reduced graph are shown for
segmenting a 2D synthetic noisy image. Since the test (4)
is easier to satisfy as 7 decreases, the reduced graph around
the object contours becomes thicker.

The parameter 7 can be also used for filtering the seg-
mentation. This behavior is illustrated in Figure 5 for seg-
menting a 3D noisy image from a confocal microscope.
White spots correspond to cell nuclei in a mouse cerebel-
lum. Observe how far the filtering acts for small values of
7: small regions in the reduced graph as well as in the seg-
mentation are progressively removed as 7 decreases. This
parameter is typically useful for filtering images corrupted
by a noise behaving like an impulsive noise.

Notice that, when G’ consists of a single connected com-
ponent, 77 must be large enough for keeping G’ in a whole
piece. Indeed, below some value of 7 (denoted by 7,,ir),
G’ is split into multiple pieces and becomes inconsistent
since the minimum-cut is no longer fully contained in G’.
The Figure 3 illustrates a situation where such value can
be computed on a image consisting of two high-contrasted
area. Using (4) with a square window of radius r and n = 1,
G’ is a thin band of size 2r. A lower bound on 7 is to impose
that 7,,,;, permits to segment both areas. Thus, we want (4)
to be false for any node p located on the boundary of these
areas. For such a pixel p, we have (e.g. if ¢(p) > +0):

#{a € By |clg) > +6} = (r+1)(2r + 1) 1.
As a consequence, if

(r +1)(2r + 1)1
=" vl

4By exact, we mean that the max-flow value in G is identical to the
max-flow value in G'.



the pixel p does not belong to G’. In order to avoid this
situation, we set:

(r+1)(2r+1)4!
@ 5)
= l-543.

nmin

Thus, as r increases, the maximum proportion of nodes al-
lowed as being linked to opposite terminals tends to 50%.
Notice that this lower bound is not accurate in connectivity
0. Indeed, since diagonal directions are not allowed in G’
with such connectivity type, the reduced graph easily gets
disconnected into multiple pieces (see Figure 3). Again, the
minimum-cut is no longer ensured to be fully contained in
the reduced graph.

Given the amount of noise in the image, one can also
derive an upper bound on 7 by finding the maximum value
of n for which (2) is minimum, without regards to the im-
age and the model. Consider that the image is corrupted
by a salt-and-pepper noise generated by a Bernoulli distri-
bution of parameter £&. The amount of noise corresponds
to the probability that a pixel p is corrupted, denoted by &.
Let X be a discrete random variable counting such pixels
in a square window B of size n = (2r + 1)?. Then, the
probability that at least k pixels are corrupted in B is

P(X > k) = an (’Z) g-on. 6)

i=k

If we impose that £ €]0, 1], for a fixed window radius r
and 7, it is straightforward to see that (6) is decreasing and
tends to £". Assuming that all the nodes corresponding to
noise-free pixels are linked to the same terminals, for a fixed
k € [0,1] and £ in (6), (4) holds for any node p € P with

n<1l-r 7

Although « must be minimized for getting a larger value of
7, we also need to minimize P(X > k). Otherwise, (4)
can fail for some nodes when the value of 7 is too large.
Therefore, there is a trade-off between the two situations
and the optimal value of x can be computed as

k" =min {k, P(X > [ktB]) < €}, (8
for some € ~ 0. From (8), 7,42 1S set as
Nmax = Max {nminv 1- K‘,*}. )

Since (6) is decreasing for a fixed r and 7, the upper bound
Nmaz can be quickly computed using a dichotomic search
of complexity O(d log2(2r 4 1)). When £ is fixed, one can
observe that the gap An = (Mmaz — Mmin) ErOWs as r in-
creases. Indeed, 7,,,;,, tends to 0.5 as r increases (see (5)).
As opposite, Npmq, Srows as r increases since it is more
likely to .... Similarly, when r is fixed, remark that An
decreases when ¢ increases. Indeed, 7,,,,, remains the same
but 7,4, tends to 0.5 since it is more likely that the number
of noisy pixels increase in the same window.

r+1

Figure 2: Minimalist example for computing 7, -

Additionally, one can also jointly estimate a couple of
values r* and n* for minimizing (2). If the number of pix-
els which can be corrupted by £ is less than 1),,;,, it means
that we have k* < n,;n. Therefore, we should increase r
for both decreasing x* and 7,,,;,,. Then, it suffices to pro-
gressively increase r from 1, while &* > 7,,,;,. Once r* is
computed, n* can be for instance set as (9min + Pmaz)/2-
With the previous algorithm, r* is very near to the experi-
mental value obtained for segmenting a synthetic noisy im-
age. However, one can clearly observe that r* increases
quickly as p tends to 0.5. Therefore, the previous algorithm
should be stopped once a maximum number of iterations is
reached for instance.

The robustness to noise (see Figure 7 and 6) and the sen-
sitivity of the parameter n (see Figure 8) have been also
analyzed. Let us describe the experimental procedure for
segmenting four grayscale and five color 2D images with
an increasing noise level ranging from 4 to 48%. For each
image, we compute a reference segmentation on the noise-
free image by tuning the seeds and parameters by hand. The
o parameter is automatically estimated as in [11]. Then, for
each impulsive noise level, we select the segmentation max-
imizing the Dice Similarity Coefficient (DSC) between the
reference image and all segmentations obtained through a
fixed range of r and 7 values. Each segmentation is com-
puted using the same seeds and parameters as for the refer-
ence segmentation. Again, the o parameter is automatically
estimated using the same method.

As shown in Figure 7, for an impulsive noise level up
to 45%, the parameter 7 appears to be reasonably robust
with a DSC always greater than 94% for all images, except
for the image "rice". However, such high and stable noise
robustness can only be reached by increasing the amount
of seeds (see Figure 7). The reason why the algorithm be-
haves poorly on the "rice" image is the following. As said
earlier, 7 must be large enough when £ increases for remov-
ing a maximum number of segments to noise. This implies
wider bands in G’ around the object contours. However, the
object contours further oscillate as £ increases since the un-
certainty grows inside the band due to noise. Finally, the
Figure 8 also illustrates that the parameter 7 is not very sen-
sitive to the variations of r and 7. The DSC does not vary
much, except for the image "rice". The latter problem can
be explained for the same reason as before.



n = 0.52

Figure 3: Illustration of the lower bound 7,,;, for segmenting a 2D synthetic image. In this experiment, 7,,;, =~ 0.523 and
we set 7 = 10 using connectivity 1. On all images, the pixels belonging to G’ are superimposed in yellow to the original
image by transparency. The bottom row correspond to a close-up of the box in purple color. Observe how the reduced graph

split into multiple pieces as soon as 1 < Nyin-

i 1.0 0.9 0.8 0.7 0.6
P 93.28% 30.99% 5.74% 3.65% 2.00%

Figure 4: Memory gain when segmenting a 2D synthetic image corrupted by 10% of impulsive noise (left). Top row shows
the nodes of the reduced graph in light gray while bottom row shows the corresponding segmentation. In this experiment, we

set 7 = 3 and use connectivity 1.

n 1.0 0.9 0.8 0.7 0.6
p 55.70% 37.15% 18.26% 12.65% 8.87%

Figure 5: Simultaneous segmentation and filtering of a 3D noisy image (left). In this picture, the white spots correspond to
cell nuclei in a mouse cerebellum. Top row shows the nodes of the reduced graph in light gray while bottom row shows the
corresponding segmentation. In this experiment, we set » = 5 and use connectivity 1.



Figure 6: Qualitative analysis of the robustness to noise for segmenting the images "f117" (left-most column), "black-cat"
(left column), "pyramid" (right column) and "flamingo" (right-most column) with a fixed impulsive noise level of 36%. The
seeds and the model parameters are the same than those used in Figure 7 (top row).
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Amount of noise (%)

Figure 7: Quantitative analysis of the robustness to noise
for segmenting four 2D grayscale images (top-most curves
in the list) and five 2D color images with an impulsive noise
level ranging from 4 to 48%.
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Figure 8: Sensitivity of ) for segmenting the images in Fig-
ure 7 with an impulsive noise level of 36%. The seeds and
model parameters are the same than those used in Figure 7.
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