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Abstract: A finite element model aimed at predicting the in-plane and out-of-plane static mechanical
behavior of a tightened bow is developed. It takes into account the prestress due to hair tension and
the nonlinear behavior due to large displacements. An non-destructive procedure to determine the input
parameters of the model from measurements on a bow is described. Numerical and experimental results
are then compared in the case of two bows, showing good agreement between the simulated and measured
mechanical behavior. Finally, hair tension and camber are shown to influence the proportion between
lateral and vertical compliances of the tightened bow. The model might be used by bow makers for the
adjustments of bows during the making process.

1 Introduction

As an interface between the player’s arm and the string,
the bow is an all-important element in violin playing. In
spite of its apparent simplicity, it is a very elaborate me-
chanical device, which requires high expertise from bow
makers to meet the demand of professional players.

The primary function of a bow (Fig. 1) is to maintain
a hair ribbon under tension. This gives little latitude in
the choice of the wood, since the stick must remain slen-
der in spite of the high tension it has to withstand [1].
Moreover, the modern bow has a very standard geome-
try, which could lead to believe that the quality of a bow
only hangs on the wood. However, by doing subtle ad-
justments on the geometry of the stick, bow makers have
the ability to draw the best from different wood blanks
with various mechanical properties, or even to adapt the
playing qualities of a bow to the needs of a specific player.
Actually, bow makers work with three main parameters
when making a stick:

• wood (density, elasticity, damping);

• taper, which denotes the gradually decreasing thick-
ness along the stick;

• camber, that is the shape of the stick without hair
tension.

For the choice of the wood, some bow makers com-
bine their know-how with a scientific approach, by us-
ing specific equipments (such as a Lucchimeter [2, 3], or
Lutherie Tools [4]) to measure some of the wood prop-
erties. Regarding taper and camber, however, a specific
device aimed at assisting bow makers does not exist at
present. The mastery of these conception parameters
thus requires a high expertise from the bow maker. The

aim of our study is to develop a tool based on a phys-
ical model, capable of predicting the mechanical behav-
ior of a bow with regard to its material and geometric
characteristics. This study comes within the scope of a
research project aimed at supplying instrument makers
with dedicated measurement and simulations tools which
are affordable and easy-to-use [5].button sti
k head

frog hair tip
Figure 1: Modern violin bow.

In most previous studies, the static behavior of the
bow has been treated as an in-plane problem [6, 7, 8, 9,
10]. However, the out-of-plane behavior should be con-
sidered as well. Indeed, the bow is often slightly tilted
towards the fingerboard in playing [11], which makes the
stick bend in both vertical and lateral directions. More-
over, even when the bow is played with the hair flat on the
string, the stick may bend laterally in response to small
transverse hand movements. Thus, the player probably
feels both vertical and lateral compliances when he con-
trols the bow force. Lastly, discussions with bow markers
suggest that the proportion between vertical and lateral
bending of the stick under tension not only depends on ta-
per, but also on the amount of camber. The out-of-plane
behavior hence appears to be also considered when mak-
ing or adjusting a bow. Therefore, a three-dimensional
finite element model is developed and presented in sec-
tion 2. In section 3, the experimental procedure to deter-
mine the input parameters of the model from measure-
ments on a bow is described and validated. Finally, some
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tendencies on the behavior of the bow when hair tension
and camber vary are given in section 4.

2 Model

To take into account geometric nonlinearity, a large dis-
placement formulation based on the co-rotational approach
is adopted. The main steps of the formulation (after Cr-
isfield [12]) are presented below.

2.1 Co-rotational formulation

The main idea of the co-rotational formulation is to sep-
arate the total displacements of the structure into rigid-
body motion and local deformation, as illustrated by Fig-
ure 2. The rigid-body motion can be arbitrarily large,
while the local deformation is assumed to remain small.
To each element is associated a local frame, materialized
by base-vectors e1, e2 and e3 in Figure 2, which translates
and rotates with the element.

In the local frame, the displacements caused by defor-
mation are described by a set of local degrees of freedom
(DOF) : axial elongation (ul), torsional angles (θl1 at node
1; θl4 at node 2), bending slopes (θl2, θl3 at node 1; θl5, θl6
at node 2). These local displacements, gathered in vector
pl, are conjugate to local internal efforts qil (axial force,
torsional moments, and bending moments, respectively).
Since the local deformation is small, a linear relationship
between local displacements and internal efforts can be
written as:

Kl pl = qil , (1)

where Kl is the local stiffness matrix (7 × 7), which re-
mains the same during the analysis, assuming material
linearity.

(a)

(b)
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Figure 2: Illustration of the co-rotational approach: (a)
current configuration, (b) initial configuration.

In any deformed configuration of the structure, the
local displacements pl can be computed from the global
displacements p, which relate to the global frame and
consist of 6 DOF per node (3 translations and 3 rotations).
Moreover, it is possible to express a relationship between

infinitesimal changes of local and global displacements,
resp. δpl and δp, as:

δpl = F δp , (2)

where F is the transformation matrix (7 × 12). Con-
trary to the local stiffness matrix, F depends on displace-
ments and has to be computed at each iteration. Know-
ing the transformation matrix, it is possible to relate the
global internal efforts qi to the local internal efforts qil

given by Eq. (1). For this, we express the fact that the
internal virtual work has to be the same in the global and
local frame, which yields:

qi = FT qil . (3)

The last step in the formulation is to express the tan-
gent stiffness matrix Kt. The static equilibrium of the
structure is expressed by:

g = qi − qe = 0 , (4)

where g is the vector of out-of-balance efforts and qe the
vector of external efforts, which are assumed here to be
independent of the displacements. For a given loading qe,
the displacements p that satisfy the static equilibrium are
found iteratively. Assuming that the structure at iteration
(i) is not in equilibrium and expanding g in a first-order
Taylor series about the current displacements p(i), Eq. (4)
becomes:

g(i) +
∂g

∂p

∣

∣

∣

∣

p(i)

δp(i+1) = 0 , (5)

where δp(i+1) is the vector of incremental displacements
between the current and next iteration, i.e. p(i+1) =
p(i) + δp(i+1). The tangent stiffness matrix is then:

Kt =
∂g

∂p
= FTKl F+

∂FT

∂p
qil . (6)

The first term in Kt corresponds to the elasticity of the
material, and the second to geometric stiffness, due to the
stress field in the structure.

2.2 Model of bow

2.2.1 Assumptions on material

Wood is a complex material, both anisotropic and inho-
mogeneous. It is generally described as an orthotropic
material, needing 9 independent elastic constants. How-
ever, bow makers usually follow the direction of grain
when cutting a wood blank and avoid areas of wood that
present growth defects [13, 14]. Consequently, following
assumptions can be made:

• The wood is homogeneous.

• The local reference frame of each beam element co-
incides with the natural directions of the wood. In
particular, the vector e1 is assumed to correspond
to the longitudinal direction. Thus, only the longi-
tudinal Young’s modulus EL of the wood is needed
to account for the flexural and traction/compression
behavior, and the shear moduli GRL and GTL for
the torsional behavior. A value of EL/G(RT )L = 15,
typical for hardwood, is chosen [15].
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As it is a natural material, the horse hair as well is in-
homogeneous. Its mechanical properties may vary among
the hairs contained in the ribbon, and along the length
of an individual hair [16]. As seen by the tightened stick,
however, the hair ribbon may be characterized by its lon-
gitudinal stiffness, typically of the order 30 N/mm [6].
The longitudinal stiffness of the hair ribbon is necessary
to account for variations in hair tension as the tightened
bow is loaded.

2.2.2 Assumptions on structure

Due to the slenderness of the bow stick, Euler-Bernoulli
kinematic assumptions are chosen. The influence of shear
forces is thus neglected. Only the part of the bow between
the front end of the frog and the tip is modeled, as shown
by Figure 3. The origin of the global coordinate system is
defined as the front end of the frog on the loosened bow.
The x axis is oriented over the length of the bow. The z
axis is oriented normally to the under surface of the frog.
A moving reference frame {xb, yb, zb} is associated to the
bow. The xb axis coincides with the direction determined
by the endpoints of the hair. In the following, the “verti-
cal” and “lateral” directions correspond to the zb and yb
axes, respectively.

The stick is discretized into N = 20 elements, plus
one for the head. The length of each element is chosen
such that the decrease in diameter from one node to the
next is as identical as possible along the bow. Since the
diameter decreases more rapidly when approaching the
tip, more elements with smaller size are necessary in this
region to meet the criterion (see Fig. 3). As the head
is stubby and oriented perpendicular to the grain, the
Euler-Bernoulli beam modeling as well as the longitudi-
nal Young’s modulus are inappropriate to account for its
actual behavior under loading. However, assuming that
the deformation of the head is negligible compared to that
of the stick, it is represented by a single element with ar-
bitrary but large enough cross-section dimensions (such
as a 15 mm × 10 mm ellipse, for instance).

In this paper, the initial curvature of the stick is as-
sumed to be plane. This assumption is satisfied on most
bows of respectable quality.

xb

x

z

y

yb

zb

Fz

Figure 3: Illustration of the finite element model. The
tightened bow is loaded by a force Fz inclined relative
to the vertical axis of the bow zb. The global reference
frame {x, y, z} is materialized by dashed lines, the refer-
ence frame of the bow {xb, yb, zb} by solid lines.

A hair ribbon is usually made up of 150 to 200 hairs.

In first approximation, it may be represented by an equiv-
alent single hair. The underlying assumptions are that
every hair in the ribbon participate to the force exerted
on the stick, and that the resultant force is centered in
the width of the ribbon. Actually, as the initial lengths of
the hairs may slightly differ, the first assumption is true
only when a certain resultant hair tension is reached. For
reason of consistency in the co-rotational finite-element
formulation, a beam modeling is retained. It takes into
account longitudinal stiffness (i.e. possible stretching)
and geometric stiffness due to tension. In order to ob-
tain a longitudinal stiffness of 30 N/mm for a 65 cm rib-
bon with a typical Young’s modulus Eh

L = 5 GPa, the
dimensions of the rectangular cross-section are fixed to
10 mm × 0.39 mm. As the beam modeling introduces
spurious bending stiffness, especially in the lateral direc-
tion, the second moments of inertia Iy and Iz are assigned
a sufficiently low value (both 1% of Iy with the actual di-
mensions). This ensures that only geometric stiffness in-
tervenes in the transverse behavior of the hair. The beam
representing the hair is connected to the stick at the tip
by a spherical joint, thus disabling the transmission of
moments between one body to the other. It is discretized
into Nh = 10 elements having the same length.

Alternatively, the ribbon may be modeled by several
equivalent hairs, regularly distributed along the width of
the end. In this case, each equivalent hair is connected to
an intermediary rigid beam at the tip. To facilitate the
generation of the mesh, an odd total number of equivalent
hairs nh is chosen, keeping one in the middle and adding
others on both sides.

2.3 Steps of the simulation

A typical use case of the model is to predict the compli-
ance of the tightened bow. To achieve this, the simulation
is decomposed into two load steps. Throughout the sim-
ulation, the stick is clamped at the frog. In the first step,
the end node of the hair corresponding to the attachment
to the frog is allowed to translate along the x axis. It
is loaded by a force with magnitude T0 oriented in the
direction of the hair (xb axis), resulting in backward dis-
placement of the node and straightening of the stick. In
the second step, the position of the same node is kept
fixed by blocking the translation. The bow, which is in
a prestressed state, may be loaded by a force Fz at any
node of the hair, with an angle ψ relative to the vertical
axis of the bow zb (see Fig. 3). This force corresponds to
the bow pressure that would be exerted by the player on
the string, with the bow eventually tilted. To determine
the compliance, an incremental loading is chosen, typi-
cally from 0 to 1.6 N by steps of 0.1 N. This allows for
numerical differentiation of the force-deflection relation-
ship.

The finite-element model of bow is implemented in
Matlab. Each load step is solved iteratively by using a
Newton-Raphson procedure. The chosen convergence cri-
terion is ‖g‖ < ε [see Eq. (4)], the value of ε being chosen
very small compared to that of typical external efforts
exerted on the structure. In the general case where the
hair ribbon is represented by nh equivalent hairs, the total
numbers of nodes is N + 1 + nh × (Nh + 2). As the sin-
gle equivalent hair approximation (nh = 1) is chosen for
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most simulations, the mesh typically consists of 33 nodes,
each having 6 DOF. When running the simulation on a
personal computer, the time to obtain the compliance at
all nodes of the hair is approximately 10 minutes, for one
value of angle ψ. The in-plane finite element model previ-
ously developed by the authors [10], thought taking into
account geometric nonlinearity as well, is less computa-
tionally expensive. The mesh consists of 22 nodes with 3
DOF representing the stick, whereas the behavior of the
hair is treated by analytical equations. As a compari-
son, the simulation with the same input parameters takes
about 20 seconds. Thus, the in-plane model will be prefer-
ably used when the out-of-plane behavior of the bow has
not to be considered, all the more when a large number of
simulations is needed (e.g. inverse method, Monte Carlo
method).

3 Experimental procedures

In this section, we describe the non-destructive procedure
to determine the bow parameters. Then, a method to
measure the compliance along the bow is presented. The
experimental procedures are illustrated here on two stu-
dents bows (B1 and B2, see section 4, Tab. 3).

3.1 Determination of bow parameters

The input parameters of the model are:

• the geometry: camber, vertical and horizontal di-
ameters,

• the properties of the material: Young’s modulus of
the stick EL, Young’s modulus of the hair Eh

L,

• the loading: hair tension T0, bow force Fz at relative
abscissa γ with tilt angle ψ.

Bow parameters include the geometry and the mate-
rial properties, and in a certain sense the hair tension that
characterizes a playing state. These parameters are de-
termined successively, in the order illustrated by Figure 4.

(2)
(0) GeometryYoung's modulusof the sti
k ELHair tension T0Young's modulusof the hair Eh

L

(1)
(3)

Fz

Fz

T0

Figure 4: Illustration of the successive steps for the de-
termination of bow parameters.

3.1.1 Geometry

Although the cross-section of the stick could be visually
described as round, it is assumed to be oval. The ver-
tical and horizontal diameters are measured at equally

spaced abscissas along the stick, by steps of 25 mm. Due
to the presence of the wrapping, the portion between 0
and 100 mm can not be measured. A piecewise cubic in-
terpolation allows for discretization at any abscissas. The
diameter of each element is then taken as the mean value
of the diameter at its nodes. As seen on Figure 5, the ver-
tical and horizontal diameters only slightly differ, mainly
in the first half on the bow.
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Figure 5: Vertical and horizontal diameters along the stick
of bow B1.

The camber is determined from a picture of the bow
without hair tension, by means of image processing. The
bow reposes on two supports, at the frog and at the tip.
A backward diffuse lighting is used such as to obtain a
well contrasted image. The picture is taken with a Canon
OS 300D digital camera equipped with Sigma 18-50 mm
F3.5-5.6 DC lens. The focal length is set to 50 mm, at
which the lens produces negligible distortion. The reso-
lution, determined by placing a ruler in the same plane
as the bow, is comprised between 0.24 and 0.26 mm/px,
depending on the distance between the camera and the
bow. The camera is mounted on a tripod, in order to
hold the distance constant between successive pictures of
a same set of measurements. The end points of the hair
at the front end of the frog and at the tip are pointed out
manually on the picture. Then, the upper and lower out-
lines of the stick are detected to obtain its neutral axis.
It is approximated by a polynom (see Fig. 6), with an
order such that the residual error is below 0.1 mm, i.e.
approximately one half of a pixel.

Figure 6: Determination of camber from a picture of the
backlighted bow B1 (modified aspect ratio in order to
emphasize the curvature along the bow). A 5th order
polynom is used here to characterize camber.
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3.1.2 Material properties and hair tension

The Young’s modulus of the stick EL, the hair tension
T0 and the equivalent Young’s modulus of the hair Eh

L

for a given cross-section area (3.9 mm2) are determined
successively by an inverse method in 3 steps. For each
parameter, a specific loading is imposed on the bow and
the deflected shape of the stick is measured on a picture.
Then, a simulation with the same loading is performed.
Measured and simulated deflected shape are compared
and the unknown input parameter (either EL, T0 or Eh

L)
is found such as to minimize the difference between the
two. An illustration of the optimization routine, which is
common to the three steps, is illustrated by Figure 7 in
the case of the determination of hair tension.

1. To determine the Young’s modulus of the stick EL,
the bow without hair tension is clamped at the frog
and loaded at the tip by a vertical force Fz [Fig. 4-
(1)].

2. The hair tension T0 is determined by tightening the
bow [Fig. 4-(2)].

3. To determine the Young’s modulus of the hair Eh
L,

the tightened bow is clamped at the frog loaded at
the tip by a vertical force Fz [Fig. 4-(3)]. With
such a loading, the stiffness of the hair counteracts
the tendency of the force to slightly increase the
distance between the frog and the tip. The hair
tension thus increases in proportion to the stiffness
of the ribbon, which affects the deflected shape of
the stick.

In our experiment, the clamped boundary condition is
realized by two metal fingers grasping the bow (see Fig. 8),
assuming that the frog is perfectly rigid and bound to the
stick. One finger is in contact with the upper surface
of the stick at abscissa x = 0 mm and the other with
the under surface of the frog, near its rear end. This
solution is preferable to those based on preloading (e.g.
using a bar clamp), since an excessive pressure between
the frog and the stick might damage the edges of the stick
around the mortise. Moreover, since the measured and
simulated deflected shape of the stick are compared in
reference frame of the bow (see Fig. 7), a slight rigid-body
rotation of the bow has no consequence on the results of
the procedure. Consequently, compliant pads could be
placed between the metal fingers and the bow such as to
avoid marking it. The force Fz was simply measured by
a weighing scale (accuracy 0.01 g), which was brought in
contact with the tip through an intermediary triangular-
shaped part. As the base equipment necessary to apply
the procedure (personal computer, digital camera with
tripod, weighing scale) is generally already owned by bow
makers, the method is easily transferable in workshops,
as a tool to assist bow making.

3.1.3 Uncertainties

In order to validate the procedure to determine the bow
parameters, uncertainties are calculated using the Monte-
Carlo method [17]. For all input variables involved in
the procedure, a type B uncertainty is considered. The
input variables xi and their uncertainties ∆xi are listed
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Figure 7: Determination of hair tension T0 by an inverse
method. The upper plot shows the measured and simu-
lated deflected shape of the stick, compared in the refer-
ence frame of the bow, after convergence of the optimiza-
tion routine. The lower plot shows the residual difference
between measurement ad simulation.

in Table 1. They have been set according to following
considerations:

• Uncertainties on vertical and lateral diameter are
assigned to each element. The discretization of the
stick is such that the difference in diameter between
two consecutive nodes is around 0.2 mm. As the
diameter of each element is defined as half between
those at its nodes, the resulting discretization er-
ror (about 0.1 mm) is higher than the accuracy of
the digital caliper (0.02 mm). Thus, it is chosen to
represent the uncertainties on diameters. It should
be noted that these uncertainties may also repre-
sent small variations in Young’s modulus along the
stick (i.e. inhomogeneity of the wood), as they affect
bending stiffness ELI. For instance, a typical error
of 1 % on the diameter of an element is equivalent
to a 4 % local variation in Young’s modulus.

• The uncertainties on the abscissas and heights of
both frog and tip arise from the difficulty to deter-
mine accurately the end points of the hair on the
picture, because of the width of the ribbon. As the
residual error in the characterization of camber by a
polynom (< 0.1 mm) is smaller than the uncertainty
on frog and tip heights (1 mm), no local uncertainty
is assigned to camber.

• The uncertainty on the force exerted at the tip in
steps 1 and 3 is chosen such as to include error due to
stress relaxation, which occurs while the deflection
of the bow is held constant.

The Monte-Carlo method is applied as follows:
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Input parameter Value Uncertainty
Vertical diameter dz see Fig. 5 ∼ 0.1 mm
Horizontal diameter dy see Fig. 5 ∼ 0.1 mm
Abscissa of the frog xfrog 0 mm 1 mm
Abscissa of the tip xtip 645 mm 1 mm
Heigth of the frog yfrog 20 mm 1 mm
Heigth of the tip ytip 20 mm 1 mm
Force at the tip in step 1 Fz 1.54 N 0.02 N
Force at the tip in step 3 Fz 1.54 N 0.02 N

Table 1: Input variables needed to determine the bow
parameters.

1. A set of random values of input parameters within
the interval [xi−∆xi xi+∆xi] are generated, con-
sidering a uniform distribution.

2. Output parameters yj (EL, T0 and Eh
L) are de-

termined successively by inverse method, from the
same set of input parameters.

3. Steps 1 and 2 are repeated a large number M of
times (M = 2000).

4. For each output parameter yj , the mean value ȳj
and standard deviation σj over the M obtained val-
ues are calculated.

5. The estimate Y of the output parameter is expressed
as Yj = ȳj ± k σj , where k is a coverage factor. As-
suming a normal distribution for the output param-
eters, it is taken here as k = 1.96, which corresponds
to a 95% confidence interval.

The parameters determined by the procedure are pre-
sented in Table 2 with their uncertainties. The value of
the Young’s modulus of the stick EL is consistent with
those typically reported in the literature [18]. As the
corresponding uncertainty is rather low (2%), confronta-
tion with other measurement methods would be helpful
to discuss the validity of the experimental procedure. The
uncertainty on the hair tension T0 (6%) is considered sat-
isfactory for using the model as an indirect measurement
method. The uncertainty calculated for the Young’s mod-
ulus of the hair Eh

L may seem deceptive (22%). However,
it can be explained by the fact that the compliance of the
tightened bow is fare more sensitive to the elasticity of
the stick than that of the hair.

Bow parameter Value Uncertainty
Young’s modulus of the stick EL 26.8 GPa 0.5 GPa
Hair tension T0 53.4 N 3.0 N
Young’s modulus of the hair Eh

L 6.5 GPa 1.4 GPa

Table 2: Bow parameters determined by inverse method.

3.2 Measurement of compliance

The experimental setup used to measure the compliance
of the bow is shown on Figure 8. A force transducer (HBM
U1A, 10 N range) is mounted on the mobile part of a
height gage and equiped with a touching part. A poten-
tiometric displacement transducer (Meiri PZ12, 100 mm
range), fixed at the steady part of the height gage, is used
to measure the vertical translation of the mobile part.

height gage
displa
ement transdu
erfor
e transdu
er Fz

uz

Figure 8: Measurement of vertical compliance on the bow.
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Figure 9: Measured force-deflection curves for three cases
of loading on bow B2. Relative abscissa is denoted by
γ (γ = 0 at the frog, γ = 1 at the tip). Thick lines:
experimental data. Thin lines: second order polynom.
Dotted lines: linear relationship (tangent at Fz = 0 N).

The bow is clamped at the frog and free at its end.
The measurement device is placed successively at differ-
ent abscissas along the bow. At each abscissa, the mo-
bile part is manually translated upward and downward,
making the bow deflect. Throughout the measurement,
the force applied to the hair is monitored with an oscil-
loscope such as to avoid excessive loading. The signals
delivered by the force and displacement transducers are
acquired simultaneously at sampling rate of 200 Hz. For
the validation of the model, the in-plane as well as the
out-of-plane behavior have to be investigated. Thus, a
measurement is also carried out with the bow clamped
such that the compliance is measured in the lateral di-
rection. In the following, the term “lateral compliance”
refers to this configuration, whereas “vertical compliance”
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corresponds to the configuration visible on Figure 8.
Figure 9 shows typical force-deflection curves obtained

with the measurement device. The data points extracted
from the acquisition correspond to the loading of the bow
only, as a slight hysteresis could be observed between
loading and unloading. Regarding the in-plane behavior,
the evolution of deflection with force is slightly nonlinear.
Near the tip, the slope of the force-deflection curve in-
creases with force, whereas if decreases with force in the
middle. Moreover, the slope of the lateral force-deflection
curve at the tip is higher than in the vertical case. In the
following, we define compliance c as the slope of force-

deflection curve, i.e. c =
∂uz
∂Fz

. For this purpose, the data

points are fitted with second order polynoms, which are
then differentiated to calculate the compliance.

4 Discussion

In this section, the model and the experimental proce-
dures previously described are used to compare the me-
chanical behavior of two bows.

4.1 Description of the bows

4.1.1 Bow characteristics

The experiments are carried out on two student bows of
respectable quality, made of Pernambuco. The two bows
were selected by a bow-maker, for the similar character-
istics of their sticks in terms of overall design, mass and
stiffness. They were re-haired and the wire wrapping was
made such as to reach mass and center of inertia as close
as possible on both bows. Then, one bow was given more
camber (bow B2) than the other (bow B1), as visible in
Figure 10, with an effort to keep the distribution of cam-
ber along the stick the same as possible. Some charac-
teristics of the bows that are straightforward to measure
are listed in Table 3. It should be noted that the dif-
ference in minimum hair-stick distance between the two
bows is 2.4 mm, which indicates a moderate adjustment
of camber.

Characteristic Bow B1 Bow B2

Length of the bow(1,2) 730± 1 mm 730± 1 mm

Length of the hair(1) 647± 1 mm 646± 1 mm
Mass 60.79± 0.02 g 60.78± 0.02 g
Center of inertia(1,2) 253± 1 mm 256± 1 mm

Minimum hair-stick distance(1,3) 1.4± 0.1 mm −1.0± 0.1 mm
Stiffness(3) 170 170

Table 3: Characteristics of the two bows used in the
measurements and simulations. (1)without hair tension
(2)measured from the origin of the stick (3)a negative value indi-

cates that the stick passes through the hair (4)the value gives the

deflection of the stick in microinches simply supported near its ends

and loaded in the middle by a 1 lb weight, as measured by the bow

maker (generally from 150, very stiff, to 250, very flexible)

4.1.2 Studied settings

Three settings of hair-stick distance at which the bow
could be played are chosen. The hair-stick distance is set
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Figure 10: Comparaison between the shapes of bows B1
(—) and B2 (- -) measured without hair tension and for
three levels of hair tension (A1, A2, A3), corresponding
to three imposed hair-stick distances (7.8 mm, 9.7 mm,
11.7 mm, respectively, ±0.1 mm each). Upper and lower
outlines of the stick is represented.
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Figure 11: Hair tension corresponding to the three set-
tings of hair-stick distance A1, A2, A3 (see Fig 10).
The uncertainties are calculated using the Monte-Carlo
method, as described in section 3.

by inserting a small cylinder with adequate diameter be-
tween the hair and the stick, in the middle of the bow
(x = 325 mm), and gently tightening the bow until the
cylinder falls. The minimum hair-stick distance can then
be measured with a good accuracy from a picture of the
tightened bow. Figure 10 shows the deformed shapes of
both bows for the three settings of hair-stick distance,
denoted by A1, A2, A3. Whereas the shapes without
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hair tension significantly differ because of camber adjust-
ment, the shapes of both tightened bows at each setting
are almost the same. As the aspect ratio of the figure
emphasizes the small differences, they would be hardly
perceptible with the naked eye.

The procedure to determine bow parameters described
in section 3 is then applied to both bows, to allow simu-
lation with the finite-element model. Having determined
the Young’s modulus of both sticks, the hair tension cor-
responding to the three settings is then determined for
each bow. The results are shown in Figure 11. As ex-
pected, the hair tension increases with the hair-stick dis-
tance. Considering that settings A1 and A3 roughly de-
limit the playing range of each bow, the corresponding
range in hair tension varies from 48 to 63 N on bow B1,
from 65 to 76 N on bow B2. It clearly appears that a
higher camber allows to reach a higher hair tension for
the same setting of hair-stick distance, all other geomet-
rical and material properties of the bow being considered
identical. Furthermore, these results seem to suggest that
the offered range in hair tension is wider when the bow is
less cambered (15 N for bow B1 v.s. 11 N for B2).

4.2 Comparison between measured and

simulated compliance

4.2.1 Distribution of compliance along the bow

For each setting of hair-stick distance, the vertical and
lateral compliances are measured on the tightened bows,
as described in section 3. The force-deflection relation-
ships are measured at regularly spaced abscissas, by steps
of 50 mm starting from the tip. For each obtained force-
deflection curve, the compliance at a typical bow force of
1 N is then calculated and plotted against corresponding
relative abscissa. Figure 12 shows the measured vertical
and lateral compliance along bows B1 and B2, for setting
A1 (7.8± 0.1 mm hair-stick distance). Results of simula-
tions with the bow parameters previously determined are
plotted too.

A good agreement between experimental and numeri-
cal results is observed. The model manages to reproduce
the higher compliance in the lateral direction. This effect
is a direct consequence of prestress: when out-of-plane
bending of the stick occurs, the hair tension creates an
additional bending moment along the stick. This mo-
ment acts together with that caused by the force, which
makes the deflection higher. This phenomenon is at the
bottom of the higher lateral compliance observed on bow
B2, for which the hair tension at A1 is higher than on
bow B1. For information, the simulated vertical and lat-
eral compliances at the tip of the stick without the hair
are 13.0 mm/N and 13.2 mm/N, respectively, on bow B1.
On bow B2, they are 13.4 mm/N (+3%) and 13.7 mm/N
(+4%).

It should be pointed out that when applying a force
laterally on one side of the ribbon, the number of hairs
undergoing deflection actually increases with the force.
Hence, the compression of the ribbon slightly increases the
measured compliance. As the deformation of the ribbon
is not taken into account in the model, the agreement
declines near the frog. However, the numerical results are
probably representative of the lateral compliance felt by

the musician when playing with the hair flat on the string.
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Figure 12: Comparaison between experimental and nu-
merical results on vertical and lateral compliances along
the tightened bow, at a bow force of 1 N, for the setting
of hair-stick distance A1 (see Fig 10). The number of
equivalent hairs used to model the ribbon is denoted by
nh.

4.2.2 Effect of hair tension and camber

In order to better apprehend how hair tension and camber
affect the mechanical behavior of the stick, we now focus
on the vertical and lateral compliances measured at the
tip (γ = 1). Figure 13 shows their evolution with hair
tension on both bows.

A good agreement between experimental and numeri-
cal results is observed on vertical compliance. Regarding
lateral compliance, discrepancies of about 10% are found
with the single equivalent hair approximation. Yet, a bet-
ter agreement is observed when using several equivalent
hairs to model the ribbon. In this case, the axial stress
in the equivalent hairs increases on the side where the
force is applied and decreases on the other side. This
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phenomenon can be observed experimentally simply by
“plucking” each side of the ribbon as the tightened bow
is loaded and listening to the resulting tone. A higher or
lower pitch compared to the unloaded bow indicates a rise
or fall in hair tension, respectively. A consequence is that
the resultant force exerted on the stick by the ribbon is
slightly shifted laterally compared to the case of a single
equivalent hair. Therefore, the bending moment created
by the hair tension, which enhances the compliance of the
stick, is lower, and hence the lateral compliance as well. It
should be noted that three equivalent hairs are sufficient
to reproduce this phenomenon. It has been verified that
similar results are obtained with nh > 3.
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Figure 13: Evolution of vertical and lateral compliances
at the tip (γ = 1) with the hair tension on both bows, at
a bow force of 1 N. The experimental values correspond
to settings of hair-stick distance A1, A2, A3. Solid lines:
simulated vertical compliance. Thin dashed lines: lateral
compliance with a single equivalent hair representing the
ribbon. Thick dashed lines: lateral compliance with nh =
3 equivalent hairs.

In every case, the lateral compliance at the tip is
higher than the vertical compliance and increases with

hair tension. This is due to the fact that hair tension as-
sists the out-of-plane bending of the stick, as mentioned
earlier. On the contrary, the vertical compliance at the
tip decreases with hair tension. This can be explained
by the fact that the distance between the hair and the
neutral axis of the stick increases. Now, the rise in hair
tension as the tightened bow is loaded creates a bending
moment proportional to this distance. Since this bending
moment counteracts the effect of that caused by the ex-
ternal loading, the deflection is reduced when the distance
is higher.

For the same hair tension, the lateral compliance at
the tip is almost the same on both bows. The difference
between bows B1 and B2 is of the order 5%, which is
comparable to the difference on the sticks without the
hair (4%). Thus, it seems that the higher lateral compli-
ance of the tightened bow compared to that of the stick
depends on hair tension, but not on camber. The vertical
compliance, however, is significantly higher on bow B2 for
the same hair tension (between 15 and 20% depending on
hair tension, to be compared a difference of 3% on the
sticks without the hair). Indeed, the same hair tension
is reached at a lower hair-stick distance when the bow is
more cambered. Thus, the bending moment due to the
rise in hair tension is smaller, offering less resistance to
loading.

Considering the two bows tightened at the same hair-
stick distance, however, the compliance at the tip of bow
B2 is higher in both directions. Moreover, the ratio be-
tween lateral and vertical compliances as well is higher, as
indicated in Table 4. Interpreting these results in terms
of playing qualities is far from straightforward, though
tempting. However, they might explain the fact that a
too much cambered bow is likely to “whip” to one side to
the other during playing [19].

A1 A2 A3
Bow B1 1.46 1.56 1.72
Bow B2 1.57 1.79 2.07

Table 4: Ratio between lateral and vertical compliances
at the tip (γ = 1) for the three settings of hair-stick dis-
tance A1, A2, A3, calculated on experimental values (see
Fig. 13).

5 Conclusion

A numerical model of violin bow and a procedure for de-
termining its input parameters from measurements have
been developed. The essential input parameters are the
geometry of the bow, the Young’s modulus of the stick,
the tension and stiffness of the hair. Their successive de-
termination is possible with rather affordable and easy-to-
use equipment. The model is able to predict the mechan-
ical behavior of a tightened bow. It has been shown that
the hair tension enhances the bending of the stick under
a lateral force. Moreover, increasing the hair tension low-
ers the deflection of the stick under a vertical force. As a
consequence, the gap between vertical and lateral compli-
ances of the bow increases with hair tension. It has also
been shown that adding camber allows the player to reach
a higher playing hair tension for the same hair-stick dis-
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tance. Together, both vertical and lateral compliances of
the stick are higher. The results are in line with the expe-
rience of bow makers, who affirm that camber influences
the flexibility of the stick under hair tension.

Thus, the model presented in this paper may be useful
to bow makers who are interested in the objective char-
acterization of bows. The need to optimize each bow in
spite of variability in wood properties also gives support
to a simulation tool based on this model. As the pos-
sibility to put the bow under hair tension comes rather
late in the making process, simulations could be useful
to anticipate the consequences of conception choices on
the behavior of the tightened bow, assisting the maker to
achieve the right balance between wood properties, taper
and camber.

A natural continuation of this work is to establish a
link between the mechanical behavior and the playing
qualities of a bow. An ongoing subjective study focuses
on the influence of camber and hair tension on the per-
ception of the bow by the player.
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