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ABSTRACT 
NAND Flash has become the most popular stable storage medium 
for embedded systems. As on-board storage capacity increases, 
the need for efficient indexing techniques arises. Such techniques 
are very challenging to design due to a combination of NAND 
Flash constraints (for example the block-erase-before-page-
rewrite constraint and limited number of erase cycles) and 
embedded system constraints (for example tiny RAM and 
resource consumption predictability). Previous work adapted 
traditional indexing methods to cope with Flash constraints by 
deferring index updates using a log and batching them to decrease 
the number of rewrite operations in Flash memory. However, 
these methods were not designed with embedded system 
constraints in mind and do not address them. In this paper, we 
propose a new alternative for indexing Flash-resident data that 
specifically addresses the embedded context. This approach, 
called PBFilter, organizes the index structure in a purely 
sequential way. Key lookups are sped up thanks to two principles 
called Summarization and Partitioning. We instantiate these 
principles with data structures and algorithms based on Bloom 
Filters and show the effectiveness of this approach through a 
comprehensive performance study.   

1. INTRODUCTION 
Smart cards were equipped with kilobytes of EEPROM stable 
storage in the 90’s and megabytes of NAND Flash in the 00’s; 
mass-storage cards are coming soon that will link a 
microcontroller to gigabytes of NAND Flash memory [9]. All 
categories of smart objects (e.g., sensors, smart phones, cameras 
and mp4 players) benefit from the same storage capacity 
improvement thanks to high density NAND Flash. Smart objects 
are more versatile than ever and are now effective to manage 
medical, scholastic and other administrative folders, agendas, 
address books, photo galleries, transportation and purchase 
histories, etc. As storage capacity increases, the need for efficient 
indexing techniques arises. This motivates manufacturers of Flash 
modules and smart objects to integrate file management and even 
database techniques into their firmware.   
Designing efficient indexing techniques for smart objects is very 
challenging, however, due to conflicting hardware constraints and 
design objectives.  

On the one hand, although it is excellent in terms of shock 
resistance, density and read performance, NAND Flash exhibits 
specific hardware constraints. Read and write operations are done 
at a page granularity, as with traditional disks, but writes are more 
time and energy consuming than reads. In addition, a page cannot 
be rewritten without erasing the complete block containing it, 
which is a costly operation. Finally, a block wears out after about 
105 repeated write/erase cycles. As a result, updates are usually 
performed “out-of-place” entailing address translation and 
garbage collection overheads. The more RAM is devoted to 
buffering and caching and the lazier garbage collection is, the 
better the performance. 
On the other hand, smart object manufacturers are facing new 
constraints in terms of energy consumption (to increase device 
autonomy/lifetime), microcontroller size (to increase tamper-
resistance) and storage capacity (to save production costs on 
billion-scale markets)[2]. In this context, performance competes 
with energy, RAM and Flash memory consumption.  Co-design 
rules are therefore essential to help manufacturers calibrate the 
hardware resources of a platform and select the appropriate data-
management techniques to match the requirements of on-board 
data-centric applications.  
State of the art Flash-based storage and indexing methods were 
not designed with embedded constraints in mind and poorly adapt 
to this context. Database storage models dedicated to NAND 
Flash have been proposed in [11, 13] without specifically 
addressing the management of hot spot data in terms of updates, 
like indexes. Other work addressed this issue by adapting B+Tree-
like structures to NAND Flash [4, 16, 18]. While different in their 
implementation, these methods rely on a similar approach: 
delaying index updates using a log dedicated to the index, and 
batching them with a given frequency so as to group updates 
related to the same index node. We refer to these methods as 
batch methods. The benefit of batch methods is that they decrease 
write cost, which is considered the main problem with using Flash 
in the database context. However, all these methods maintain 
additional data structures in RAM to limit the negative impact of 
delayed updates on lookup cost. All these methods also perform 
“out-of-place” updates, reducing Flash memory usage and 
generating address translation and garbage collection overheads. 
Such indirect costs have proven high and unpredictable [16].   
Rather than adapting traditional index structures to Flash memory, 
we believe that indexing methods must be completely rethought if 
we are to meet the requirements of the embedded context, 
namely: 
– Low_RAM: accommodate as little RAM as possible 
– Low_Energy: consume as little energy as possible 
– Low_Storage: optimize the Flash memory usage 
– Adaptability: make resource consumption adaptable to the 
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performance requirements of on-board applications 
– Predictability: make performance and resource consumption 

fully predictable 
Low_RAM emphasizes the specific role played by RAM in the 
embedded context. Due to its poor density, and as it competes 
with other hardware resources on the same silicon die, RAM is 
usually calibrated to its bare minimum [2]. Hence, the less RAM 
an indexing method consumes, the wider the range of devices that 
can be targeted. Low_Energy is also critical but concerns only 
autonomous devices. The objective of Low_Storage is to 
minimize not only the amount of Flash memory occupied by the 
index structure, but also, and above all, of Flash memory wasted 
by the obsolete data produced by index updates and leading to 
overprovisioning Flash memory. Adaptability conveys the idea 
that optimal performance is not the ultimate goal; rather 
optimality is reached when no resource is unduly consumed to get 
better performance than that strictly required by on-board 
applications. In other words, Adaptability means that Low_RAM, 
Low_Energy and Low_Storage must be considered in light of the 
applications’ performance expectations. Finally, Predictability is a 
prerequisite to co-design. 
In this paper, we propose a Flash-based indexing method, called 
PBFilter, specifically designed to answer these requirements. 
PBFilter organizes the index structure in a purely sequential way 
to minimize the need for buffering and caching and to avoid the 
unpredictable side effects incurred by “out-of-place” updates. But 
how to look up a given key in a sequential list with acceptable 
performance? We answer this question using two principles. 
Summarization consists of building an index summary used at 
lookup time to quickly determine the region of interest in the 
index. This introduces an interesting source of tuning between the 
compression ratio of the summary and its accuracy. Partitioning 
consists of vertically splitting the index list and/or its summary in 
such a way that only a subset of partitions need to be scanned at 
lookup time. This introduces a second trade-off between lookup 
performance and RAM consumption. The key idea behind 
Summarization and Partitioning is speeding up lookups without 
hurting sequential writes in Flash memory.  
PBFilter gracefully accommodates files up to a few million tuples, 
a reasonable limit for embedded applications. PBFilter is 
optimized to support append-oriented files but deletion and 
updates can be supported without compromising the five 
requirements above. 
The paper is organized as follows. Section 2 reviews the main 
characteristics of NAND Flash, studies the related work and 
introduces the metrics of interest for this study. Section 3 details 
the PBFilter indexing scheme. Section 4 presents an instantiation 
of  the PBFilter scheme with partitioned Bloom Filter summaries. 
Section 5 presents a comprehensive performance study and 
Section 6 is the conclusion. 

2. PROBLEM STATEMENT 
2.1 NAND Flash Characteristics 
Embedded Flash devices come today in various form factors such 
as compact flash cards, secure digital cards, smart cards and USB 
tokens. They share several common characteristics. A typical 
NAND Flash array is divided into blocks, in turn divided into 
pages (32-64 pages per block), and divided again into sectors 
(usually 4 sectors per page). Read and write operations usually 

happen at page granularity, but can also apply at sector 
granularity if required. A page is typically 512-2,048 bytes. A 
page can only be rewritten after erasing the entire block 
containing it (usually called the block-erase-before-rewrite 
constraint). Page write cost is higher than read, both in terms of 
execution time and energy consumption, and the block erase 
requirement makes writes even more expensive. A block wears 
out after about 105 repeated write/erase cycles, requiring write 
load to be evenly spread out across the memory.  
These hardware constraints make update management complex, 
although this complexity is slightly mitigated by the 
decomposition of a page into sectors. Sectors can be written 
independently (albeit sequentially) in the same page, allowing one 
write per sector before the block must be erased. To avoid erasing 
blocks too frequently, “out-of-place” updates are usually 
performed by using a Flash Translation Layer (FTL) which 
combines: (1) a translation mechanism relocating the pages and 
making their address invariant through indirection tables and (2) a 
garbage collection mechanism that erases blocks, either lazily 
(waiting for all the pages of the block to become obsolete) or 
eagerly (moving the active pages still present in the block before 
erasing it).  
As extensively studied in [16], the execution time and energy 
consumption of read and write operations vary greatly among the 
Flash devices. The high discrepancies between the platforms are 
partly due to the raw chip characteristics and partly to the 
firmware managing the FTL which is usually proprietary and 
constitutes the primary source of performance unpredictability 
[16]. 

2.2 Related Work 
Some work [11, 13] has adopted the idea of log-structured file 
systems (LFS) [17] to design or improve database storage models 
dedicated to NAND Flash, without proposing new index methods. 
For example, the primary objective of IPL [13] is to hide Flash 
peculiarities from the upper layers of the DBMS. Updates in Flash 
are delayed using a log stored in each physical block and an 
accurate version of each page is rebuilt at load time. Updates are 
physically applied to a page when the corresponding log region 
becomes full. While elegant, this general method is not well 
suited to managing hot spot data in terms of updates, like indexes, 
because of frequent log overflows.  
Other work has specifically considered the indexing problem in 
NAND Flash. Hash-based and tree-based index families can be 
distinguished. So far, little attention has been paid to hash-based 
methods in Flash. This is probably because hashing only performs 
well when a large number of buckets can be used and when the 
RAM can accommodate one buffer per bucket, which is a rare 
situation in the targeted context. One exception is Microhash 
designed to speed up lookups in sensor devices [22]. However, 
this method is not general and only applies to sensed data varying 
within a small range (e.g., temperature). 
Within the tree-based family, one work has also considered 
indexing sensed data [14]. This work proposes a tiny index called 
TINX based on a specific unbalanced binary tree. The 
performance demonstrated by the authors (e.g., 2,500 page reads 
to retrieve one record from 0.6 million records) disqualifies this 
method for large files. To the best of our knowledge, all other 
papers suggest adaptations of the well-known B+Tree structure. 
Regular B+Tree techniques built on top of FTL have been shown 
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to be poorly adapted to the characteristics of Flash memory [18]. 
Indeed, each time a new record is inserted into a file, its key must 
be added to a B+Tree leaf node, causing an out-of-place update of 
the corresponding Flash page. To avoid such updates, BFTL [18] 
constructs an “index unit” for each inserted primary key and 
organizes the index units as a kind of log. A large buffer is 
allocated in RAM to group the various insertions related to the 
same B+Tree node in the same log page. To maintain the logical 
view of the B+Tree, a node translation table built in RAM keeps, 
for each B+Tree node, the list of log pages which contain index 
units belonging to this node. In order to limit the size of these lists 
and therefore RAM consumption as well as lookup cost, each list 
is compacted when a certain threshold (e.g., 5 log pages in the 
list) is reached. At this time, logged updates are batched to refresh 
the physical image of the corresponding B+Tree node. 
FlashDB [16] combines the best of Regular B+Tree and BFTL 
using a self-tuning principle linked to the query workload. JFFS3 
proposes a slightly different way of optimizing B+Tree usage [4]. 
Key insertions are logged in a journal and are applied in the 
B+Tree in a batch mode. A journal index is maintained in RAM 
(recovered at boot time) so that a key lookup applies first to the 
journal index and then to the B+Tree. 
In short, all B+Tree-based methods rely on the same principle: (1) 
delay index updates using a log and batch them with the purpose 
of grouping updates related to the same index node; (2) build a 
RAM index at boot time to speed up lookup of a key in the log; 
(3) commit log updates with a given commit frequency (CF) in 
order to limit log size. The differences between batch methods 
mainly include the way index nodes and log are materialized, 
which affect the way CF is managed. 
In their attempt to decrease the number of writes, batch methods 
are in line with the Low_Energy requirement introduced in 
Section 1. By allowing trading reads, RAM and Flash memory 
usage for writes using CF, they also provide an answer to 
Adaptability. However, all batch methods fail in satisfying 
Low_RAM. Indeed, the higher the CF, the greater the RAM 
consumption. However, the primary objective of batch methods is 
to decrease the number of writes in Flash memory, leading to a 
higher CF. Section 5 will demonstrate that good write 
performance for batch methods requires RAM consumption 
incompatible with most embedded environments (in any case, not 
the objective they claim). Regarding Predictability, even if the 
number of writes is reduced, writes still generate out-of-place 
updates in Flash memory. This results in an indirect and 
unpredictable garbage collection cost linked to the strategy 
implemented in the underlying FTL [16]. Flash memory usage is 
also difficult to predict because it depends on the distribution of 
obsolete data in the pages occupied by the index.   

2.3 Metrics of Interest 
In light of the preceding discussion, more complete and accurate 
metrics appear necessary to help in assessing the adequacy of an 
indexing method for the embedded context. To this end, we 
propose the following metrics to capture the five requirements 
introduced in Section 1: 
– RAM consumption: as already stated, RAM consumption is of 

utmost importance in the embedded context, since several 
devices (e.g., smart cards, sensors and smart tokens) are 
equipped with RAM measured in kilobytes [2]. This metric, 

denoted hereinafter RAM, comprises the buffers to read from 
and write to the Flash memory as well as the main memory 
data structures required by the indexing method. 

– Read/write cost: this metric distinguishes between read cost R 
of executing a lookup and read cost IR and write cost W for 
inserting keys into the index. Depending on the objective, the 
metric can be execution time (wrt Adaptability) or energy 
consumption (wrt Low_Energy). To address both concerns, R, 
IR and W will be expressed in terms of number of operations. 
Note that this metric does not directly capture the 
Adaptability requirement, but rather tells whether the 
performance expected by on-board applications can be 
achieved. 

– Flash memory usage:  the objective is to capture the Flash 
memory usage, both in terms of space occupancy and effort to 
reclaim obsolete data. We distinguish between two values: VP 
is the total number of valid pages occupied by the index (i.e., 
pages containing at least one valid item); OP is the total 
number of pages containing only obsolete data and which can 
be reclaimed without copying data. Comparing these two 
values with the raw size of the index (total size of the valid 
items only) gives an indication of the quality of the Flash 
memory usage and the effort to reclaim stale space, 
independent of any FTL implementation. 

– Predictability: as claimed in the introduction, performance and 
resource consumption predictability is a prerequisite for co-
design. Predictability is mandatory in calibrating the RAM 
and Flash memory resources of a new hardware platform to 
the performance requirements of the targeted on-board 
applications. Another objective is to predict the limit (i.e., in 
terms of file size or response time) of an on-board application 
on existing hardware platforms. Finally, predictability is also 
required to build accurate query optimizers. To avoid making 
this metric fuzzy by reducing it to a single number, we 
express it qualitatively using two dimensions: (1) whether the 
indexing method is dependent on an underlying FTL or can 
bypass it, (2) whether the values measured for RAM, 
read/write cost and Flash memory usage can be accurately 
bounded independent of their absolute value and of the 
uncertainty introduced by the FTL, if any. 

This paper aims to define a Flash-based indexing method that 
behaves satisfactorily in all of these metrics at once. 

3. PBFILTER INDEXING SCHEME 
As an alternative to the batch indexing methods, PBFilter 
performs index updates eagerly and makes this acceptable by 
organizing the complete database as a set of sequential data 
structures, as presented in Figure 1. The primary objective is to 
transform database updates into append operations so that writes 
are always produced sequentially, an optimal scenario for NAND 
Flash and buffering in RAM.  
The database updating process is as follows. When a new record 
is inserted, it is added at the end of the record area (RA). Then, a 
new index entry composed by a couple <key, pt> is added at the 
end of the key area (KA), where key is the primary key of the 
inserted record and pt is the record physical address1. If a record 
                                                                 
1 Like all state of the art methods mentioned in Section 2, we 

concentrate the study on primary keys. The management of 
secondary keys is discussed in [21]. 
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is deleted, its identifier (or its address) is inserted at the end of the 
delete area (DA) but no update is performed in RA nor KA. A 
record modification is implemented by a deletion (of the old 
record) followed by an insertion (of the new record value). To 
search for a record by its key, the lookup operation first scans 
KA, retrieves the required index entry if it exists, check that pt 
∉DA and gets the record in RA. Assuming a buffering policy 
allocating one buffer in RAM per sequential data structure, this 
updating process never rewrites pages in Flash memory.  
The benefits and drawbacks provided by this simple database 
organization are obvious with respect to the metrics introduced in 
Section 2. RAM: a single RAM buffer of one page is required per 
sequential structure (RA, KA and DA). The buffer size can even 
be reduced to a Flash sector in highly constrained environments. 
Read/write cost: a lower bound is reached in terms of reads/writes 
at insertion time (IR and W) since: (1) the minimum of 
information is actually written in Flash memory (the records to be 
inserted and their related index entries and no more), (2) new 
entries are inserted at the index tail without requiring any extra 
read to traverse the index. On the other hand, the lookup cost is 
dramatically high since R = (⎟KA⎟/2 + ⎟DA⎟ + 1) on the average, 
where ⎟ ⎟ denotes the page cardinality of a structure. Flash 
memory usage: besides DA, a lower bound is reached in terms of 
Flash usage, again because the information written is minimal and 
never updated. Hence, the number VP of valid pages containing 
the index equals the raw size of this index and the number OP of 
obsolete pages is null. Hence, the garbage collection cost is saved. 
Predictability: since data never moves and is never reclaimed, 
PBFilter can bypass the FTL address translation layer and garbage 
collection mechanism. RAM and Flash memory consumption is 
accurately bounded as discussed above. However, performance 
predictability is not totally achieved since the uncertainty on R is 
up to (⎟KA⎟ - 1). 
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. . .
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. . .
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Figure 1. Database organization 

The objective is now to decrease the lookup cost R to an 
acceptable value with a minimal degradation of the benefits listed 
above. Summarization and Partitioning are two principles 
introduced to reach this goal. 
Summarization refers to any method which can condense 
sequentially the information present in KA. Let us consider an 
algorithm that condenses each KA page into a summary record. 
Summary records can be sequentially inserted into a new structure 
called SKA through a new RAM buffer of one page (or sector) 
size. Then, lookups do a first sequential scan of SKA and a KA 
page is accessed for every match in SKA in order to retrieve the 
requested key, if it exists. Summarization introduces an 
interesting trade-off between the compression factor c 
(c=⎟KA⎟/⎟SKA⎟) and the fuzziness factor f (i.e., probability of 
false positives) of the summary, the former decreasing the I/O 
required to traverse SKA and the latter decreasing the I/O 

required to access KA. The net effect of summarization is 
reducing R to (⎟KA⎟/2c + f⎟⎟KA⎟⎟/2) on the average, where ⎟⎟ ⎟⎟ 
denotes the element cardinality of a structure. The positive impact 
on R can be very high for favorable values of c and f. The 
negative impact on the RAM consumption is limited to a single 
new buffer in RAM. The negative impact on the write cost and 
Flash memory usage is linear with ⎟SKA⎟ and then depends on c. 
Different algorithms can be considered as candidate “condensers”, 
with the objective to reach the higher c with the lower f, if only 
they respect the following property: summaries must allow 
membership tests with no false negatives. 
The idea behind Partitioning is to vertically split a sequential 
structure into p partitions so that only a subset of partitions has to 
be scanned at lookup time. Partitioning can apply to KA, meaning 
that the encoding of keys is organized in such a way that lookups 
do not need to consider the complete key value to evaluate a 
predicate. Partitioning can also apply to SKA if the encoding of 
summaries is such that the membership test can be done without 
considering the complete summary value. The larger p, the higher 
the partitioning benefit and the better the impact on the read cost 
and on Predictability. On the other hand, the larger p, the higher 
the RAM consumption (p buffers) or the higher the number of 
writes into the partitions (less than p buffers) with the bad 
consequence of reintroducing page moves and garbage collection. 
Again, different partitioning strategies can be considered with the 
following requirement: to increase the number of partitions with 
neither significant increase of RAM consumption nor need for 
garbage collection.   

4. PBFILTER INSTANTIATION 
4.1 Bloom Filter Summaries 
The Bloom Filter data structure has been designed for 
representing a set of elements in a compact way while allowing 
membership queries with a low rate of false positives and no false 
negative [5]. Hence, it presents all the characteristics required for 
a condenser.  
A Bloom filter represents a set A={a1, a2, … an} of n elements by 
a vector v of m bits, initially all set to 0. The Bloom filter uses k 
independent hash functions, h1, h2, … hk, each producing an 
integer in the range [1,m]. For each element ai∈A, the bits at 
positions h1(ai), h2(ai), ..., hk(ai) in v are set to 1. Given a query for 
element aj, all bits at positions h1(aj), h2(aj), ..., hk(aj) are checked. 
If any of them is 0, then aj cannot be in A. Otherwise we 
conjecture that aj is in A although there is a certain probability 
that we are wrong. The parameters k and m can be tuned to make 
the probability of false positives extremely low [8]. 

Table 1. False positive rate under various m/n and k 
m/n   k=3 k=4 k=5 k=6 k=7 k=8 
8 .0306 .024 .0217 .0216 .0229  
12 .0108 .0065 .0046 .0037 .0033 .0031 
16 .005 .0024 .0014 .0009 .0007 .0006 

This probability, called the false positive rate and denoted by f in 
the sequel, can be calculated easily assuming the k hash functions 
are random and independent. After all the elements of A are 
hashed into the Bloom filter, the probability that a specific bit is 
still 0 is ( ) mknkn em //11 −≈− . The probability of a false positive is 

then ( )( ) ( )kmknkkn em /1/111 −−≈−− = ( )kp−1 for p= mkne /− . The salient 
feature of Bloom filters is that three performance metrics can be 
traded off against one another: computation time (linked to the 
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number k), space occupancy (linked to the number m), and false 
positive rate f. Table 1 illustrates these trade-offs for some values 
of k and m. This table shows that a small increase of m may allow 
a dramatic benefit for f if the optimal value of k is selected. We 
consider that k is not a limiting factor in our context, since 
methods exist to obtain k hash values by calling only three times 
the hash function, while giving the same accuracy as by 
computing k independent hash functions [7].  

Bloom filters can be used as a condenser algorithm in PBFilter as 
follows. For each KA page, a Bloom filter summary is built by 
applying k hash functions to each index key present in that page. 
This computation is performed when the KA page is full, just 
before the RAM buffer containing it is flushed to the Flash 
memory. The computed Bloom filter summary is stored in the 
RAM buffer allocated to SKA. In turn, the SKA buffer is flushed 
to the Flash memory when full. At lookup time, the searched key 
ai is hashed with the k hash functions. Then, SKA is scanned to 
get the first Bloom filter summary having all bits at positions 
h1(ai), h2(ai), ..., hk(ai) set to 1. The corresponding page of KA is 
directly accessed and the probability that it contains the expected 
index entry (ai,pt) is (1-f). Otherwise, the scan continues in SKA. 
The last step is to check that pt ∉DA before accessing the record 
in RA.   

4.2 Dynamic Partitioning 
Despite the benefits of summarization, the lookup performance 
remains linked to the size of SKA (on the average, half of SKA 
needs to be scanned). The lookup performance can be improved 
by applying the partitioning principle suggested in section 3. Each 
Bloom filter is vertically split into p partitions (with p ≤ m), so 
that the bits in the range [1 .. m/p] belong to the first partition, the 
bits in the range [((i-1)*m/p + 1) .. (i*m/p)] belong to the ith 
partition, etc. When the SKA buffer is full, it is flushed into p 
Flash pages, one per partition. By doing so, each partition is 
physically stored in a separate set of Flash pages. When doing a 
lookup for key ai, instead of reading all pages of SKA, we need to 
get only the SKA pages corresponding to the partitions containing 
the bits at positions h1(ai), h2(ai), ..., hk(ai). The benefit is a cost 
reduction of the lookup by a factor p/k. The larger p, the higher 
the partitioning benefit for lookups but also the greater the RAM 
consumption (p more buffers) or the greater the number of writes 
(because page fragments have to be flushed in the partitions in 
Flash memory instead of full pages) and then the need for garbage 
collection (because of multiple writes in the same page of Flash). 
We propose below a partitioning mechanism which exhibits the 
nice property of supporting a dynamic increase of p with no 
impact on the RAM consumption and no need for a real garbage 
collection (as discussed at the end of the section, obsolete data is 
naturally grouped in the same blocks which can be erased as a 
whole at low cost). This dynamic partitioning mechanism comes 
at the price of introducing a few reads and extra writes at insertion 
time. The proposed mechanism relies on: (1) the usage of a fixed 
amount of Flash memory as a persistent buffer to organize a 
stepwise increase of p and (2) the fact that a Flash page is divided 
into s sectors (usually s=4) which can be written independently. 
The former point gives the opportunity to reclaim the Flash buffer 
at each step in its integrality (i.e., without garbage collection). 
The latter point allows s writes into the same Flash page before 
requiring copying the page elsewhere. 
Figure 2 illustrates the proposed partitioning mechanism. The size 
of the SKA buffer in RAM is set to the size of a Flash page and 

the buffer is logically split into s sectors. The number of initial 
partitions, denoted next by L1 partitions, is set to s and one page 
of Flash is initially allocated to each L1 partition. The first time 
the SKA buffer in RAM becomes full (step 1), each sector si (with 
1≤i≤s) of this buffer is flushed in the first sector of the page 
allocated to the ith L1 partition. The second flush of the SKA 
buffer will fill in the second sector of these same pages and so 
forth until the first page of each L1 partition becomes full (i.e., 
after s flushes of the SKA buffer). A second Flash page is then 
allocated to each L1 partition and the same process is repeated 
until each partition contains s pages (i.e., after s2 flushes of the 
SKA buffer). Each L1 partition contains 1/s part of all Bloom 
filters (e.g., the ith L1 partition contains the bits in the range [((i-
1)*m/s + 1) .. (i*m/s)]).  
At this time (step 2), the s L1 partitions of s pages each are 
reorganized (read back and rewritten) to form s2 L2 partitions of 
one page each. Then, each L2 partition contains 1/ s2 part of all 
Bloom filters. As illustrated in Figure 2, each L2 partition is 
formed by projecting the bits of the L1 partition it stemmed from 
on the requested range, s times finer (e.g., the ith L2 partition 
contains the bits in the range [((i-1)*m/s2 + 1) .. (i*m/s2)]). 
After another s2 SKA buffer flushes (step 3), s new L1 partitions 
have been built again and are reorganized with the s2 L2 partitions 
to form (s2+s2) L3 partitions of one page each and so forth. The 
limit is p=m after which there is no benefit to partition further 
since each bit of bloom filter is in a separate partition. After this 
limit, the size of partitions grows but the number of partitions 
remains constant (i.e., equal to m). 
In the example presented in Figure 2, where s=4, the number of 
partitions grows in an approximately linear way (4, 16, 32…)2. 
Assuming for illustration purpose Flash pages of 2KB, bloom 
filters of size m=2048 bits in SKA and <key,pt> of size 8 bytes in 
KA, each page of L3 partitions gathers 1/32 part of 256 bloom 
filters summarizing themselves 65536 keys. Scanning one 
complete partition in SKA costs reading the corresponding page 
in L3 plus 1 to s pages in L1. 
More precisely, the benefit of partitioning dynamically SKA is as 
follows. A lookup needs to consider only k Li partitions of one 
page each (assuming the limit p=m has not been reached and Li 
partitions are the last produced) plus min (k ,s) L1 partitions, the 
size of which vary from 1 to s pages. This leads to an average cost 
of (k + min (k, s) * s/2). This cost is both low and independent of 
the file size while p≤m.  
The RAM consumption remains unchanged, the size of the SKA 
buffer being one page (note that extending it to s pages would 
save the first iteration). The impact on IR and W (Read and write 
cost at insertion time) is an extra cost of about ⎡ ⎤∑i

i s 2log *2 2  

reads and writes (see the cost model for details). This extra cost 
may be considered important but is strongly mitigated by the fact 
that it applies to SKA where each page condenses Bp/d records, 
where Bp is the size of a Flash page in bits (Bp /d is likely to be 
                                                                 
2 In practice, it does not grow exactly linearly because the bloom 

filter cannot be equally divided into an arbitrary number of 
partitions. For the same reason, the bloom filter size is always a 
power of 2, so one bloom filter may summarize more than 1 
(less than 2) KA pages. The impact of these implementation 
details have been taken into account in the cost model in 
Section 5, and the extra cost has proven low. 
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greater than 1000). Section 5 will show that this extra cost is 
actually low compared to existing indexing techniques. Section 5 
will also show the low impact of partitioning on the Flash usage 
for the same reason, that is the high compression ratio obtained by 
Bloom filters making SKA small with respect to KA. 
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Figure 2. Dynamic partitioning 

At the end of each step i, and after Li partitions have been built, 
the Flash buffer hosting L1 partitions and the pages occupied by 
Li-1 partitions can be reclaimed. Reclaiming a set of obsolete 
pages stored in the same block is far more efficient than collecting 
garbage crumbs spread over different pages in different blocks. 
The distinction between garbage reclamation and garbage 
collection is actually important. Garbage collection means that 

active pages present in a block elected for erasure must be moved 
first to another block. In addition, if at least one item is active in a 
page, the complete page remains active. In methods like BFTL, 
active index units can be spread over a large number of pages in 
an uncontrolled manner. This generates a worst situation where 
many pages remain active while they contain few active index 
units and these pages must be often moved by the garbage 
collector. PBFilter never generates such situations. The size of the 
Flash buffer and of the Li partitions is a multiple of s2 pages and 
these pages are always reclaimed together. Blocks are simply split 
in areas of s2 pages and a block is erased when all its areas are 
obsolete. 

4.3 Hash then Partition 
As stated above, the benefit of partitioning is a cost reduction of 
the lookup by a factor p/k. The question is whether this factor can 
still be improved. When doing a lookup for key ai in the current 
solution, the probability that positions h1(ai), h2(ai), ..., hk(ai) fall 
into a number of partitions less than k is low, explaining the rough 
estimate of the cost reduction by the factor p/k. This situation 
could be improved by adding a hashing step before building the 
Bloom filters. Each Bloom filter is split into q buckets by a hash 
function h0 independent of h1, h2, ..., hk,. Each time a new key is 
inserted in KA, h0 is applied first to determine the right bucket, 
then h1, h2, ..., hk are computed to set the corresponding bits in the 
selected bucket. This process is similar as building q small Bloom 
filters for each KA page. The experiments we conducted led to the 
conclusion that q must remain low to avoid any negative impact 
on the false positive rate. Thus, we select q=s (with s usually 
equals to 4). The benefit of this initial hashing is guaranteeing that 
the k bits of interest for a lookup always fall into the same L1 
partition, leading to an average cost of (k + s/2) for scanning 
SKA. 

4.4 An Illustration of Hashed PBFilter 
Now let us illustrate the key insertion and lookup processes of 
hashed PBFilter through an example (Figure 3). As pointed above, 
we set q=s=4 and m=2048, while supposing the size of <key, pt> 
is 8 bytes and the size of a page is 2048 bytes. To simplify the 
calculation, we use only 3 hash functions to build the bloom 
filters, denoted by h1(key), h2(key) and h3(key). The hash function 
used in the pre-hashing step is denoted by h0(key). 
When the first key key1 is inserted, the hash bucket number is 
determined first by using h0, and then h1, h2 and h3 are computed.  
Suppose that: h0(key1) = 0, h1(key1) = 1, h2(key1) = 201, and 
h3(key1) = 301. Accordingly, the 1st, 201st and 301st bits in bucket 
0 (the first 512 bits) of the first bloom filter bloom1 are set to 1 
(Status 1 in Figure 3).  
After inserting 2048 keys, the SKA buffer is full with 8 bloom 
filters (each bloom filter summarizes one KA page which contains 
256 <key, pt> entries), so the bloom filters are partitioned and 
flushed into the L1 partitions: the first 512 bits (bucket 0) of each 
bloom filter are written into the first sector of page P01, the second 
512 bits (bucket 1) of each bloom filter are written into the first 
sector of page P11, and so on (Status 2).  
After inserting 32768 keys, the L1 partition pages are full, so the 
bloom filters are repartitioned into smaller pieces forming L2: the 
first 128 bits of all 128 bloom filters are written into the first L2 
partition P1, the second 128 bits of all 128 bloom filters are 
written into the second L2 partition P2, and so forth (Status 3). 
After inserting 65536 keys, the new L1 partitions are full again, 
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so the bloom filters are repartitioned once more into ever smaller 
pieces forming L3: the first 64 bits of all 256 bloom filters (128 
from the L2 partitions and 128 from the L1 partitions) are written 
into the first L3 partition P1’, the second 64 bits of all 256 bloom 
filters are written into the second L3 partition P2’, and so forth 
(Status 4). 
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Figure 3. Storage status changing of a bloom filter 

Now the bloom filters have been partitioned three times and have 
produced 32 L3 partitions each containing 64 bits of each bloom 
filter. Note that each of the L3 partitions still belongs to a single 
hash bucket set by h0: the first 8 pages belong to bucket 0, the 
second 8 pages belong to bucket 1, and so on. 
At this time, the process for looking up key1 is as follows. First, 
compute the hash functions to locate the required bit positions: 
h0(key1) = 0, h1(key1) = 1, h2(key1) = 201, and h3(key1) = 301, 
which means that, the 1st, 201st, and 301st bit positions of bucket 0 
should be checked. In the L3 partitions, the three bit positions are 
stored in P1’, P4’ and P5’ respectively, so only these pages have 
to be loaded into RAM. In this case, key1 will be found by only 
checking these pages. In other cases, if the searched key is not 
found in the L3 partitions, the current L1 partitions must be 
checked also: instead of scanning all the L1 partitions, only the 
pages in the corresponding bucket need to be checked (at most s 
pages), for example, if h0(key) = 1, only P11, P12, P13 and P14 are 
scanned if they are not empty. 

4.5 Deletes and Updates 
PBFilter has been preliminary designed to tackle applications 
where insertions are more frequent and critical than deletes or 
updates. This characteristic is common in the embedded context. 
For instance, deletes and updates are proscribed in medical folders 
and many other administrative folders for legal reasons. Random 
deletes and updates are also meaningless in several applications 
dealing with historical personal data, audit data or sensed data. 
Note that cleaning history to save local space differs from 
deleting/updating randomly elements. While the latter impose to 
deal with a large DA area, the former can be easily supported. 
Indeed, cleaning history generates bulk and sequential deletes of 
old data. A simple low watermark mechanism can isolate the data 
related in RA, KA and SKA to be reclaimed together.  

Let us now consider a large number of random deletes and 
updates enlarging DA and thereby decreasing the lookup 
performance. The solution to tackle this situation is to index DA 
itself using the same strategy, that is building bloom filters on the 
content of DA pages and partitioning them. The lookup cost being 
non linear with the file size, there is a great benefit to keep a 
single DA area for the complete database rather than one per file. 
This will bound the extra consumption of RAM to s more buffers 
for the whole architecture. The extra cost in Flash memory is 
again strongly limited by the high compression ratio of bloom 
filters. As section 5 will show, the lookup cost is kept low, though 
roughly multiplied by a factor 2 with high update/delete rate. 

5. PERFORMANCE EVALUATION 
The first objective of this section is to study how traditional 
B+Tree, batch methods and PBFilter perform in the embedded 
context. To allow a fair comparison between the approaches and 
isolate the FTL cost indirectly paid by batch methods and B+Tree, 
we introduce a precise analytical cost model. The results are more 
easily interpretable than real measurements performed on an 
opaque firmware. These results show that, while B+Tree and 
batch methods can slightly outperform PBFilter in some situations, 
PBFilter is the sole method to meet all requirements of an 
embedded context. Then, this section discusses how PBFilter can 
be tuned in a co-design perspective. Finally, preliminary 
performance measurements conducted on a specific hardware 
platform are given for illustrative purpose. 

5.1 Analytical Performance Comparison 
5.1.1 Indexing Methods under Test 
As stated above, the objective is not to perform an exhaustive 
comparison of all Flash-based indexing methods, considering that 
only PBFilter has been specifically designed to cope with 
embedded constraints. The comparison will then concentrate on 
opposite approaches (traditional, batch, Summarization & 
Partitioning), rather than focusing on variations. Regular B+Tree 
running on top of FTL, denoted by BTree hereafter, is considered 
as a good representative of traditional disk-based indexing 
methods running on Flash memory with no adaptation. BFTL [18] 
is selected as a good, and probably best known, representative of 
batch methods. To better understand the impact of (not) bounding 
the log size in batch methods, we consider two variations of 
BFTL: BFTL1 with no compaction of the node translation table 
and BFTL2 with the periodic compaction of the node translation 
table suggested in [18]. The Bloom filter instantiation of PBFilter, 
denoted by PBF hereafter, is so far the unique representative of 
Summarization & Partitioning methods. 
The performance metrics used to compare these methods are those 
introduced in Section 2.3, namely: RAM (RAM consumption in 
KB), R (average number of page reads to lookup a key), IR (total 
number of page reads to insert N records), W (total number of 
page writes to insert N records), VP (total number of valid Flash 
pages) and OP (total number of obsolete Flash pages). 

5.1.2 Parameters and Formulas 
The parameters and constants used in the analytical model are 
listed in Table 2 and Table 3, respectively. 
Table 4 contains basic formulas used in the cost model and the 
cost model itself is presented in Table 5. To make the formulas as 
precise as possible, we use Yao’s Formula [20] when necessary. 
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- Yao’s Formula: Given n records grouped into m blocks 
(1<m≤n), each contains n/m records. If k records (k≤n-n/m) 
are randomly selected, the expected number of blocks hit is:  
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Table 2. Parameters for the analytical model 
Param Signification 
N Total number of inserted records 
Sk Size of the primary key (in bytes) 
B Number of buffer pages in RAM 
C Maximum size of a node translation table list in BFTL2 
d Value of m/n in Bloom filter (see Table 1 for examples) 
k Number of hash functions used by Bloom filter 

Table 3. Constants for the analytical model 
Constants Signification 
Sr=4 (bytes) Size of a physical pointer 
fb=0.69 Average fill factor of B+Tree [19] 
 
β=2 

Expansion factor of flash storage  
caused by the buffering policy in BFTL [18] 

Sp=2048(bytes) Size of a Flash page 

5.1.3 Performance Comparison 
We first compare the four methods under test on each metric with 
the following parameter setting: N=1 million records, Sk=12, C=5 
for BFTL2 (a medium value wrt [18]), and B=7, d=16, k=7 for 
PBF (which correspond also to medium values). The results are 
shown in Figures 4(a) to 4(e).  
BTree exhibits an excellent lookup performance and consumes 
little RAM but the price to pay is an extremely high write cost and 
consequently a very high number of obsolete pages produced 
(OP). Hence, either the Flash memory usage will be very poor or 
the garbage collection cost very high. Considering that writes are 
more time and energy consuming than reads, BTree adapt poorly 
Flash storage whatever the environment (embedded or not) 3. 
BFTL has been primarily designed to decrease the write cost 
incurred by BTree and Figures 4(c) and 4(e) show the benefit. 
BFTL1 exhibits the highest benefit in terms of writes and Flash 
memory usage. However, it incurs an unacceptable lookup cost 
and RAM consumption given that the node translation lists are not 
bounded. The IR cost is also very high since each insertion incurs 
a traversal of the tree. By bounding the size of the node 
translation lists, BFTL2 exhibits a much better behaviour for 
metrics R, IR and RAM (though RAM remains high wrt 
embedded constraints) at the expense of a higher number of writes 
(to refresh the index nodes) and a higher Flash memory 
consumption (BFTL mixing valid and obsolete data in the same 
Flash pages). To better capture the influence of the log size in 
batch methods, we vary parameter C in Figure 4(f), keeping the 
preceding values for the other parameters, and study the influence 
on metrics W, VP and OP. As expected, W and OP (which equals 
to W) decrease as C increases since the tree reorganizations 
                                                                 
3 The same conclusion can be drawn for other traditional indexing 

techniques applied to Flash with no adaptation. E.g., for 
hashing, either the number of buckets is kept very small so that 
a RAM buffer can be allocated to each and R is very bad 
(because of the bucket size) or the number of buckets is very 
high and RAM is very high too. 

become less frequent (VP stays equal to 0), up to reach  the same 
values as BFTL1 (equivalent to an infinite C). Conversely, R and 
RAM grows linearly with C (e.g., R=105 and RAM=2728 when 
C=30, as shown by formula in Table 5). Trading R and RAM for 
W and OP is common to all batch methods  but there is no trade-
off which exhibits acceptable values for RAM, W and OP 
altogether to meet embedded constraints (Low_RAM, 
Low_Energy, Low_Storage). Even FlashDB [16] which 
dynamically takes the best of BTree and BFTL according to the 
query workload cannot solve the equation. 
Though slightly less efficient for lookups than BTree and even 
BFTL2 when the update/delete rate is high (figure 4(a) shows that 
metric R for PBF ranges from 10 without update up to 22 with 
100% updates)4, PBF is proved to be the sole indexing method to 
meet all embedded constraints at once. In this setting, PBF 
exhibits excellent behaviour in terms of IR, W, VP and OP while 
the RAM consumption is kept very low. Note that if the RAM 
constraint is extremely high, the granularity of the buffer could be 
one sector, as explained in Section 3 and 4.2, leading to a total 
RAM consumption of 3.5KB5. 
The point is to see whether the same conclusion can be drawn in 
other settings, and primarily for larger files where sequential 
methods like PBF are likely to face new difficulties. Figures 4(g) 
to 4(i) analyse the scalability of BFTL and PBF on R, W and 
RAM varying N from 1 million up to 7 million records, keeping 
the initial values for the other parameters (Figures 4(g) and 4(i) 
use a logarithmic scale for readability). BTree is not further 
considered considering its dramatically bad behaviour in terms of 
W and OP.  
BFTL2 scales better than PBF in terms of R and even outperforms 
PBF for N greater than 2.5 million records (though R performance 
of PBF remains acceptable). However, BFTL2 scales very badly 
in terms of W. BFTL1 scales much better in terms of W but 
exhibits unacceptable performance for R and RAM. 
Unfortunately, PBF scales also badly in terms of W. Beyond this 
comparison which shows that efficient Flash-based method for 
indexing very large files still need to be invented, let us see if the 
scalability of PBF can be improved to cover the requirements of 
most embedded applications. Actually, the cost of repartitioning 
becomes dominant for large N and repartitioning occurs at every 
Flash buffer overflow. A solution for large files is then to increase 
the size of the Flash buffer hosting the L1 partitions under 
construction. The comparison between PBF1 and PBF2 on Figure 
4(i) shows the benefit of increasing the Flash buffer from 16 
pages for PBF1 (that is 4 L1 partitions of 4 pages each) to 64 
pages for PBF2 (16 L1 partitions of 4 pages each). Such increase 
does not impact metric R since the number of reads in L1 
partitions does not depend on the number of partitions but of their 
size (which we keep constant). The RAM impact sums up to 12 
more buffers for SKA, but this number can be reduced to only 3 
pages by organizing the buffers by sectors. Hence, PBF can 
accommodate gracefully rather large embedded files (a few 
millions tuples) assuming the RAM constraint is slightly relaxed 
(a co-design choice). 

                                                                 
4  Note that the R cost for BFTL and BTree neglects the FTL 

address translation cost which may be high (usually a factor 2 to 
3). 

5 For the sake of simplicity, the formulas of the cost model 
consider the granularity of buffers to be one page. 
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Table4. Basic formulas of the analytical model
Vars Annotations Expressions 
Common formulas 
M Number of index units (IUs) in each page [Note1] ⎣ ⎦Sr)*5Sp/(Sk +  for BFTL1&2, ⎣ ⎦Sr)Sp/(Sk +  for others 

Formulas specific to Tree-based methods (Btree, BFTL1, BFTL2) 
ht Height of B+Tree ⎡ ⎤NMfb 1*log +

 

Nn Total number of B+Tree nodes after N insertions ⎡ ⎤∑
=

−+
ht

i

iMfbMfb
1

1))1*)(*/((N
 

Ns Number of splits after N insertions Nn-ht 

L Average number of buffer chunks that the IUs from 
the same B+Tree node are distributed to [Note2] 

Yao(N, N/(fb*M*B), fb*M) for BTree, 
Yao(N, β*N/(M*B), fb*M) for BFTL1&2, 

α   Number of index units of a logical node stored in a 
same physical page [Note3] fb*M/L 

Nc Number of compactions for each node in BFTL2 ⎣ ⎦)1C/()1L( −−  

Formulas specific to PBF 
NKA Total number of pages in KA ⎡ ⎤MN /  

Sb Size of a bloom filter (bits) ⎡ ⎤)*(log22 dM  
Mb Number of bloom filters in a page ⎣ ⎦SbSp /8*  

M1 Number of <key, pinter> pairs contained by one 
bloom filter ⎣ ⎦dSb /  

Nr Total number of partition reorganizations [Note4] ⎣ ⎦⎣ ⎦)*1/(/ sLMbNKA
 

Pf Number of last final partitions ⎡ ⎤)/1/%((log22**1 sLSbNrsL , if Nr>0, else Pf =0 

NFB Number of pages occupied by the final valid blooms ⎣ ⎦ ⎣ ⎦⎣ ⎦ sssLMbNPfSbMSpN KA */))*1mod(/(*)1*8*/( ++  

NE Total number of pages which can be erased ⎣ ⎦ ⎡ ⎤
⎥
⎦
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⎢
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 [Note1]   In BFTL, there are five pointers in each Index Unit (data_ptr, parent_node, identifier, left_ptr, right_ptr), explaining   factor 5. 
 [Note2]   Yao’s formula is used here to compute how many buffer chunks (1 buffer chunk containing B pages) that fb*M records are distributed  

to, which is the average length of the lists in node translation table for BFTL1.                                                        
 [Note3]  The IUs from the same logical node are stored in different physical pages, so we divide the total number of IUs (fb*M) by the total 

number of physical pages to get the average number of IUs stored in the same physical page.  
 [Note4]   L1 denotes the number of pages in  each initial L1 partition and L1*s is the size of the Flash buffer used to manage them.   

Table 5. Final formulas of the analytical model 
Metrics\Methods BTree BFTL1 BFTL2 PBF 

R             [Note1] ht  (ht-1)*L+L/2 (ht-1)*C+C/2 R1+R2+ ⎡ ⎤⎡ ⎤2//1** MMNf KA
+ R3 

W            [Note2] N/α+2Ns β*N/M + β*Ns/2 W1 NKA + NFB +NE 
IR           [Note3] IR1 IR2 IR3 NE 
RAM       [Note4] B*Sp/1024 (Nn*L*Sr+B*Sp) /1024 (Nn*C* Sr+B*Sp) /1024 B*Sp/1024 
VP          [Note5] Nn W W NKA + NFB 
OP          [Note5] W-Nn 0 0 NE 
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[Note1] For BTree, we did not consider the additional I/Os of going through the FTL indirection table. For BFTL1&2, loading a node requires 
traversing, in the node translation table, the whole list of IUs belonging to this node and accessing each in Flash. In PBF, the read cost comprises: the 
lookup in the final and initial partitions and the cost to access (KA), including the overhead caused by false positives.   
[Note2] For BTree, the write cost integrates the copy of the whole page for every key insertion (2 times more for splits). BFTL methods also need 
data copy when doing splits and the write cost of BFTL2 integrates the cost of periodic reorganizations. The write cost for PBF is self-explanatory. 
[Note3] For Tree-based methods, the IR cost integrates the cost to traverse the tree up to the target leaf and the cost to read the nodes to be split. For 
PBF, it integrates the cost to read the partitions to be merged at each iteration. 
[Note4] RAM comprises the size of the data structures maintained in RAM plus the size of the buffers required to read/write the data in Flash. 
[Note5] VP+OP is the total number of pages occupied by both valid and stale index units. In BFTL1&2, OP=0 simply because stale data are mixed 
with valid data. By contrast, stale data remain grouped in BTree and PBF. In BTree, this good property comes at a high cost in terms of OP. 
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(b) IR: # of page reads for insertions 
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(c) W : # of page writes for insertions 

3994

466
14 14

0
500

1000
1500
2000
2500
3000
3500
4000
4500

BFTL1 BFTL2 BTree PBF

R
A

M
 c

on
su

m
pt

io
n 

(K
B

)

 
(d) RAM consumption 
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(e) VP & OP : valid and obsolete pages 
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(g) Influence of N on R 
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(h) Influence of N on W 
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(i) Influence of N on RAM 
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(j) Influence of update rate on R 
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(k) Influence of d on R 
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(l) Influence of d on W, VP and OP 
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Table 6. Average R in the experiments  
           Hash 
Distrib. 

Bob Jenkins Super-Fast Arash Partow 

Random 12.33 12.28 68.37 

Ordinal 12.34 12.32 41.06 

Normal 12.28 12.36 76.95 

 
 

Figure 4. Evaluation results 

5.1.4 About Frequent Deletions 
As shown is Figure 4(a), large number of random deletions or 
updates degrades the lookup performance of PBFilter because of 
the search in DA. Figure 4(j) shows more precisely the impact of 
random updates/deletions on metric R when there are 1 million 

valid tuples. It grows with the update rate (number of 
updates/number of valid tuples) slowly thanks to DA indexing 
(e.g., for an update rate of 100%, R = 22). This confirms the 
benefit to build a single DA area for the complete database if 
RAM buffers needs to be saved. 
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5.2 PBFilter Adaptability and Predictability 
Tuning parameters d and k used to build the Bloom filters in PBF 
determines the quality of the summarization (false positive rate), 
the size of the summary and then the partitioning cost with a direct 
consequence on metrics R, W, VP and OP. This makes PBF 
adaptable to various situations and brings high opportunities in 
terms of co-design, assuming the consequences of tuning actions 
can be easily predicted and quantified.  
Figure 4(k) shows the influence of d on R with the other 
parameters set to the previous values: N=1million, Sk=12, B=7, 
k=7. As expected, the bigger d, the smaller the false positive rate 
and then the better R. At the same time, larger Bloom filters 
increase the frequency of repartitioning and then increase W and 
OP in the proportion shown in Figure 4(l). The impact on VP is 
however very limited because of the small size of SKA compared 
to KA (e.g., for d=16 and k=7, |SKA|/|KA| = 0.1). Figure 4(m) 
shows the influence of k on R with d=16. The bigger k, the better 
R, up to a given threshold. This threshold is explained by the 
Bloom filter principle itself (see formula in Section 4.1 showing 
that there is an optimal value for k beyond which the false positive 
rate increases again) and by the fact that a bigger k means 
scanning more partitions in SKA, a benefit which must be 
compensated by lower accesses in KA. 
As a conclusion, d introduces a very precise trade-off between R 
and W, VP, OP, allowing adapting the balance between these 
metrics to the targeted application/platform tandem. The choice of 
k under a given d should minimize i*k+f*|KA|/2, where i is the 
number of pages in each final partition.  
To illustrate this tuning capability, let us come back to the 
management of large files. Section 5.1.3 presented a solution to 
increase PBF scalability in terms of W.  The scalability in terms of 
R can be also a concern for some applications. The decrease of R 
performance for large files is due to the increase of the number of 
pages in each final partition and of the average accesses to KA 
which is f*|KA|/2. The growth of the size of each final partition 
can be compensated by a reduction of k and a smaller f can still be 
obtained by increasing d.  For instance, the values d=24 and k=4 
produce even better lookup performance for N=5 million records 
(R=9) than the one obtained with d=16 and k=7 for N=1 million 
records (R=10). The price to pay in terms of Flash memory usage 
can be precisely estimated thanks to our cost model. 

5.3 Experimental Results on Real Hardware 
5.3.1 Platform Description 
PBFilter has been implemented and integrated in the storage 
manager of an embedded DBMS dedicated to the management of 
secure portable folders [1]. The prototype runs on a secure USB 
Flash platform provided by Gemalto, our industrial partner. This 
platform is equipped with a smartcard-like secure microcontroller 
connected by a bus to a large (Gigabyte-sized soon) NAND Flash 
memory (today the 128MB Samsung K9F1G08X0A module), as 
shown in Figure 5.  
The microcontroller itself is powered by a 32 bit RISC CPU 
(clocked at 50 MHz) and holds 64KB of RAM (half of it 
preempted by the operating system) and 1MB of NOR Flash 
memory (hosting the on-board applications’ code and used as 
write persistent buffers for the external NAND Flash).  

 
Figure 5. Secure USB Flash device 

There are three nested API levels to access the NAND Flash 
module: FIL (Flash Interface Layer) providing only basic controls 
such as ECC, VFL (Virtual Flash Layer) managing the bad blocks 
and FTL (Flash Translation Layer) implementing the address 
translation mechanism, the garbage collector and the wear-leveling 
policies. We measured the cost of reading/writing one sector/page 
through each API level using sequential (seq.) and random (rnd.) 
access patterns. The numbers are listed in Table 7 and integrate the 
cost to upload/download the sector/page to the Flash module 
register and the transfer cost from/to the RAM of the 
microcontroller (masking part of the difference in the hardware 
cost). FIL and VFL behave similarly for sequential and random 
access patterns while the variation is significant with FTL. 
Random writes exhibit dramatic low performance with FTL (a 
behavior we actually observed in many Flash devices). 

Table 7. I/O Performance through different API levels 
API Levels R(µs) sector/page W(µs) sector/page 
FIL(seq. & rnd.) 100/334 237/410 
VFL(seq. & rnd.) 109/367 276/447 
FTL(seq.) 122/422 300/470 
FTL(rnd) 380/680 ≈ 12000 

5.3.2 Experimental Results 
We ran our prototype under all the parameter settings used in 5.1 
and 5.2. We measured the I/Os and compares the results with those 
produced by the cost model. 
Unsurprisingly, the tests produced exactly the same numbers as 
those computed by the cost model for all metrics but R. Indeed, 
the sequential organization and the fixed size of all data structures 
make the insertion process and the number of repartition steps 
fully predictable for a given parameter setting, avoiding any 
uncertainty for IR, W, VP and OP metrics (In the prototype, 
transaction atomicity is guaranteed thanks to internal NOR Flash 
buffers and do not interfere with the NAND Flash management).  
The discrepancy related to the R metric deserves a deeper 
discussion. The cost model computes the false positive rate using 
the formula given in 4.1, assuming the k hash functions are totally 
independent, a condition difficult to meet in practice. Much work 
[7, 12] has been done to build efficient and accurate bloom filter 
hash functions. In our experiment, we compared Bob Jenkins’ 
lookup2, Paul Hsieh’s SuperFastHash, and Arash Partow hash 
over datasets of different distributions (random, ordinal and 
normal) produced by Jim Gray’s DBGen generator. The results 
show that the degradation of the false positive rate is quite 
acceptable for the former two hash functions but not for the latter. 
Table 6 shows the R metric measured for each hash function and 
data distribution under the setting: N=1 million, Sk=12, d=16, k=7 
(the cost model gives R=10 for this setting). About the efficiency 
of hash functions, Bob Jenkins and SuperFastHash are quite fast 
(6n+35 and 5n+17 cycles respectively, where n is the key size in 
bytes), and k independent hash values can be obtained by calling 
only three times the hash function [7]. 
We have done preliminary performance measurements in terms of 
response time for insertions and lookups on top of different API 
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levels. Today, we are not granted permission by our industrial 
partner to publish absolute performance numbers, other than those 
given in Table 7, due to a pending patent. However, the 
preliminary observations show that (1) the average insertion cost 
of PBFilter is low in every situations (even on top of FTL) due to 
its sequential write feature, (2) the lookup cost is very satisfactory 
on top of FIL and VFL with an increase of nearly 70% on top of 
FTL and (3) the CPU cost remains low (less than 15% of the total) 
despite the low frequency of the microcontroller. Further 
experiments are required to fully capture the behaviour of PBFilter 
on this hardware platform considering different NAND Flash APIs 
and variant datasets. We expect that real numbers would be made 
public soon.  

6. CONCLUSION 
NAND Flash has become the most popular stable storage medium 
for embedded systems and efficient indexing methods are highly 
required to tackle the fast increase of on-board storage capacity. 
Designing these methods is complex due to a combination of 
NAND Flash and embedded system constraints. To the best of our 
knowledge, PBFilter is the first indexing method addressing 
specifically this combination of constraints. 
The paper introduces a comprehensive set of metrics to capture the 
requirements of the targeted context. Then, it shows that batch 
methods are inadequate to answer these requirements and proposes 
a very different way to index Flash-resident data. PBFilter, 
organizes the index structure in a pure sequential way and speeds 
up lookups thanks to Summarization and Partitioning. A Bloom 
filter based instantiation of PBFilter has been implemented and a 
comprehensive performance study shows its effectiveness. 
PBFilter is today integrated in the storage manager of an 
embedded DBMS dedicated to the management of secure portable 
folders. Thanks to its tuning capabilities, PBFilter seems adaptable 
to various Flash-based environments and application requirements. 
Typically, PBFilter seems well adapted to any RAM constrained 
environment, embedded or not. Our future work is to complete 
performance measurements on real hardware, to propose an 
accurate management of secondary keys and to investigate new 
summarization and partitioning strategies to ever enlarge PBFilter 
application domain. 

7. ACKNOWLEDGMENTS 
The authors wish to thank Luc Bouganim, Dennis Shasha and 
Björn Þór Jónsson for fruitful discussions on this paper and Jean-
Jacques Vandewalle and Laurent Castillo from Gemalto for their 
technical support. This research is partially supported by the 
French National Agency for Research (ANR) under RNTL grant 
PlugDB and by the Natural Science Foundation of China under 
grants 60833005, 60573091. 

8. REFERENCES 
[1] Anciaux, N., Benzine, M., Bouganim, L., Jacquemin, K., 

Pucheral, P., and Yin, S. Restoring the Patient Control over 
her Medical History. 21th IEEE Int. Symposium on 
Computer-Based Medical Systems (CBMS), 2008. 

[2] Anciaux, N., Bouganim, L., Pucheral, P., Valduriez, P. DiSC: 
Benchmarking Secure Chip DBMS. IEEE Transactions on 
Knowledge and Data Engineering (IEEE TKDE), vol. 20, 
n°10, 2008. 

[3] Birrel, A., Isard, M., Thacker, C., and Wobber, T.  A Design 
for High-Performance Flash Disks. Operating Systems 
Review 41(2), 2007. 

[4] Bityutskiy, A-B., JFFS3 Design Issues. Tech. report, Nov. 2005. 
[5] Bloom, B. Space/time tradeoffs in hash coding with allowable 

errors. Communications of the ACM, 13(7), 1970. 
[6] Dekart SRL.: Dekart Smart Container, 2007. 

http://www.dekart.com/products/integrated/smart container 
[7] Dillinger, P. C., and Manolios, P. Fast and Accurate Bitstate 

Verification for SPIN. 11th Int. Spin Workshop on Model 
Checking Software, LNCS 2989, 2004. 

[8] Gonnet, G. and Baeza-Yates, R.  Handbook of Algorithms and 
Data Structures, Addison-Wesley, Boston, MA, USA, 1991. 

[9] Hamid L. New directions for removable USB mass storage, 
Press release, 2006. http://www.itwales.com/997893.htm 

[10] Intel Corporation, Understanding the Flash Translation Layer 
(FTL) specification. 1998.  

[11]  Kim, G., Baek, S., Lee, H., Lee, H., and Joe, M.  LGeDBMS: A 
Small DBMS for Embedded System with Flash Memory. Int. 
Conf. on Very Large Data Bases (VLDB), 2006. 

[12] Kirsch, A., and Mitzenmacher, M. Less Hashing, Same 
Performance: Building a Better Bloom Filter. Algorithms – ESA 
2006, 14th European Symposium, LNCS 4168, 2006. 

[13]  Lee, S-W., and Moon, B.  Design of Flash-Based DBMS: An 
In-Page Logging Approach.  Int. Conf. on Management of 
Data (SIGMOD), 2007. 

[14] Mani, A., Rajashekhar, M. B., and Levis, P.  TINX - A Tiny 
Index Design for Flash Memory on Wireless Sensor Devices. 
ACM Conf. on Embedded Networked Sensor Systems 
(SenSys) 2006, Poster Session. 

[15] Mitzenmacher, M. Compressed Bloom Filters. Proceedings 
of ACM PODC, 2001. 

[16] Nath, S., and Kansal, A.  FlashDB: Dynamic Self-tuning 
Database for NAND Flash. Int. Conf. on Information 
Processing in Sensor Networks (IPSN), 2007. 

[17]  Rosenblum, M., and Ousterhout, J. K. The Design and 
Implementation of a Log-Structured File System. ACM 
Transactions on Computer Systems (TOCS) 10(1), 1992. 

[18] Wu, C., Chang, L., and Kuo, T.  An Efficient B-Tree Layer for 
Flash-Memory Storage Systems. Int. Conf. on Real-Time and 
Embedded Computing Systems and Applications (RTCSA), 2003. 

[19] Yao, A. On Random 2-3 Trees. Acta Informatica, 9 (1978). 
[20] Yao, S.  Approximating the Number of Accesses in Database 

Organizations. Communication of the ACM 20(4),1977. 
[21] Yin, S., Pucheral, P., Meng X. PBFilter: Indexing Flash-

Resident Data through Partitioned Summaries. Tech. Rep. 
RR-6548. INRIA. 2008.  

[22] Zeinalipour-Yazti, D., Lin, S. V., Kalogeraki, Gunopulos, D., 
and Najjar, W.  MicroHash: An Efficient Index Structure for 
Flash-Based Sensor Devices. USENIX Conf. on File and 
Storage Technologies (FAST), 2005. 

 
 

599




