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ABSTRACT

In this paper, we present an application of the Floquet-Bloch theorem in the context of electrodynamics for
vibroacoustique power flow optimization by mean of distributed and shunted piezoelectric patches. The main
purpose of this work is first to propose a dedicated numerical approach able to compute the multi-modal wave
dispersions curves into the whole first Brillouin zone for periodically distributed 2D shunted piezo-mechanical
systems. By using a specific indicator evaluating the evanescent part Bloch’s waves, we optimize, in a second
time, the piezoelectric shunting electrical impedance for controlling energy diffusion into the proposed semi-active
distributed set of cells. A 3D modeling of semi-distributed distribution of the optimal smart metamaterial is
used for validating the obtained cell design.

Keywords: Distributed control, 2D Waves Dispersion, Bloch Theorem, Shunted piezoelectric, Mid-Frequency
Optimization

1. INTRODUCTION

Tailoring the dynamical behavior of wave-guide structures can provide an efficient and physically elegant approach
for optimizing mechanical components with regards to vibration and acoustic criteria, among others. However,
achieving this objective may lead to different outcomes depending on the context of the optimization. In the
preliminary stages of a product’s development, one mainly needs optimization tools capable of rapidly providing
global design directions. Such optimization will also depend on the frequency range of interest. One usually
discriminates between the low frequency (LF) range and the medium frequency (MF) range, especially if vibration
and noise are considered. However, it should be noted that LF optimization of vibration is more common in the
literature than MF optimization. For example, piezoelectric materials and other adaptive and smart systems
are employed to improve the vibroacoustic quality of structural components, especially in the LF range1–3 even
if ditributed transducers are used.4, 5 Recently, much effort has been spent on developing new multi-functional
structures integrating electro-mechanical systems in order to optimize their vibroacoustic behavior over a larger
frequency band of interest.6–14 However, there is still a lack of studies in the literature for MF optimization of
structural vibration. To that end, the focus of this study is to provide a suitable numerical tool for computing
wave dispersion in 2D periodic systems incorporating controlling electronics devices. The main final aim is to
allow their optimization in order to optimize vibroacoustic diffusion in 2D wave guides.
Two numerical approaches can be distinguished for computing that dispersion: the semi-analytical finite element
method (SAFE) and the wave finite element (WFE) method. The main disadvantage of the SAFE method is that
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FE used are not standard so they must be specifically defined for each application. Nevertheless, a large amount
of FE has been developed since 1975 to compute dispersion curves of rails,15 laminated composite plates16, 17

and viscoelastic laminated composite plates.18 To avoid development of specific FE, the WFE method considers
the structures as periodic in order to model, with standard FE, a period of the structure. By using the periodic
structure theory (PST) introduced by Mead,15 an eigenvalue problem can be formulated from the stiffness and
mass matrices of the FE model to find wave numbers of all the propagating waves. Contrary to SAFE method,
the displacement field is now approximated in the direction of propagation. Thus, some numerical issues can
arise when the size of FE are too coarse. As recommended by Mace and Manconi,16 a minimum of six elements
per wavelength is a good rule of thumb to ensure a reliable analysis. The WFE method has been successfully used
to deal with wave propagation in two dimensional structures.19, 20 One of the main problem all these approaches
is the difficulty to compute the damped wave numbers in the whole Brillouin domain necessary for optimizing
vibroacoustic behavior of smart periodic structures.
After recalling the Floquet-Bloch theorems, we introduce a new numerical formulation for computing the multi-
modal damped wave numbers dispersion in the whole first Brillouin domain of a periodical smart structure
made of periodically distributed shunted piezoelectric patches. Based on this wave modeling, optimization of the
electrical impedance of the shunted circuit is made in order to decrease group velocity of flexural waves. The
obtained optimal impedance is also tested in controlling the HF response of a semi-distributed system.

2. PIEZO-ELASTO-DYNAMICAL APPLICATION OF THE FLOQUET-BLOCH
THEOREM

In this section the application of the celebrated Floquet-Bloch theorem is presented for piezo-elastodynamic prob-
lems. Based on the well known results obtained by Floquet21 in one-dimensional and later rediscovered by Bloch22

in multidimensional problems, we propose an original application to bi-dimensional piezo-elastodynamical prob-
lem leading to very general numerical implementation for computing waves dispersion for periodically smart
distributed mechanical systems incorporating electronic components and damping effects.23

2.1 The Bloch Theorem

The Bloch theorem gives the form of homogeneous states of Schrödinger equation with periodic potential. This
theorem can be considered as a multidimensionnal application of the Floquet theorem.24 The periodic medium
(or potential) properties satisfy M(x + R.m) = M(x), m ∈ Z

3 where R = [r1, r2, r3] ∈ R
3×3 is a matrix

grouping the three lattice’s basis vectors (in 3D). We can also define the primitive cell as a convex polyhedron
of R3 called Ωx. The reciprocal unit cell is denoted by Ωk limited by the reciprocal lattice vector defined by
the three vectors gj so that: ri.gj = 2πδij (δi,j the Kronecker index). We note G = [g1, g2, g3] the reciprocal
lattice matrix in the later. If Ωx is the irreductible primitive cell, Ωk corresponds to the first Brillouin zone of
the lattice. One can see25 for details.

The Bloch Theorem stipulates that any functions u(x) ∈ L2(R3,Cn) can be expressed as

u(x) =

∫

Ωk

eikxũ(x,k)dk (1)

where the Bloch amplitude ũ(x,k) is Ωx-periodic and has the representations

ũ(x,k) =
∑

n∈Z3

û(k +Gn)eiGn.x,

u(x) =
|Ωx|

(2π)3

∑

n∈Z3

u(x+Rn)eik(x+Rn) (2)

where û(k) stands for the Fourier transform of u(x). One can also demonstrate that the mean value of the
Bloch amplitude is the Fourier amplitude of u(x) for the corresponding wave vector: 〈ũ(.,k)〉Ωx

= û(k). Using
the Bloch theorem to represent the solutions of periodical partial derivative equations implies that all derivatives
are shifted by k in the sense given by the used spatial operator.
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Based on that theorem one can define the expansion functions vm(x,k), called the Bloch eigen modes, such
that they can be used to represent the Bloch amplitudes of any solution of the corresponding partial derivative
equation as

ũ(x,k) =
∑

m

um(k)vm(x,k) (3)

and at the same time diagonalize the partial derivative equations. One notes that the expansion coefficients
um(k) depend on the applied disturbance and also on the induced wave vector (see26 for details).

2.2 Application to Piezo-Elastodynamic
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Figure 1. Generic 3D piezocomposite periodic cell

Let us consider a piezo-elastodynamic problem made of infinite periodic distribution of unitary cell described
in figure 1. The harmonic homogeneous dynamical equilibrium of system is driven by the following partial
derivative equation :

{

ρẅ(x)−∇σ(x) = 0 ∀x ∈ Ωx

−∇D(x) = 0 ∀x ∈ Ωx
(4)

where w(x) ∈ R3(Ωx) is the displacement vector, σ represents the Cauchy stress tensor, ǫ = ∇symw =
1
2 (∇wT (x) + w(x)∇T ) the Green strain tensor, D(x) the electric displacement. The linear constitutive ma-
terial behavior relationships can be written as

σ = CE(x)ǫ− eT (x)E (5)

D = e(x)ǫ+ εS(x)E (6)

where E = −∇V the electric field vector (V the voltage), CE the elasticity tensor at constant electrical field,
eT the piezoelectric coupling tensor and εS the dielectric permittivity at constant strain. We add to this set of
equilibrium equations an output expression

qo = −

∫

St

D.ndS (7)

allowing the introduction of the charge measurement on the piezoelectric’s top electrode and hence the dual
counterpart of the imposed electrical Dirichlet boundary condition for applying the shunt impedance operator.
The equations above are consistent for each kind of material to the extent that null piezoelectric and permittivity
tensors can be used when passive materials are considered. All of these tensors also depend on the spatial location
vector x. The piezo-elastodynamic equilibrium can also be written as :

ρω2w(x) +∇C∇sym(w(x)) +∇eT (x)∇V (x) = 0 ∀x ∈ Ωx (8)

−∇e(x)∇sym(w(x)) +∇εS(x)∇V (x) = 0 ∀x ∈ Ω (9)
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As the problem is 2D infinitely periodic, only electrostatic boundary conditions have to be considered on each
cell:

⎧

⎨

⎩

V = 0 ∀x ∈ Sb

V = V o ∀x ∈ St

D.n = 0 ∀x ∈ Sl

(10)

where Sb is the grounded bottom electrode of the piezoelectric layer, St is the top electrode connected to the
external shunt and sl the lateral electrode less boundary. The top electrode applied feedback voltage Vo depends
on the shunt characteristic and on the collected charges qo (7) and can be expressed in the Fourier space by:

V o(iω) = −Z(iω)qo(iω) (11)

By considering a primitive cell of the periodic problem Ωx and by using the Bloch theorem, we can compute the
associated Bloch eigenmodes (3) and the dispersion functions by searching the eigen solutions of the homogeneous
problem (8) and (9) as:

u(x) =

[

w(x)
V (x)

]

= un,k(x)e
ik.x (12)

with un,k(x) =

[

wn,k(x)
Vn,k(x)

]

, Ωx periodic functions. By introducing expression (12) in the piezo-elastidynamic

equations (8), (9), one can demonstrate that wn,k(x), Vn,k(x) and ωn(k) are solutions of the generalized eigen-
values problem:

ρω2
n(k)wn,k(x) +∇C∇sym(wn,k(x)) + ik {(C∇sym(wn,k(x))).Φ+∇(CΞn,k(x))} − k2(CΞn,k(x)).Φ

+∇eT∇Vn,k(x) + ik
{

(∇eTVn,k(x)).Φ+ (eT∇Vn,k(x)).Φ
}

− k2Vn,k(x)(e
TΦ).Φ = 0 ∀x ∈ Ωx(13)

−∇e∇sym(wn,k(x))− ik {∇(eΞn,k(x)) + (e∇sym(wn,k(x))).Φ} + k2(eΞn,k(x)).Φ

+∇εS∇Vn,k(x) + ik {(∇εSVn,k(x)).Φ+ (εS∇Vn,k)(x).Φ} − k2(εSΦVn,k(x)).Φ = 0 ∀x ∈ Ωx(14)

with the associated bounadry conditions :

⎧

⎪

⎪

⎨

⎪

⎪

⎩

wn,k(x−R.m) = wn,k(x) ∀x ∈ Sr m ∈ Z
2

Vn,k(x) = 0 ∀x ∈ Sb

Vn,k(x)V = −Z(iω)qon,k ∀x ∈ St

D.n = 0 ∀x ∈ Sl

where k = k

⎡

⎣

cos(φ)
sin(φ)

0

⎤

⎦ = kΦ where φ represent the direction angles into the reciprocal 2D lattice domain and

Ξn,k(x) =
1
2 (wn,k(x).Φ

T + Φ.wT
n,k(x)) the symmetric dyadic tensor or the dyadic product of the displacement

wn,k(x) and direction vector Φ. Sr are the interface of the cells continuum, and R the matrix grouping the two
lattice’s basis vectors (in 2D in the considered problem). In the electrical boundary conditions, qtn,k is given by :

qon,k =

∫

St

[−e(∇sym(wn,k(x)) + ik∇eΞn,k(x)) + εS(∇Vn,k(x) + ikVn,k(x)Φ].ndS (15)

where n is the outpointing unitary normal vector.
The proposed formulation is also based on the computation of the Floquet vectors (equation (13), (14)), instead
of computing the Floquet propagators commonly used for elastodynamic applications. Our approach allows to
obtain the full 2D waves dispersions functions and to clearly introduce damping and electrical impedance into
the piezo-elastodynamic operator. The adopted methodology allows the computation of the complete complex
map of the dispersion curves incorporating computation of evanescent waves and allowing the introduction of
damping and shunt operator if any.
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2.3 Weak Formulation and computation of waves dispersion functions in periodical
piezo-composite lattice

Let us consider the partial derivative equations (13), (14) on a unit cell Ω. It stands for a generalized eigenvalue
problem leading to compute the dispersion functions ωn(k) and the corresponding Floquet eigenvectors un,k(x).
For computing the 2D dispersions curves, we need to introduce a suitable weak formulation.
If un,k(x) is a solution of equations (13), (14), also ∀w̃n,k(x) ∈

{

H1(Ω,C
3)/w̃n,k(x−Rm) = w̃n,k(x) ∀x ∈ Sr

}

and Ṽn,k(x) ∈
{

H1(Ω,C)/Ṽn,k(x) = 0 ∀x ∈ Sb and Ṽn,k(x) = V o ∀x ∈ St

}

we have :

∫

Ω

ρω2
n(k)w̃n,k(x)wn,k(x)− (ε̃n,k(x)− ikΞ̃n,k(x))C(εn,k(x) + ikΞn,k(x))

+(ε̃n,k(x)− ikΞ̃n,k(x))e
T (∇Vn,k(x) + ikVn,k(x)Φ)− (∇Ṽn,k(x)− ikṼn,k(x)Φ)e(εn,k(x) + ikΞn,k(x))

+(∇Ṽn,k(x)− ikṼn,k(x)Φ)εS(∇Vn,k(x) + ikVn,k(x)Φ)dΩ−
Ṽ t
n,kV

t
n,k

Z(iω)
= 0(16)

This weak formulation is simply obtained by integrating equation (13), (14) projected onto any test function
ũn,k(x). The boundary integral vanishes as the test functions are chosen so that w̃n,k(x− Rm) = w̃n,k(x) on
Sr. For a polyhedron cell, each boundary is generally a polyhedral plane sub-domain that can be associated
with a parallel opposite one. The symmetry conditions called w̃n,k(x − Rm) = w̃n,k(x) explicitly link these
associated surfaces.

2.4 Numerical Computation of the Bloch’s waves

The numerical implementation is obtained by using a standard finite elements method to discretize the weak
formulation (16). The assembled matrix equation is given by:

(K(Z(iωn(λ, φ)) + λL(φ, Z(iωn(λ, φ))) − λ2H(φ, Z(iωn(λ, φ))) − ω2
n(λ, φ)M)un,k(φ) = 0, (17)

where λ = ik, M and K(Z(iωn(λ, φ))) are respectively the standard symmetric semi-definite mass and stiff-
ness matrices (the mass matrix is semi definite because elastostatic equation are condensed into the equation),
L(φ, Z(iωn(λ, φ))) is a skew-symmetric matrix and H(φ, Z(iωn(λ, φ))) is a symmetric semi-definite positive ma-
trix.

When k and φ are fixed and Z does not depend on ω the system (17) is a linear eigen value problem allowing
us to compute the dispersion functions ω2

n(k, φ) and the associated Bloch eigenvector un,k(φ).

This approach has been widely used for developing homogenization techniques and spectral asymptotic anal-
ysis like in the work of.27 It can also be applied for computing wave’s dispersion even if Floquet propagators is
preferred for 1D or quasi 1D computation, as indicated in.28–30 Nevertheless these approaches have been only
developed for undamped mechanical systems that is to say represented by a set of real matrices. In this case,
most of the previously published works present techniques based on the mesh of a real k-space (i.e k or λ and φ)
inside the first Brillouin zone for obtaining the corresponding frequency dispersion and the associated Floquet
vectors. For undamped system only propagative or evanescent waves exist corresponding to a family of eigen
solutions purely real or imaginary. Discrimination between each class of waves is easy. If a damped system is
considered (K,L,H are complex frequency dependent) or frequency dependence of the electrical shunt impedance
is considered, the obtained eigenvalue problem is not quadratic and a complex specific numerical methodology
has to be implemented. Furthermore, evanescent part of propagating waves appear as the imaginary part of
ω2
n(λ,Φ). It then becomes very difficult to distinguish the propagative and evanescent waves but also to compute

the corresponding physical wave’s movements by applying spatial deconvolution.

Another much more suitable possibility for computing damped system, dedicated for time/space deconvolu-
tion and for computation of diffusion properties as defined by,6, 30 is to consider the following generalized eigen
value problem:

(K(Z(ω)− ω2M + λn(ω, φ)L(φ, Z(ω)) − λ2
n(ω, φ)H(φ, Z(ω)))un(ω, φ) = 0. (18)
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In this problem, the pulsation ω is a real parameter corresponding to the harmonic frequency. Wave’s numbers
and Floquet vectors are then computed. An inverse Fourier transformation in the k-space domain can lead us
to evaluate the physical wave’s displacements and energy diffusion operator when the periodic distribution is
connected to another system as in.6 Another temporal inverse Fourier transformation can furnish a way to access
spatio-temporal response for non-homogeneous initial conditions. As L is skew-symmetric, the obtained eigen
values are quadruple (λ, λ̄,−λ,−λ̄) collapsing into real or imaginary pairs (or a single zero) when all matrices
are real (i.e. for an undamped system). In this case a real pair of eigen values correspond to evanescent modes
oriented in two opposite directions on the k-space and imaginary values to two traveling waves propagating in
opposite direction.

As previously mentioned, the real part of k = kΦ vector is restricted to stand inside the first Brillouin zone.
In the quadratic eigen value problem (18) nothing restricts computation to only find eigen values satisfying this
condition. For direction vector Φ orthogonal to the lattice facelets (i.e. for Φp1 = [1, 0]T and Φp2 = [0, 1]T

in bi-dimensional rectangular cell), the periodical conditions expressed for one dimensional wave guide are still
valid: if λj(ω,Φp) is an eigen value associated to wj(ω,Φp) then ∀m ∈ Z3, λ+ i.ΦT

p (G.m) is also an eigen value

associated to wj(ω,Φp)e
−i.ΦT

p (G.m)x. Thus, for undamped systems, all obtained eigenvalues are periodically
distributed in the k-space along its principal directions.

2.5 Computation of the group velocity and evanescence criterion

The main aim of this paper is to provide a numerical methodology for optimizing the piezoelectric shunt
impedance Z(ω) for controlling energy flow into the periodically distributed piezo-composite structure. For
doing this, we need to define a suitable criterion. The waves group velocities indicate how energy is transported
into the considered system and allow to distinguish the ’propagative’ and ’evanescent’ waves. If one Bloch eigen
solution (i.e un(ω, φ), kn(ω)) is considered, the associated group velocity vector31 is given by :

Cgn(ω, φ) = ∇kω =
〈〈S〉〉

〈〈etot〉〉
=

〈I〉

〈Etot〉
(19)

where 〈〈:〉〉 is the spatial and time average respectivelly on one cell and one period, S is the density of energy
flux defined in,31 I the mean intensity and etot, Etot the total piezomechanical energy and its time average on a
period (see31 for details). In this problem, we only consider mechanical energy transportation as the electrostatic
coupling is decentralized and can be condensed as a mechanical interface as proved in32 and generally computed
in.33 So we also compute the intensity vector I by :

〈In〉 = −
ω

2
Re(

∫

Ωx

C(εn(x, ω, φ) + ikΞn(x, ω, φ)).(w
∗

n(x, ω, φ))dΩ/Vol (20)

where .∗ is the complex conjugate and Vol the domain volume. As the spatio-temporal average of the system
Lagragian is null (see31), the total energy average is approximated by only computing the kinetic energy average:

〈Etot〉 =
1

2
(

∫

Ωx

ρω2wn(x, ω, φ).w
∗

n(x, ω, φ)dΩ/Vol (21)

The group velocity vectors Cgn(ω, φ) is computed for all wave numbers at each frequency. In order to focus our
analysis on only flexural modes (S and SH ones) we introduce an indicator allowing to select them by computing
the ratio of kinetic energy average on out of plane displacement as:

Ind(n, ω, φ) =
1
2 (
∫

Ωx
ρω2wzn(x, ω, φ)wz

∗

n(x, ω, φ)dΩ/Vol

〈Etot〉
(22)

with wzn(x, ω, φ) being the (Oz) component of vector wn(x, ω, φ).
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Piezoelectric Material

Symbol Value Property

sE11 = sE22 = s33E 11.6× 10−12 Pa−1 11, 22 and 33 compliance matrix coefficients
sE12 = sE13 = sE23 −3.33× 10−12 Pa−1 12, 13 and 23 compliance matrix coefficient
sE44 = sE55 = sE66 45.0× 10−11 Pa−1 44, 55 and 66 compliance matrix coefficients
η 0.1 % Hysteretic Damping ratio
d31 = d32 −6× 10−11 C/N 31 and 32 piezoelectric matrix coefficients
d33 15.2× 10−11 C/N 33 piezoelectric matrix coefficient
d24 = d15 730× 10−12 C/N 24 and 15 piezoelectric matrix coefficients
ρ 7600kg/m3 Density
εT11 = εT22 504.1 εo C/V/m Dielectric Permittivity
εT33 270 εo C/V/m Dielectric Permittivity

Table 1. Piezoelectric patch characteristics

3. OPTIMISATION OF THE FLEXURAL ENERGY FLOW INSIDE THE SHUNTED
PERIODIC PIEZO-COMPOSITE

The considered piezo-composite cell is presented in figure 1. The supporting plate material is standard aluminum
with 0.1 % of hysteretic damping ratio and the piezoelectric material characteristics is given in table 1.

The used methodology for optimizing the shunt impedance Z(iω) is based on the minimization of the maximal
group velocity collinear to the wave number vector (19) for waves having a ratio of transported flexural kinetic
energy (22) greater than 0.8. The used criterion can also be written as:

Crit(Z(iω), φ) = maxn/Ind(n,ω,φ)>0.8(Cgn(ω, φ).Φ) (23)

The used numerical optimization of the criteria is based on a multidimensional unconstrained nonlinear mini-
mization (Nelder-Mead).

3.1 Case 1 : Z(iω) ∈ C

In a first test, we optimize the criterion by considering any frequency dependent complex impedance. We
present in figure 2(a) and 2(b) the obtained real parts and imaginary parts of the wave number kxn(iω) along
(Ox) axis. The red circles mark the dispersions curves for Z = 0 and the blue crossed the optimal dispersion.
The corresponding group velocities along (Ox) are presented in figure 3 while the real and imaginary parts of
the optimal impedance are plotted in figure 4.

We immediately observe that the optimization of the shunt impedance leads to greatly modify the group
velocity of the Ao mode in the first part of the spectrum (i.e before the first bending band gap between 22
and 27 kHz). The bending waves also propagate energy with a lower velocity and can even been very low as
evanescent waves before 6 kHz. The corresponding real and imaginary parts of the dispersion curves are slightly
modified. We notice an increase of the imaginary values indicating an increase of the spatial decay rates. The
optimal impedance values are almost real, and correspond to those obtained if a constant negative capacitance is
used. The corresponding average value is −150.05 pC.V −1. Some imaginary parts of the optimal impedance are
negative which indicate that the optimization leads to provide energy to the system for controlling mechanical
damping effect introduced with hysteretic damping ratios into the model, and, also, obtain a fully conservative
system.

3.2 Case 2 : Z(iω) ∈ R

As the obtained negative impedance imaginary part does not appear realistic for physical implementation, the
second case considers optimization by considering frequency dependent real impedance. We present in figure
5(a) and 5(b) the obtained real parts and imaginary parts of the wave number kxn(iω) along (Ox) axis. The red
circles mark the dispersions curves for Z = 0 and the blue crossed the optimal dispersion. The corresponding
group velocities along (Ox) is presented in figure 6 while the real and imaginary parts of the optimal impedance
are plotted in figure 7.
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Figure 2. Real parts (a) and imaginary parts (b) of the wave number kxn(iω) along (Ox), the red circles mark values
obtained for Z = 0 and the blue crossed the optimal ones
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We immediately observe that the obtained results are globally similar to those provided by the complete
complex optimization presented before, even if the equivalent constant negative capacitance is now −149.88
pC.V −1. The numerical cost is lower and the optimization faster.

3.3 Validation on a periodically semi-distributed set of adaptive cells
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Clamped Boundary
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Figure 8. 3D piezocomposite periodic semi-distributed Cells

In order to study the translation of the wave properties obtained by optimizing the previously described
criterion on the dynamical response of a finite dimension system, we apply the optimal impedance on a finite
set of shunted piezo-composite cells semi-distributed onto a plate system as described in figure 8. The harmonic
response of this system is also computed at different frequency when optimal impedance is connected or not to
each patches. We plot in figure 9 the obtained results in term of kinetic energy density.

These numerical results clearly show up a strong influence of the modifications of the wave dispersion (i.e
on the group velocities) in the standing wave responses plotted in figure 9. We observe at 5 kHz an increase
in the dynamic response of the system when optimal shunt is connected. A large part of the system energy
remains in its left part where the applied forces is located. The semi-distributed interface also change the system
admittance and filter wave diffusion by increasing is reflexibility property. At 22 kHz, the energy diffusion is
clearly condensed into the left part of the system with a largely decreased amplitude compared to this obtained
with open circuit. The structural dynamical admittance has been decreased by connecting the shunt circuits.
Finally, at 60 kHz, the energy is concentrated on the right part of the system between the adaptive interface
and the clamped boundary condition. We observe something similar to a wave trap effect. The average value is,
one more time, largely decrease by using the shunt circuits.

4. CONCLUSIONS

This paper presents a numerical procedure able to compute the damped wave’s dispersion functions in the whole
first Brillouin domain of multi dimensionnal piezo-elastodynamical wave guides. The method was applied for
determining the optimal impedance allowing to minimize the group velocities of the flexural waves. Based on
this approach, some numerical test on a finite dimension system incorporating a semi-distributed set of shunted
piezo-composite cells has been performed. We underline a strong influence of the designed shunt circuits in
the dynamical response of the system. Even if the link between the obtained wave properties are not clearly
established, we also demonstrated that our developed numerical procedures can be used for optimizing the energy
diffusion operator of such adaptive mechanical interface. To do so, additional work has to be done for optimizing
the complete interface scattering and for controlling the evanescent waves playing an important role in the finite
system dynamical response.
The proposed methodology can also be used for studying particular dissipation phenomenon such as those induced

10



by complex shunted piezoelectric patches as proposed by8 and,34 or even foams or complex polymers behaviors.
The proposed method furnishes an efficient tool for future optimization of distributed smart cells as proposed in
the case of 1D wave guide by.6
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(a) 5 kHz

(b) 22 kHz

(c) 60 kHz

Figure 9. Kinetic Energy density for different source frequency ((a) 5 kHz, (b) 22 kHz, (c) 60 kHz). On the left with
optimal impedance connected to the piezo-patches and on the right with open circuit
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