
HAL Id: hal-00624077
https://hal.science/hal-00624077

Submitted on 15 Sep 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A sequential indexing scheme for flash-based embedded
systems

Shaoyi Yin, Philippe Pucheral, Xiaofeng Meng

To cite this version:
Shaoyi Yin, Philippe Pucheral, Xiaofeng Meng. A sequential indexing scheme for flash-based embed-
ded systems. EDBT’09 - 12th International Conference on Extending Data Base Technology, 2009,
St Petersbourg, Russia. pp.588-599, �10.1145/1516360.1516429�. �hal-00624077�

https://hal.science/hal-00624077
https://hal.archives-ouvertes.fr

A Sequential Indexing Scheme
for Flash-Based Embedded Systems

Shaoyi Yin *,**,***
*INRIA Rocquencourt

78153 Le Chesnay - France
Fname.Lname@inria.fr

Philippe Pucheral *,**
**PRiSM Lab, Univ. of Versailles

78035 Versailles - France
Fname.Lname@prism.uvsq.fr

Xiaofeng Meng ***
***Renmin Univ. of China
100872 Beijing – China

{yinshaoy, xfmeng}@ruc.edu.cn

ABSTRACT
NAND Flash has become the most popular stable storage medium
for embedded systems. As on-board storage capacity increases,
the need for efficient indexing techniques arises. Such techniques
are very challenging to design due to a combination of NAND
Flash constraints (for example the block-erase-before-page-
rewrite constraint and limited number of erase cycles) and
embedded system constraints (for example tiny RAM and
resource consumption predictability). Previous work adapted
traditional indexing methods to cope with Flash constraints by
deferring index updates using a log and batching them to decrease
the number of rewrite operations in Flash memory. However,
these methods were not designed with embedded system
constraints in mind and do not address them. In this paper, we
propose a new alternative for indexing Flash-resident data that
specifically addresses the embedded context. This approach,
called PBFilter, organizes the index structure in a purely
sequential way. Key lookups are sped up thanks to two principles
called Summarization and Partitioning. We instantiate these
principles with data structures and algorithms based on Bloom
Filters and show the effectiveness of this approach through a
comprehensive performance study.

1. INTRODUCTION
Smart cards were equipped with kilobytes of EEPROM stable
storage in the 90’s and megabytes of NAND Flash in the 00’s;
mass-storage cards are coming soon that will link a
microcontroller to gigabytes of NAND Flash memory [9]. All
categories of smart objects (e.g., sensors, smart phones, cameras
and mp4 players) benefit from the same storage capacity
improvement thanks to high density NAND Flash. Smart objects
are more versatile than ever and are now effective to manage
medical, scholastic and other administrative folders, agendas,
address books, photo galleries, transportation and purchase
histories, etc. As storage capacity increases, the need for efficient
indexing techniques arises. This motivates manufacturers of Flash
modules and smart objects to integrate file management and even
database techniques into their firmware.
Designing efficient indexing techniques for smart objects is very
challenging, however, due to conflicting hardware constraints and
design objectives.

On the one hand, although it is excellent in terms of shock
resistance, density and read performance, NAND Flash exhibits
specific hardware constraints. Read and write operations are done
at a page granularity, as with traditional disks, but writes are more
time and energy consuming than reads. In addition, a page cannot
be rewritten without erasing the complete block containing it,
which is a costly operation. Finally, a block wears out after about
105 repeated write/erase cycles. As a result, updates are usually
performed “out-of-place” entailing address translation and
garbage collection overheads. The more RAM is devoted to
buffering and caching and the lazier garbage collection is, the
better the performance.
On the other hand, smart object manufacturers are facing new
constraints in terms of energy consumption (to increase device
autonomy/lifetime), microcontroller size (to increase tamper-
resistance) and storage capacity (to save production costs on
billion-scale markets)[2]. In this context, performance competes
with energy, RAM and Flash memory consumption. Co-design
rules are therefore essential to help manufacturers calibrate the
hardware resources of a platform and select the appropriate data-
management techniques to match the requirements of on-board
data-centric applications.
State of the art Flash-based storage and indexing methods were
not designed with embedded constraints in mind and poorly adapt
to this context. Database storage models dedicated to NAND
Flash have been proposed in [11, 13] without specifically
addressing the management of hot spot data in terms of updates,
like indexes. Other work addressed this issue by adapting B+Tree-
like structures to NAND Flash [4, 16, 18]. While different in their
implementation, these methods rely on a similar approach:
delaying index updates using a log dedicated to the index, and
batching them with a given frequency so as to group updates
related to the same index node. We refer to these methods as
batch methods. The benefit of batch methods is that they decrease
write cost, which is considered the main problem with using Flash
in the database context. However, all these methods maintain
additional data structures in RAM to limit the negative impact of
delayed updates on lookup cost. All these methods also perform
“out-of-place” updates, reducing Flash memory usage and
generating address translation and garbage collection overheads.
Such indirect costs have proven high and unpredictable [16].
Rather than adapting traditional index structures to Flash memory,
we believe that indexing methods must be completely rethought if
we are to meet the requirements of the embedded context,
namely:
– Low_RAM: accommodate as little RAM as possible
– Low_Energy: consume as little energy as possible
– Low_Storage: optimize the Flash memory usage
– Adaptability: make resource consumption adaptable to the

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the ACM. To copy otherwise, or to republish, to post on
servers or to redistribute to lists, requires a fee and/or special
permissions from the publisher, ACM.
EDBT'09, March 24-26, 2009, Saint Petersburg, Russia.
Copyright 2009 ACM 978-1-60558-422-5/09/0003 ...$5.00.

588

performance requirements of on-board applications
– Predictability: make performance and resource consumption

fully predictable
Low_RAM emphasizes the specific role played by RAM in the
embedded context. Due to its poor density, and as it competes
with other hardware resources on the same silicon die, RAM is
usually calibrated to its bare minimum [2]. Hence, the less RAM
an indexing method consumes, the wider the range of devices that
can be targeted. Low_Energy is also critical but concerns only
autonomous devices. The objective of Low_Storage is to
minimize not only the amount of Flash memory occupied by the
index structure, but also, and above all, of Flash memory wasted
by the obsolete data produced by index updates and leading to
overprovisioning Flash memory. Adaptability conveys the idea
that optimal performance is not the ultimate goal; rather
optimality is reached when no resource is unduly consumed to get
better performance than that strictly required by on-board
applications. In other words, Adaptability means that Low_RAM,
Low_Energy and Low_Storage must be considered in light of the
applications’ performance expectations. Finally, Predictability is a
prerequisite to co-design.
In this paper, we propose a Flash-based indexing method, called
PBFilter, specifically designed to answer these requirements.
PBFilter organizes the index structure in a purely sequential way
to minimize the need for buffering and caching and to avoid the
unpredictable side effects incurred by “out-of-place” updates. But
how to look up a given key in a sequential list with acceptable
performance? We answer this question using two principles.
Summarization consists of building an index summary used at
lookup time to quickly determine the region of interest in the
index. This introduces an interesting source of tuning between the
compression ratio of the summary and its accuracy. Partitioning
consists of vertically splitting the index list and/or its summary in
such a way that only a subset of partitions need to be scanned at
lookup time. This introduces a second trade-off between lookup
performance and RAM consumption. The key idea behind
Summarization and Partitioning is speeding up lookups without
hurting sequential writes in Flash memory.
PBFilter gracefully accommodates files up to a few million tuples,
a reasonable limit for embedded applications. PBFilter is
optimized to support append-oriented files but deletion and
updates can be supported without compromising the five
requirements above.
The paper is organized as follows. Section 2 reviews the main
characteristics of NAND Flash, studies the related work and
introduces the metrics of interest for this study. Section 3 details
the PBFilter indexing scheme. Section 4 presents an instantiation
of the PBFilter scheme with partitioned Bloom Filter summaries.
Section 5 presents a comprehensive performance study and
Section 6 is the conclusion.

2. PROBLEM STATEMENT
2.1 NAND Flash Characteristics
Embedded Flash devices come today in various form factors such
as compact flash cards, secure digital cards, smart cards and USB
tokens. They share several common characteristics. A typical
NAND Flash array is divided into blocks, in turn divided into
pages (32-64 pages per block), and divided again into sectors
(usually 4 sectors per page). Read and write operations usually

happen at page granularity, but can also apply at sector
granularity if required. A page is typically 512-2,048 bytes. A
page can only be rewritten after erasing the entire block
containing it (usually called the block-erase-before-rewrite
constraint). Page write cost is higher than read, both in terms of
execution time and energy consumption, and the block erase
requirement makes writes even more expensive. A block wears
out after about 105 repeated write/erase cycles, requiring write
load to be evenly spread out across the memory.
These hardware constraints make update management complex,
although this complexity is slightly mitigated by the
decomposition of a page into sectors. Sectors can be written
independently (albeit sequentially) in the same page, allowing one
write per sector before the block must be erased. To avoid erasing
blocks too frequently, “out-of-place” updates are usually
performed by using a Flash Translation Layer (FTL) which
combines: (1) a translation mechanism relocating the pages and
making their address invariant through indirection tables and (2) a
garbage collection mechanism that erases blocks, either lazily
(waiting for all the pages of the block to become obsolete) or
eagerly (moving the active pages still present in the block before
erasing it).
As extensively studied in [16], the execution time and energy
consumption of read and write operations vary greatly among the
Flash devices. The high discrepancies between the platforms are
partly due to the raw chip characteristics and partly to the
firmware managing the FTL which is usually proprietary and
constitutes the primary source of performance unpredictability
[16].

2.2 Related Work
Some work [11, 13] has adopted the idea of log-structured file
systems (LFS) [17] to design or improve database storage models
dedicated to NAND Flash, without proposing new index methods.
For example, the primary objective of IPL [13] is to hide Flash
peculiarities from the upper layers of the DBMS. Updates in Flash
are delayed using a log stored in each physical block and an
accurate version of each page is rebuilt at load time. Updates are
physically applied to a page when the corresponding log region
becomes full. While elegant, this general method is not well
suited to managing hot spot data in terms of updates, like indexes,
because of frequent log overflows.
Other work has specifically considered the indexing problem in
NAND Flash. Hash-based and tree-based index families can be
distinguished. So far, little attention has been paid to hash-based
methods in Flash. This is probably because hashing only performs
well when a large number of buckets can be used and when the
RAM can accommodate one buffer per bucket, which is a rare
situation in the targeted context. One exception is Microhash
designed to speed up lookups in sensor devices [22]. However,
this method is not general and only applies to sensed data varying
within a small range (e.g., temperature).
Within the tree-based family, one work has also considered
indexing sensed data [14]. This work proposes a tiny index called
TINX based on a specific unbalanced binary tree. The
performance demonstrated by the authors (e.g., 2,500 page reads
to retrieve one record from 0.6 million records) disqualifies this
method for large files. To the best of our knowledge, all other
papers suggest adaptations of the well-known B+Tree structure.
Regular B+Tree techniques built on top of FTL have been shown

589

to be poorly adapted to the characteristics of Flash memory [18].
Indeed, each time a new record is inserted into a file, its key must
be added to a B+Tree leaf node, causing an out-of-place update of
the corresponding Flash page. To avoid such updates, BFTL [18]
constructs an “index unit” for each inserted primary key and
organizes the index units as a kind of log. A large buffer is
allocated in RAM to group the various insertions related to the
same B+Tree node in the same log page. To maintain the logical
view of the B+Tree, a node translation table built in RAM keeps,
for each B+Tree node, the list of log pages which contain index
units belonging to this node. In order to limit the size of these lists
and therefore RAM consumption as well as lookup cost, each list
is compacted when a certain threshold (e.g., 5 log pages in the
list) is reached. At this time, logged updates are batched to refresh
the physical image of the corresponding B+Tree node.
FlashDB [16] combines the best of Regular B+Tree and BFTL
using a self-tuning principle linked to the query workload. JFFS3
proposes a slightly different way of optimizing B+Tree usage [4].
Key insertions are logged in a journal and are applied in the
B+Tree in a batch mode. A journal index is maintained in RAM
(recovered at boot time) so that a key lookup applies first to the
journal index and then to the B+Tree.
In short, all B+Tree-based methods rely on the same principle: (1)
delay index updates using a log and batch them with the purpose
of grouping updates related to the same index node; (2) build a
RAM index at boot time to speed up lookup of a key in the log;
(3) commit log updates with a given commit frequency (CF) in
order to limit log size. The differences between batch methods
mainly include the way index nodes and log are materialized,
which affect the way CF is managed.
In their attempt to decrease the number of writes, batch methods
are in line with the Low_Energy requirement introduced in
Section 1. By allowing trading reads, RAM and Flash memory
usage for writes using CF, they also provide an answer to
Adaptability. However, all batch methods fail in satisfying
Low_RAM. Indeed, the higher the CF, the greater the RAM
consumption. However, the primary objective of batch methods is
to decrease the number of writes in Flash memory, leading to a
higher CF. Section 5 will demonstrate that good write
performance for batch methods requires RAM consumption
incompatible with most embedded environments (in any case, not
the objective they claim). Regarding Predictability, even if the
number of writes is reduced, writes still generate out-of-place
updates in Flash memory. This results in an indirect and
unpredictable garbage collection cost linked to the strategy
implemented in the underlying FTL [16]. Flash memory usage is
also difficult to predict because it depends on the distribution of
obsolete data in the pages occupied by the index.

2.3 Metrics of Interest
In light of the preceding discussion, more complete and accurate
metrics appear necessary to help in assessing the adequacy of an
indexing method for the embedded context. To this end, we
propose the following metrics to capture the five requirements
introduced in Section 1:
– RAM consumption: as already stated, RAM consumption is of

utmost importance in the embedded context, since several
devices (e.g., smart cards, sensors and smart tokens) are
equipped with RAM measured in kilobytes [2]. This metric,

denoted hereinafter RAM, comprises the buffers to read from
and write to the Flash memory as well as the main memory
data structures required by the indexing method.

– Read/write cost: this metric distinguishes between read cost R
of executing a lookup and read cost IR and write cost W for
inserting keys into the index. Depending on the objective, the
metric can be execution time (wrt Adaptability) or energy
consumption (wrt Low_Energy). To address both concerns, R,
IR and W will be expressed in terms of number of operations.
Note that this metric does not directly capture the
Adaptability requirement, but rather tells whether the
performance expected by on-board applications can be
achieved.

– Flash memory usage: the objective is to capture the Flash
memory usage, both in terms of space occupancy and effort to
reclaim obsolete data. We distinguish between two values: VP
is the total number of valid pages occupied by the index (i.e.,
pages containing at least one valid item); OP is the total
number of pages containing only obsolete data and which can
be reclaimed without copying data. Comparing these two
values with the raw size of the index (total size of the valid
items only) gives an indication of the quality of the Flash
memory usage and the effort to reclaim stale space,
independent of any FTL implementation.

– Predictability: as claimed in the introduction, performance and
resource consumption predictability is a prerequisite for co-
design. Predictability is mandatory in calibrating the RAM
and Flash memory resources of a new hardware platform to
the performance requirements of the targeted on-board
applications. Another objective is to predict the limit (i.e., in
terms of file size or response time) of an on-board application
on existing hardware platforms. Finally, predictability is also
required to build accurate query optimizers. To avoid making
this metric fuzzy by reducing it to a single number, we
express it qualitatively using two dimensions: (1) whether the
indexing method is dependent on an underlying FTL or can
bypass it, (2) whether the values measured for RAM,
read/write cost and Flash memory usage can be accurately
bounded independent of their absolute value and of the
uncertainty introduced by the FTL, if any.

This paper aims to define a Flash-based indexing method that
behaves satisfactorily in all of these metrics at once.

3. PBFILTER INDEXING SCHEME
As an alternative to the batch indexing methods, PBFilter
performs index updates eagerly and makes this acceptable by
organizing the complete database as a set of sequential data
structures, as presented in Figure 1. The primary objective is to
transform database updates into append operations so that writes
are always produced sequentially, an optimal scenario for NAND
Flash and buffering in RAM.
The database updating process is as follows. When a new record
is inserted, it is added at the end of the record area (RA). Then, a
new index entry composed by a couple <key, pt> is added at the
end of the key area (KA), where key is the primary key of the
inserted record and pt is the record physical address1. If a record

1 Like all state of the art methods mentioned in Section 2, we

concentrate the study on primary keys. The management of
secondary keys is discussed in [21].

590

is deleted, its identifier (or its address) is inserted at the end of the
delete area (DA) but no update is performed in RA nor KA. A
record modification is implemented by a deletion (of the old
record) followed by an insertion (of the new record value). To
search for a record by its key, the lookup operation first scans
KA, retrieves the required index entry if it exists, check that pt
∉DA and gets the record in RA. Assuming a buffering policy
allocating one buffer in RAM per sequential data structure, this
updating process never rewrites pages in Flash memory.
The benefits and drawbacks provided by this simple database
organization are obvious with respect to the metrics introduced in
Section 2. RAM: a single RAM buffer of one page is required per
sequential structure (RA, KA and DA). The buffer size can even
be reduced to a Flash sector in highly constrained environments.
Read/write cost: a lower bound is reached in terms of reads/writes
at insertion time (IR and W) since: (1) the minimum of
information is actually written in Flash memory (the records to be
inserted and their related index entries and no more), (2) new
entries are inserted at the index tail without requiring any extra
read to traverse the index. On the other hand, the lookup cost is
dramatically high since R = (⎟KA⎟/2 + ⎟DA⎟ + 1) on the average,
where ⎟ ⎟ denotes the page cardinality of a structure. Flash
memory usage: besides DA, a lower bound is reached in terms of
Flash usage, again because the information written is minimal and
never updated. Hence, the number VP of valid pages containing
the index equals the raw size of this index and the number OP of
obsolete pages is null. Hence, the garbage collection cost is saved.
Predictability: since data never moves and is never reclaimed,
PBFilter can bypass the FTL address translation layer and garbage
collection mechanism. RAM and Flash memory consumption is
accurately bounded as discussed above. However, performance
predictability is not totally achieved since the uncertainty on R is
up to (⎟KA⎟ - 1).

Record 1
Record 2

. . .

1 page

. . .
<Key m, pt>

Record m

. . .

Summary 1
Summary 2

. . .
Summary k

RAM

Flash RA KA SKA

DA buffer

pt 2
pt t

. . .

pt 1

. . .

DA

. . .

. . .

. . .

<Key 2, pt>
<Key 1, pt>

Page k

. . .

. . .

RA buffer KA buffer SKA buffer

Figure 1. Database organization

The objective is now to decrease the lookup cost R to an
acceptable value with a minimal degradation of the benefits listed
above. Summarization and Partitioning are two principles
introduced to reach this goal.
Summarization refers to any method which can condense
sequentially the information present in KA. Let us consider an
algorithm that condenses each KA page into a summary record.
Summary records can be sequentially inserted into a new structure
called SKA through a new RAM buffer of one page (or sector)
size. Then, lookups do a first sequential scan of SKA and a KA
page is accessed for every match in SKA in order to retrieve the
requested key, if it exists. Summarization introduces an
interesting trade-off between the compression factor c
(c=⎟KA⎟/⎟SKA⎟) and the fuzziness factor f (i.e., probability of
false positives) of the summary, the former decreasing the I/O
required to traverse SKA and the latter decreasing the I/O

required to access KA. The net effect of summarization is
reducing R to (⎟KA⎟/2c + f⎟⎟KA⎟⎟/2) on the average, where ⎟⎟ ⎟⎟
denotes the element cardinality of a structure. The positive impact
on R can be very high for favorable values of c and f. The
negative impact on the RAM consumption is limited to a single
new buffer in RAM. The negative impact on the write cost and
Flash memory usage is linear with ⎟SKA⎟ and then depends on c.
Different algorithms can be considered as candidate “condensers”,
with the objective to reach the higher c with the lower f, if only
they respect the following property: summaries must allow
membership tests with no false negatives.
The idea behind Partitioning is to vertically split a sequential
structure into p partitions so that only a subset of partitions has to
be scanned at lookup time. Partitioning can apply to KA, meaning
that the encoding of keys is organized in such a way that lookups
do not need to consider the complete key value to evaluate a
predicate. Partitioning can also apply to SKA if the encoding of
summaries is such that the membership test can be done without
considering the complete summary value. The larger p, the higher
the partitioning benefit and the better the impact on the read cost
and on Predictability. On the other hand, the larger p, the higher
the RAM consumption (p buffers) or the higher the number of
writes into the partitions (less than p buffers) with the bad
consequence of reintroducing page moves and garbage collection.
Again, different partitioning strategies can be considered with the
following requirement: to increase the number of partitions with
neither significant increase of RAM consumption nor need for
garbage collection.

4. PBFILTER INSTANTIATION
4.1 Bloom Filter Summaries
The Bloom Filter data structure has been designed for
representing a set of elements in a compact way while allowing
membership queries with a low rate of false positives and no false
negative [5]. Hence, it presents all the characteristics required for
a condenser.
A Bloom filter represents a set A={a1, a2, … an} of n elements by
a vector v of m bits, initially all set to 0. The Bloom filter uses k
independent hash functions, h1, h2, … hk, each producing an
integer in the range [1,m]. For each element ai∈A, the bits at
positions h1(ai), h2(ai), ..., hk(ai) in v are set to 1. Given a query for
element aj, all bits at positions h1(aj), h2(aj), ..., hk(aj) are checked.
If any of them is 0, then aj cannot be in A. Otherwise we
conjecture that aj is in A although there is a certain probability
that we are wrong. The parameters k and m can be tuned to make
the probability of false positives extremely low [8].

Table 1. False positive rate under various m/n and k
m/n k=3 k=4 k=5 k=6 k=7 k=8
8 .0306 .024 .0217 .0216 .0229
12 .0108 .0065 .0046 .0037 .0033 .0031
16 .005 .0024 .0014 .0009 .0007 .0006

This probability, called the false positive rate and denoted by f in
the sequel, can be calculated easily assuming the k hash functions
are random and independent. After all the elements of A are
hashed into the Bloom filter, the probability that a specific bit is
still 0 is () mknkn em //11 −≈− . The probability of a false positive is

then ()() ()kmknkkn em /1/111 −−≈−− = ()kp−1 for p= mkne /− . The salient
feature of Bloom filters is that three performance metrics can be
traded off against one another: computation time (linked to the

591

number k), space occupancy (linked to the number m), and false
positive rate f. Table 1 illustrates these trade-offs for some values
of k and m. This table shows that a small increase of m may allow
a dramatic benefit for f if the optimal value of k is selected. We
consider that k is not a limiting factor in our context, since
methods exist to obtain k hash values by calling only three times
the hash function, while giving the same accuracy as by
computing k independent hash functions [7].

Bloom filters can be used as a condenser algorithm in PBFilter as
follows. For each KA page, a Bloom filter summary is built by
applying k hash functions to each index key present in that page.
This computation is performed when the KA page is full, just
before the RAM buffer containing it is flushed to the Flash
memory. The computed Bloom filter summary is stored in the
RAM buffer allocated to SKA. In turn, the SKA buffer is flushed
to the Flash memory when full. At lookup time, the searched key
ai is hashed with the k hash functions. Then, SKA is scanned to
get the first Bloom filter summary having all bits at positions
h1(ai), h2(ai), ..., hk(ai) set to 1. The corresponding page of KA is
directly accessed and the probability that it contains the expected
index entry (ai,pt) is (1-f). Otherwise, the scan continues in SKA.
The last step is to check that pt ∉DA before accessing the record
in RA.

4.2 Dynamic Partitioning
Despite the benefits of summarization, the lookup performance
remains linked to the size of SKA (on the average, half of SKA
needs to be scanned). The lookup performance can be improved
by applying the partitioning principle suggested in section 3. Each
Bloom filter is vertically split into p partitions (with p ≤ m), so
that the bits in the range [1 .. m/p] belong to the first partition, the
bits in the range [((i-1)*m/p + 1) .. (i*m/p)] belong to the ith
partition, etc. When the SKA buffer is full, it is flushed into p
Flash pages, one per partition. By doing so, each partition is
physically stored in a separate set of Flash pages. When doing a
lookup for key ai, instead of reading all pages of SKA, we need to
get only the SKA pages corresponding to the partitions containing
the bits at positions h1(ai), h2(ai), ..., hk(ai). The benefit is a cost
reduction of the lookup by a factor p/k. The larger p, the higher
the partitioning benefit for lookups but also the greater the RAM
consumption (p more buffers) or the greater the number of writes
(because page fragments have to be flushed in the partitions in
Flash memory instead of full pages) and then the need for garbage
collection (because of multiple writes in the same page of Flash).
We propose below a partitioning mechanism which exhibits the
nice property of supporting a dynamic increase of p with no
impact on the RAM consumption and no need for a real garbage
collection (as discussed at the end of the section, obsolete data is
naturally grouped in the same blocks which can be erased as a
whole at low cost). This dynamic partitioning mechanism comes
at the price of introducing a few reads and extra writes at insertion
time. The proposed mechanism relies on: (1) the usage of a fixed
amount of Flash memory as a persistent buffer to organize a
stepwise increase of p and (2) the fact that a Flash page is divided
into s sectors (usually s=4) which can be written independently.
The former point gives the opportunity to reclaim the Flash buffer
at each step in its integrality (i.e., without garbage collection).
The latter point allows s writes into the same Flash page before
requiring copying the page elsewhere.
Figure 2 illustrates the proposed partitioning mechanism. The size
of the SKA buffer in RAM is set to the size of a Flash page and

the buffer is logically split into s sectors. The number of initial
partitions, denoted next by L1 partitions, is set to s and one page
of Flash is initially allocated to each L1 partition. The first time
the SKA buffer in RAM becomes full (step 1), each sector si (with
1≤i≤s) of this buffer is flushed in the first sector of the page
allocated to the ith L1 partition. The second flush of the SKA
buffer will fill in the second sector of these same pages and so
forth until the first page of each L1 partition becomes full (i.e.,
after s flushes of the SKA buffer). A second Flash page is then
allocated to each L1 partition and the same process is repeated
until each partition contains s pages (i.e., after s2 flushes of the
SKA buffer). Each L1 partition contains 1/s part of all Bloom
filters (e.g., the ith L1 partition contains the bits in the range [((i-
1)*m/s + 1) .. (i*m/s)]).
At this time (step 2), the s L1 partitions of s pages each are
reorganized (read back and rewritten) to form s2 L2 partitions of
one page each. Then, each L2 partition contains 1/ s2 part of all
Bloom filters. As illustrated in Figure 2, each L2 partition is
formed by projecting the bits of the L1 partition it stemmed from
on the requested range, s times finer (e.g., the ith L2 partition
contains the bits in the range [((i-1)*m/s2 + 1) .. (i*m/s2)]).
After another s2 SKA buffer flushes (step 3), s new L1 partitions
have been built again and are reorganized with the s2 L2 partitions
to form (s2+s2) L3 partitions of one page each and so forth. The
limit is p=m after which there is no benefit to partition further
since each bit of bloom filter is in a separate partition. After this
limit, the size of partitions grows but the number of partitions
remains constant (i.e., equal to m).
In the example presented in Figure 2, where s=4, the number of
partitions grows in an approximately linear way (4, 16, 32…)2.
Assuming for illustration purpose Flash pages of 2KB, bloom
filters of size m=2048 bits in SKA and <key,pt> of size 8 bytes in
KA, each page of L3 partitions gathers 1/32 part of 256 bloom
filters summarizing themselves 65536 keys. Scanning one
complete partition in SKA costs reading the corresponding page
in L3 plus 1 to s pages in L1.
More precisely, the benefit of partitioning dynamically SKA is as
follows. A lookup needs to consider only k Li partitions of one
page each (assuming the limit p=m has not been reached and Li
partitions are the last produced) plus min (k ,s) L1 partitions, the
size of which vary from 1 to s pages. This leads to an average cost
of (k + min (k, s) * s/2). This cost is both low and independent of
the file size while p≤m.
The RAM consumption remains unchanged, the size of the SKA
buffer being one page (note that extending it to s pages would
save the first iteration). The impact on IR and W (Read and write
cost at insertion time) is an extra cost of about ⎡ ⎤∑i

i s 2log *2 2

reads and writes (see the cost model for details). This extra cost
may be considered important but is strongly mitigated by the fact
that it applies to SKA where each page condenses Bp/d records,
where Bp is the size of a Flash page in bits (Bp /d is likely to be

2 In practice, it does not grow exactly linearly because the bloom

filter cannot be equally divided into an arbitrary number of
partitions. For the same reason, the bloom filter size is always a
power of 2, so one bloom filter may summarize more than 1
(less than 2) KA pages. The impact of these implementation
details have been taken into account in the cost model in
Section 5, and the extra cost has proven low.

592

greater than 1000). Section 5 will show that this extra cost is
actually low compared to existing indexing techniques. Section 5
will also show the low impact of partitioning on the Flash usage
for the same reason, that is the high compression ratio obtained by
Bloom filters making SKA small with respect to KA.

10…01…00….01
00…10…10….11

01…11…
… …

10…00…
… …

01…10…
… …

00…10…
… … 1 sector

RAM

Flash

SKA buffer (1 page)

Step 1 L1 partitions

10…01…00….01
00…10…10….11

01…11…
… …

10…00…
… …

01…10…
… …

00…10…
… … 1 sector

RAM

Flash

SKA buffer (1 page)

Step 1 L1 partitions
10…01…00….01
00…10…10….11

01…11…
… …

10…00…
… …

01…10…
… …

00…10…
… … 1 sector

RAM

Flash

Page 1 Page 2 Page 3 Page 4 …… Page 16

SKA buffer (1 page)

Step 2 L2 partitions

10…01…00….01
00…10…10….11

01…11…
… …

10…00…
… …

01…10…
… …

00…10…
… … 1 sector

RAM

Flash

Page 1 Page 2 Page 3 Page 4 …… Page 16

SKA buffer (1 page)

Step 2 L2 partitions
10…01…00….01
00…10…10….11

01…11…
… …

10…00…
… …

01…10…
… …

00…10…
… … 1 sector

RAM

Flash

Page 1 Page 2 Page 3 …… Page 16

Page 1 Page 2 Page 3 Page 4 …… Page 32

SKA buffer (1 page)

Step 3 L3 partitions

10…01…00….01
00…10…10….11

01…11…
… …

10…00…
… …

01…10…
… …

00…10…
… … 1 sector

RAM

Flash

Page 1 Page 2 Page 3 …… Page 16

Page 1 Page 2 Page 3 Page 4 …… Page 32

SKA buffer (1 page)

Step 3 L3 partitions
Figure 2. Dynamic partitioning

At the end of each step i, and after Li partitions have been built,
the Flash buffer hosting L1 partitions and the pages occupied by
Li-1 partitions can be reclaimed. Reclaiming a set of obsolete
pages stored in the same block is far more efficient than collecting
garbage crumbs spread over different pages in different blocks.
The distinction between garbage reclamation and garbage
collection is actually important. Garbage collection means that

active pages present in a block elected for erasure must be moved
first to another block. In addition, if at least one item is active in a
page, the complete page remains active. In methods like BFTL,
active index units can be spread over a large number of pages in
an uncontrolled manner. This generates a worst situation where
many pages remain active while they contain few active index
units and these pages must be often moved by the garbage
collector. PBFilter never generates such situations. The size of the
Flash buffer and of the Li partitions is a multiple of s2 pages and
these pages are always reclaimed together. Blocks are simply split
in areas of s2 pages and a block is erased when all its areas are
obsolete.

4.3 Hash then Partition
As stated above, the benefit of partitioning is a cost reduction of
the lookup by a factor p/k. The question is whether this factor can
still be improved. When doing a lookup for key ai in the current
solution, the probability that positions h1(ai), h2(ai), ..., hk(ai) fall
into a number of partitions less than k is low, explaining the rough
estimate of the cost reduction by the factor p/k. This situation
could be improved by adding a hashing step before building the
Bloom filters. Each Bloom filter is split into q buckets by a hash
function h0 independent of h1, h2, ..., hk,. Each time a new key is
inserted in KA, h0 is applied first to determine the right bucket,
then h1, h2, ..., hk are computed to set the corresponding bits in the
selected bucket. This process is similar as building q small Bloom
filters for each KA page. The experiments we conducted led to the
conclusion that q must remain low to avoid any negative impact
on the false positive rate. Thus, we select q=s (with s usually
equals to 4). The benefit of this initial hashing is guaranteeing that
the k bits of interest for a lookup always fall into the same L1
partition, leading to an average cost of (k + s/2) for scanning
SKA.

4.4 An Illustration of Hashed PBFilter
Now let us illustrate the key insertion and lookup processes of
hashed PBFilter through an example (Figure 3). As pointed above,
we set q=s=4 and m=2048, while supposing the size of <key, pt>
is 8 bytes and the size of a page is 2048 bytes. To simplify the
calculation, we use only 3 hash functions to build the bloom
filters, denoted by h1(key), h2(key) and h3(key). The hash function
used in the pre-hashing step is denoted by h0(key).
When the first key key1 is inserted, the hash bucket number is
determined first by using h0, and then h1, h2 and h3 are computed.
Suppose that: h0(key1) = 0, h1(key1) = 1, h2(key1) = 201, and
h3(key1) = 301. Accordingly, the 1st, 201st and 301st bits in bucket
0 (the first 512 bits) of the first bloom filter bloom1 are set to 1
(Status 1 in Figure 3).
After inserting 2048 keys, the SKA buffer is full with 8 bloom
filters (each bloom filter summarizes one KA page which contains
256 <key, pt> entries), so the bloom filters are partitioned and
flushed into the L1 partitions: the first 512 bits (bucket 0) of each
bloom filter are written into the first sector of page P01, the second
512 bits (bucket 1) of each bloom filter are written into the first
sector of page P11, and so on (Status 2).
After inserting 32768 keys, the L1 partition pages are full, so the
bloom filters are repartitioned into smaller pieces forming L2: the
first 128 bits of all 128 bloom filters are written into the first L2
partition P1, the second 128 bits of all 128 bloom filters are
written into the second L2 partition P2, and so forth (Status 3).
After inserting 65536 keys, the new L1 partitions are full again,

593

so the bloom filters are repartitioned once more into ever smaller
pieces forming L3: the first 64 bits of all 256 bloom filters (128
from the L2 partitions and 128 from the L1 partitions) are written
into the first L3 partition P1’, the second 64 bits of all 256 bloom
filters are written into the second L3 partition P2’, and so forth
(Status 4).

1…….1......1……

P01

1….….

P1
……

1…..

P1’ ……

1………1.......1…..…………………………………………....

Status 1: bloom 1 is in SKA buffer
1st 201st 301st

Status 2: bloom 1 is in L1 partitions

1st 512nd

.……...........…

P11

513rd 1024th

.……...........…

P21

1025th 1536th

1…….1......1…

P31

1537th 2048th

2048th

1st 128th

…..1....

P2

256th129th

.…1….....

P3

….......

P16

2048th 1921st

Status 4: bloom 1 is in L3 partitions

Status 3: bloom 1 is in L2 partitions

1st 64th

.……

P2’

65th 128th

.……

P3’

129th 192nd

.1….

P4’

.……

P32’

1985th 2048th

Bit position:

1…….1......1……

P01

1….….

P1
……

1…..

P1’ ……

1………1.......1…..…………………………………………....

Status 1: bloom 1 is in SKA buffer
1st 201st 301st

Status 2: bloom 1 is in L1 partitions

1st 512nd

.……...........…

P11

513rd 1024th

.……...........…

P21

1025th 1536th

1…….1......1…

P31

1537th 2048th

2048th

1st 128th

…..1....

P2

256th129th

.…1….....

P3

….......

P16

2048th 1921st

Status 4: bloom 1 is in L3 partitions

Status 3: bloom 1 is in L2 partitions

1st 64th

.……

P2’

65th 128th

.……

P3’

129th 192nd

.1….

P4’

.……

P32’

1985th 2048th

Bit position:

Figure 3. Storage status changing of a bloom filter

Now the bloom filters have been partitioned three times and have
produced 32 L3 partitions each containing 64 bits of each bloom
filter. Note that each of the L3 partitions still belongs to a single
hash bucket set by h0: the first 8 pages belong to bucket 0, the
second 8 pages belong to bucket 1, and so on.
At this time, the process for looking up key1 is as follows. First,
compute the hash functions to locate the required bit positions:
h0(key1) = 0, h1(key1) = 1, h2(key1) = 201, and h3(key1) = 301,
which means that, the 1st, 201st, and 301st bit positions of bucket 0
should be checked. In the L3 partitions, the three bit positions are
stored in P1’, P4’ and P5’ respectively, so only these pages have
to be loaded into RAM. In this case, key1 will be found by only
checking these pages. In other cases, if the searched key is not
found in the L3 partitions, the current L1 partitions must be
checked also: instead of scanning all the L1 partitions, only the
pages in the corresponding bucket need to be checked (at most s
pages), for example, if h0(key) = 1, only P11, P12, P13 and P14 are
scanned if they are not empty.

4.5 Deletes and Updates
PBFilter has been preliminary designed to tackle applications
where insertions are more frequent and critical than deletes or
updates. This characteristic is common in the embedded context.
For instance, deletes and updates are proscribed in medical folders
and many other administrative folders for legal reasons. Random
deletes and updates are also meaningless in several applications
dealing with historical personal data, audit data or sensed data.
Note that cleaning history to save local space differs from
deleting/updating randomly elements. While the latter impose to
deal with a large DA area, the former can be easily supported.
Indeed, cleaning history generates bulk and sequential deletes of
old data. A simple low watermark mechanism can isolate the data
related in RA, KA and SKA to be reclaimed together.

Let us now consider a large number of random deletes and
updates enlarging DA and thereby decreasing the lookup
performance. The solution to tackle this situation is to index DA
itself using the same strategy, that is building bloom filters on the
content of DA pages and partitioning them. The lookup cost being
non linear with the file size, there is a great benefit to keep a
single DA area for the complete database rather than one per file.
This will bound the extra consumption of RAM to s more buffers
for the whole architecture. The extra cost in Flash memory is
again strongly limited by the high compression ratio of bloom
filters. As section 5 will show, the lookup cost is kept low, though
roughly multiplied by a factor 2 with high update/delete rate.

5. PERFORMANCE EVALUATION
The first objective of this section is to study how traditional
B+Tree, batch methods and PBFilter perform in the embedded
context. To allow a fair comparison between the approaches and
isolate the FTL cost indirectly paid by batch methods and B+Tree,
we introduce a precise analytical cost model. The results are more
easily interpretable than real measurements performed on an
opaque firmware. These results show that, while B+Tree and
batch methods can slightly outperform PBFilter in some situations,
PBFilter is the sole method to meet all requirements of an
embedded context. Then, this section discusses how PBFilter can
be tuned in a co-design perspective. Finally, preliminary
performance measurements conducted on a specific hardware
platform are given for illustrative purpose.

5.1 Analytical Performance Comparison
5.1.1 Indexing Methods under Test
As stated above, the objective is not to perform an exhaustive
comparison of all Flash-based indexing methods, considering that
only PBFilter has been specifically designed to cope with
embedded constraints. The comparison will then concentrate on
opposite approaches (traditional, batch, Summarization &
Partitioning), rather than focusing on variations. Regular B+Tree
running on top of FTL, denoted by BTree hereafter, is considered
as a good representative of traditional disk-based indexing
methods running on Flash memory with no adaptation. BFTL [18]
is selected as a good, and probably best known, representative of
batch methods. To better understand the impact of (not) bounding
the log size in batch methods, we consider two variations of
BFTL: BFTL1 with no compaction of the node translation table
and BFTL2 with the periodic compaction of the node translation
table suggested in [18]. The Bloom filter instantiation of PBFilter,
denoted by PBF hereafter, is so far the unique representative of
Summarization & Partitioning methods.
The performance metrics used to compare these methods are those
introduced in Section 2.3, namely: RAM (RAM consumption in
KB), R (average number of page reads to lookup a key), IR (total
number of page reads to insert N records), W (total number of
page writes to insert N records), VP (total number of valid Flash
pages) and OP (total number of obsolete Flash pages).

5.1.2 Parameters and Formulas
The parameters and constants used in the analytical model are
listed in Table 2 and Table 3, respectively.
Table 4 contains basic formulas used in the cost model and the
cost model itself is presented in Table 5. To make the formulas as
precise as possible, we use Yao’s Formula [20] when necessary.

594

- Yao’s Formula: Given n records grouped into m blocks
(1<m≤n), each contains n/m records. If k records (k≤n-n/m)
are randomly selected, the expected number of blocks hit is:

mdwhere
in
indmkmnYao

k

i

/11,,
1
11),,(

1

−=⎥
⎦

⎤
⎢
⎣

⎡
+−
+−

−×= ∏
=

Table 2. Parameters for the analytical model
Param Signification
N Total number of inserted records
Sk Size of the primary key (in bytes)
B Number of buffer pages in RAM
C Maximum size of a node translation table list in BFTL2
d Value of m/n in Bloom filter (see Table 1 for examples)
k Number of hash functions used by Bloom filter

Table 3. Constants for the analytical model
Constants Signification
Sr=4 (bytes) Size of a physical pointer
fb=0.69 Average fill factor of B+Tree [19]

β=2

Expansion factor of flash storage
caused by the buffering policy in BFTL [18]

Sp=2048(bytes) Size of a Flash page

5.1.3 Performance Comparison
We first compare the four methods under test on each metric with
the following parameter setting: N=1 million records, Sk=12, C=5
for BFTL2 (a medium value wrt [18]), and B=7, d=16, k=7 for
PBF (which correspond also to medium values). The results are
shown in Figures 4(a) to 4(e).
BTree exhibits an excellent lookup performance and consumes
little RAM but the price to pay is an extremely high write cost and
consequently a very high number of obsolete pages produced
(OP). Hence, either the Flash memory usage will be very poor or
the garbage collection cost very high. Considering that writes are
more time and energy consuming than reads, BTree adapt poorly
Flash storage whatever the environment (embedded or not) 3.
BFTL has been primarily designed to decrease the write cost
incurred by BTree and Figures 4(c) and 4(e) show the benefit.
BFTL1 exhibits the highest benefit in terms of writes and Flash
memory usage. However, it incurs an unacceptable lookup cost
and RAM consumption given that the node translation lists are not
bounded. The IR cost is also very high since each insertion incurs
a traversal of the tree. By bounding the size of the node
translation lists, BFTL2 exhibits a much better behaviour for
metrics R, IR and RAM (though RAM remains high wrt
embedded constraints) at the expense of a higher number of writes
(to refresh the index nodes) and a higher Flash memory
consumption (BFTL mixing valid and obsolete data in the same
Flash pages). To better capture the influence of the log size in
batch methods, we vary parameter C in Figure 4(f), keeping the
preceding values for the other parameters, and study the influence
on metrics W, VP and OP. As expected, W and OP (which equals
to W) decrease as C increases since the tree reorganizations

3 The same conclusion can be drawn for other traditional indexing

techniques applied to Flash with no adaptation. E.g., for
hashing, either the number of buckets is kept very small so that
a RAM buffer can be allocated to each and R is very bad
(because of the bucket size) or the number of buckets is very
high and RAM is very high too.

become less frequent (VP stays equal to 0), up to reach the same
values as BFTL1 (equivalent to an infinite C). Conversely, R and
RAM grows linearly with C (e.g., R=105 and RAM=2728 when
C=30, as shown by formula in Table 5). Trading R and RAM for
W and OP is common to all batch methods but there is no trade-
off which exhibits acceptable values for RAM, W and OP
altogether to meet embedded constraints (Low_RAM,
Low_Energy, Low_Storage). Even FlashDB [16] which
dynamically takes the best of BTree and BFTL according to the
query workload cannot solve the equation.
Though slightly less efficient for lookups than BTree and even
BFTL2 when the update/delete rate is high (figure 4(a) shows that
metric R for PBF ranges from 10 without update up to 22 with
100% updates)4, PBF is proved to be the sole indexing method to
meet all embedded constraints at once. In this setting, PBF
exhibits excellent behaviour in terms of IR, W, VP and OP while
the RAM consumption is kept very low. Note that if the RAM
constraint is extremely high, the granularity of the buffer could be
one sector, as explained in Section 3 and 4.2, leading to a total
RAM consumption of 3.5KB5.
The point is to see whether the same conclusion can be drawn in
other settings, and primarily for larger files where sequential
methods like PBF are likely to face new difficulties. Figures 4(g)
to 4(i) analyse the scalability of BFTL and PBF on R, W and
RAM varying N from 1 million up to 7 million records, keeping
the initial values for the other parameters (Figures 4(g) and 4(i)
use a logarithmic scale for readability). BTree is not further
considered considering its dramatically bad behaviour in terms of
W and OP.
BFTL2 scales better than PBF in terms of R and even outperforms
PBF for N greater than 2.5 million records (though R performance
of PBF remains acceptable). However, BFTL2 scales very badly
in terms of W. BFTL1 scales much better in terms of W but
exhibits unacceptable performance for R and RAM.
Unfortunately, PBF scales also badly in terms of W. Beyond this
comparison which shows that efficient Flash-based method for
indexing very large files still need to be invented, let us see if the
scalability of PBF can be improved to cover the requirements of
most embedded applications. Actually, the cost of repartitioning
becomes dominant for large N and repartitioning occurs at every
Flash buffer overflow. A solution for large files is then to increase
the size of the Flash buffer hosting the L1 partitions under
construction. The comparison between PBF1 and PBF2 on Figure
4(i) shows the benefit of increasing the Flash buffer from 16
pages for PBF1 (that is 4 L1 partitions of 4 pages each) to 64
pages for PBF2 (16 L1 partitions of 4 pages each). Such increase
does not impact metric R since the number of reads in L1
partitions does not depend on the number of partitions but of their
size (which we keep constant). The RAM impact sums up to 12
more buffers for SKA, but this number can be reduced to only 3
pages by organizing the buffers by sectors. Hence, PBF can
accommodate gracefully rather large embedded files (a few
millions tuples) assuming the RAM constraint is slightly relaxed
(a co-design choice).

4 Note that the R cost for BFTL and BTree neglects the FTL

address translation cost which may be high (usually a factor 2 to
3).

5 For the sake of simplicity, the formulas of the cost model
consider the granularity of buffers to be one page.

595

Table4. Basic formulas of the analytical model
Vars Annotations Expressions
Common formulas
M Number of index units (IUs) in each page [Note1] ⎣ ⎦Sr)*5Sp/(Sk + for BFTL1&2, ⎣ ⎦Sr)Sp/(Sk + for others

Formulas specific to Tree-based methods (Btree, BFTL1, BFTL2)
ht Height of B+Tree ⎡ ⎤NMfb 1*log +

Nn Total number of B+Tree nodes after N insertions ⎡ ⎤∑
=

−+
ht

i

iMfbMfb
1

1))1*)(*/((N

Ns Number of splits after N insertions Nn-ht

L Average number of buffer chunks that the IUs from
the same B+Tree node are distributed to [Note2]

Yao(N, N/(fb*M*B), fb*M) for BTree,
Yao(N, β*N/(M*B), fb*M) for BFTL1&2,

α Number of index units of a logical node stored in a
same physical page [Note3] fb*M/L

Nc Number of compactions for each node in BFTL2 ⎣ ⎦)1C/()1L(−−

Formulas specific to PBF
NKA Total number of pages in KA ⎡ ⎤MN /

Sb Size of a bloom filter (bits) ⎡ ⎤)*(log22 dM
Mb Number of bloom filters in a page ⎣ ⎦SbSp /8*

M1 Number of <key, pinter> pairs contained by one
bloom filter ⎣ ⎦dSb /

Nr Total number of partition reorganizations [Note4] ⎣ ⎦⎣ ⎦)*1/(/ sLMbNKA

Pf Number of last final partitions ⎡ ⎤)/1/%((log22**1 sLSbNrsL , if Nr>0, else Pf =0

NFB Number of pages occupied by the final valid blooms ⎣ ⎦ ⎣ ⎦⎣ ⎦ sssLMbNPfSbMSpN KA */))*1mod(/(*)1*8*/(++

NE Total number of pages which can be erased ⎣ ⎦ ⎡ ⎤
⎥
⎦

⎥
⎢
⎣

⎢ ∑
=

−
)*1/(

2

)1(log)*1*2(*)1*8*/(2

sLSb

i

i sLMSpN
⎡ ⎤ sLNrsL
sLSbNr

i

i *1*)*1*2(
)/1/%(

2

)1(log2 +⎥
⎦

⎥
⎢
⎣

⎢
+ ∑

=

−

 [Note1] In BFTL, there are five pointers in each Index Unit (data_ptr, parent_node, identifier, left_ptr, right_ptr), explaining factor 5.
 [Note2] Yao’s formula is used here to compute how many buffer chunks (1 buffer chunk containing B pages) that fb*M records are distributed

to, which is the average length of the lists in node translation table for BFTL1.
 [Note3] The IUs from the same logical node are stored in different physical pages, so we divide the total number of IUs (fb*M) by the total

number of physical pages to get the average number of IUs stored in the same physical page.
 [Note4] L1 denotes the number of pages in each initial L1 partition and L1*s is the size of the Flash buffer used to manage them.

Table 5. Final formulas of the analytical model
Metrics\Methods BTree BFTL1 BFTL2 PBF

R [Note1] ht (ht-1)*L+L/2 (ht-1)*C+C/2 R1+R2+ ⎡ ⎤⎡ ⎤2//1** MMNf KA
+ R3

W [Note2] N/α+2Ns β*N/M + β*Ns/2 W1 NKA + NFB +NE
IR [Note3] IR1 IR2 IR3 NE
RAM [Note4] B*Sp/1024 (Nn*L*Sr+B*Sp) /1024 (Nn*C* Sr+B*Sp) /1024 B*Sp/1024
VP [Note5] Nn W W NKA + NFB
OP [Note5] W-Nn 0 0 NE

Where, IR1 = Ns*(fb*M/2) +))1*)(*((*)1()1))1*()1*)((*((* 2
2

1

1 −
−

=

− +−−+++−+∑ ht
ht

i

ii MfbMfbNhtMfbMfbMfbi

IR2 = Ns*(fb*M/2) +))1*)(*((**)1()1))1*()1*)((*((** 2
2

1

1 −
−

=

− +−−+++−+∑ ht
ht

i

ii MfbMfbNLhtMfbMfbMfbLi

IR3 = Ns*(fb*M/2) +))1*)(*((**)1()1))1*()1*)((*((** 2
2

1

1 −
−

=

− +−−+++−+∑ ht
ht

i

ii MfbMfbNChtMfbMfbMfbCi

W1=β*N/M +β*Ns/2 +β*Nn*∑
−

=

−+
1

0
))1(*(

Nc

i
CiC αα /M

R1 = ⎣ ⎦ ⎡ ⎤2/)mod)1/((*/)(sLNNPfN FBFBFB − , R2= ⎡ ⎤)k,/,/(sPfsSbYao ,R3= ⎡ ⎤)k,/,/(*M2)/2*8*N/(Sp sSbsSbYao
[Note1] For BTree, we did not consider the additional I/Os of going through the FTL indirection table. For BFTL1&2, loading a node requires
traversing, in the node translation table, the whole list of IUs belonging to this node and accessing each in Flash. In PBF, the read cost comprises: the
lookup in the final and initial partitions and the cost to access (KA), including the overhead caused by false positives.
[Note2] For BTree, the write cost integrates the copy of the whole page for every key insertion (2 times more for splits). BFTL methods also need
data copy when doing splits and the write cost of BFTL2 integrates the cost of periodic reorganizations. The write cost for PBF is self-explanatory.
[Note3] For Tree-based methods, the IR cost integrates the cost to traverse the tree up to the target leaf and the cost to read the nodes to be split. For
PBF, it integrates the cost to read the partitions to be merged at each iteration.
[Note4] RAM comprises the size of the data structures maintained in RAM plus the size of the buffers required to read/write the data in Flash.
[Note5] VP+OP is the total number of pages occupied by both valid and stale index units. In BFTL1&2, OP=0 simply because stale data are mixed
with valid data. By contrast, stale data remain grouped in BTree and PBF. In BTree, this good property comes at a high cost in terms of OP.

596

154

18
4 10

22

0
20
40
60
80

100
120
140
160
180

BFTL1 BFTL2 BTree PBF

of

 p
ag

es

(a) R : # of page reads for a lookup

128464672

16325018
2793121 80224

0,E+00

2,E+07

4,E+07

6,E+07

8,E+07

1,E+08

1,E+08

1,E+08

BFTL1 BFTL2 BTree PBF

of

 p
ag

es

(b) IR: # of page reads for insertions

54403

254133

996624

49412
0.E+00

2.E+05

4.E+05

6.E+05

8.E+05

1.E+06

1.E+06

BFTL1 BFTL2 BTree PBF

of

 p
ag

es

(c) W : # of page writes for insertions

3994

466
14 14

0
500

1000
1500
2000
2500
3000
3500
4000
4500

BFTL1 BFTL2 BTree PBF

R
A

M
 c

on
su

m
pt

io
n

(K
B

)

(d) RAM consumption

54403

254133

11450

8836

0

0

985174

40576

0,E+00

2,E+05

4,E+05

6,E+05

8,E+05

1,E+06

1,E+06

BFTL1 BFTL2 BTree PBF

of

 p
ag

es

OP
VP

(e) VP & OP : valid and obsolete pages

0,E+00

5,E+04

1,E+05

2,E+05

2,E+05

3,E+05

3,E+05

5 10 15 20 25 30
parameter C

of

 p
ag

es

BFTL1/W
BFTL2/W
PBF/W
PBF/VP
PBF/OP

(f) Influence of C on W

1

10

100

1000

1 2 3 4 5 6 7
parameter N (million)

of

 p
ag

es

BFTL1 BFTL2
PBF1 PBF2

(g) Influence of N on R

0.E+00

5.E+05

1.E+06

2.E+06

2.E+06

1 2 3 4 5 6 7
parameter N (million)

of

 p
ag

es

BFTL1
BFTL2
PBF1
PBF2

(h) Influence of N on W

1

10

100

1000

10000

100000

1 2 3 4 5 6 7
parameter N (million)

R
A

M
 c

on
su

m
pt

io
n

(K
B

)

BFTL1 BFTL2

PBF1 PBF2

(i) Influence of N on RAM

0

5

10

15

20

25

0.01 0.1 1

update rate

of

 p
ag

e
re

ad
s

(j) Influence of update rate on R

0

10

20

30

40

50

60

10 11 12 13 14 15 16 17 18 19

parameter d

of

 p
ag

es

(k) Influence of d on R

0,E+00
1,E+04
2,E+04

3,E+04
4,E+04
5,E+04
6,E+04

7,E+04
8,E+04

10 11 12 13 14 15 16 17 18 19

parameter d

of

 p
ag

es

W
VP
OP

(l) Influence of d on W, VP and OP

0

5

10

15

20

25

3 4 5 6 7 8 9 10 11 12 13

paramter k

of

 p
ag

es

(m) Influence of k on R

Table 6. Average R in the experiments
 Hash
Distrib.

Bob Jenkins Super-Fast Arash Partow

Random 12.33 12.28 68.37

Ordinal 12.34 12.32 41.06

Normal 12.28 12.36 76.95

Figure 4. Evaluation results

5.1.4 About Frequent Deletions
As shown is Figure 4(a), large number of random deletions or
updates degrades the lookup performance of PBFilter because of
the search in DA. Figure 4(j) shows more precisely the impact of
random updates/deletions on metric R when there are 1 million

valid tuples. It grows with the update rate (number of
updates/number of valid tuples) slowly thanks to DA indexing
(e.g., for an update rate of 100%, R = 22). This confirms the
benefit to build a single DA area for the complete database if
RAM buffers needs to be saved.

597

5.2 PBFilter Adaptability and Predictability
Tuning parameters d and k used to build the Bloom filters in PBF
determines the quality of the summarization (false positive rate),
the size of the summary and then the partitioning cost with a direct
consequence on metrics R, W, VP and OP. This makes PBF
adaptable to various situations and brings high opportunities in
terms of co-design, assuming the consequences of tuning actions
can be easily predicted and quantified.
Figure 4(k) shows the influence of d on R with the other
parameters set to the previous values: N=1million, Sk=12, B=7,
k=7. As expected, the bigger d, the smaller the false positive rate
and then the better R. At the same time, larger Bloom filters
increase the frequency of repartitioning and then increase W and
OP in the proportion shown in Figure 4(l). The impact on VP is
however very limited because of the small size of SKA compared
to KA (e.g., for d=16 and k=7, |SKA|/|KA| = 0.1). Figure 4(m)
shows the influence of k on R with d=16. The bigger k, the better
R, up to a given threshold. This threshold is explained by the
Bloom filter principle itself (see formula in Section 4.1 showing
that there is an optimal value for k beyond which the false positive
rate increases again) and by the fact that a bigger k means
scanning more partitions in SKA, a benefit which must be
compensated by lower accesses in KA.
As a conclusion, d introduces a very precise trade-off between R
and W, VP, OP, allowing adapting the balance between these
metrics to the targeted application/platform tandem. The choice of
k under a given d should minimize i*k+f*|KA|/2, where i is the
number of pages in each final partition.
To illustrate this tuning capability, let us come back to the
management of large files. Section 5.1.3 presented a solution to
increase PBF scalability in terms of W. The scalability in terms of
R can be also a concern for some applications. The decrease of R
performance for large files is due to the increase of the number of
pages in each final partition and of the average accesses to KA
which is f*|KA|/2. The growth of the size of each final partition
can be compensated by a reduction of k and a smaller f can still be
obtained by increasing d. For instance, the values d=24 and k=4
produce even better lookup performance for N=5 million records
(R=9) than the one obtained with d=16 and k=7 for N=1 million
records (R=10). The price to pay in terms of Flash memory usage
can be precisely estimated thanks to our cost model.

5.3 Experimental Results on Real Hardware
5.3.1 Platform Description
PBFilter has been implemented and integrated in the storage
manager of an embedded DBMS dedicated to the management of
secure portable folders [1]. The prototype runs on a secure USB
Flash platform provided by Gemalto, our industrial partner. This
platform is equipped with a smartcard-like secure microcontroller
connected by a bus to a large (Gigabyte-sized soon) NAND Flash
memory (today the 128MB Samsung K9F1G08X0A module), as
shown in Figure 5.
The microcontroller itself is powered by a 32 bit RISC CPU
(clocked at 50 MHz) and holds 64KB of RAM (half of it
preempted by the operating system) and 1MB of NOR Flash
memory (hosting the on-board applications’ code and used as
write persistent buffers for the external NAND Flash).

Figure 5. Secure USB Flash device

There are three nested API levels to access the NAND Flash
module: FIL (Flash Interface Layer) providing only basic controls
such as ECC, VFL (Virtual Flash Layer) managing the bad blocks
and FTL (Flash Translation Layer) implementing the address
translation mechanism, the garbage collector and the wear-leveling
policies. We measured the cost of reading/writing one sector/page
through each API level using sequential (seq.) and random (rnd.)
access patterns. The numbers are listed in Table 7 and integrate the
cost to upload/download the sector/page to the Flash module
register and the transfer cost from/to the RAM of the
microcontroller (masking part of the difference in the hardware
cost). FIL and VFL behave similarly for sequential and random
access patterns while the variation is significant with FTL.
Random writes exhibit dramatic low performance with FTL (a
behavior we actually observed in many Flash devices).

Table 7. I/O Performance through different API levels
API Levels R(µs) sector/page W(µs) sector/page
FIL(seq. & rnd.) 100/334 237/410
VFL(seq. & rnd.) 109/367 276/447
FTL(seq.) 122/422 300/470
FTL(rnd) 380/680 ≈ 12000

5.3.2 Experimental Results
We ran our prototype under all the parameter settings used in 5.1
and 5.2. We measured the I/Os and compares the results with those
produced by the cost model.
Unsurprisingly, the tests produced exactly the same numbers as
those computed by the cost model for all metrics but R. Indeed,
the sequential organization and the fixed size of all data structures
make the insertion process and the number of repartition steps
fully predictable for a given parameter setting, avoiding any
uncertainty for IR, W, VP and OP metrics (In the prototype,
transaction atomicity is guaranteed thanks to internal NOR Flash
buffers and do not interfere with the NAND Flash management).
The discrepancy related to the R metric deserves a deeper
discussion. The cost model computes the false positive rate using
the formula given in 4.1, assuming the k hash functions are totally
independent, a condition difficult to meet in practice. Much work
[7, 12] has been done to build efficient and accurate bloom filter
hash functions. In our experiment, we compared Bob Jenkins’
lookup2, Paul Hsieh’s SuperFastHash, and Arash Partow hash
over datasets of different distributions (random, ordinal and
normal) produced by Jim Gray’s DBGen generator. The results
show that the degradation of the false positive rate is quite
acceptable for the former two hash functions but not for the latter.
Table 6 shows the R metric measured for each hash function and
data distribution under the setting: N=1 million, Sk=12, d=16, k=7
(the cost model gives R=10 for this setting). About the efficiency
of hash functions, Bob Jenkins and SuperFastHash are quite fast
(6n+35 and 5n+17 cycles respectively, where n is the key size in
bytes), and k independent hash values can be obtained by calling
only three times the hash function [7].
We have done preliminary performance measurements in terms of
response time for insertions and lookups on top of different API

598

levels. Today, we are not granted permission by our industrial
partner to publish absolute performance numbers, other than those
given in Table 7, due to a pending patent. However, the
preliminary observations show that (1) the average insertion cost
of PBFilter is low in every situations (even on top of FTL) due to
its sequential write feature, (2) the lookup cost is very satisfactory
on top of FIL and VFL with an increase of nearly 70% on top of
FTL and (3) the CPU cost remains low (less than 15% of the total)
despite the low frequency of the microcontroller. Further
experiments are required to fully capture the behaviour of PBFilter
on this hardware platform considering different NAND Flash APIs
and variant datasets. We expect that real numbers would be made
public soon.

6. CONCLUSION
NAND Flash has become the most popular stable storage medium
for embedded systems and efficient indexing methods are highly
required to tackle the fast increase of on-board storage capacity.
Designing these methods is complex due to a combination of
NAND Flash and embedded system constraints. To the best of our
knowledge, PBFilter is the first indexing method addressing
specifically this combination of constraints.
The paper introduces a comprehensive set of metrics to capture the
requirements of the targeted context. Then, it shows that batch
methods are inadequate to answer these requirements and proposes
a very different way to index Flash-resident data. PBFilter,
organizes the index structure in a pure sequential way and speeds
up lookups thanks to Summarization and Partitioning. A Bloom
filter based instantiation of PBFilter has been implemented and a
comprehensive performance study shows its effectiveness.
PBFilter is today integrated in the storage manager of an
embedded DBMS dedicated to the management of secure portable
folders. Thanks to its tuning capabilities, PBFilter seems adaptable
to various Flash-based environments and application requirements.
Typically, PBFilter seems well adapted to any RAM constrained
environment, embedded or not. Our future work is to complete
performance measurements on real hardware, to propose an
accurate management of secondary keys and to investigate new
summarization and partitioning strategies to ever enlarge PBFilter
application domain.

7. ACKNOWLEDGMENTS
The authors wish to thank Luc Bouganim, Dennis Shasha and
Björn Þór Jónsson for fruitful discussions on this paper and Jean-
Jacques Vandewalle and Laurent Castillo from Gemalto for their
technical support. This research is partially supported by the
French National Agency for Research (ANR) under RNTL grant
PlugDB and by the Natural Science Foundation of China under
grants 60833005, 60573091.

8. REFERENCES
[1] Anciaux, N., Benzine, M., Bouganim, L., Jacquemin, K.,

Pucheral, P., and Yin, S. Restoring the Patient Control over
her Medical History. 21th IEEE Int. Symposium on
Computer-Based Medical Systems (CBMS), 2008.

[2] Anciaux, N., Bouganim, L., Pucheral, P., Valduriez, P. DiSC:
Benchmarking Secure Chip DBMS. IEEE Transactions on
Knowledge and Data Engineering (IEEE TKDE), vol. 20,
n°10, 2008.

[3] Birrel, A., Isard, M., Thacker, C., and Wobber, T. A Design
for High-Performance Flash Disks. Operating Systems
Review 41(2), 2007.

[4] Bityutskiy, A-B., JFFS3 Design Issues. Tech. report, Nov. 2005.
[5] Bloom, B. Space/time tradeoffs in hash coding with allowable

errors. Communications of the ACM, 13(7), 1970.
[6] Dekart SRL.: Dekart Smart Container, 2007.

http://www.dekart.com/products/integrated/smart container
[7] Dillinger, P. C., and Manolios, P. Fast and Accurate Bitstate

Verification for SPIN. 11th Int. Spin Workshop on Model
Checking Software, LNCS 2989, 2004.

[8] Gonnet, G. and Baeza-Yates, R. Handbook of Algorithms and
Data Structures, Addison-Wesley, Boston, MA, USA, 1991.

[9] Hamid L. New directions for removable USB mass storage,
Press release, 2006. http://www.itwales.com/997893.htm

[10] Intel Corporation, Understanding the Flash Translation Layer
(FTL) specification. 1998.

[11] Kim, G., Baek, S., Lee, H., Lee, H., and Joe, M. LGeDBMS: A
Small DBMS for Embedded System with Flash Memory. Int.
Conf. on Very Large Data Bases (VLDB), 2006.

[12] Kirsch, A., and Mitzenmacher, M. Less Hashing, Same
Performance: Building a Better Bloom Filter. Algorithms – ESA
2006, 14th European Symposium, LNCS 4168, 2006.

[13] Lee, S-W., and Moon, B. Design of Flash-Based DBMS: An
In-Page Logging Approach. Int. Conf. on Management of
Data (SIGMOD), 2007.

[14] Mani, A., Rajashekhar, M. B., and Levis, P. TINX - A Tiny
Index Design for Flash Memory on Wireless Sensor Devices.
ACM Conf. on Embedded Networked Sensor Systems
(SenSys) 2006, Poster Session.

[15] Mitzenmacher, M. Compressed Bloom Filters. Proceedings
of ACM PODC, 2001.

[16] Nath, S., and Kansal, A. FlashDB: Dynamic Self-tuning
Database for NAND Flash. Int. Conf. on Information
Processing in Sensor Networks (IPSN), 2007.

[17] Rosenblum, M., and Ousterhout, J. K. The Design and
Implementation of a Log-Structured File System. ACM
Transactions on Computer Systems (TOCS) 10(1), 1992.

[18] Wu, C., Chang, L., and Kuo, T. An Efficient B-Tree Layer for
Flash-Memory Storage Systems. Int. Conf. on Real-Time and
Embedded Computing Systems and Applications (RTCSA), 2003.

[19] Yao, A. On Random 2-3 Trees. Acta Informatica, 9 (1978).
[20] Yao, S. Approximating the Number of Accesses in Database

Organizations. Communication of the ACM 20(4),1977.
[21] Yin, S., Pucheral, P., Meng X. PBFilter: Indexing Flash-

Resident Data through Partitioned Summaries. Tech. Rep.
RR-6548. INRIA. 2008.

[22] Zeinalipour-Yazti, D., Lin, S. V., Kalogeraki, Gunopulos, D.,
and Najjar, W. MicroHash: An Efficient Index Structure for
Flash-Based Sensor Devices. USENIX Conf. on File and
Storage Technologies (FAST), 2005.

599

